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Abstract

This thesis focuses on techniques to detect and track the full-DOF human hand
motion using conventional cameras. The approaches developed in this work
contribute to the area of non-invasive, marker-less articulated object tracking.

The overall approach chosen in this thesis is model-based and realized by
template matching: the high-dimensional hand configuration space is sampled,
then for each sample an artificial hand model rendered, and finally, the resulting
templates matched to the input image.

The first contribution of this thesis is a novel method that is able to compute
silhouette area-based similarity measures in near-constant time. For this pur-
pose, the integral image is combined with a novel representation of arbitrary
silhouette areas by sets of axis-aligned rectangles.

The second contribution is a family of new area-based similarity measures.
The first class of measures matches templates against the segmentation like-
lihood map: one of them assumes a normal distribution of the segmentation
likelihood values, while the other uses non-parametric representations of the dis-
tribution. The second class of measures contributed in this work does not need
any segmentation and works for nearly arbitrary input modalities. This is very
important regarding the upcoming depth imaging and possibly further sensing
technology.

The third contribution is a novel edge-based similarity measure that avoids any
problematic thresholding on the edge gradients of the input image. Furthermore,
the similarity measure can be formulated as convolution, which allows for a faster
matching in Fourier space.

The fourth contribution is a template hierarchy to minimize the number of
similarity computations needed for finding the most likely hand pose observed.
By way of its construction, each leaf of the hierarchy corresponds to a hand
pose and is represented by its silhouette area while the inner nodes represent
the intersecting area of its children. Consequently, matching can be formulated
as a simultaneous template tree traversal and function maximization.

The approaches presented in this thesis are tested on different image sequences
containing complex background and different hand poses including self-occlusion.
For efficient evaluation of the segmentation-based similarity measures, a robust
skin color estimation approach is also proposed. In addition, an artificial hand
model and an approach for a very compact hand motion description is developed.
In the experiments, a monocular camera is used but the approaches can easily
be extended to multi-camera systems, which is explained in detail in this thesis,
too.
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Chapter 1

Introduction

1.1 Motivation

The motivation of this thesis is the development of new algorithms and methods
to improve the camera-based hand tracking including the estimation of the finger
angles, the global position and orientation. In the following, we will first discuss
a few interesting applications, which point out the importance of hand tracking,
and then give an overview of the challenges.

1.1.1 Applications of Hand Tracking

Today, hand tracking is of more interest than ever before. In professional ap-
plications, marker-based hand tracking is used for several years for example
for assembly simulation, motion capture, virtual prototyping and navigation in
virtual environments. Markers are uncomfortable and undesirable for the user.
Thus, marker-less hand tracking, as presented in this thesis, is of high interest.
Recently, human motion tracking found its way to the consumer market through
Nintendo Wii, Sony Move and Microsoft Kinect. The Kinect is the first bare
camera-based consumer product. But the goal of all three products is to track
the human body motion. The Kinect is able to track the whole body with fairly
well accuracy. The next consequent step is the precise tracking of the human
hand, which will significantly improve the interaction with game consoles and
computers. It is expected that hand tracking will revolutionize the application
control and game experience.

For example, imagine a shooter, where the player uses his hand to focus tar-
gets. This is much more intuitive than using a mouse because he could easily
control the 6 DOF (translation and rotation) needed in 3D. In an adventure
game, the user could pick up and drop objects in an intuitive way in contrast
to using keyboard shortcuts. In a flight simulator, the translational DOF can
be used to control the acceleration, the rotational DOF to modify the pitch,
roll, and heading angles of the airplane. In a massively multi-player online
role playing game (MMORPG), the player could freely interact with teammates
and opponents and trading or crafting would become more intuitive. Using the
hand as an input device, completely new content and interaction techniques, not
considered before, can be added and improve the overall gaming experience.

Of even more interest are professional applications. For example, in virtual
assembly simulation, an engineer interacts with his CAD application in a vir-
tual environment (e.g. in a cave). Using hand tracking, he could navigate very
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Figure 1.1: Tllustration of the degrees of freedom (DOF) of the human hand.
The valid hand poses form a manifold in the 21 dimensional space. Adding the
6 global DOFs (translation and rotation), we arrive at 27 DOF. The left image
illustrates the DOF for each joint. The right image shows the name of each
joint.

Carpometacarpal (CMC)

intuitively by freely moving his hands, control and handle its CAD application
without additional input devices, and manipulate the objects to be designed in a
natural way. A grasping movement, for example, to open a door of a car, is the
same action as in the real world, in contrast to traditional interaction through
a mouse, where it has to be simulated by a sequence of mouse clicks.

Hand tracking also has a high potential in medical applications. Consider
a surgeon in an operating room. He has to keep his hands sterile, which pro-
hibits retrieving additional information about the patient or advanced surgery
techniques with a conventional input device. In contrast, camera-based hand
tracking allows a device to be controlled contact-free. Other medical applica-
tions could be tele-controlled surgery, e.g. a surgeon uses his hands to control a
robot arm with mounted scalpel or other surgery instruments.

Further applications are gesture recognition as next generation “touchless”
touchscreen and in mobile devices to improve application control, rehabilitation,
and assembly simulation.

These are only a few of the numerous applications of hand tracking. Most of
them need, obviously, real-time, precise, tracking of the hand with 26 DOF's. So,
algorithms to achieve this are an enabling technology for this kind of interaction
paradigm. But robust hand detection and recognition in uncontrolled environ-
ments is still a challenging task in computer vision, and thus, an active research
area.

1.1.2 Challenges of Hand Tracking

The main challenges of camera-based hand tracking are the high-dimensional
hand configuration space, the high appearance variation, the limitations of cam-
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eras, and the potentially disturbing environment. In the following, the challenges
are described in detail.

1.1.2.1 High-dimensional Configuration Space

Since the goal of this thesis is the estimation of the hand pose i.e. determining the
finger angles and not only a few gestures, the problem dimension is very high.
Figure 1.1 illustrates the articulations. Each finger has 4 degrees of freedom
(DOF): the thumb has 1 flexing DOF at the interphalangeal and metacarpopha-
langeal joint and 2 DOFs for the carpometacarpal joint. The other 4 fingers
have 1 flexing DOF each for the Distal interphalangeal (DIP) and the Proximal
interphalangeal (PIP) joint and 2 DOFs (flexion and abduction) for the metacar-
pophalangeal (MCP) joint. Overall, the hand has 20 local DOFs. Sometimes,
an additional DOF is added to the thumb CM joint with the metacarpal bone
as axis. The reason is that the thumb movement, as for example made in the
grasping gesture, is hard to be modeled with flexion and abduction only. Thus,
often, we talk about 21 instead of 20 DOFs.

Adding the 6 global DOFs including the hand position and orientation, the
task of hand pose estimation is equivalent to a function optimization in a mani-
fold in the 27 dimensional space. This is a challenging task, which becomes even
more difficult by the real-time condition.

1.1.2.2 Hand Motion and Appearance Variation

The human hand to be tracked varies strongly from person to person. The skin
color for example depends on the ethnic origins and the skin browning. The
geometry of the hands are also very different, e.g. thickness and length of the
fingers, and width of the hand to mention only some of the varying parameters.
Even the kinematic varies between human beings.

Additionally, the appearance variability of the hand is very high, and thus, it is
challenging to detect the hand in an input image because neither its appearance
nor its position are known.

It is obvious that an exhaustive search in the 27 dimensional space is pro-
hibitive. Thus, hand tracking approaches either reduce the search space by
restricting the hand motion (e.g. allow only a few predefined gestures instead
of full finger flexion and abduction) or initialize the tracker manually. In recent
years, some researchers do not use any restrictions and try to fully estimate
the hand pose and position. This thesis makes contributions to this challenging
task.

1.1.2.3 Unconstrained Background

To be able to detect the hand in an input image, one first has to identify the im-
age region corresponding to the hand by applying a segmentation algorithm (e.g.
skin color segmentation or background subtraction) or extract features whose
distribution on the hand and the background are sufficiently different (e.g. edges).
The more complex the background the less likely those features can be used to
discriminate between hand and background. For example skin colored regions
in the background (Fig. 1.2) will heavily disturb a skin color segmentation. Mo-
ving object in the background are an error source for background subtraction
and textured regions (consider for example a keyboard or a picture as shown in
Figure 1.3) will produce a lot of edges in the background that are similar to the
edge distribution of the hand itself.
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Figure 1.2: A skin color-based hand tracking approach will fail in the example
image (left) due to the red, skin-colored door in the background. The reason is
that the skin segmentation (right) will classify most of the door as skin.

Thus, the ability to extract the hand from the background also heavily depends
on the background itself, and makes the hand tracking more complicated and
less reliable.

