
P R O C E D U R A L 3 D A S T E R O I D M O D E L
S Y N T H E S I S

A general approach to automatically generate arbitrary 3D
asteroid model

Dem Fachbereich Informatik
der Universität Bremen

eingereichte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Doktor-Ingenieur (Dr.-Ing.) Xizhi Li

Referenten der Arbeit: Prof. Dr. Gabriel Zachmann
Prof. Dr. Udo Frese

Tag der Einreichung: 20. July. 2020

Tag des Kolloqiums: 29. September. 2020

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

A B S T R A C T

In computer graphics there exist mainly two ways to represent 3D
shapes: implicit methods and explicit methods. The explicit method is
quite obvious which uses triangle meshes to represent any shape pre-
cisely, while the distinct disadvantage is hard to compute interactions
between triangle meshes which is very important in lots of graphic
applications. By contrast, the implicit method is able to estimate the
interaction easily but difficult to represent arbitrary shape (especially
complex surfaces considered) accurately.

In the planning stage of space missions, there is an increasing de-
mand for diverse surface details of small celestial body to be applied
in virtual testbed based simulation systems. Implicit surface is one of
the most promising solutions to this problem. They are powerful both
for the modeling of 3D asteroid models and animating movement of
rovers on the virtual testbed. The construction of 3D models comes
from basic geometric primitives (i. e., sphere, cone, ...) and incremen-
tally sums up their corresponding scalar fields into more complex
shapes which represent shapes easily and compactly. Moreover, this
compact representation makes it convenient to compute arbitrary
patches of virtual testbed on demand, and meanwhile enables those
patches contain a dynamically changing topology.

However, one conspicuous weakness in implicit modeling is rely-
ing on the manual trial and error method to obtain corresponding
parameters of implicit functions, and this work is usually tedious and
inefficient. In addition, the implicit modeling system can only generate
smooth surface, nevertheless, in most practical applications the surface
details are the dominant elements. For instance, in space the terrain-
based navigation system and optic-based ground guiding system rely
on the terrain features of the celestial surface. Therefore, adding real-
istic surface details on the implicit surface is another key challenge in
the generation of celestial (i. e., asteroid) 3D models. What’s more, as
the fast iteration of graphics hardware, the demand for high-quality
3D objects in nearly all graphic applications (i. e., AAA games, movies)
grows exponentially. The traditional way to create 3D models by artists
becomes not only more expensive but also hardly satisfy enormous
requirements. Even hiring enough artists to help building the scene,
the expense is not sustainable for the 3D industry.

In this thesis we propose new methods to automatically generate
an implicit representation of 3D asteroid models, inspired not only by
sphere packing but also from noise models. They enables:

- a novel invariant shape descriptor to be evaluated on GPU side
with CUDA; the statistical histogram of the shape descriptor is
used to represent the highly detailed 3D asteroid model,

- an automatic method (AstroGen) to approximate the given con-
straint shape with sphere packing based metaballs,

iii

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

- an optimization method which use the distance between differ-
ent asteroids’ histogram as target function and particle swarm
optimization (PSO) algorithm to optimize the parameters of each
asteroid’s implicit representation (makes the implicit modeling
into a machine learning task),

- a new procedural noise model to generate the surface details on
the implicit surface, the details behave in a coherent way with
the underlying surface.

Ever since the arise of general GPU, the computation speed of com-
puters has increased notably faster than its memory bandwidth. The
direct consequence of this trend is that compute-intensive algorithms
(especially parallelizable algorithms) become increasingly attractive.
This is the main reason to explain the recent popularity of procedural
methods. We believe that the latest tendency in hardware (i. e., GPU,
Cloud Computing) justify the necessity to take a reconsideration of
procedural methods. Our procedural algorithm fits this trends quite
well and has great potential in nearly all areas of computer graphics.

iv

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

A C K N O W L E D G M E N T S

First of all, I would like to thank my supervisor Prof.Dr.Gabriel Zach-
mann. He was inspiring, enthusiastic about expanding the boundary
of computer graphic and virtual reality research in our group, and
allowed me fantastic research environment as well. Without him, this
dissertation would not possible exist.

I also would like to express my gratitude to Prof.Dr.Udo Frese for
accepting the co-advisorship.

I am grateful to Dr.René.Weller, my co-supervisor. He shared the
burden of my research, guided me from the very beginning paper sub-
mission to reviewing this dissertation and exhibited excellent insights
and leadership throughout my study.

Nothing in this dissertation would have been carried out without my
co-authors and collegues. Thanks to all of you, it was a great pleasure
to work with you all: Dr.Patrick Draheim, Abhishek Srinivas, Jörn
Teuber, Christoph Schröder, Philipp Dittmann, Maximilian Kaluschke,
Janis Roßkamp, Toni Tan, Roland Fischer, Hermann Meißenhelter,
Andre Mühlenbrock. Many thanks also to Helga Reinermann, Sabine
Dolhs, Tanja Rethemeyer and other technicians and trainees for your
precious supports and helps in the device, laboratory and daily life.
I thank all the students and staffs at CGVR. All of you make the life
in this group colorful and unforgettable. I would like to thank the
China Scholarship Council (CSC) for funding my PhD project. I have
learned and benefited so much from all of you both professionally
and personally.

I would like to dedicate my dissertation to my parents for their
unreserved love and support. They gave me the confidence to change
my career entirely, to move to a new country, and to start everything
on my own. I would like to express my deepest love to my wife and
daughter Ida, who gave me lots of sweet troubles but firmly my belief
to overcome the difficulties. I am infinitely grateful to both of you.

v

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

C O N T E N T S

i that was then, this is now

1 introduction 3

1.1 Contribution . 7

2 implicit surface : state of the art 9

2.1 Modeling Implicit Surfaces 11

2.1.1 Skeleton-based Implicit Surfaces 11

2.1.2 Convolution Surfaces 14

2.2 Combining Implicit Surfaces 19

2.2.1 The BlobTree . 20

2.2.2 Blending . 22

2.3 Details of Implicit Surface 27

2.3.1 Image Texture & Texture Mapping 28

2.3.2 Procedural Texture 32

2.4 Visualization of Implicit Surface 47

2.4.1 Polygonization 47

2.4.2 Ray-tracing . 49

2.5 Applications of Implicit Surface 51

2.5.1 Procedural Terrain 51

2.5.2 Animation . 53

2.5.3 Additive Manufacturing 55

ii novel methods

3 3d asteroid classification 61

3.1 Introduction . 61

3.2 Related Work . 63

3.3 Our Descriptors . 65

3.3.1 Recap: Surflet-Pair-Relation Histograms 65

3.3.2 Our Adaptive Hybrid Shape Descriptor 66

3.4 Training and Classification 67

3.4.1 Parallelization . 67

3.4.2 Histogram Cluster Analysis 67

3.5 Use Case: Asteroid Classification 68

3.6 Evaluation . 69

3.6.1 GPU-based Histogram Generation 70

3.6.2 Asteroid Classification Study 71

3.6.3 Standard Dataset Testing 72

3.7 Conclusions and Future Works 73

4 astrogen - procedural generation of highly de-
tailed asteroid models 75

4.1 Introduction . 75

4.2 Related Work . 77

4.3 Our Approach . 79

4.3.1 Implicit Shape Representation 79

4.3.2 Polydisperse Sphere packing 80

4.3.3 Noise Based Surface Features 84

vii

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3.4 Optimizing Noise Parameters 86

4.3.5 Surface Detail Optimization 88

4.3.6 Polygonization 88

4.4 Results and Discussions 89

4.5 Conclusions and Future Works 90

5 procedural 3d asteroid surface detail synthesis 97

5.1 Introduction . 97

5.2 Related Work . 99

5.3 Our Approach . 101

5.3.1 Macro Terrain Structure 102

5.3.2 Micro Terrain Details 106

5.3.3 Erosion . 110

5.4 Results . 111

5.5 Conclusions and Future Work 111

iii every end is just a new beginning

6 epilogue 117

6.1 Summary . 117

6.2 Future Directions . 118

6.2.1 Modeling with Artificial Intelligence 118

6.2.2 Visualization . 119

6.2.3 Animation . 119

iv appendix

bibliography 123

viii

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

Part I

T H AT WA S T H E N , T H I S I S N O W

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

1
I N T R O D U C T I O N

The choice of 3D representation of real world objects plays a crucial
role in various fields and applications. The classical geometric mesh
representation is the most popular method and adopted by the major-
ity of commercial applications. They are more accurate since they are
able to capture the inherent geometric structures defined by vertices’
connectivity. Meanwhile, a geometric mesh is also able to represent
the non-manifold surfaces that necessary for many applications, such
as character’s hair or cloth simulation. Point clouds, however, lack nu-
merical stability on one hand, and absent inherent 3D spatial structure
on the other - which is essential for efficient 3D object deformation and
animation. Another common representation of "organic" shapes uses
a combination of continuous potential fields instead of the discrete
connected points, known as implicit surface.

However, recent development in 3D production pipeline requires
large numbers of high quality meshes at low cost. Obviously, tradi-
tional explicit mesh representation needs tremendous efforts to achieve
high quality for individual pieces of meshes and unable to satisfy the
3D industry. Moreover, the intrinsic low efficiency of explicit meshes
makes it difficult to evaluate interactions between meshes. However,
in the physically-based [66] simulation systems and many animation
systems, the collision detections algorithm plays a crucial part. The
trend of high quality 3D meshes resulting further worse situations
where more vertices must be considered. Consequently, the explicit
representation could be a limiting factor for the future of 3D industry
while the implicit representation would be more beneficial.

Our work begins from the requirement of real space mission. Before
we start the mission, usually we will build a virtual environment
to validate our design. For instance, we need a virtual testbed with
surface details to help testing the terrain-based navigation system (see
Fig. 1.1a); and also the optic-based tracking and landing system (see
Fig. 1.1b). Moreover, we can print out the virual testbed and create a
physical mock-up to test our devices in physical world.

Generally, our knowledge about space origins from the earth based
observation system such as lightcurve inversion or bi-static radar.
Since then, we have accumulated lots of low-poly real shapes of small
celestial bodies but without surface details. In recent decades, several
space missions (i. e., "Rosetta" mission, "Dawn" mission) have sent back
a bunch of images about the real asteroid’s surface. In Figure 1.2 we
can notice the uneven distribution of craters, and also the distribution
of other terrain primitives (some places with dense rocks, and others
are flat) follows the rule of spatial heterogeneity. Additionally, high-
resolution models are important for space simulation especially when
the spacecraft moving towards the asteroid and we need different
resolution of asteroid models to generate a level-of-details image

3

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4 introduction

(a)

(b)

Figure 1.1: (a) Terrain based asteroid navigation system [92]. (b) Virtual
testbed for rover validation [DFKI GmbH].

for the recognition algorithm. Modeling 3D asteroid with implicit
modeling system is an attractive alternative to explicit method which
usually involves lots of attempts to approximate a particular shape:
this paradigm can hardly adapt the future trend. We need a new
method which enables us to easily model arbitrary geometry with
diverse topologies.

Introduced in computer graphics in the 70’s, implicit surfaces rep-
resent primitive shapes with compact field functions f : R3 → R
and blending (i. e., summation) those scalar fields into more complex
shapes. This property making it powerful both for the modeling of
3D objects and their corresponding animation. Accordingly, implicit
surfaces are well known for their ability to ease collision detection and
simulate contact between solid volumetric bodies. A first insight of
implicit surface is that collisions can be evaluated in linear time O(n):
Let f1, f2 be two field functions and S1, S2 represent the associated
0-isosurfaces, the inner part of the solid volume being defined by
V1,2 =

{︁
p ∈ R3 | f1,2(p) < 0)

}︁
. After that, for any given point p on

S1, estimating the sign of f2(p) provides a simple collision test with
the solid volume, simultaneously the absolute value of f2(p) gives

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

introduction 5

Figure 1.2: The real image of the asteroid Itokawa. The image comes from
the "Rosetta" mission.

further information about the penetration depth. Another insight of
implicit surfaces is their ability to compose new shapes, using a va-
riety of combination operators between potential scalar fields. The
major bottleneck of implicit surface is their low accuracy in repre-
sentation arbitrary 3D objects and the blending operator between
implicit primitive is usually limited to model "soft" objects without
crisp boundaries. Moreover, the standard blend operator like sum-
mation makes the quantity of blending among primitives difficult to
predict, i. e., whether topology transformations will occur or not.

Formable implicit surfaces are dramatically because they can seam-
lessly compose shape with complex and dynamic topologies. Implicit
surfaces, more specifically convolution surfaces, are therefore partic-
ularly well adapted to combine with sphere-packing algorithm [159]
to incrementally construct complex shapes. However, sphere-packing
based modeling system present a number of drawbacks which make
them difficult to use in practice. More specifically, different geometric
primitives (spheres in our case) tend to act differently when their
distance varies. Merging their potential field when they get close and
separating when they move separate, thus, becomes hardly to predict.
For instance, implicit drops of water [66] tend to deform and merge
before they collide, the arm of an implicit character [19] may merge
with its body if they come too close. With no control around the global
topology, implicit blending is unable to acquire expected combination
effects.

In the real world, we can observe mainly four types of blending:
skeletal-blend, contact-blend, distance-blend and context-dependent
blend [168] (see Fig. 1.3b). Blending is generally expressed as a binary
operation, except for the n-ary operators [168]; max, which result in
the effect of two operators union and sum, and able to deliver smooth
blending effects between the input shape. The binary operators [8]
prevent blending effects at a distance, and provide more precise con-
trol to insure the model always maintain the union topology effects
between the input surface. Improving blending operators has always
been a major topic of implicit surface research [56], targeting at solving

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

6 introduction

the previous four major problems in constructive implicit modeling:
suppressing bulges when two shapes merge, unwanted blending at a
distance, the resulting shape should keeps the topology of the union,
and the sharp details to be added without being blown up [56]. The
key remark to tackle those problems is to utilize more information
- not only their scalar values but neighborhood information as well
(i. e., gradient).

(a)

(b)

Figure 1.3: (a) Animations can be launched through a set of implcit sur-
face [19]. (b) Taxonomy of blending behaviors, with real example
on top and schematic illustration at the bottom. From left to
right: Skeletal-blend, contact-blend, distance-blend and context-
dependent-blend [56].

How can an implicit function accurately and compactly represent
arbitrary complex shape as well as their inner structures? This thesis
attempt to integrate previous research on implicit modeling and in-
troduce a novel automatic implicit solution for 3D asteroid modeling.
Our shape representation is based on a skeleton metaballs, origin
from the sphere packing [159] algorithm. And a blending operator
controls the topology changes between the connected metaballs. The
final inflated geometry is controlled by radius, position, and smooth-
ing parameters assigned to each metaball. These shape and topology
parameters become variables in the optimization process and can be
applied constraints to automatically generate desired result. Then, an

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

1.1 contribution 7

overall similarity measurement is applied as the target function to
help iterate the solution space. To reduce our search space and boost
the rate of convergence, we use partical swarm optimization (PSO) [38]
with a histogram-based similarity algorithm to "learn" the parameter
space to generate an implicit model from the given mesh. In order to
solve this optimization problem we need: 1. suitable constraints which
minimize the solution space; 2. an efficient data structure to accelerate
the evaluation of the implicit model; 3. an accurate overall similarity
measurement to distinguish the generate model with the given mesh.

Our work differs from traditional implicit modeling approaches in
several important ways: 1. we have turned the tedious 3D modeling
process into an automatic way by minimizing a "fitness" function; 2. we
use the PSO to facilitate the neighbor information of inner metaballs
to speed up the optimization process; and 3. we proposed a new
noise model to synthesis the surface details on the implicit smooth
surface. Our research makes the implicit method as accurate as the
explicit method by facilitating PSO and available for a series of graphic
applications.

1.1 contribution

Our work begins from the requirement of real space mission. Before
we start the mission, usually we will built a virtual environment
to validate our design. For instance, we need a virtual testbed with
surface details to help testing the terrain-based navigation system; and
also the optic-based tracking and landing system. We need an efficient
algorithm to generate diverse surface details on the irregular shape,
and the manipulation must be intuitive.

We present a fully implicit representation of 3D asteroid model with
a compact formula. By computing the formula for each point in 3D
space we can get the isovalue and then assembled into the implicit
surface of the asteroid. Our pipeline (see Fig. 1.4) begins from the
constraint shape and in the first step we can use a group of metaballs
to represent the smooth global shape of asteroid. Then in the second
step we use a noise model to overlap the volumetric terrain on the
global smooth shape. Our noise model can generate micro and macro
structures on the surface. Especially boulders and craters.

In Chapter 3, we introduce a novel statistically invariant shape
descriptor for large-scale high resolution 3D model with local dis-
similarities. We combine four initial features that describe the global
shape with two novel features, representing the local curvature and
the normal perturbation, respectively. Moreover, our shape descriptor
is robust to noise and invariant to translation, rotation and scale of the
object. The shape descriptor can be evaluated in parallel and therefore
we are able to deal with massive data from high-resolution 3D shapes
effectively.

In Chapter 4, we contribute the first automatic implicit modeling
system - AstroGen - for small celestial bodies, that yields an approxi-
mation of any irregular constraint shape of arbitrary resolution. Our

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

8 introduction

Figure 1.4: The workflow of our method in this thesis.

method begins from a constraint surface (low-poly mesh), then we
use a sphere packing algorithm to fill the low-poly mesh with spheres,
then we can compute the potential field inside the asteroid and finally
a partical swarm optimization algorithm is applied to help us get the
optimized smooth global shape.

In Chapter 5, we present a new noise model to generate macro
and micro structures on the previous smooth global shape. In order
to generate macro structures, we use locally controlled spot noise
which can transfer the kernel shape into the textures and is suitable
for generating macro structures. For the micro structure, we use the
gabor noise by example algorithms.

In short, we have improved the traditional 2D procedural texture
into 3D implicit terrain synthesis and achieved good results. We also
proposed a new noise model to generate macro and micro terrain
structures. Our workflow makes it possible to represent complex 3D
asteroid implicitly and each point can be evaluated on demand in par-
allel. Non-professionals able to manipulate a few intuitive parameters
to generate diverse realistic 3D asteroid models.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2
I M P L I C I T S U R FA C E : S TAT E O F T H E A RT

The research of using equations and rules to define geometric ob-
jects in arbitrary dimensional space is an active area of mathematics
and computer science in the past decades. In compute graphics, this
research begins from implicit surface modeling and evolve into ren-
dering and animation. In the 3D case, implicit surfaces Si are usually
defined as a set of discrete points p ∈ R3 in the Euclidean Space where
their scalar fields fi : R3 → R equals to the given iso-value ci ∈ R :

Si =
{︁

P ∈ R3 | fi(p) = ci
}︁

(2.1)

Follow the similar definition method, the implicit solid (or volume)
νi can be defined as :

νi =
{︁

P ∈ R3 | fi(p) ≥ ci
}︁

(2.2)

This compact definition empower implicit surfaces two major ad-
vantages over explicit surface:

1. The compact definition of the implicit surface makes it well
suited to ease the requirement of accurate collision detection
algorithms in various applications (i. e., simulate the solid body’s
contact or visualization). For instance, from the Equation 2.1
and 2.2 we can define two implicit surfaces S1, S2. Let point p
on the surface S1, directly evaluating the sign (compare with the
iso-value c) of f2(p) provides a simple collision test with solid
ν2, meanwhile the absolute value of | f2(p)| afford the further
information about the penetration depth.

2. Another ideal property is their capacity to be seamlessly com-
bined in a geometrically correct and concise ways to generate
new complex implicit shapes, at the same time consume a rel-
atively small memory footprint. More specifically, the compo-
sition is consist by a given operator g : Rn → R which yields
new implicit surface Sj at the c-isosurface of the resulting field
f j = g(f0, ..., fn). Each primitives fi are summed up by simply
exerting the operator g to their respective scalar field, regardless
of their relative positions.

Since then, implicit surface has became a powerful 3D object repre-
sentation method in computer graphics, i. e. modeling and animating
objects with arbitrary topology. In short, complicate implicit surface
with changing topologies are handled by a few simple combining
algorithms, however, this representation must guarantee a continuous,
hole-free manifold. In general, we use at least C1-continuous (or even
C2-continuous where smooth curvature are needed) scalar field, lead-
ing to a continuously varying normal vector field which is a crucial

9

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

10 implicit surface : state of the art

(a) Implicit representation of gar-
ments and character, yielding
plausible animations [19].

(b) This skeleton-based implicit surface
was evolved by a stress concentration
minimization method to generate mi-
crostructures [105].

Figure 2.1: Examples of recent development of implicit surface for modeling,
animation and 3D printing.

factor for shading the implicit surface. The unit normal vector N(p)
for the implicit surface is computed as the normalized gradient of the
field function at that point (▽ means the gradient of f):

N(p) =
▽ f (p)

∥▽ f (p)∥ (2.3)

There also exist some other terminologies to define the implicit sur-
face, i. e. potential fields in the case of skeleton-based implicit surfaces
or implicit function, however, they are not mathematically correct
since the function is explicitly defined [8]. In this thesis we use field
function f to express the fact that the implicit surface is an iso-surface
of the scalar field they defined. In order to make field function f more
intuitive to manipulate as a modeling tool, lots of different implicit sur-
faces have been proposed, i. e. level-sets, functionally-based represen-
tation (such as f-reps [109], soft objects [96], convolution surfaces [134],
and Radial Basis Function [129]), grid-based representations (voxel),
skeleton-based implicit surfaces.