1.1.2.4 Camera Limitations

Current camera technology is limited in its capturing capability. In most real
setups there are over- and/or underexposured regions. This is due to the low
dynamic range of the cameras. In the recent years, high dynamic range (HDR)
cameras became affordable, but of limited resolution and frame rate, and the
dynamic range of the cameras still is by some orders of magnitude lower than
the human eye. Additionally, physics and current lens systems restrict the depth
of field of the camera, so the hand motion volume is limited. Other limitation
factors are low camera resolution and frame rate.

Most cameras capture only the usual three color channels and not the whole
spectrum of light. This seems to be intuitive because the human eye is based
on the tristimulus values, but in practice, cameras that would be able to cap-
ture more than three color channels or even the whole light spectrum would
be expected to simplify the hand detection task a lot. The reason is that the
skin could be segmented much more reliably from objects in the background
consisting of different materials than skin.

1.1.2.5 Real-time Tracking Condition

Most hand tracking applications need the hand to be tracked in real-time i.e.
at least 25 full pose estimations per second. This is a very strong condition
in particular due to the high dimensional search space. For example, a hand
tracking approach with a high estimation accuracy is useless for real applications
if it needs a second or even longer to estimate the hand pose in each frame.

1.2 Classification of Approaches

To overcome the limitations, many different kinds of human motion track-
ing approaches have been proposed. In the following, we want to give an
overview of these approaches. There are several ways to classify the approaches
[MHK06, EBNT07]. A lot of publications in the area of hand tracking focus
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Figure 1.3: An edge-based hand tracking approach will yield a low matching
quality in the left image due to the large amount of edges (right image) in the
background.

on the classification of a fixed number of gestures, others try to estimate the
full DOF including all finger joint angles. As its name says, hand gesture clas-
sification can be done efficiently through classification algorithms, e.g. support
vector machines (SVM) or random trees. Recently, in the area of whole body
tracking, an approach for full pose estimation through classification algorithms
has been presented [IKHT11, INK*11]. But it is very questionable whether the
application of this approach to the problem of hand tracking would work; this
is mainly due to the larger appearance variability of the hand compared to the
whole body.

Most of the hand tracking approaches today use some kind of fitting, i.e.,
the whole hand or parts like fingers or finger tips are matched against the in-
put image. This leads us to another way to classify hand tracking approaches:
classification or fitting-based approaches.

One can also differentiate between approaches that are able to automatically
initialize the pose and approaches that need a manual initialization. Approaches
with automatic initialization use a global search of the hand pose in the config-
uration space. By contrast, approaches with manual initialization apply only a
local search in the neighborhood of the pose in the previous frame (trying to
exploit temporal coherence).

Another widely followed categorization divides hand tracking into the follow-
ing two classes: appearance-based and model-based. The term model-based
means that a 3D hand model is fitted somehow against the input image. Model-
based approaches can either be formulated as optimization or nearest neighbor
search. The idea behind the optimization is simple: based on a initial match,
the model is adapted and fitted again until convergence. The nearest neigh-
bor formulation considers a database with all possible hand poses, which have
to be tracked. Then, the goal is to find the most similar hand pose and the
corresponding position in the input image.

By contrast, appearance-based approaches try to learn a direct mapping from
the input image to the hand pose space. Most of them use fairly low-level fea-
tures (e.g. edges or color blobs) or even no features at all (e.g. artificial neural
networks). Thus, such approaches do not need to search the whole configuration
space because the information of the hand poses is encoded in the learned map-
ping. This typically makes them computationally less expensive. On the other
hand, they lack on accuracy and stability due to poor handling of noise and par-
tial occlusion in the input image. Of course, appearance-based approaches need
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Figure 1.4: Model-based approaches (left) use an object model (here the human
hand) and match the templates, each representing a hand pose, to the input
image. In contrast, appearance-based approaches (right) try to learn a direct
mapping from the image space to the pose space.

to include the hand model in some way, too. For example, in a neural network-
based approach, which maps the image pixels to the pose, a hand model is
implicitly stored in the neural network itself.

Figure 1.4 visually compares the idea of model and appearance-based ap-
proaches.

1.2.1 Appearance-based Approaches

A typical appearance-based approach is used in [CW96, CW00] to detect the
hand position in a gray-scale image. In a training step, multiple hand poses
are trained. During tracking, “attention images” are used for segmentation.
Basically, the image pixels are directly used as input vector and a principal
component analysis (PCA) is applied for dimension reduction. A hand pose is
successfully segmented by validating a training image to be close enough in the
low-dimensional space. Nearest neighbor search is performed using a Voronoi
diagram. The hand segmentation probability is evaluated using kernel density
estimation.

A set of specialized mappings is trained based on data obtained by a Cy-
berglove in [RASS01]. After a skin segmentation, moment-based features are
computed and used as weak mapping functions. This mapping functions are
combined to get a strong classification function.

Another classical appearance-based approach for hand tracking is used in
[BPR'04]. They used a so-called Eigentracker to be able to detect a maximum
of two hands. Color and motion cues are used for initialization. The eigenspace
is updated online to incorporate new viewpoints. Illumination variations are
handled by a neural network.

In [ALO5] skin-colored blobs are detected to localize the hand position. Next,
the hand pose is estimated by detecting the finger tips. The blobs are detected
using a Bayesian classifier. Color changes during time are handled by an iterative
training algorithm.

[WZDO7] detect the hand position in the image using Camshift. A contour
in Fourier space is computed to obtain a scale and rotation invariant hand
descriptor. After locating the hand position, the finger tips are determined
by a semicircle detector. Particle filtering is used to find finger tip location
candidates. A k-means clustering is applied to the candidates. The cluster
centers (prototypes) are used as the final finger positions.
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Appearance-based approaches are also popular in the area of human body
tracking. Basically similar approaches as used for hand tracking can be applied
but, compared to the hand, the appearance variability for the whole body is
by far lower. In [RS99] a statistical body segmentation is applied and low-level
features extracted. A mapping from this low-level features to the 2D body pose
is trained using a set of examples. This is done by first applying the Expectation
Maximization (EM) algorithm to the examples. A mapping function from the
resulting clusters to the 2D pose space is trained. Given a new visual feature,
a mapping from each cluster is performed and the most likely chosen to be the
most probable body pose.

Felzenszwalb et al. [FHO5] uses difference of Gaussians (DoG) as features.
They build a tree-structured graph that roughly matches to the human body
structure. Minimization is performed through the Viterbi algorithm. In an
earlier work [FHOO] they used the color mean and variance of rectangular regions
as features.

One of the main disadvantages of appearance-based approaches is their high
sensitiveness to noise, feature extraction errors, and partial occlusion. For ex-
ample, if a finger tip is occluded, but not necessarily the rest of the finger, the
above approaches will fail to detect the finger. It is not even easy to determine
which of the fingers is occluded.

A promising alternative are model-based approaches.

1.2.2 Model-based Approaches

Model-based approaches search in the large configuration space to find the best
matching hypothesis. Basically, a descriptor, optimized for fast and accurate
matching, is defined first. Then for all hand poses to be tracked, the correspon-
ding template is generated. During tracking, the hand poses are compared to the
input image by computing the similarity between the corresponding templates
and the (preprocessed) input image. Depending on the needs of the approach
(number of poses that have to be detected, computational power of target device)
the templates are precomputed or generated online during tracking. The main
differences between the approaches is the method to compute the similarity be-
tween hypothesis and input image, how to compute each similarity evaluation
as fast as possible, and acceleration data structures to avoid as many similarity
measure evaluations as possible.

Most approaches for articulated object tracking use edge features and/or a
foreground segmentation as a preprocessing step. Similarity measures between
the target object and the input image are defined based on these features.

The advantage of model-based approaches compared to appearance-based ap-
proaches is that arbitrary hand poses can be modeled including self occlusion.
Partial occlusion by other objects can be handled robustly as well because the
similarity measure between a hypothesis and an input image is only affected by
a limited amount. Using appearance-based approaches, relatively small distur-
bance in observation can lead to a mapping to a variety of poses.

Because this thesis focuses on model-based approaches, an extensive overview
of related work will be given in the Sections 4.1.1 and 4.2.1.
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Figure 1.5: Many previous approaches make some limitations to the problem
of hand tracking. Such limitations are, for example, a simple homogeneously
colored background, restricted global motion (position and orientation), and
restricted local motion (joint angles).

1.3 Limitations of Previous Approaches

Many previous approaches in the area of hand tracking make simplifying as-
sumptions to reduce the high complexity of the full-DOF hand tracking task.
Such assumptions (Fig. 1.5) are mainly the following.

o Simple background: many approaches in the past use a uniformly colored
background with a color at maximum difference to skin color to be able to
easily segment the hand foreground.

e Restricted hand motion: To avoid a search in the whole hand configuration
space, many approaches restrict the hand motion to only a few poses or limit
the rotation angles of the hand. An even more simplifying assumption is not
to detect the hand motion at all, but just recognize a few hand poses. This
is typically solved through classification.

e Manual initialization: If the pose of the hand in the last time step is unknown,
the only way to estimate the hand pose is a search in the whole configuration
space including the global position and orientation. To avoid this challenging
and time consuming step, several approaches perform a manual initialization
and just search in the very close parameter space neighborhood for the hand
pose in the next frame. But a manual initialization is not practicable for all
applications, and always a tedious task for the user.