In the remainder of this chapter, we will first review the develop-
ment of mainstream models used in implicit surface modeling (see
Sec. 2.1). Then we will present another major research area in implicit
modeling: how to improve the level of control when combining dif-
ferent parts of implicit surfaces (see Sec. 2.2). In the third part (see
Sec. 2.3), we will present several methods to add details on the implicit
surface. In Section 2.4, we will highlight two ways to visualize the
implicit surfaces (i. e., polygonization and ray-tracing). Lastly, we will
present a series of applications of implicit modeling, as shown in
Section 2.5.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.1 modeling implicit surfaces 11

Figure 2.2: Some algebraic basic primitives, which can be combined into
more complex shapes using some blending operators [35].

2.1 modeling implicit surfaces

Implicit modeling plays an unalternative role in computer graphics
due to their intuitive and elegant representation of complex shape
in a mathematical way, rather than explicit representation. Algebraic
surfaces are the most basic implicit surfaces which precisely defines the
distance field of the primitive geometries (see Fig. 2.2). They rely on a
equation defined on the Euclidean coordinates that generally produce
a continuous surface. However, these formulas are not practical for
artists who design the 3D object, and consequently more intuitive
modeling tools are needed. Indeed, it is unpractical to design an
elaborate equation to represent arbitrary complex shape but those
simple algebraic surfaces are still powerful when they are assembled
together. In the following part we will introduce the development of
implicit modeling based on the algebraic surface.

2.1.1 Skeleton-based Implicit Surfaces

Algebraic surface abstracts the basic geometry primitives (i. e., line,
sphere, box) quite well but difficult to predict the result when altered
the parameter of the equation. As a result, many complex and de-
formable objects are either arduous or inefficient to be reconstructed
with such unpredictable building blocks. An increasingly popular
approach is to use the skeleton-based field function to model the 3D
object. Evaluating the isosurfaces along the predefined skeleton field
we can achieve a compact and intuitive representation of the complex
shape. Field function f is defined on the distance to the skeleton
which gives us more control by deform the skeleton or the distance
attenuation, meanwhile skeleton surface is a meaningful abstraction
of the overall shape of the target object. Generally, skeleton-based field
functions can be defined on various skeletons, such as a set of discrete
points (as in the spherical distance, see Fig. 2.3), line-segments, curves,
triangles or even cylinders, cones, torus, cubes (see Fig. 2.4), as soon
as the query point’s minimum Euclidian distance to the skeleton can
be computed. A naive evaluating the distance dist to the skeleton S
to construct the skeleton-based distance field function f brings about
the following formula: f (p) = R − dist(p, S), where R is the distance
from the geometric skeleton S to the desired surface, and f (p) is also

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

12 implicit surface : state of the art

Figure 2.3: The definition of the electron density map underlying the blobby
model [110].

Figure 2.4: Some skeletal primitives implemented by skeleton-based implicit
modeling system [4].

called distance surface. This definition actually prescribe the implicit
surface twine the skeleton, as illustrated in Figure 2.4.

In order to generate sophisticate structures of the complex skeletons
we need more compact support and more flexible local restrictions to
the field generated by the skeleton distance surface f (p). Blinn [11]
introduced the first kernel-based implicit surface, then the skeleton
distance-based field functions are extended by modulate a kernel
function K as:

f (p) = K(R − dist(p, S)) (2.4)

The first kernel-based definition of an skeleton-based implicit sur-
face was introduced to visualize the "blobby" molecules (see Fig. 2.3).
Inspired by the electromagnetic properties of atoms, Blinn proposed
the Gaussian kernel to further adjust the scalar field. The resulting
field function f (p) (see Eq. 2.4) is a kind of globally supported field
function: field value varies all over the space but is positive inside and
outside negative. Subsequently, several alternative kernels have been
proposed in the form of piecewise polynomial functions, which are
faster to evaluate, in order to define more flexible locally finite support
field functions.

Here we list the formula of five mainstream kernel functions which
satisfies all requirements of the implicit modeling: smooth, monotonic
and bounded (with a represent the scaling factor and b controls the
deviation of the primitive):

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.1 modeling implicit surfaces 13

Figure 2.5: The compare of five distance-based field functions.

1. Blobby Molecules (Gaussian Kernel) [11]:

K(d) = a · exp(−(
d
b
)2) (2.5)

2. Metaballs [102]:

K(d) =

⎧⎪⎪⎨⎪⎪⎩
a(1 − 3(d

b)
2) i f 0 ≤ d ≤ b

3 ,
3a
2 (1 −

d
b)

2 i f b
3 ≤ d ≤ b,

0 otherwise

(2.6)

3. Soft Objects [96]:

K(d) =

{︄
a(1 − 4

9 (
d
b)

6 + 17
9 (

d
b)

4 − 22
9 (

d
b)

2) i f d ≤ b,

0 otherwise
(2.7)

4. Wyvill function [13]:

K(d) =

{︄
a(1 − (d

b)
2)3 i f d ≤ b,

0 otherwise
(2.8)

5. Cauchy function [94]:

K(d) =

{︄
a

1+b2d2 i f d > 0,

0 otherwise
(2.9)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

14 implicit surface : state of the art

Andrei [94] compare all kernel functions we mentioned above and
prove the polynomial function works best in the computation criteria.
What’s more, each kernel has its own unique "signature" curve which
shows noticeable various attenuation rate (see Fig. 2.5).

In brief, there exists two types of method to generate a variety of
skeleton-based implicit surfaces: the first type convolve an anisotropic
metric around the skeletons (i. e., apply a mixture of kernel functions
to compute the distance field along the skeleton); in the second type,
the distance metrics which evaluated on the Euclidian space can be
replaced by quadric metric or some other metrics in order to bring
more variants. The C1-continuous property of skeleton-based surface
made it well suited to construct organic or liquid looking shapes and
animate object’s topology change over time (i. e., the deformation of
human body’s hand or leg). However, the advantage of continuity
also limit the possibility of skeleton surface to precisely model some
sharp shapes (i. e., hair, sharp rocks), and the total computation is too
expensive for real-time displaying applications. These drawbacks are
reviewed in more details in Sections 2.2 and 2.4.

Another major drawback of kernel-based distance field function is
their low degree of continuity (i. e., metaballs, soft objects) compared
with point-based distance field function (see Eq. 2.5). Indeed, the
continuity of point skeleton field function is C∞ everywhere inside its
support domain. As a contrary, in more complex skeletons this is not
the case anymore: the field function is spherical at points proximity,
cylindrical at segments proximity and planar at faces proximity. Hence,
the overall gradient of the complex skeleton field is continuous but
not differentiable, and then the resulting implicit surface is only C1

continuous.

2.1.2 Convolution Surfaces

A logic spread of the skeleton-based implicit surface modeling aims at
adding the domain’s degree of continuity (avoid unwanted bulges) and
fairness regardless of the skeleton type (i. e., point, segment, planar)
by replacing the convolution of a kernel function K with a geometry
function G. More specifically, different from modulating the distance
dist(p, S) with the kernel K, convolution surface’s kernel function
convolved directly on the predefined skeleton. Thus the field function
f (p) defined as the integral (infinite summation) of the contributions
of all points p on the skeleton:

f (p) = G(p)⊗ K(p) =
∫︂

R3
G(r)K(p − r)dr (2.10)

where ⊗ means convolution, G(r) describes the shape of the skele-
ton and K(p) is the kernel function to produce the potential value
corresponding to each skeleton points. If the skeleton is 0-dimension
point-skeleton, in substitute, the formula (see Eq. 2.10) becomes the
classical "blob" (see Eq. 2.5). Ascribe to the cumulative property of
integration, convolution-based implicit surfaces are isolated of the
skeleton segmentation as illustrated in Figure 2.6. We can note that the

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.1 modeling implicit surfaces 15

Figure 2.6: Summation of individual part of the skeleton give the same scalar
field as integrate the skeleton as a whole [165].

infinite summation along the skeleton make the convolution surface
bulge-free over the skeleton-based implicit surface, and the benefit
comes from the integration on the null intersection parts. This prop-
erty then helps the design of arbitrarily complex skeletons defined on
a set of primitive geometries, such as points, line-segments, curves, or
warping of these primitives [134, 167, 169]. Due to the integral opera-
tor (see Eq. 2.10), the additive of different partitions of the skeleton
are seamlessly consisted and leave the skeleton field continuous and
smooth (see Fig. 2.6). Thus the convolution surfaces becomes an ideal
modeling tool to define levels of details (LOD) through the recursive
subdivision of their skeleton implicit surface. The property of indepen-
dent from subdivision enables us to construct diverse networks with
curves and surfaces as skeletons, and further more we can evaluate
the convolution surface by partition the skeleton into adequate sets of
line-segments or triangles.

The first kernel function applied to the convolution surface is Gaus-
sian kernels, and subsequently [94, 134] proposed several more efficient
closed-form alternative formulas which suitable for convolution along
line segment as well as triangle skeletons. In summary, the kernel
functions can be classified into three families [167] as:

1. Inverse of order i: K(d) = 1
(d

σ)
i

2. Cauchy of order i: K(d) = 1

(1+ d
σ)

i
2

3. Compact polynomial of order i:K(d) =

{︄
(1 − (d

σ)
2)

i
2 i f d < σ,

0 otherwise

where σ is a resizing constant, Inverse and Cauchy of order i functions are
C∞-continuous and the continuity of Compact polynomial kernel is given
by the order of i. However, polynomial kernel has the advantage of
providing a local support compared with the global support of Inverse
and Cauchy which eases the requirement of local shape control and
enables efficient field queries.

The application of convolution surfaces on volume skeletons (cubes)
is performed in Figure 2.10, where the terrain of arbitrary topology
(i. e., caves, overhangs) is modeled [117] which is impossible with
traditional heightmap based 2.5D terrain modeling system. After-
wards, [53] define a set of terrain primitives by a geometric skeleton
(point, segment, curve or contour) to generate mountain, hill, river
and road. The elevation of the terrain primitive is able to obtained by

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

16 implicit surface : state of the art

(a) (b)

Figure 2.7: (a) Cube skeletons and convolution on volume; (b) Terrain was
modeled from the cube skeleton [117].

Figure 2.8: River or road can easily generate from the convolution surface
with primitives of lines or curves [53].

a weight function depending on the distance from the skeleton (see
Fig. 2.8).

weighted skeletons As illustrated in Figure 2.8, for the sake
of more precise manipulation of the generated terrain it is crucial
to varies the radius of primitives along the skeleton. This lead to an
extension of constant weight convolution surface into non-constant
weighted skeleton. Their mainly exists three models to generate
weighted skeletons (see Fig. 2.9):

1. The standard formulation was developed by Jin [67] to scale the
origin convolution field function by τ(s) as:

f (p) =
∫︂

s∈Ω
τ(s)K(

⃦⃦⃦
p − Γ(s)

⃦⃦⃦
)ds (2.11)

2. Later on, Hornus [65] propose to scale the distance in the origin
convolution field function by τ(s) as:

f (p) =
∫︂

s∈Ω
K(

∥p − Γ(s)∥
τ(s)

)ds (2.12)

3. More recently, Zanni [167] showed that their SCALIS method
to scale both the distance and the original convolution filed
function can effectively avoid blurring and vanishing details as:

f (p) =
∫︂

s∈Ω

1
τ(s)

K(
∥p − Γ(s)∥

τ(s)
)ds (2.13)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.1 modeling implicit surfaces 17

Figure 2.9: Three different models to generate weighted skeletons [165].
While Equation 2.11 scales the height of the kernel, keeping the
width of the support unchanged, Equation 2.12 generates a kernel
of constant height, but of varying support-size. SCALIS [167]
method (Eq. 2.13) scale both.

As Figure 2.9 depicted the three different policies we proposed above
to generate weighted skeletons. The standard convolution formula (see
Eq. 2.11) can be reused to form a closed-form solution (i. e., convolution
triangle [175]). More specifically, τ(s) can be used to change the height
(convolution radius) of the kernel K(d) while keeping the width of
the supported area unchanged. In this case, if we set the height τ(s)
to a small value and sharp details can be obtained. The trick used in
Equation 2.12 generate a kernel K(d) of constant height, but the size
of support area changes. Subsequently, Zanni [167] proposed a novel
idea (see Eq. 2.13) by varying both the kernel K(d) height and the size
of support area while keeping the area below the curve fixed and it
brings the property of scale invariance. Mathematically speaking, in
the Equation 2.13 the division by the weight within the kernel K(d)
function is no longer convolution anymore but still belongs to the
integral surface.

More recently, Alvaro [140] proposed an aniostropic convolution sur-
face which is an extension of convolution surface and greatly enhance
the diversity of the shape can be generate from 1D skeleton convolu-
tion surface. The aniostropy was achieved both in the normal section
and the tangential direction, which in particular allows sharper and
steeper radius variations (see Fig. 2.10) either along the skeleton or at
the endpoint. As a result, the more flexible control of the thickness
on the convolution surface is achieved. This property overcoming the
shortcoming of traditional convolution surfaces which are not suitable
for the design of non-organic shapes.

radial basis function Another type of method to represent
the implicit surface is to model the complex shape directly from the
constraint surface points. The previous implicit methods represent
hinge parts of the object with a blending function. However, the surface
can also be defined from the scalar field of a dense point set, and the

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

18 implicit surface : state of the art

(a) (b)

Figure 2.10: (a) The left image is the isotropic convolution surface and the
right side anisotropic convolution surface. (b) Model a cup with
twisted surface through the anisotropic surface [140].

free-form objects can be approximated by fitting those scalar fields
regardless of their topology.

Such representation is widely used in the digitization of historic
heritage (i. e., 3D scan point clouds) for the augmented or virtual
reality purposes. Therefore, the resulting field function f : R3 → R
of the target is expected to look like f (pi) = C for all input surface
point pi, and the additional constraint the field function similar like
a distance field function. In order to interpolate the surface going
through all input points, we must find the coefficient to solve the
above linear euqation set (f (pi) = C). This will leads to decompose a
huge linear equation set (matrix) with a complexity of O(N3). A set of
compactly supported basis functions have been introduced in order
to make the system sparse, faster to solve, and meanwhile reduce the
number of input points needed for evaluation [21].

A first approach, called Radial Basis Functions (RBF) [23], is to
discretize the field function f with a linear combination of basis
functions ϕ centered at the input surface point pi as [21]:{︄

f ield f unction f (p) = ∑N
i αiϕ(∥p − pi∥)

subject to f (pi) = 0
(2.14)

where ∥·∥ is the Euclidean norm on R3, we can solve a series of equa-
tions under the constraint and the correspond real scalar coefficients
αi are then founded. While, a naive solution of αi = 0 will lead to
the zero constant function f = 0, and thus impossible to obtain the
coefficient to represent the surface of the target. To avoid this draw-
back, more constraints are required and the gradient constraints are
promising to avoid the hassle by adding more value constraints with
offset points. This result in a simpler and more robust reconstruction
technique called Hermite RBF (HRBF) [90]. Adding the gradient of
the generated field make it fits with the normal ni at point pi (Her-
mite data {(pi, ni)}N

i=0, a pair of points and normals), leading to the
following problem reformulation:{︄

f ield f unction f (p) = ∑N
i αiϕ(∥p − pi∥) + βi▽ϕi(∥p − pi∥)

subject to ▽ f (pi) = ni and f (pi) = 0
(2.15)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.2 combining implicit surfaces 19

With N (each i = 1, 2, ..., N) the number of samples, and this dense
linear matrix can be robustly settled from a standard lower–upper
(LU) decomposition algorithm. Naturally, we can obtain the corre-
sponding interpolation coefficients: a scalar value αi and a vector βi to
reconstruct the geometric surface. The coefficient (in a subspace of the
linear space Rn) is a continuously differentiable scalar-valued function
in Rn and can be evaluated from the first-order Hermite interpolation
- a particular situation of Hermite-Birkhoff interpolation theory [160].
Fortunately, once the coefficients are picked up they can be stored in
the memory and works for the particular shape on demand, thus calcu-
lating the linear matrix does not affect the performance of evaluation
the implicit surface.

The primary function ϕ in RBF must be a real valued function on
the definition of [0, ∞) and mostly are of non-compact support. And
the choices of basis function ϕ can be made depending on the desired
interpolation properties and the dimension of the ambient space [23]:

1. Thin plates spline: ϕ(r) = r2log(r)

2. Polyharmonic splines:

{︄
ϕ(r) = rk, k = 1, 3, 5...

ϕ(r) = rkln(r), k = 2, 4, 6...

3. Gaussian: ϕ(r) = e−cr2

4. Multiquadric and triharmonic splines:
ϕ(r) =

√︁
1 + (cr)2 and ϕ(d) = r3

The biggest advantage of RBF method is to represent an entire
complex target shape with a compact, continuous and differentiable
function. This style of representation surpassing the traditional piece-
wise parametric surfaces and convolution patches in several aspects.
Firstly, the RBF function can be evaluated in the whole 3D space on
demand to produce particular meshes, i. e. in simulation system the
object can be computed at the desired resolution when and where
needed. Secondly, the complex shape representation is able to switch
into a more straightforward surface parameterization and optimiza-
tion problem with a group of discrete, non-uniformly sampled surface
points. To sum up the RBF function enlarged the type of shape can be
represented by implicit method which previously has been limited to
mere "organic" objects such as molecules, into the feasible real-world
object acquired by 3D laser or camera scanners (i. e., kinect).

2.2 combining implicit surfaces

Functionally based implicit surfaces (so-called "procedural") are well
known for their capacity to compose the associate scalar fields of
primitive geometries into more complex shapes. The greatest strength
during this process is their smooth blending property which leads to
the first implicit modeling system called Constructive Solid Geome-
try [13] (CSG). The main attractive feature of CSG modeling system,
compared to parametric surfaces or meshes, is their nice blending

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

20 implicit surface : state of the art

property. Implicit primitives can be used in a constructive tree struc-
ture where smooth shapes of cooresponding arbitrary topological
genus are progressively blended into more complex ones by simply
summing (or other operator) their field functions.

Ricci [123] was one of the first to introduce several basic boolean
operations: the union (∪), the intersection (∩), the difference (\) to
produce a smooth transition between the scalar field, and these opera-
tors can be performed hierarchically owing to the Construction Tree.
Also those simple operators are called R-function, and can be defined
as follows [109]:

1. Union: (f1 ∪ f2)(p) = 1
1+α (f1 + f2 +

√︂
f 2
1 + f 2

2 − 2α f1 f2)

2. Intersection: (f1 ∩ f2)(p) = 1
1+α (f1 + f2 −

√︂
f 2
1 + f 2

2 − 2α f1 f2)

3. Difference: (f1 \ f2)(p) = f1 ∩ (− f2)

where α = α(f1, f2) is an arbitrary continuous function controls the
amount of blend during the composition and must satisfy the follow-
ing constrains:

1. −1 < α(f1, f2) ≤ 1,

2. α(f1, f2) = α(f2, f1) = α(− f1, f2) = α(f1,− f2)

If we set α = 1 then the operator becomes the famous: max(f1, f2),
min(f1, f2). This type of simplification make it very convenient for
calculation but will bring about C1 discontinuity when f1 = f2. This
discontinuity between scalar fields will lead to the creation of artifacts
in the subsequent blending operator. If we set α = 0, the union and
intersection becomes the summation corresponding to the popular
sum operator used by Blinn [12] to display molecules and defined as:

1. Union: (f1 ∪ f2)(p) = f1 + f2 +
√︂

f 2
1 + f 2

2

2. Intersection: (f1 ∩ f2)(p) = f1 + f2 −
√︂

f 2
1 + f 2

2

The new formula has C1 discontinuity only in points where both argu-
ments are equal to zero. Nevertheless you can achieve Cm continuity
only by multiply the union and intersection equation (when α = 0)
with ((f1)

2 + (f2)2)
m
2 . When α increases we can notice a decreasing

blending effect, as illustrated in Figure 2.11, down to a sharp union
when α → ∞.

We will first introduce the extension of CSG named BlobTree [163]
which is an autonomous way to consists shapes into complex objects.
Then we go through the recent process of operators in solving the four
major problems in the previous basic boolean operators.

2.2.1 The BlobTree

Implicit surfaces were introduced in geometric modeling for their
capability of being robustly combined into a CSG tree. Even with sharp

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.2 combining implicit surfaces 21

Figure 2.11: Four different values for the parameter α, from left to right,
α = 1, α = 3, α = 10, α → ∞ [21].

or smooth transitions at the vicinity intersection area of the combined
surface. The classic CSG tree is usually implemented using a dynamic
tree structure, whose inner nodes are composition operators and leaves
are prime implicit primitives. This process usually involves design an
assembly scheme which allows iterative and intuitive combinations
of prime geometry primitives sequentially through simple operators
to design the complex object. The CSG system successfully describe
the relations between Boolean operators but leaving the connection of
blending, warping (i. e., deformations) unconsidered.