We want to mention that the approaches presented in this thesis are not insen-
sitive to the above effects and preconditions, but the quality of the approaches
scales with them i.e. the more of the above preconditions are fulfilled, the bet-
ter the approach will work, but if a precondition is not given, it still works at
appropriate quality and speed.
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Figure 1.6: Template matching can be done in two different ways: templates can
either be generated offline and stored in a database, or they can be generated
online during the matching. The main differences are storage space, flexibility
and computation time. There are mainly two reasons the matching time using
“Online template generation” is higher: first, the rendering of the model needs
computation resources, and second, the computation of the template represen-
tation, optimized for matching, consumes additional computation power.

1.4 Overview and Contributions

In this thesis, we use a color camera to test and evaluate the novel approaches
presented. The outputs are the hand configuration parameters consisting of the
joint angles, the global position, and the orientation in camera coordinates. As
already mentioned implicitly in the last section, this thesis makes no limiting
assumptions as several other approaches have.

Model-based approaches are expected to be more promising to achieve the
goal of precise hand tracking because they can model arbitrary hand poses and
can reliably compare them to the input image, in 2D and/or 3D. Independent
of the appearance complexity of the hand, a comparison is always possible. In
contrast, appearance-based approaches, which use a direct mapping from image
(or feature) space to the hand pose space have to learn a mapping. This mapping
heavily depends on the power of the mapping function (e.g. neural network,
classifier, random forests). There is no guarantee that such mapping functions
can learn all necessary appearance variations (recognize the hand in a large
number of poses).

Thus, the contributions in this thesis are in the area of model-based hand track-
ing. Using model-based approaches, one has two options: render the hand model
for the hand poses to be matched to the input image online during tracking or
render all poses in a preprocessing step and store them in a database. Figure
1.6 gives an overview of the advantages and disadvantages of both alternatives.
If the pose in the previous time step is known (implies manual initialization),
many researchers use the online update approach because the pose potentially
can be estimated more accurate. But in real setups, the accuracy of the hand
pose estimation is limited by the capturing device (noise, resolution, exposure
dynamic range). Consequently, the estimated hand pose in the previous frame
is not very reliable in many cases.

In such cases, or if the hand pose is completely unknown (at initialization),
the approach using precomputed templates is much more appropriate because
a global search in the hand pose space is much faster. Of course, the number of
templates in the database is limited by the device memory.

But using smart descriptors, a compact representation and sophisticated accel-
eration data structures allow us to use a large database to achieve an sufficient
accuracy. In combination with the continuously increasing device memory the
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disadvantages of precomputed templates are more and more alleviated and their
advantages simultaneously improved. Thus, with increasing computation power
of current hardware, such approaches become more and more appropriate for
online tracking, and not only for pose initialization. Model-based approaches
using precomputed templates can be formulated as a database indexing prob-
lem, i.e. find the element in the database that best matches to the input image.
This also involves finding the location in the input image where the best match
occurs.

In this thesis, each element in the database represents a hand pose. More
precisely, we store a descriptor optimized for matching in the database. An
instance of the descriptor is denoted by template and matching the database to
an input image as template matching. Crucial for template matching are

e the discriminative power of the distance measure used for matching and

e the computation time to match the database to the input image.

The computation time mainly depends on:

— the time to compute the similarity measure i.e. the time needed to match
one template to one position in the input image and

— the acceleration data structure used to minimize the number of database
elements that have to be matched to the input image with a minimal loss
of accuracy.

This leads us to the main contributions of this thesis to the area of hand
tracking:

1. An edge-based similarity measure: most edge-based approaches need binary
edges i.e. thresholds have to be chosen, which is not easy in general. In
this thesis, we present a threshold-free similarity measure utilizing the edge
gradient itself. Matching a template to the input image can be formulated as
convolution, and thus, the computation time can be reduced utilizing Fourier
Transform.

2. A novel skin color estimator: we present a novel skin color segmentation ap-
proach. The core of the approach is the estimation of the skin color distribu-
tion utilizing a clustering algorithm combined with a subsequent classification
of the clusters as skin and non-skin (i.e. background).

3. A very compact and resolution independent representation of template sil-
houettes by sets of axis-aligned rectangles. This allows us to compute several
area-based similarity measures in near-constant time with respect to the im-
age resolution. In contrast, previous state-of-the-art approaches are linear in
the image resolution.

4. A set of segmentation-based similarity measures: similarity measures utilizing
the object foreground in the input image typically compare the size and shape
of the template to the extracted foreground of the input image. We present
robust approaches based on the scalar segmentation i.e. no binarization of
the segmentation is necessary.

5. A segmentation-free similarity measure: Area-based similarity measures have
the advantages, that the resulting likelihood maps produce few and ex-
tent maxima. This is well suited for fast global maximum search. But
segmentation-based approaches heavily depend on the segmentation quality.
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Figure 1.7: Tllustration of a typical hand tracking pipeline by hand of two fea-
tures (skin segmentation and edge gradient). The hand poses shown are chosen
for visualization purposes only. The first source of error is the camera used to
capture the image. Other examples for error sources are skin segmentation (or
background subtraction), edge detection and binarization of the edges or the
segmentation likelihoods. Omne goal of this thesis is not just to alleviate the
influence of errors, but to completely eliminate them.

We present an area-based similarity measure, that does not need any kind
of segmentation at all. The similarity measure directly works on the input
(color) image. Its formulation is generic. Consequently, it can trivially be
extended to use other input modalities than just color.

6. A template hierarchy: due to the large size of the hand pose database, it is
prohibitive to match the whole database of size n to the input image. We
present a hierarchy as an acceleration data structure to reduce the matching
complexity from O(n) to O(logn). The hierarchy is based on the silhouette
area of the hand poses. Consequently, our hierarchy yields very deep trees,
and thus, significantly reduces the matching time. In contrast, previously
presented hierarchies (e.g. [STTCO06]) are very flat.

7. A coarse-to-fine detection approach that naturally integrates our template
hierarchy in order to heavily reduce the computation time for simultaneous
hand localization and pose estimation.

In summary, this thesis has two main goals.

First, develop a set of robust similarity measures. This also includes eliminat-
ing sources of error e.g. segmentation or binarization. To explain this in detail,
we should take a look at a typical hand tracking pipeline as shown in Figure 1.7.
Fach step, from image capturing up to the matching step is a source of errors.
The goal is not only to try to reduce the errors made in a pipeline step, but to
completely eliminate them.

The second goal is to heavily reduce the overall computation time to achieve
real-time tracking.






Chapter 2

3D Hand Model

As a first step of model-based articulated object tracking we need a model of
the object. In the area of hand tracking we have two options.

The first option is to use real hand poses i.e. capture a human hand with a
camera and label the images manually. This method has the advantage that all
hand poses are valid and realistic. The disadvantage is the labeling procedure.
It is extremely time consuming, and not very accurate. A person typically can
decide easily if a hand pose is open, close, or pointing and so on, but it is hard
to determine the exact pose i.e. the flexion and abduction angles of all fingers.

The second option is an artificial hand model. The advantages and disad-
vantages are vice versa compared to a manual labeling. The hand pose (joint
angles) is trivially given, but it is not easy to model and render a realistic hand.
Especially the thumb with its complex kinematic is a challenging task and of-
ten not payed much attention. There is a lot of work in the area of modeling
and rendering the human hand. But the focus of most of the approaches is a
realistically looking hand, i.e. a human being has the impression that the hand
looks like a real hand. But looking realistic is not necessarily the same as being
realistic with respect to geometry and kinematic. Figure 2.1 demonstrates this
fact visually. In practice, it turned out that a not necessarily realistically looking
but geometrically correct hand performs better for model-based hand tracking.

Hand tracking approaches also have to take the varying shapes of human hands
into account. Either one calibrates the hand for a specific person, which is not
practicable for every application (e.g. hand tracking as a computer interface on
public terminals) or use a hand model that is as generic as possible i.e. use the
average geometry of a large number of different real hands. But the accuracy
of the hand model also depends on the similarity measures used by the hand
tracking approach. Some similarity measures are more, others less sensitive to
varying hand shapes. In this thesis, we expect our similarity measures to tolerate
a high variation of hand shapes. But, of course, the closer the hand model to
the real human hand is, the better the tracking quality is.

In the following, we will denote the hand joint angles as shown in Figure 2.2.