The BlobTree [163] modeling system is also defined by the expres-
sion which combine implicit primitives, however, operators are ex-
tended from simple Booleans (i. e. union (∪), intersection (∩), difference
(\)) to blending (i. e. blend (+), superelliptic blend (⋄)), and warping (ω).
The Boolean and blending operators are binary operators and the warp-
ing is a unary operator. Here, we introduce the blending and warping
operators in detail.

blending operator : Generally blending two primitives are the
same with union operator, but super-elliptic blending (⋄) achieve
larger range of blending and defined as:

f1⋄2(p) = ((f1)
n + (f2)

n)
1
n

where n varies from 1 to ∞ and the blending operator will
change from binary operator to n-ary operator which creates a
set of blends between sum blending and union.

warping operator : Another useful operator in order to create
free-form deformable object is to distort the shape of a surface
by warping the space in its immediate vicinity, called warping.
A warp is a continuous function w(p) that maps R into R and
fully characterized by the distance to its skeleton di(p), potential
function gi(r) which eventually denoted as {gi(r), di(p), wi(p)} :

fi(p) = gi(r) · di(p) · wi(p)

The BlobTree import extra operators (blending and warping) and a
hierarchical modeling framework which gives more freedom to the de-
signer. The multiple operators are managed by a tree where each node

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

22 implicit surface : state of the art

Figure 2.12: The workflow of BlobTree to synthesis the candlestick [163].

represent either composition or warping operators, the leaves of the
tree are the implicit primitives and all those elements are recursively
traversed to model complex shapes (see Fig. 2.12). Whereas, designing
complex objects from scratch can be rather cumbersome even with
the BlobTree. The designer would need to think about the order of
each operators and how to balance it to make the evaluation more
efficient. Consequently, optimization methods were also introduced
to accelerate the BlobTree. For instance, [41] introduced the reduction
and pruning operator on the BlobTree to limit the cost of the scalar
field query. More specifically, the reduction is a simplified version
of the affine transform operator by pushing them down in the tree.
The latter operator - the pruning is to construct a sub tree from a
small subset of the implicit primitive in a given region of space. This
improvement significantly accelerate the evaluation of the BlobTree.

2.2.2 Blending

In fact, soft blending, R-function, Ricci’s super-ellipsoid blends and
Perlin’s set operations are widely applied to smoothly blend soft
objects because they have lower computing complexity. However,
these operations still face four major difficulties as follows [56] (see
Fig. 2.13):

1. Bulging effet: The bulging effect usually observed when two con-
tinuous skeleton surfaces (or convolution surface) are blended
with a simple sum operator. The main reason is that the clas-
sical implicit surfaces are not independent to subdivision, and
although the integral of the convolution surface able to ease
this problem but it still arises when more than two parts linked
together. Therefore, the resulting implicit surface from the blend
operator will produce a bulge on the intersection area of the

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.2 combining implicit surfaces 23

input surfaces, as depicted in Figure 2.13 (a). This is due to the
fact that [167]:

k(min
g∈S1

⋃︁
S2
∥g − p∥) ̸= k(min

g∈S1
∥g − p∥) + k(min

g∈S2
∥g − p∥)

This effect is really annoying when artists wants to create the tiny
details (i. e., hair, fur) on a complex object by attaching several
primitives. In particular, blending several different primitives
will introduce discontinuities of the gradient and issue in more
obvious bulge. For instance, modeling the tail of an animal
would require consisting of several segments so that the tail can
be animated from straight to curved lines, and therefore subject
to bulges [167].

2. Locality problem: The implicit primitives blend at a distance
means the neighbor area (distance) is the only factor that influ-
ence how the implicit surfaces should react (see Fig. 2.13c). This
makes assemble implicit primitives difficult because designers
usually unclear at which distance the implicit primitives should
place to achieve targeting effects. In briefly, it is necessary to
accurately prevent the unwanted parts in 3D modeling appli-
cations. This unpredictable issue is also serious in animation
applications, where pieces of different material in a 3D model
should be allowed to deform differently at different distance.
For instance, if the arm of a character’s move towards its head
during the animation, those primitives tend to blend together,
which is what we want to eliminate.

3. Absorption problem: Sharp and tiny details are usually smoothed
and inflated (merged) when they are blended into larger implicit
primitives, since the sharp primitive influence are are totally
enclosed into the support region of the larger primitive. This
problem occurs when the gap between the support radius of
primitives to be blended is too large and it will prevents the
creation of thin details such as hairs or tips. That’s the reason
implicit surface only well-known to generate blobby, organic
shapes (see Fig. 2.13b).

4. Topology problem: The composition capacity of implicit prim-
itives provides an intuitive way to reconstruct objects with ar-
bitrary topology. However, the lack of control on the blending
operator issue in the topology of the resulting implicit surface
unpredictable. For instance, in Figure 2.13 (d) the center of the
upper circle with a hole must be reserved, however, the intuitive
blending operator will cause unpredictable and uncontrollable
filling of the hole and impossible to maintain the topology as
we expected. This poor manipulation of topology bring prob-
lems where respect parts of topology should be altered by the
assembly defined in the tree structure, not of the blend operator.

In general, improving the variety and effectiveness of implicit mod-
eling is equal to the design of new composition operator. To address

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

24 implicit surface : state of the art

Figure 2.13: (a) Bulging problem; (b) Absorption problem; (c) Locality prob-
lem; (d) Topology problem.

the blending problem researchers have presented more user controls
to intuitively manipulate the transition shape between the combined
object parts. In essence, the blending behavior rely on the properties
of each implicit primitives’ scalar fields. One promising approach is
to use the binary operator, which combine two implicit primitives
and then design the transition shape in the support area through a
useful representation: the operator space (see Fig. 2.14). As a result, the
control of the blending is aim at building the correspondence between
the operator space and the object’s scalar field (potential field). This
abstraction intuitively visualize the effect of a binary operator and
provides an instinct tool to control and devise their behavior. Since
then the devise of appropriate equation for the blending in operator
space is of great interest for researchers who wants to provide better
control of the transition shape at the primitive intersection areas. In the
following, we will introduce several most typical blending operators
to address the blending limitations (previous four major limitations)
by defining control over the transition shape between the scalar field
of implicit primitives.

A first attempt was made to avoid the drawback of bulge by taking
the advantage of the operator space: the clean union. In Ricci’s [123]
union operator, the blend is regulated by a unique parameter α that
provides a simple parameter on the smoothness of the transition shape
between input primitives but failed to consider the size of the implicit
primitives nor allowing elaborate modification of the shape transitions
between primitives. A similar but more general operator to Ricci’s
union has been developed by Pasko [109] for globally supported field
functions, where the two integer parts refer to the so-called "clean
union" operator, and the fractional part relates to the amount of effects
applied to induce the blend.

In Rockwood’s [124] seminal paper the elimination of the bulging
effect can be tackled by a new operator called: the super-elliptic blend.
In this operator the range area of the blend is controlled by the cosine
value of the angle between field gradients [124]. Even though this
operator successfully restrains the unwanted bulges, however, it brings
about the locality and topology problems and more importantly the
resulting surface is only C0-continuous. Afterwards, Gourmel [56]
proposed the gradient-based blend operator based on the super-elliptic

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.2 combining implicit surfaces 25

Figure 2.14: Three compositions applied to a pair of cylindrical implicit prim-
itives forming a cross: (a) standard max union; (b) clean union;
(c) Barthe’s blending operator parameterized by an opening
angle θ [56].

operator, which smooth the angle between field gradients. This new
gradient-based blending operator is more general, scalable and is
capable to limit the amount of blending at the intersect area within
the input shape.

Another problem of blending is the composition operator will pro-
duce unpredictable artifacts. This is mainly due to the fact that the
summation of negative field with positive field will produce unwanted
inversion at particular intersecting area. Canezin [22] proposed a solu-
tion to this problem based on an extra constraint. Their insight is the
initial scalar field should be bounded to a particular range, and the
bending operator is defined in order to maintain this property [22].
This inner bounded operator greatly enhanced the intuitiveness of the
composition behavior when the multitude successive composition are
required for modeling complex objects [22].

The reminder of this subsection explained the previous method
in more detail: clean union, gradient-based blending and adequate inner
bound blending as follows:

• Clean union:

– The clean union (see Fig. 2.14) comes from the Pasko’s
operator. Before we introduce clean union here we show
the operator of Pasko’s at first as:

g(f1, f2) = f1 + f2 −
√︂

f 2
1 + f 2

2 +
a0

1 + (f1
a1
)2 + (f2

a2
)2

(2.16)

where a0 controls the amount of global blending between
input implicit primitives (f1, f2), and a1 and a2 manipulate
the amount of asymmetry in the blend operator.

The clean union operator is mixture operator: the union
operator on the combined surfaces and the blending op-
erator at their field functions. This improvement enables

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

26 implicit surface : state of the art

smooth field variants around the surface, thus making the
field behave more similar to a distance field. It also prevents
the gradient incontinuity in the generated field which may
cause the discontinuity in the visualization of reflections
on the surface or after further blending compositions. This
allows an object built from such an operator to be later
merged with another implicit primitive no longer introduc-
ing unwanted sharp edges into the blend area.

g(f1, f2) = f1 + f2 −
√︂

f 2
1 + f 2

2 (2.17)

• Gradient-based blending [56]:

– This operator provides an automatic method to adjust the
smoothness and sharpness of the transition shape (in the
operator space) between arbitrary functional implicit prim-
itives. Contrary to previous methods, this new operator
not only a function of the field function but also consider
their gradient. The gradient parameter control the curve
(so-called "controller") in operator space to define the blend-
ing effect region where a particular pattern is applied to
describe the shape of the conjunction area. For instance,
when modeling "organic" shapes only small contribution
from the blend is required if the gradient is aligned. In con-
trast, if the blend is the dominant factor and the gradient
deviate to some particular angles where blend at maximal
to smoothly consist different parts of the "organic" shape.
Blend operator is then degrade to the clean union before
gradients are opposite in order to design folding effects [21].
Another extra benefit is the gradient can also help prevent
the small details vanishing from blurring or inflating when
blended with much larger size of primitives.

• Adequate Inner bound for Compact field functions [22]:

– The development of implicit modeling operator able to offer
an accurate control on the shape transition within blending
areas of the input primitives. However, these effects rely on
the field function where the implicit primitives are defined.
As a result, we can partition the whole field space with
outside part where functions defined and inside part. Natu-
rally, most efforts have been made on the outer part where
the field function defined and little efforts have been made
on the inner parts. Whereas, the inner fields are equally
important to the outer part when difference or intersection
operators are considered. For instance, when composition
operators, such as Boolean difference, is used and artifacts
may arise in the inner part. This artifact is mainly due to
the fact that the term (1 − f) used to perform the required
inversion of the field function can become negative [22].

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 27

Canezin [165] proposed a modified version of the gradient-
based blending operator which meets the new constraint
by introducing a new family of boundary curves in the 2D
representation of blending operator [165] (operator space).

They also proposed a new set of asymmetric operators
tailored for the modeling of line (or segment) details while
preserving the integrability of the resulting fields [165].
More specifically, this modified blending improves the field
quality when boolean operators are imposed to add small
details on a large primitive. This can be achieved from
modifying the gradient-based operator by progressively
ignoring the field of the details when it becomes larger than
the iso-value. The aim is to remove the ghost shape of the
details that remains after the operation.

In total, this new bounded operator enables a precise control
on the shape of the inner and outer field boundaries and
make the differences and intersections seamlessly applied
without bring about the discontinuities or field distortions.