2.1 Related work

In practice, most researchers use a simple hand model consisting of basic geo-
metrical shapes e.g. cylinders, cones, and spheres.

13
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Figure 2.1: Each hand model has its advantages and disadvantages. The skin
and bones model looks realistic only at a first view, but flexed fingers tend to be
too circular, while models with simple geometric primitives (right) look visually
not very realistic, but match well in shape.

Rehg [Reh95] proposes to use a simple kinematic hand model. The palm,
consisting of several bones, is modeled by only one rigid body. He argues that
one is not able to track the palm deformation, and thus, it is not necessary to
model it. Fach finger is modeled by three cylinders and has four degrees of
freedom (DOF): one degree for the abduction of the finger, and one degree for
the flexion of each joint. The thumb is modeled by 5 DOFs. The additional
DOF models the rotation about the longitudinal axis in order to be able to
position the palm opposite to the other fingers during grasping.

[KCXO06] uses a similar kinematic model but does not model the longitudinal
rotation of the thumb. Thus, for each finger 4 DOFs are used, which result
into 20 DOF's. The palm is modeled as a rectangular parallelepiped, the fingers
by cylinders and spheres. They also use the dynamic joint motion constraint
Oprp = %9]3 7p to reduce the dimensionality of the hand motion.

In [SMCO01, STTCO06] the hand model is build from a set of ellipsoids, cones,
and cylinders mathematically described by quadrics. The author proposes that
projection from 3D to the image plane is performed very efficiently for quadrics.
The projection is needed to match the images against the hand hypothesis. Fol-
lowing [RK94b, RK94a| each finger is modeled by 4 DOFs except the thumb,
which is modeled by 5 DOFs. The palm is modeled by a cylinder, its top and
bottom closed by half-ellipsoids. Cones are used for the fingers, and the joints as
well as the finger tips by hemispheres. Finally, the thumb is represented by an el-
lipsoid, a truncated cylinder, and a truncated cone. In [WLHO01] the same hand
model is used, but the constraints are learned from real hand motion captured
by a CyberGlove. A Principal Component Analysis (PCA) is applied to reduce
the pose space dimension while trying to preserve the relations between the joint
angles. Because this approach is not able to learn the local manifolds structure
of the pose space the authors replaced the PCA by a kd-tree search in the high-
dimensional pose space in [LWHO04]. Quadrics are also used in [GSP*10]. They
modify the projection of the quadrics such that the depth values are computed
as well in order to match the model to range images.
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Figure 2.2: We use 4 DOFs for each finger. The distal interphalangeal (DIP),
proximal interphalangeal (PIP), interphalangeal (IP) and metacarpophalangeal
(MCP) have one flexing DOF 6, and the metacarpophalangeal (MCP) and car-
pometacarpal (CMC) one flexing DOF # and one abducting DOF .

In [HSKMGO09] a completely different approach is used. Each bone is first
treated as a rigid object with 6 DOFs and independent of the other bones. A
tree is built from the bones with the palm as the root node and the finger tips
as leafs. The authors argue that the tree structured graph obeys the Markov
property. To enforce that connected bones stay close, proximity constraints are
employed by penalizing high distance between neighboring bones. Non-valid
joint angles are penalized in a similar way.

Only a few researchers use more complex hand models i.e. a mesh instead of
geometric primitives. [BKmM™'04] uses Linear Blend Skinning to compute the
surface of the hand based on the bones. Additionally, they use a slightly different
hand kinematic model than most other researchers. The thumb is modeled by
3 flexing and 1 abducting DOF's, and the other fingers by an additional twist,
which is also in contrast to related work.

The same approach is applied in [dLGPF08] for hand tracking. The triangle
mesh is computed by a pose space deformation technique. The authors also
include illumination and shading in their synthetic hand model.

In summary, most approaches use simple models consisting of geometric prim-
itives. Only a minority use complex triangle meshes. We argue that it is not
worth to use such complex models because the hand shape variability between
human beings is too high. It is only useful to use a very complex model, if one is
tracking only a group of a few and well known persons, and one has the ability
to precisely scan the hands.!

L But, of course, it is worth to use a realistic kinematic model.



16 CHAPTER 2. 3D HAND MODEL

Figure 2.3: Construction of our artificial hand model: the palm is modeled by
an anisotropic cone with an ellipsoid as cap. The finger parts corresponding to
bones are represented by cones and the joints by spheres. The final model is
shown on the right.

2.2 Hand Geometry

Because the goal of this thesis is to develop new algorithms for hand tracking that
perform well for arbitrary hand shapes, we follow the majority and use geometric
primitives to generate a hand model that represents an common human hand.

Prior to this model, we have tested a skin and bones model (an example
pose is shown in Figure 2.1). But it turned out in several experiments that
the model is not sufficient to detect a real human hand because flexed fingers
produce unrealistic finger geometry. Especially the fingers around the joints are
too circle-like. The more the fingers are flexed, the more the finger geometry
diverges from a real hand pose.

To determine the width and length of the components of the hand (palm and
finger parts corresponding to the bones) we have used my own hand as a rough
model. We have also tested tables (containing finger length and thickness) from
the internet, but they turned out not to be more realistic. Of course, a more
appropriate model would be to measure a lot of real hands and use the mean
values of each finger part and the palm. But this is not practicable due to time
and resource limitations.

One has to distinguish between the model accuracy of bone length and thick-
ness, and the accuracy of the exact hand silhouette i.e. the curvature of the
hand. We argue that the first is important for tracking, while the exact silhou-
ette cannot be modeled precisely because of two reasons. First, real hands vary
too strongly in their silhouette (or 3D shape). Second, good tracking approaches
have to have a certain amount of error tolerance to varying silhouettes that is
higher than the silhouette variation between real hands.

For our synthetic hand model, we use an anisotropic cylinder for the palm,
truncated cones for the finger parts and spheres for the joints to ensure seamless
connections between the cones. The hand model is rendered in OpenGL. Figure
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Figure 2.4: Construction of our improved artificial hand model: We replace the
palm, previously represented by an anisotropic cylinder, by a more accurate
triangle mesh. We still use spheres and cones to model the fingers.

2.3 shows our hand model in an example pose. We do not care about a realistic
rendering of the skin color and texture because this feature is not necessary for
the hand tracking approaches presented in this thesis. Not modeling skin color
and texture in the hand model even is advantageous because skin color and
texture has a high local variation inside hands, is not static in time, and thus,
cannot be predicted reliably and robustly.

In several experiments, it turned out that in some cases a cylinder is not
appropriate to represent the palm. Thus, we replaced the palm by a more
realistic mesh (Figure 2.4). We have not scanned a hand ourselves. There are a
lot of hand meshes available in the Internet for free.

We have also taken the forearm into account. The appearance of the forearm
is often unknown i.e. we do not know if a person wears a long-sleeved clothing
or not. Figure 2.6 demonstrates the problem by an example. If a person wears
one, the forearm is covered by (in most cases) non-skin colored cloth and also
produces an edge response. Thus, color and edge-based approaches are heavily
affected. For a smart handling of this problem, we used a cone to represent
the forearm, but declare it as “neutral”. Neutral in the sense that the forearm
is neither treated as foreground nor as background. Consequently, both edges
at the border between the palm and the forearm, and the forearm silhouette
and the image background are not included in any similarity measure. We have
to take care of the size/length of the neutral forearm region, i.e. not to make
the neutral forearm region too large because otherwise it will have a negative
impact on our hand template hierarchy which will become clear after explaining
the generation of our template hierarchy in Sec. 5.2.

2.3 Hand Kinematic and Constraints

The kinematic of the hand model in this thesis uses a hierarchical transfor-
mation chain. The hierarchy (tree structure) is implicitly given by the bone
connections as shown in Figure 2.2. The palm orientation forms the root node
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Figure 2.5: The problem with the forearm: a hand with long-sleeved clothing
(left) produces a strong edge response and no (or a very short) foreground region
on the forearm, while a hand with short-sleeved (middle) clothing yields no edges
but is segmented as foreground. This heavily influences similarity measures. We
model the forearm as a neutral region (right) to handle both cases.

and corresponds to the global orientation of the hand. Each finger pose is deter-
mined in the coordinate space of its parent node. For example, the flexion angle
Oprp determines the angle between the distal phalanges and the intermediate
phalanges.

Let R, be the rotation matrix corresponding to the flexion about 6, P, to
abduction about ¢, and T the translation matrix corresponding to the position
of bone z relative to its parent bone. For bone names please see Figure 2.6.
Then, the global transformation matrix Mprp for the distal phalanges in hand
coordinates is

Mprp = Rg (TucPvcpRucr) (TppRprp) (TrpRprp) (2.1)

R¢ is the rotation matrix determining the palm orientation, 7, and R, are the
local translation and rotation matrices of the corresponding bones, where x is a
placeholder for a joint.