2.3 details of implicit surface

In order to enhance the visual realistic or fidelity of implicit surfaces,
several ways are proposed to add surface details. In general, there
are mainly two directions to represent surface details on the smooth
surface (implicit surface) - the image texture and the actual geometric
details. Textures are usually related to visual or tactile properties and
composed of repeating patterns which are able to mapping onto the
smooth surface, such as grass, rock, and meanwhile widely used to
preserve various surface’s physical properties (i. e., color, reflection,
transparency or displacement). Due to this universality the second
way - the actual geometric details - can also synthesized from im-
age textures through displacement-mapping or bump-mapping to
modify the normal or the actual vertice’s position on the 3D mesh.
More recently, the virtual texture mapping [25] is becoming a popular
technique to represent the surface details (able to increase the number
of input mesh’s triangles from millions to billions) without explicit
modeling the properties of the object’s geometry or materials.

In this subsection we will first track the development of the texture
synthesis algorithm and then gallery show the corresponding mapping
methods, such as bump mapping [10], displacement mapping [28] or
shell mapping [118], to actually modify the topology of the mesh for
the sake of adding surface details. Then we will analysis the limitations
of these methods, for instance, they are hard to ensure the coherency
and consistency especially when the parameterization is not available
(especially the parameterization of implicit surface). Finally, we will
exhibit a group of procedural noise which can be applied directly
to the implicit surface in a parameterization free style and at the
same time ensure the coherency and consistency of the repeat pattern
maintained in the corresponding procedural textures.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

28 implicit surface : state of the art

2.3.1 Image Texture & Texture Mapping

The most widely used image textures method on the implicit surface is
example-based texture synthesis and surface-based texture synthesis.
Texture synthesis means from a small path of sample image we can
reproduce an arbitrary size of similar texture in order to cover a much
larger planar area or manifold surface. One potential benefit of texture
synthesis is to amplify the input small texture or tilable texture on
demand. A vast amount of work is available on that area and here we
only cover a small part which directly related to implicit surface.

Example-based texture synthesis method intend to use 2D image
texture as input and synthesize a similar texture over a planar with
arbitrary size (see Fig. 2.15). A large varieties of solutions have been
proposed since the seminal work of Wei and Levoy [157] to address
this issue. The method proposed by Wei and Levoy [157] relys on a
fixed size neighbor sampling of the input texture and the L2-norm
criterion to compare their similarity. In their method, each pixel value
of the output texture is decided in raster scan order after querying with
a tree-structured vector quantization (TSVQ) on the sample texture
and searching all similar pixel neighbors to meet the requirement.
After that, the pixel value is determined by randomly chosen one
from these neighborhoods. Subsequently, Ashikhmin [2] improved
this algorithm by changing the search of entire space of neighborhoods
of the sample image into a neighborhood most similar to the current L-
shaped neighborhoods which preserves the coherence at the same time.
This advance make it well suited for the natural texture synthesis. In
summary, in order to make example-based texture synthesis suitable
for diverse type of textures and maintain their high quality, there
exists several additional issues must be considered, such as image
pyramids, fast search techniques, coherence between adjacent pixels
and histogram matching [156].

Figure 2.15: From the input texture we can synthesis a new texture that look-
alike the input. The synthesized texture is tileable and can be
extended seamlessly to arbitrary size decide by the user [156].

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 29

Figure 2.16: A cylinder pair smooth and with grooves (top) are used as input
examplar to modify a seahorse model to have similar grooves
pattern (bottom) [9].

In addition, this 2D pixel based example texture synthesis algorithm
is capable to be extended into a voxel-based 3D space to depict geomet-
ric details on the surface of voxel-based 3D models (see Fig. 2.16). For
the purpose of this extension, Bhat [9] introduced the following steps
to synthesis details on the 3D model: firstly, the 3D object must be
voxelized into the interior, exterior and intermediate voxels; secondly,
voxels plays the role of pixels and the voxel neighbor is naturally a
collection of connected neighbor voxels; thirdly, the traversal order is
particularly defined from the top volume slice to the bottom volume
slice; finally, each voxel defined a local coordinate to compute the
sweep distance field and ensure the consistency of the surface texture.
After the previous steps, the problem comes to train the feature vec-
tors and search the closed matches during the synthesis which can be
solved in a similar way to 2D example-based texture synthesis. This
new approach requires no parameterization step to transfer the ac-
tual geometric changes (not just the modification via surface normals
or color) from the examplar 3D model to the target 3D model. The
benefit is we can synthesis not only micro details of the surface (such
as height map) but also the macro structures (see Fig. 2.16) that com-
pletely change the topology of the global shape. Whereas, this method
is unable to generate a smooth transition between the two textured
surfaces, and the details is limited by the resolution of the grid size
which make it computational expensive on the high-resolution grid.

For many applications, synthesis textures on a larger planar or 3D
voxel is not sufficient, often we want to apply textures onto a particular
manifold surface to achieve special effects. In general, there exists two
ways to fulfil this task, one way is to mapping the planar texture onto

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

30 implicit surface : state of the art

the surface (see Sec. 2.3.1) and another way is to synthesize the texture
directly on the surface. More specifically, the idea of performing
texture synthesis on a manifold surface can be divided into two steps:
1. create an orientation field over the whole surface, and 2. execute
texture synthesis according to the previous orientation field. The
purpose of the orientation field is to determine the direction of the
texture to ensure it will flow seamlessly across the whole manifold
surface. In brief, the orientation field plays the same role like the rows
or columns in the 2D image pixel set. A vector field associates with
each point on the surface signify a vector that is tangent to the surface.
In effect, this vector field coordinate allows us to step over the whole
manifold surface in either of two perpendicular directions just like
we are traversal from one pixel to another in 2D planar. Exactly as
there exists different ways to synthesis texture on a regular grid, there
are also various ways where synthesizing can be performed on the
manifold surface. Several methods have been proposed to synthesize
textures directly on a 3D model’s surface.

The first type of method to synthesis texture on the manifold surface
is a point-based method. This method adopt a dense and hierarchy
evenly distributed points on the mesh to create an approach similar to
the pixel-based neighborhood synthesis. Once those points has been
collected, they can be visited sequentially along the vector fields over
the surface and the corresponding neighborhoods can be defined to
find the best matching neighborhood in the texture exemplar. Finally
the target surface is shaded with this method. For instance, Wei and
Levoy [158] extended their example-based synthesis method onto
manifold surfaces by building a space neighborhoods from a local
parameterization of surface mesh vertices. Particularly they use dis-
placement mapping to modify the actual topology of the geometry
object. Zhang et al. [170] proposed a novel approach to synthesis
progressively-variant textures over the manifold surface. Their main
contribution on the surface synthesis is that they introduce texton
mask in conjunction with the target texture image and bring a two-
layer neighborhood search which can solve the fracture of texture
elements in the previous texture synthesis algorithms. With the tex-
ton mask the synthesized texture on the target surface maintains the
integrity and suitable for the spatially-varying textures (see Fig. 2.17).

Other types of methods proposed to synthesis surface are mainly
focus on the mapping between regions of the texture planar and the
surface. Their main idea is to split the surface into regular pixel grid
or the triangle of the mesh and the mapping is able to perform on the
separated patches. For instance, Le and Hoppe [80] propose a method
to split the manifold surface into small pixel neighborhoods and a
GPU-accelerated neighbor searching algorithm is executed to speed
up the synthesis process.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 31

Figure 2.17: Bottom left is the input texture and the corresponding texton
mask. The progressive-variant texture synthesized on the body
of the horse [170].

Texture Mapping

Texture mapping is a common method that adds realism to the smooth
surface of mesh. A naive implementation is called parameterization
in computer graphic by mapping a planar area to the surface of 3D
model which possibly will bring the problem of visual discontinuity,
texture distortion, and specific orientation of textures. In general, there
exists a bijective mapping between two surfaces with similar topology.
If one of these surfaces is a triangular mesh, the method to find out
such a bijective mapping is referred to as mesh parameterization. The
surface where the mesh mapped to is usually called the parameter
domain. Over the past decades, this method has gradually becomes
an irreplaceable tool for many industry mesh processing applications,
including detail-mapping, detail-transfer, morphing, mesh-editing,
mesh-completion, remeshing, compression, surface-fitting, and shape-
analysis, as discussed below [64].

Globally seamless texture mapping is known as difficult where dis-
tortion, discontinuities or both always occurs. Ray [120] tackled this
problem by patching the object’s manifold surface with seamlessly tex-
tured triangles. By defining each patch of the surface with a mapping
function to a 2D domain, a set of functions named global parameteri-
zation is used to control the parameterization process. Then a global
energy function is defined to optimize the parameter of each mapping
function where the distortion and discontinuity are manipulated. The
result is ideal, however, this approach works only for isotropic textures.
Moreover, their method requires careful preprocessing of the input
texture triangles to comply with specific boundary constraints. In
addition, since it defines the bijective mapping function between each
surface patch to a 2D domain and employs relatively large number of
triangles, make their approach less effective especially when texturing

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

32 implicit surface : state of the art

narrow features. In short, this algorithm works quite well for some
(i. e., isotropic texture) but not all kinds of natural textures.

Afterwards, the previous texture mapping between planar area and
the surface is replaced by the volumetric mapping. The volumetric
mapping refers to constructing the correspondence between solid
objects directly, which becomes attractive for the purpose of deforma-
tion or morphing. Harmonic volumetric mapping [84] was proposed
to build a smooth bijective mapping between the two solid objects.
Given a boundary mapping between two solid models, the volumetric
mapping is derived by solving a linear system constructed from a
boundary method (method of fundamental solution, MFS) [84]. The
volumetric mapping is a meshless (neither domain nor mesh connec-
tivity is required) procedural, nevertheless, the property of the inner
region is depends on the boundary constraint. Moreover, it has a wide
applications in shape registration or material transplant.

One important task in geometry processing is to handle the shape
matching and analysis problems. Due to the topological and geometric
complexity of the 3D object both problems require either a mapping
to process the correspondence between objects or a parameteriza-
tion technique to project an object onto certain canonical domains.
Consequently, more recent research focus on different methods to
parameterize meshes, aiming at achieving different parameterization
properties (i. e., conformal mapping [20]) as well as various parameter
domains (i. e., singularities [173]). Moreover, defining a seamless map-
ping of two objects enables sharing the surface details between them,
or the interpolation of the object with the appearance of several other
shapes. As a result, this bijective mapping enables not only transfer-
ring the static geometry of surface (i. e., surface details) but also the
animation data between objects, i. e., the local surface influence from
bones can be transferred to the animation rig, the local affine transfor-
mation of each triangle in the mesh can be transferred to other meshes.
Moreover, one can change the ratio of interpolation over time and
possibly morphing animation is able be achieved. More specifically,
in the scenario of spatially-varying or frequency-varying morphs, the
change rate varies in the different components or different frequency
bands (the coarseness of the features is transformed) of the object.

2.3.2 Procedural Texture

Textures plays a very important role in computer graphics and their
synthesis is always a hot research topic in the last decades. Generally,
texture synthesis methods can be classified into two directions: explicit
method and implicit method. One of the most typical explicit method
is the example based (pixel value exists in the spatial neighborhoods)
texture synthesis as we mentioned above (see Chapter 2.3.1). How-
ever, a typical implicit method named procedural texture enables the
evaluation of each independent query point on the fly. As a result,
procedural textures offers several feasible advantages over traditional
explicit texture synthesis. Firstly, texture texels can be evaluated on

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 33

demand and in arbitrary order (parallelizable) which make it more
flexible and computationally cheaper than explicit ones. Secondly,
procedural methods often consumes low memory footprint since it
does not need to preserve the texture images in the memory (espe-
cially useful for 3D or even higher dimensional textures, i. e., solid
texture, dynamic texture) except a few parameters of the equation.
Procedural methods provide a compact way to generate complex and
diverse (within particular type) effects of visual details through the
combination of kernel equations or parameters. Finally, procedural
methods is often evaluated independently at each query point in a
constant time and offers casual accessibility which makes it suitable
to exploit the massive parallel computing ability of the GPU. Unfor-
tunately, implicit methods are usually less general than explicit ones.
Because the procedural texture is limited to a few types (classes) of
textures and requires some efforts to get the parameter right. Due to
the requirement of independent texel evaluation, implicit methods can-
not use the statistical example texture synthesis where the evaluation
is based on spatial neighbor-pixel dependencies. With the iteration
of the graphic hardware, procedural method becomes more feasible
for the real-time applications notably noise based procedural texture
synthesis.

The term "procedural" in computer graphics means utilizing some
rules, equations or algorithms to generate particular effects rather than
real feature structure or digital photograph. Procedural noise algo-
rithm is a procedural technique to generate specific pattern for varies
graphic applications. The term "procedural noise" is actually a random
number consists into unstructured patterns, and is widely used to
add details where there is insufficient evident feature structures (i. e.,
terrain details, object’s details).

Efficiently adding rich and realistic visual details to a surface or
image has always been one of the major challenges in computer
graphics. Ever since the famous image of the marble vase (see Fig. 2.18),
presented by Perlin, perlin noise [113] as one of the most successful
procedural noise has been extensively used both in research and
industry. For instance, perlin noise provides help for the specific class
of materials or shapes such as clouds, waves, heat ripples, wood and
even the motion of virtual characters, leaving the controllability of
such noise difficult to determine.

Then the problem comes to how to design such an ideal pattern. In
theory, such random patterns are often displayed in the spatial domain,
where the pattern is determined by specifying the value for each pixel
point. Whereas an alternative transformation in the frequency domain,
a signal can be determined by specifying the specific amplitude and
phase for each frequency band. However, for such random patterns,
the phase domain is usually random and does not contribute any
structure information. Therefore, the noise pattern is often character-
ized by its power spectrum. The specific high frequency pixel in the
power spectrum leads to a higher contribution of the corresponding
feature pattern in the spatial domain. As a result, the task involved
in designing noise pattern is either corresponds to shaping its power

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

34 implicit surface : state of the art

Figure 2.18: Perlin’s famous marble vast, one of the first procedural texture
from procedural noise (perlin noise) [113].

spectrum or filtering a noise by damping higher frequencies in the
power spectrum.

In order to manipulate the power spectrum the white noise is usually
employed as the raw material to generate unstructured signals with
a combination of arbitrary frequencies. This is mainly because the
white noise contains all frequencies in the equal possibility and each
component involve a random phase, so it is an ideal basis in the
frequency domain. More recently, another type of noise named gabor
noise [77] was proposed to give us more intuitive and accurate control
on the power spectrum, and gradually becomes the mainstream of the
procedural noise algorithm. In the next part we provide a unified view
of both directions (i. e., white noise based method and gabor noise
based method) of techniques to explore the development of procedural
noise.

Lattice gradient noise

As we mentioned before, noise is "just" a random number generator
and the easiest procedural noise is naming as the white noise. The
white noise is generated by assign a random value for each pixel point
and thus they are isolated with neighbor-pixels, which will bring
the "blocky" effects among neighbor-pixels. Then the value noise is
proposed to smooth the transition between neighbor-pixels through
an interpolating between four random values of the corner (2D), but
there still exists other ways to produce value noise. However, value
noise also tends to look "blocky" and with obvious patches on a larger
scale (see Fig. 2.19a).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 35

Procedural noise algorithms were initially invented to give a natu-
ralness effect on the image texture. Most natural phenomenons looks
random but each neighbor part is connected, i. e., clouds, rocks, trees.
In order to simulate this random but correlate relationship, in 1985

Perlin [113] proposed the first lattice-based gradient noise named
Perlin noise. Lattice-based noises means the noise functions is defined
on the integer lattice (i. e., rows and columns) of the image (2D). The
term gradient denote the interpolation of random gradients instead of
random values, and the gradient is the result of a 2D random function
which returns 2D vector directions. That is, they are able to generate
smooth, continuous and self-similar noise patterns without sudden
jumps/fractures or sharp edges (see Fig. 2.19b).

(a) (b)

Figure 2.19: The left image shows the value noise and the right perlin noise
(also called, 2D Gradient noise).

3D Perlin noise evaluate the noise value at each point in space by
generating a pseudo-random unit vector gradient at the eight corner
of the integer cubic lattice and then define a smooth interpolating
in-between (see Fig.2.20a). The pseudo-random gradient is given by
hashing the integer cubic lattice (i. e., corner point (x, y, z)) to produce
a set of 256 vectors sown on the surface of the sphere and randomly
choosing one gradient from the vector set. The hash function works
by applying a permutation to the lattice coordinate to de-correlate the
indices into an array of pseudo-random unit-length gradient vectors.
Afterwards, Perlin published an improved Perlin noise [115] where
he made a few tweaks tricks. He changed the original interpolation
function from third-order (cubic polynomial) to fifth-order (quintic
polynomial) which has better continuity properties (C2-continuity to
C4-continuity). For instance, the endpoints of the fifth-order curve
becomes more "flat" so it can be gracefully stitches with the next
one. In other words, a more smooth transition between the grid cell
is achieved. However, this improvement does not affect the value
range of the Perlin noise (original value range is (−

√
N

4 ,
√

N
4), and N

is the dimension of the noise) but it does fluctuate the position and
the amount of the maximum in the gradient magnitude. Moreover,
instead of selecting the gradient in 256 vectors, one of merely 12 vectors
defined by regularly pointing to the edges of a cube are replaced in the

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

36 implicit surface : state of the art

improved Perlin noise. Collectively, these improvements successfully
eliminate the undesired directional artifacts in the final texture.

At Siggraph2001, Perlin presented the simplex noise [114] from
which he achieved the following improvements over the previous
Perlin noise:

1. an algorithm with lower computational complexity and fewer
multiplications especially higher dimension noise considered

2. a noise without directional artifacts

3. a noise with well-defined and smooth gradients

4. an algorithm that is easy to implement on modern GPU

More specifically, in the case of 2D Perlin noise we process the inter-
polation within 4 points (corners of a square); so we can theoretically
infer that in 3D and 4D perlin noise we need to interpolate 23 and 24

points. That means, for the case of the N-dimension Perlin noise we
need interpolate the 2N corner points. But Perlin smartly noticed that
although the most intuitive basic primitive to fill the space is a square,
however, the simplest stable shape in 2D is the equilateral triangle
(see Fig. 2.20b). The simplex origins from the subdividing of the regu-
lar lattice grid and skewing the simplex grid from the two isosceles
triangles. Then the simplex shape for N-dimensions is a shape with
N + 1 corners. In other words, the elegant move of the lattice grid to
simplex brings lessen one corner computation in 2D, four and eleven
lessen in 3D and 4D respectively. Theoretically, the complexity of the
classical Perlin noise is O(n2n), whereas, the complexity of simplex
noise is decreased to O(n2).

Unfortunately, simplex noise did not widespread applied like Perlin
noise for a few reasons.

1. Perlin noise was already "good enough" for many even real-time
applications (thanks to the progress of graphic hardware) so
there wasn’t much necessity for the change.

2. In order to generate perfect natural patterns from the Perlin
noise, it requires lots of time to find the magic parameter. How-
ever, switching into another algorithm needs same amount of
time to search it again.

3. Reimplement simplex noise requires some math tricky to deform
the coordinate and it is unintuitive for understanding.

In short, there are mainly five parameters involved in manipulating
the perlin/simplex noise (also similar in other procedural noise): am-
plitude, frequency, octaves, lacunarity, and gain. Frequency meansures
the number of waves exist in a given interval, and the amplitude
represent the height value of the wave. From a simply inversion of
the value in frequency we can get the wavelength and that’s why
sometimes the term "wavelength" replace the "frequency". Each single
set of those five parameters in perlin/simplex noise is called octave.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 37

(a)

(b)

Figure 2.20: (a) The value of each pixel is a scalar produce between gradient
vector with the direction vector to the point P. (b) A 2D simplex
grid of triangles can be skewed by a nonuniform scaling to a grid
of right-angle isosceles triangles, two of which form a square
with sides of length 1 [58].

Under this definition, another popular term fractal version of per-
lin/simplex noise means combining multiple octaves with varying the
value of amplitudes and frequencies. Lacunarity and gain measures
how fast the value of frequency and ampltidue changes between each
octaves. For instance, in most applications, the lacunarity (the times
of frequency) will be about 1.95 ∼ 2.05 and the gain (the times of
amplitude) is ranging from 0.3 to 0.7, which means within each octave
will have twice the frequency and half the amplitude of the previous
octave. Empirically, the lower the gain values the larger the terrain
features will be, whereas the higher gain values will produce sharp
mountain ranges on the textures.

Fractal noise is a self-similar noise when you scale in or out it still
looks the same. In general, Perlin and simplex noise are fractal noises
when multiple disparate octaves are accumulated together with a
consistent range of lacunarity and gain. The fractal noise is the basis
to generate terrain features, such as coastlines, which looks similar
at different levels of scales. In fact, it is a fully empirical approach to

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

38 implicit surface : state of the art

Figure 2.21: The volumetric approach using fractal noise to create compelling
and realisitc terrain [154].

general natural terrain from the fractal noise. Furthermore, the number
of corresponding parameters within fractal noise multiplied and even
harder to generate ideal terrain patterns. Several commercial software
are published and provide graphic interface which helps users design
the pattern they want, i. e., world machine, terrain generator.

Noise is a powerful modeling tool to generate the geometric details,
and therefore how to control the appearance of the noise pattern is
the crux for applications. The power spectrum of the noise, which
describes the contribution of each frequency band, is naturally a
powerful tool to control the pattern generated by the noise. Perlin
noise achieves spectral control through a weighted summation of
band-limited octaves. However, Cook [29] noticed that perlin noise is
only a weakly band-limited noise, and is therefore prone to aliasing
and detail loss. Consequently, in 2005, Cook and DeRose [29] proposed
the wavelet noise - an almost perfectly band-limited noise, providing
good balance between details and minimal aliasing.