2.3.1 Static Constraints

For the hand model used in this thesis, the maximum flexion angle is ™* = 9(0°
and the abduction angle ¢™#* = 30° for all fingers. All values were obtained
experimentally from a real human hand.

2.3.2 Dynamic Constraints

We need to apply dynamic constraints to avoid invalid hand poses. In addi-
tion to the fact that invalid hand poses should not be used, they also would
generate additional templates, which would unnecessarily increase the number
of hypotheses that have to be tested during tracking. Two types of dynamic
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DP: Distal phalanges

IP: Intermediate phalanges

PP: Proximal phalanges

MC: Metacarpals

C: Carpals

Figure 2.6: Bones of the human hand. Source: Wikipedia
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constraints are used. First, only a limited amount of differences between the
flexion angles of neighboring fingers are allowed.
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Because all constraints relate to the metacarpophalangeal joint, we have omit-
ted the subscript ycp for the sake of clarity. Second, relations between flexion

and abduction angles of the metacarpophalangeal joints are employed.
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2.4 Shader-based Feature Extraction
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To be able to extract all relevant edges (to match a hand model to an input im-
age), the conventional OpenGL lighted and shaded hand model is inappropriate.
Figure 2.7 demonstrates this by a real hand and our model. It is easy to see


http://en.wikipedia.org/wiki/File:Scheme_human_hand_bones-en.svg
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Figure 2.7: The problem of extracting salient edge features: extracting edges
from a conventionally rendered artificial hand model does not result in an appro-
priate edge image. We either do not get enough edges (encircled region in the
middle image on the bottom row), or we get too many edges (encircled region
in the right image on the bottom row).

) «—— obtained

Figure 2.8: We use a shader to ensure that all and only the edges, needed for
matching, are extracted. The edges “between” the fingers are most important.
For this purpose, we use a different color for each finger. The colors are inter-
polated between the colors of the finger tip and the palm to avoid edges at the
joints.

that in the model several edges found in the real image are not extracted in the
hand model. This, of course, would degenerate edge-based similarity measures.

To overcome this problem, we use a small OpenGL Shading Language (GLSL)
shader that shades each finger with different colors. Different colors are assigned
to the finger tips and the palm. The colors are interpolated such that at the
joints the color gradient is nearly zero to avoid an undesired edge response. The
result is shown in Figure 2.8.

We provide the colors for each finger and the palm together with the hand
geometry and kinematic (rotation angles) in a hand description file. During
rendering, we set the color values for each bone and the position of the bone
in the shader as uniform variables. The color of each vertex is determined by
interpolation in the vertex shader. Let ¢; and co be the color values at the top
and bottom of a finger bone and v; and vy the position of a vertex on both ends
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Figure 2.9: We use a shader to colorize the geometric primitives, representing
finger bones. The color of each finger is interpolated between the color on the
finger tip (blue in the example images above) and the palm (gray in the example
image) to avoid an additional edge response at the joints. The images above
show two examples of geometric primitives. As interpolation factor we use the
length of the projection of ViV to Vivz, normalized by ||vivs]|

of the geometric primitive (e.g. a cone) representing the bone (Figure 2.9 shows
an example). Given a vertex v of the geometric primitive, its color is

c=(1-a)cy + acs (2.12)
with
o= 1-V)(ve - va) (2.13)
[va — vi|

For completeness, we want to mention that the extraction of the hand model
silhouette area is trivial if a background color disjoint to the foreground colors
is chosen.

2.5 Automatic Hand Pose Generation

In order to be able to generate arbitrary hand poses i.e. subsets of the hand pose
space, it is necessary to use a hand pose description utility. For this purpose,
we have developed a tree-based pose description method. The idea behind the
method is quite simple but powerful.

Let a node in the descriptor tree describe the simultaneous motion of several
DOFs (joints and hand orientation). Each node contains a list of all DOF's to be
modified, the start and end motion angles for each DOF and the sampling rate.
A simple example illustrates the hand poses generated by a node. Let the node
contain the two DOFs #i1dex and #idex with the start and end angles [0°,90°]
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Figure 2.10: An example output of our hand pose generator developed in line
with this thesis. In this very simple example the description tree contains one
node with two DOFs.

and [0°,20°] and the sampling rate 3. The output of the hand pose generator is
shown in Figure 2.10.

If two nodes have the parent-child relation, the DOF's in the parent and the
child node are combined in the way of nested loops. For example, a parent node
A “modifies” the index finger resulting in n 4 different poses, and one of its child
nodes B modifies the middle finger resulting in np different poses. Then the
combination of n4 and npg generates all combinations of the index and middle
finger yielding a total of n4 xnp poses. Figure 2.11 shows a simple example
descriptor tree and Figure 2.12 the resulting hand poses. If two nodes have the
sibling relation, they are independent of each other. The nodes are processed
sequentially. By combining multiple trees in one hand pose database, the tree-
based description method is able to generate any pose in a very compact way.

2.6 Summary

In this chapter we have motivated and presented our artificial hand model con-
sisting of geometric primitives for the fingers and a mesh representing the palm.
We also presented a description tree to describe hand motions, which allows us
to automatically generate an arbitrary hand pose database. Additionally, we
use GLSL Shader to be able to render the hand model such that matching fea-
tures can easily be extracted. We use the presented hand model to evaluate the
hand tracking algorithms presented in this thesis, except the similarity measure
in Sec. 4.2. The reason for the exception is as follows. Previous to the hand
model presented in this chapter, we used a skin and bones model. But we expe-
rienced several problems e.g. unrealistic hand shapes and weak edge extraction.
Consequently, we have developed a new hand model that does not have all this
disadvantages.
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Figure 2.11: We developed a tree that is able to model arbitrary hand motions to
be able to generate any template datasets we need for hand tracking. A simple
example tree, consisting of two nodes, illustrates the construction of the tree. In
this example, each node modifies two joint angles. The hand poses generated
using this tree are shown in Figure 2.11.

. . (Opidi'e, Opipe) = (0°,0°) (45°,10°) (90°,20°)
(Oindsx, indsx)

(0°,0°)

(45°,10°)

(90°,20°)

Figure 2.12: An example set of artificial hand poses generated using the descrip-
tor tree in Fig. 2.11.






Chapter 3

Skin Segmentation

In Section 4 we will present several segmentation-based novel similarity measures
to match a hand pose hypothesis to an input image. The first step of silhouette
area-based object detection approaches is the segmentation of the object. Seg-
mentation applied to hand tracking, in the optimal case, means that only the
hand itself is extracted and the remainder is background. But, in practice, some
parts of the background are falsely classified as foreground.

The most popular segmentation methods are background subtraction and skin
segmentation. The best choice of the segmentation algorithm depends on the
object to be detected and its vicinity. For example, for indoor tracking of a
human body, background subtraction is expected to perform best because one
has a static background and only the human body is moving. In contrast, if one
wants to track a lot of human bodies in a crowd, background subtraction is not
suitable because most parts of the scene consist of moving bodies, additionally
overlapping each other. Generally, if only the target object is moving, back-
ground subtraction most often performs well. But if other parts are non-static,
too, other methods should be chosen.

The applicability of background subtraction for hand tracking is limited be-
cause in case of a typical hand motion the complete arm or even the whole body
is moving, and will lead to a classification of the body as foreground, too. Skin
color segmentation works significantly better because in most setups only the
hand, and possibly the forearm and/or the face, is segmented as foreground.
Due to various influences like human skin color, lighting conditions, camera pa-
rameters, and skin colored background, skin segmentation is a challenging task.

3.1 Related Work

Typically, a skin color distribution, and if possible, also a background distribu-
tion is learned in a training step. Based on the learned distribution, the input
image is segmented and skin likelihood values for each pixel computed.

[JRO2] compared histogram and mixture model-based representation of skin
and non-skin color. They constructed the color models for skin and non-skin
classes from a dataset of nearly 1 billion hand labeled pixels. They found that
the histogram-based representation is superior for very large training data sets.
For small training data sets, the mixture model delivers better segmentation
results. They reached a detection rate of 80% at a false positive rate of 8.5%
for web images. The main disadvantage is the inflexibility of a static skin color

25
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model. It may have a low performance on images captured under conditions
that were different from those of their training data set.

[DGNO04] improved skin detection by a variational EM algorithm with spatial
constraints. For initialization, they used the skin color model of [JR02]. In
[ZCWWO04] a generic skin model is used for rough skin classification. Based on
the classification, a Gaussian mixture model is trained using the EM algorithm.
The final classification is done with the help of a support vector machine utilizing
additional spatial and shape information of the skin pixels. [CB00] proposed a
skin segmentation method in YCbCr space, applying Bayesian decision rules.

[SSA00] predicted changes of skin color during tracking with a second order
Markov model. Skin and non-skin color histograms are updated based on feed-
back from current segmentation and prediction. Skin color changes are modeled
as translation, scaling and rotation in color space. Their approach requires an
initial detection of skin. The online updating potentially drifts away from skin
to background color if the segmentation quality in each step is not very high.

A two-stage segmentation approach is used in [DB0§]. First, both hand and
background color are modeled by a Gaussian. They use the Kullback-Leibler
divergence for Gaussian as distance measure between the foreground and back-
ground color distributions. Second, the MSER (Maximal Stable Extremal Re-
gion) detector is applied to the color likelihood map to detect the largest region
with the highest foreground probability. It is likely that this region represents
the desired hand.

A face detector is used in [WRO05] to generate the skin color distribution.

Previous skin segmentation algorithms lack in their robustness with respect
to different conditions e.g. lighting, skin color variation, camera-parameters and
skin colored background. To this end, we have developed a skin color segmenta-
tion algorithm that is more robust to the aforementioned influence factors. The
problem can be formulated more generally as detection of a homogeneous color
region in an image.

Klinker et al. [KSK88, KSK87] extensively studied color images captured by
CCD cameras. The first influence factor they analyzed were the camera limi-
tations and their impact on the colors of images. The main limitation of con-
ventional cameras is the low dynamic range (LDR). The main drawback of the
LDR is overexposure, which yields a color clipping and a blooming effect. Addi-
tionally, many cameras apply a gamma-correction to account for the non-linear
human perception of light. But this transformation introduces curvature into
the color clusters representing image regions. We have to account for these in-
fluencing factors because they distort the distribution of image regions in color
space, and consequently, would reduce the quality of our approach presented in
the following section.

Furthermore, Klinker et al. proposed the Dichromatic Reflection Model, which,
basically, describes the color of objects as a linear combination of two color
vectors: one vector represents material surface reflection and the other mate-
rial body reflection. Thus, the colors of an object form a plane in the three-
dimensional color space.

In [KSK90, K1i93, Kli88], Klinker et al. proposed an image segmentation ap-
proach based on the Dichromatic Reflection Model. First, they divide the image
into small non-overlapping windows. For each window a PCA based color anal-
ysis is applied and windows of the same type are merged utilizing the matte
shading. Next, the highlight colors are combined with the matte colors to form
the plane hypothesis. Using the plane hypothesis and additionally accounting
color clipping and blooming effects, an accurate image segmentation is performed
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Figure 3.1: An image captures by an industrial camera, and its 3D color space
representations in RGB, HSV and Lab from left to right.

that outlines the material boundaries. They are able to separate the image into
two different images, one showing the matte parts and the other image the
highlights.

We could use the matte image for skin color segmentation by, first, white
balancing the image (similar to Sec. 3.2.1), and then, classifying each image
region as skin or non-skin. But we need only the skin colored regions of the
image. With our hierarchical clustering approach, we are able to prune large
image parts early and need to fully process only those regions most promising to
be skin. With our approach we are confident to save computation time, which is
important because we want to integrate our approach in real-time applications.

We propose a two-step algorithm to detect a homogeneously colored object.
First, we segment the image into subsets, each representing one or more objects,
and second, identify the correct subset representing the target object. In the
following, we denote such image subsets as image regions. Our approach needs
the image regions to be separable in color space, which is the case for most
objects, and the target object (in our case the human hand) has to have an
average color of limited variation, i.e. the color should not change significantly
(e.g. green to red). For application to skin detection, the proposed approach
makes no fixed assumption about the skin color distribution, in contrast to
many other methods. Only a rough hypothesis about the skin color distribution
relative to the background in color space is needed to identify the image region
representing the target,.

3.2 Segmentation of Homogeneous Color
Regions

The goal of the proposed method is to segment the image region that represents
the target object. For application to hand tracking, we want to identify skin
regions. Skin color typically is closer to red than an average background. Never-
theless, color distributions can heavily deviate from red. In contrast to previous
skin detection methods, we do not need a skin color distribution learned in a
preprocessing step. Such a learned color distribution could lead to a low quality
segmentation.

3.2.1 Choosing the Optimal Color Space

A homogeneous color region is a region in the image space that represents an
object that has a homogeneous color under white uniform illumination. One
of the design choices of our segmentation algorithm that works in color space,
is the color space itself. The quality of our algorithm is the higher, the better
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Figure 3.2: Given a point set consisting of two clusters, we expect a clustering
algorithm to subdivide both clusters as shown in the left image. However, if
the clusters are very anisotropic, the clustering approach tends to subdivide the
clusters as shown in the right image, which is not the desired result.

homogeneous color regions can be distinguished in color space. We compared
the RGB, HSV and Lab histograms of several images. We could not observe
that color regions could be separated better in HSV and Lab space. An example
is shown in Figure 3.1. Generally, transforming an image from one color space
to another potentially changes the shape of the regions in the histogram, but not
the separability of the regions. Of course, some images can be better separated
in one color space than in any other, but this changes from image to image. Thus,
there is no superior color space for clustering. The input image is available in
RGB color space, consequently we have decided to perform clustering in the RGB
space. In images captured under unconstrained conditions, the color distribution
of homogeneous regions can be heavily stretched. Clustering algorithms tend
to subdivide such strongly anisotropic clusters instead of subdividing different
clusters. Figure 3.2 illustrates this behavior.

To compensate this, the image is first transformed by y; := S 3 U T(x; — m)
where U and S are obtained from the singular value decomposition [U, S, V1] =
svd(C) of the covariance matrix C and m is the mean value of the RGB values
of the image Z. The result of this transformation can be interpreted as an
image-specific color space® (see Figure 3.3).

3.2.2 Expectation Maximization (EM) Clustering

In the previous section, we have explained how to transform and normalize the
image colors appropriately to be able to separate the image regions. Next, we
want to use a clustering algorithm to separate the image regions. Our goal is
to extract the regions that correspond to the color distribution of interest (skin
color for application to hand tracking).

As mentioned in Section 3.1, [KSK88, KSK87] showed that an object forms a
plane in the three dimensional color space, and additionally, color values offside
the plane, observed in real images, are the result of noise. We utilize this
information for our approach. We assume that each object can be approximated
by an ellipsoid in color space (plane + noise), and consequently, we can apply
the EM algorithm to separate different image regions. Each cluster, representing
the colors of an image region, is modeled by a center and a distance matrix.

L A similar, but simpler transform is performed in the standard whitening transform. Note that
for our transformation, we do not transform on the gray axis, but instead on the R axis
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Figure 3.3: Prior to clustering the image in color space, a whitening transform
is applied to avoid homogeneous but very asymmetric regions to be splitted by
the EM algorithm. The left image shows the image in the RGB color space and
the right image after the transform (similar to whitening transform).

Let us assume we have a random variable X with distribution

p(x|©) = ZaJ (x]%;),xe X (3.1)
and unknown parameters
O =(0))j=1..x = (0}, %X}, %;)j=1..K (3:2)
with )
NER;, D) = — e 30%) 2 %), (3.3)

(27)% det(%;)2
Then, the EM algorithm estimates the parameters @, i.e. the Gaussian density
functions and the probability for each Gaussian.

Consider the image pixels x of image Z in color space as a random variable X.
If we assume that X’ can be modeled by a Gaussian mixture model (GMM), then
T can be clustered in color space by applying the EM algorithm to X in order
to estimate the Gaussian mixture parameters. Next, each pixel x is assigned to
cluster j, if

p(x]0;) > p(x|6;) Vi e {1...k} (3.4)

3.2.3 Adding Spatial Constraints to EM

The back-projection of the color space clustering to image space reveals that
image regions are poorly separated in image space. An example is shown in
Figure 3.4. To address this problem, we use spatial constraints in order to get
smoother cluster borders in image space.

The idea behind the spatial constraints is the following: If two pixels belong
to the same region, they should have the same probability to belong to the same
class, and if an image region is crossing the neighborhood N (x) of a pixel x € Z,
the pixels on both sides should not belong to the same image region.

But we do not yet have the image regions. Instead, we can use image edges.
Using image edges, we have to take into account that a lot of image edges do
not belong to the border between two image regions. For this reason we do not
modify the probabilities on image edges but only for pixels not having edges
in image space: in a neighborhood N'(x) of a pixel x € Z without an edge, all
pixels in N (x) are modified such that their probabilities to belong to the same
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Figure 3.4: In order to get smoother region borders, additional spatial con-
straints are integrated into the EM algorithm. The above pictures show an
example image (left), the clustering result without constraints (middle), and
with constraints (right)

cluster became more similar. Based on this idea, we modify the probabilities of
all pixels in each iteration of the EM algorithm as follows.

First, image edges are extracted by the Laplace edge detection operator. The
resulting edge image is denoted by C(Z).

Based on the edge image, we compute a kind of image distance map D with

D(x) = max _ Oy (3.5)
XENG) [[x = x5 + 1
Due to varying edge response and image dimensions, it is necessary to normalize
D. We denote the edge distance image normalized to [0,1] by D.

In each EM iteration, we compute for all image pixels the average probability
p(x|6;) of the neighborhood of size I xI. Then, we use the edge distance image
to interpolate between the probability of a pixel belonging to a cluster and the
average neighborhood probability. The new probability is

Pn(x10;) = p(x|6;) D(x) + (1 — D(x))p(x[6;) (3.6)

3.2.4 Initialization of EM

The initialization step has a significant influence on the cluster result because the
EM algorithm only guarantees to converge to a local optimum. Consequently,
it is crucial to perform a good initialization of the EM algorithm. It is not
absolutely necessary to find the global optimum but a local optimum that allows
for a good foreground segmentation. There are two options for the initialization:
set the parameters 6 of the Gaussian mixture model or set the probabilities
p(x|0) for all data points and all clusters. In the case of a color image it is not
easy to obtain good initial values for 6. In contrast, we can roughly estimate
pixels to cluster membership based on the color values. It makes sense to convert
the image into the HSV color space because in this space the hue represents the
color property crucial for the clustering. But performing a simple clustering only
on the hue has turned out to be insufficient. Consider an image whose average
color is reddish. If one clusters with respect to hue, the result would be one
“big” red cluster representing the whole image. Additionally, in most images the
largest principal axis of an homogeneous image region is not parallel to the gray
axis. To take this into account, we first determine the principal axis

u = argmax 1 |- (3.7)
1€{1,2,3} 1
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Figure 3.5: Initialization of the EM clustering: the EM only guarantees to
converge to a local minimum, thus, a good initial guess is necessary. We perform
this initialization as shown in the above workflow. Basically, all pixels in color
space are projected along the largest principal axis. Then, the projected 2D
colors are interpreted as hue and saturation. Fuzzy-k-means clustering is applied
to the (cyclic) hue values and pixel-to-cluster membership probabilities obtained
as output. We use this probabilities as input for the EM clustering approach,
which is applied to the 3D color values.

closest to the gray axis. The vectors u; are the column vectors of the matrix
U obtained from the singular value decomposition of the covariance matrix of
an image region. Then, the data points are projected along u and 2-dim data
points lying in the plane spanned by the other two principal axes are obtained.
For each data point the angle components of the polar coordinates are computed.
Note, that the angle is cyclic, and thus, not appropriate for a common metric
like the euclidean distance. To minimize the side effects of the cyclic property
to the metric, we search for an angle a,,;, € [0°,360°) in the cyclic color space
with minimal point density and shift the point set about —a,,,. Then, fuzzy-k-
means clustering is applied. Figure 3.5 illustrates the whole initialization steps.

3.2.5 Hierarchical Image Clustering

The number of clusters is an input for clustering algorithms like EM and k-means.
Consequently, the optimal number of clusters for a given data set cannot be de-
termined by the clustering algorithm. In most cases it is application dependent,
and thus, an appropriate method to determine it lies in the responsibility of
the user of the clustering algorithm. Typically, “only” a quality measure for
the clustering result has to be defined that is used to decide how many clusters
perform best.

Basically, there are two options to estimate the optimal number of clusters.
One can either test different number of clusters up to a limit N in a brute force
manner i.e. apply the clustering algorithm with 2, 3, - - - , N clusters and chose the
best one. This would indeed give the optimal number of clusters but, of course, is
very expensive. Thus, we have decided to use a hierarchical clustering approach,
which is less time consuming. There are two main approaches for hierarchical
clustering, agglomerative and divisive. We use a divisive method because of two
reasons. First, agglomerative clustering can have quadratic complexity. Second,
the divisive approach has the advantage that we do not need to subdivide all
clusters down to single image regions. The reason for this early exit is that we
are interested in a homogeneous color region with a specific color distribution
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(in our case skin). Consequently, we can skip the subdivision of regions whose
mean vector is not close enough to the color of the destination object. This
yields a further speedup of the hierarchical clustering.

To take into account the distribution parameters of an image at the skin/non-
skin classification step, we define an image space mean value mg. Let m be the
mean value and [U, S, V] := svd(C) the SVD of the covariance matrix of the
whole image, and m; the mean value of a image cluster. Then m¢ is computed
as follows:

my = (U-S%.Vt)i1 (m¢ — m) (3.8)

It can be geometrically interpreted as the difference vector of the mean values of
the cluster and the whole image, scaled by the standard deviation of the image.

In order to be able to segment the image regions belonging to the target object
(here skin), we need to learn the color distribution of the target object. We used
a set of images captured under several illumination conditions and labeled the
skin regions manually. We approximated the skin color by a multivariate Gaus-
sian and transformed it in the same way into image space as described above.
The learned mean value, denoted by mg is compared during the hierarchical
clustering against the mean value of each cluster.

During clustering the modified mean vector m; of each cluster is compared to
mg. If mg-m; < ¢ for some user defined ¢, the cluster is classified as a region
that does not contain the region representing the target object.

During the hierarchical clustering, we have chosen to use two clusters. This
choice is obvious because it works for more then two clusters in many cases.
Suppose fore example three clusters. One would cluster two of them into one
cluster and the third into the other one. The “two clusters” can be subdivided
in the next step. Of course, theoretically, it can also happen, that one of the
three underlying clusters is subdivided. If the split cluster is our target cluster,
it is expected to be separated in the next iteration in the hierarchy. Hence,
the computation time is higher, but the segmentation quality is expected to be
sufficient.

As a consequence of using two clusters in the hierarchical subdivision, pixels
with a probability near 0.5 are expected to be at the border between potentially
new clusters. If the clusters approximate two image regions well, pixels with a
probability near 0.5 should lie close to an edge of the image. In other words,
D(x), introduced in Section 3.2.3, and p(z|6;) should be proportional. We utilize
this to calculate the stopping criterion: if

> D(x) > ep (3.9)

p(x]0)€[0.5—5,0.5+]

the clusters are split, otherwise not.

3.2.6 Experimental Results

For experimental evaluation, we captured several images under different illu-
mination conditions. Some images also contain skin colored background. We
empirically found that parameter [, used in Section 3.2.3 to determine the neigh-
borhood size for pixel probability averaging, works best if set to the value 3. We
observed no further smoothing improvement for larger values of [ and a smaller
value would result in no or an asymmetric neighborhood. The parameter k that
determines the neighborhood size to calculate the edge distance image depends
on [ because at a pixel we need to know if an edge in the [ x[ neighborhood
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Figure 3.6: Hierarchical clustering: Each image region represents a cluster in
color space. In each iteration, the EM algorithm is applied to a cluster using
two prototypes (kernels). As result, a subdivision of the cluster into two clusters
is obtained. The edge image is utilized to decide if the subdivision is necessary.
If the subdivision is necessary, the clusters are processed recursively. Otherwise,
the cluster is compared with the skin direction vector to compute the probability
to be skin. Each point in the cluster corresponds to a pixel in the input image.
The probabilities are used to compute the final skin segmentation.

Skip
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exists. Thus, we need k > [. The edge distance map is also used to calculate
the stopping criterion. Because normally we do not find the region boundaries
determined by color space clustering exactly at the edge pixels, we need some
tolerance. Therefore, a higher value of k would be better. But the higher k, the
higher the computation cost for the edge distance map. As a compromise we
set k := 5. For the parameters ep and § used in Section 3.2.5 for the stopping
criterion, § := 0.05 and e := 0.06 perform best for our test images.

To our knowledge, previously presented skin segmentation methods use a
static skin model or different initialization methods (e.g. a face detector) to
estimate the skin color. Our approach only uses the information of a rough skin
color direction relative to the background. We compare our method to the well
know approach [JR02] because both can be used as initialization for finer (skin)
segmentation. We use the Matlab sourcecode provided by [SSA00]. They used
the method from [JRO2] to initialize their own approach. To make a fair com-
parison, we disabled the morphological filter. It is clear that on both methods
a morphological filter or other filters could be applied as post processing step,
but this would falsify our results. Figure 3.7 shows some results obtained using
[JRO2] and our approach. The images have a resolution of 250 x 250. On an
Athlon 64 X2 Dual the algorithm needs about 0.4 seconds. The examples show
that we can obtain a better detection rate. False positives occur only in small
regions. In images with a non-Gaussian skin color distribution our algorithm
will detect smaller parts of the skin.

The weak point of the approach is the EM algorithm, which often does not
converge to the global optimum. For this purpose we have tested a clustering
algorithm that does less depend on the initialization and converges more often
to a better local maximum or even to the global maximum.
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Figure 3.7: Segmentation results: The original images (left), segmentation ob-
tained by [JRO02] (middle) and our approach (right).

3.3 Replacing EM by Matrix Neural Gas

We replace the EM algorithm by the matrix neural gas (MNG) [AHHO08]. The
main difference between the EM algorithm an the MNG is the way the proto-
types? are updates. The EM algorithm uses the distances between the points®
and prototypes with respect to the metric d. In contrast, MNG uses the ranks
between points and prototypes. Given the prototypes wy ---wjy and a set of
points X3 - - - X,,. The rank of a prototype-point pair (w;,x;)

kij = [{wi | d(xj, wi) < d(x;, wi)} (3.10)

is the number of prototypes that are closer to x; than prototype w;. This allows
MNG to be more likely to converge to the global optimum. We apply MNG to
the image in color space. The prototype positions are initialized randomly. We
use the skin color distribution histogram from [JR02] to classify each cluster as
skin or non-skin. An image region is classified as skin if the mean (prototype
position of a cluster as an output of the MNG) is classified as skin according to
the skin color distribution from [JR02].

We have also replaced the way to determine the number of clusters that per-
form best: we tested several numbers of clusters and chose the best one, i.e.
first, we cluster the image into k& = 2 clusters, then we evaluate the quality of
the result, and then use k = 3 clusters and so forth. (In contrast, our approach
proposed in Sec. 3.2 uses a hierarchical subdivision)

In order to determine the best number of clusters, we need a measure to
compute the quality of the clustering result. We tested three different quality
measures.

2 Each prototype represents the center of a cluster.
3 Points denote an element of the dataset to be clustered, in our case the color value of a pixel
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Tag Description

Sety, Sety, Sety complex BG, bad illumination
Setg, Setc, Setq, Sety, Sety, Sety, Set;,  simple BG, good illumination
Setp, Setg, Setp simple BG, bad illumination
Setyr, Seto complex BG, good illumination

Table 3.1: An overview of our ground truth dataset. We have image sequences
taken under different illumination conditions and with simple and complex, in-
cluding skin colored, background.

The first quality measure, Border Length (BL), measures the length of the
cluster borders in image space. The shorter the borders are, the better the
clustering result is.

The idea behind the second quality measure, Border Edges (BE), is similar
to the first one, but in contrast, we do not use the border length itself but the
edge response (obtained by an edge detector) across the borders. Higher values
denote a better clustering quality.

The third quality measure, Color Space Compactness (CSC), tests the prox-
imity of all pixels to the corresponding cluster center in color space using the
Mahalanobis distance. The matrix for the Mahalanobis distance is computed
by the MNG algorithm.

The three measures can, of course, also be combined into a single measure,
e.g. by a weighted sum of the individual measures. Optionally, one can obtain
good weights by using learning methods e.g. boosting.

3.4 Comparative Evaluation

We compared our approach from Sec. 3.2, the modification using the matrix
neural gas clustering from Sec. 3.3 and the approach proposed in [JR02]. For
simplicity, we will denote the approaches in the following as HybridClustering,
NeuralGasColorClustering, and RehgJones (in this order).

Because our focus is the quality evaluation for application to hand tracking we
have generated our own ground truth dataset containing different hand poses.

3.4.1 Ground Truth Data

To obtain the ground truth dataset, we manually labeled a large number of im-
ages. The ground truth dataset consists of 15 different image sequences. All
sequences consist of images showing a single person at different postures and
under different background and illumination conditions. The dataset consists
of 483 labeled images. The original image sequences are larger by a factor of
20. We have labeled only every 20th frame. The reason is that manually la-
beling images is extremely time consuming, and additionally, we do not expect
a significant change of the image (skin) color(s) in less than 20 frames. Five
image sequences contain a complex background. With complex background we
mean that several objects are visible in the background, potentially skin colored
or highly textured. In contrast, the other sequences have a simple background.
Simple means that the whole background has a homogeneous color. Six se-
quences have bad illumination conditions. A detailed overview of the conditions
for all sequences is shown in Table 3.1, and example pictures are given in Fig.
3.8.
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Figure 3.8: Our ground truth dataset consists of 15 different image sequences
taken under various conditions. Each of the above images shows one frame of
the image sequence.
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Figure 3.9: Segmentation results as color-coded images. The left image shows
a segmentation of moderate quality. Most parts of the skin are detected (true
positive; light green), but also large regions of non-skin are classified as skin
(false positive; light red). In contrast, in the right image the background is
segmented correctly (true negative; dark green), and only a few skin regions are
not detected (false negative; dark red).

3.4.2 Evaluation Method

First, we introduce the following notations:

e false positives are background pixels that are classified as skin,

e false negatives are skin pixels that are classified as background, and
e true positives and true negatives are correctly classified pixels.

Fig. 3.9 illustrates the four pixel types by an example. For evaluation, we use
receiver operating characteristic (ROC) curves. ROC curves visualize the rela-
tionship between false positives and true positives. Different relations between
false and true positives are generated by updating a skin threshold 6, which is
described in detail below.

The skin segmentation approaches compute for all image pixels a probability
to be skin color. In order to be able to compute false positives, false negatives
etc., we have to binarize the probabilities i.e. convert the skin probabilities to
binary values. The threshold used for binarization basically controls the trade-
off between the pixels classified as false negatives and false positives. In the
following we denote this threshold simply as skin threshold 6.

3.5 Results

The results are shown in Fig. 3.10. We observe that the HybridClustering ap-
proach performs best on average. The reason is that the ratio between the true
positives and false positives is higher compared to the other approaches, except
for a very low #. But in real applications we do not want such a high false
positive rate. Surprisingly, RehgJones is superior compared to NeuralGasColor-
Clustering.

Comparing the ROC curves of NeuralGasColorClustering using the three dif-
ferent methods (BL, BE and CSC) to determine the “best” number of clusters,
we observed that CSC yields the best ratio between true positives and false
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Figure 3.10: We evaluate the segmentation approaches by receiver operating
characteristic (ROC) curve analysis. ROC curves visualize the relationship be-
tween false positives and true positives. The closer the curve is to the y-axis on
the left, the better the overall performance of the approach is.

positives. We have also tested a linear combination of all three cluster quality
measures, but we observed no increase in quality.

We also observed a high variance between the individual image sequences.
For visualization (Fig. 3.13), we have chosen three sequences, one with a simple
background (K), one with a complex background (M), and a sequence with a
skin colored background (N). The third sequence is the most challenging one for
all skin segmentation approaches. The ROC curve for the HybridClustering of
sequence N has to be explained because it looks abnormal. The curve consists
of two subparts (1st part at a positive rate of 0-0.15, 2nd part 0.5-1), which
on their own are “valid” ROC curves. The abnormality is that the second part
starts at a lower true positive rate than the first parts ends at. The reason lies
in the kind of the hierarchical clustering. The first part of the curve has higher
values of 6 than the second part. HybridClustering tests the mean value of the
cluster at each subdivision if the probability to be skin is above 6. If the test
fails, the clusters are not further processed. But the final decision if a cluster
represents skin or not, is more smart. This can yield a cluster, which is first
classified as non-skin, but, finally, is classified as skin. But a further subdivision,
when using a lower 6, could result in both sub-clusters to be finally classified
as non-skin, which can lead to a lower number of true positives. An example is
shown in Fig. 3.12.

For completeness, we want to mention that one can also analyze the segmen-
tation quality using Precision-Recall curves (Figure 3.11. From the definitions
of

true positives

(3.11)

Precision = — v
true positives + false positives
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Figure 3.11: Precision-Recall curve of the skin segmentation approaches we
evaluated. Precision-Recall curves do not take into account the true negatives,
which is no necessarily advantageous.
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(a) Original Image (b) Result for # =0.30  (c) Result for # = 0.50

Figure 3.12: For HybridClustering, due to incorporating the skin threshold 6
into the hierarchy, in some cases a lower value of 6 can lead to a lower true
positive rate.

and

Recall = true positives

— - (3.12)
true positives + false negatives

we see that Precision-Recall curves do not take the true negatives into account.
On the one hand, the analysis is independent of large uncritical regions (i.e.
image parts that are easily classified as background by all skin segmentation
approaches). On the other hand, image regions that are not that “clearly” clas-
sified as background are not taken into account, but they should be.

The main drawback of clustering-based approaches is the computation time.
Even if they are applied to images of low resolution (100 K Pixels) the clustering
step still needs about 0.5 seconds. This is prohibitive for a real-time tracking
system. Additionally, we cannot guarantee that a clustering based approach
as presented above never fails. This leads us to the idea to combine the seg-
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Figure 3.13: We have chosen three image sequences to analyze the influence of
different illumination and background conditions on the segmentation quality.
The sequences also illustrate the deviation of the ROC curves between the in-
dividual datasets. The most challenging image sequence is sequence N, which
contains a large skin colored background region.

mentation results of several frames to generate color distributions of skin and
backgrou