In the preprocessing step, a tile of noise coefficients N is created.
These coefficients represent the noise as a quadratic B-spline surface.
This is done by creating an image R filled with random noise, down-
sampling R to create the half-size image R, upsampling R to a full
size image R, and subtracting R from the original R to create N. The
upsampling is a band-dependent translation and by adding 2bx we
can de-correlate the noise bands, and b index the band. The tile of
noise coefficients N is thus created by taking R and removing the part
that is representable at half-size. The coefficient to each band of the
noise control the spectral character of the wavelet noise (see Fig. 2.22).
The part left by the sampling process is the part that not representable
at half-size, that is the band-limited part. The filter used in the down-
sampling and upsampling steps are obtained using wavelet analysis
and refinement coefficients of the uniform quadratic B-spline basis
function [29]. Additionally, noise bands are orthogonal to each other,
which makes spectral shaping more controllable.

Wavelet noise is slightly faster than perlin noise [29], but as an
explicit noise they need to store initial image and uses more memory.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 39

Figure 2.22: The left image is the 2D wavelet noise, 12 bands with gaussian
distribution. The right image is 8 bands with white distribu-
tion [29].

However, even with a relatively large tile the memory requirements
are still quite small. Because the bands are orthogonal, they provide
a set of independent controls over the shape of the spectrum. The
distribution of the final result is predictable and controllable. Most
importantly, the noise is truly band-limited, so that virtually all of the
detail can be rendered with minimal aliasing, even when projecting
3D noise onto a 2D surface [29]. Consequently, wavelet noise is well
suited for the use as a procedural texture.

Another class of applications of lattice-based noise is physically-
based simulations. Several authors have claimed that the noise func-
tion can be used for physically-based simulations. For instance, Perlin
presented flow noise [116], a Perlin-like noise function for generat-
ing time-varying flow textures with swirling and advection. Bridson
presented curl noise [17], a Perlin-like noise function for generating
time-varying incompressible turbulent velocity fields.

Sparse convolution noise

Although the improved perlin noise and the subsequent wavelet noise
achieve great success in generating diverse patterns. However, noise
as an important modeling tool and the requirement of controlling
its appearance is still increasing. A weighted sum of kernels noise
called sparse convolution noise is proposed since the seminar work of
Lagae’s Gabor noise [77].

Sparse convolution noises are based on the convolution of randomly
distributed impulses with a spatial filter function (kernel). As the
uniform random distribution of the kernel function result in white
noise, then in the frequency domain control over sparse convolution
noise is achieved by the kernel function. We will track the development
of sparse convolution noise in this section.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

40 implicit surface : state of the art

Gabor noise

Gabor noise is introudced by Lagae [77] with accurate spectral con-
trol using gabor kernel, and provids a setup-free surface texturing
method. Gabor kernel combined with sparse convolution to produce
a band-limited anisotropic noise with accurate spectral control. As
we mentioned the fourier transform of sparse convolution in spatial
domain means the multiplication of kernel with a constant in the
frequency domain. The main insight of the author is that the impulse
should be parameterized and have compact support in the spatial
domain to enable an efficient procedural evaluation, and also have
compact support in the frequency domain to capable a precise control
over the power spectrum (see Fig. 2.23). Then they design the gabor
kernel as:

gabor_kernel = ke−πa2(x2+y2) cos[2πF0(xcosw0 + ysinw0)] (2.18)

and the corresponding fourier transform of the Gabor kernel as:

F {gabor_kernel} =
K

2π
{e−

π
a2 [(fx−F0 cos w0)+(fy−F0 cos w0)]+

e−
π
a2 [(fx−F0 cos w0)+(fy−F0 cos w0)]}

(2.19)

Figure 2.23: The left image is the spatial domain of the gabor kernel. The
right image is the power spectrum of the gabor kernel with
three parameter {F0, w0, a} control the frequency, direction and
bandwidth [77].

Then we can define the new band-limited anisotropic Gabor noise
as a random pulse process convolution with the Gabor kernel as:

Gabor_noise = ∑
i

wig(x − xi, y − yi) (2.20)

And the corresponding power spectrum is:

F {gabor_noise} = λE
[︁
w2]︁F {g(x − xi, y − yi)} (2.21)

The power spectrum of band-limited anisotropic noise is the power
spectrum of the Gabor kernel scaled by a constant. So we can control
the intuitive parameters of the Gabor kernel to control the power

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 41

Figure 2.24: The left image is the spatial domain of the gabor noise, the right
bottom is the corresponding gray histogram. The right image is
the power spectrum of the gabor noise [77].

Figure 2.25: A coral reef was generated with skeleton implicit surface and
the small scale details were generated from the surface gabor
noise [166].

spectrum of the noise (see Fig. 2.24). For instance, Zanni [166] use
the gabor noise to deform the implicit scalar field. In order to save
computational time, the interval of the iso-surface ([−ϵ, +ϵ]) is defined
the limit the range of scale field to be deformed. Their method is the
first time to apply gabor noise over implicit primitives without causing
the blur of the details (see Fig. 2.25). The noise can be generalized
to arbitrary dimensions and applied to the surface without texture
parameterization. However, the "real" environment is such a rich
and variety place and the natural patterns are complex and endless.
Design those textures by manually turning the parameter of gabor
kernel in the power spectrum is cubersome and impractical. How can
we approximate this variety of textures in an efficient and elegant way?
Then the gabor noise by example algorithm was proposed in response to
this question. The new algorithm of gabor noise significantly broaden
the application of the procedural noise.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

42 implicit surface : state of the art

Gabor noise by example

The Gabor noise by example [46] algorithm generalize the gabor noise
by synthesis particular pattern from a given Gaussian texture. This
work significantly simplify the tedious work of the parameter design
involved in the previous gabor noise algorithm. Their major contribu-
tion is a bandwidth-quantized Gabor noise which suitable for efficient
procedural evaluation and a robust parameter estimation technique
that automatically decomposes the exemplar’s power spectrum.

The bandwidth-quantized Gabor noise is defined as:

bq_gabor_noise(p) = ∑
bϵB

1√
λb

∑
i

1√︁
Pb,i

gabor_kernel(p − pi) (2.22)

The corresponding power spectrum is:

Sn(ξ) = ∑
b∈B

Gb−1

∑
g=0

K2
b,g

8a2
b
F {gabor_kernel} (2.23)

Then by solving the parameter estimation problem as Equation 2.24

we can obtain the relevant parameters of the bandwidth-quantized
Gabor noise.

{︄
minimize

⃦⃦
Sn(ξ)− Sexemplar

⃦⃦2
2 + ν ∥α∥1

subject to α ≥ 0
(2.24)

Figure 2.26: The left image is the exemplar texture and the right image is the
power spectrum synthesized by the bandwidth-quantized gabor
noise [46].

random-phase noise

The limitation of the gabor noise by exmaple algorithm is the correspond-
ing patterns are gaussian textures, which only represent a small subset
of textures with micro details. However, some textures with regular
macro structures are important in lots of applications. Then Gilet [55]
propsed local random phase(LRP) noise, aim at generating local noise

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 43

based on the regular spatial grid. It is a mixture of local noise with
random phase (see Fig. 2.27) and defined as follows:

LRP_noise(p) =
I

∑
i=1

w(
∥p − pi∥

∆
)

J

∑
j=1

Ai,j cos(2π fi,j · p + φi,j) (2.25)

Figure 2.27: The left image is the spatial lattice and the right image is the
local noise modulate on the lattice into the local random phase
noise [55].

The locality is controlled by a decreasing window w of width ∆
and the randomness comes from the parameter of random phase φi,j
and frequency fi,j. And the total parameter control the spatial and
frequency domain is (I, xi, ∆, w). The corresponding power spectrum
is defined as:

Sn(ξ) =
∆2

2

J

∑
j=1

Ajei2πφj(∆(f − f j)) + Aje−i2πφj w(∆(f + f j)) (2.26)

The remark is that the random phase is able to generate random
features. We can fix the phase φi,j and the amplitude Aj in the power
spectrum to approximate the energy of a local region’s power spec-
trum. As a result, the local region that contain the macro structure can
be reproduced by the LRP noise, and this similar local pattern comes
from the summation of multi-layers of LRP noise.

phasor noise

More recently, Tricard [150] proposed a phase noise to solve the prob-
lem of modeling highly contrasted patterns and is particularly suitable
for reproducing the high quality microstructure details. For instance,
the standard procedural noise is unable to directly control the local
characteristics of the pattern (even local random phase noise the local
pattern is a pure random process), i. e., contrast, sharpness, and the
variation of neighborhood pixels. However, contrary to the previous
procedural noise generate the scalar field of the noise value into par-
ticular pattern, this new procedural noise - phasor noise - aims at
generate the phase field to be subsequently modulate into a periodic

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

44 implicit surface : state of the art

function (i. e., sine\cose wave) (see Eq. 2.30). More specifically, the
phasor noise provide a precise control over the profile, orientation
and distribution of the produced stochastic patterns, while allowing
to grade all these parameters spatially [150]. This well-designed phase
field is such that, once fed into the periodic function, it will produces
a oscillating field pattern with the predefined main frequency and
contrast orientation [150]. The phasor noise is defined as:

phasor_noise(x) = ϕ(x) (2.27)

Then the famous Gabor noise can be rewritten as a multiplication
of intensity function I(x) and periodic function - a clear separation of
intensity function and harmonic modulation:

gabor_noise(x) = I(x) sin(ϕ(x))

=
n

∑
j=1

aj(x)sin(ϕj(x))
(2.28)

where aj(x) is the gaussian weight function and ϕj(x) =
Fj(x − xj)uj, u is the direction of the kernel function. The phasors
are aj(x)(cos(ϕj(x)), sin(ϕj(x))). The corresponding intensity function
I(x) and phasor noise ϕ(x) (the instantaneous phase of the gabor
noise) is defined as:

I(x) =

⌜⃓⃓⎷(
n

∑
j=1

aj(x) cos(ϕj(x)))2 + (
n

∑
j=1

aj(x) sin(ϕj(x)))2 (2.29)

ϕ(x) = atan2(
n

∑
j=1

aj(x) sin(ϕj(x)),
n

∑
j=1

aj(x) cos(ϕj(x))) (2.30)

This separation of intensity and harmonic offers two benefits: First,
it affords for the definition of a noise that perfectly oscillates with-
out local loss of contrast; Second, we can control the shape of noise
oscillations.

If we consider multi gabor kernels, i. e., two kernels, the corre-
sponding gabor noise’s variance of spectrum exhibits gaussians in
nine locations (see Fig. 2.28a). The spectrum of variance is the spec-
trum of the squared signal. Five of these gaussians corresponds to
the square and the other four origin from the intersection gaussian in
two directions (the direction of the two kernels in phasor noise). If the
combination of direction is inverse (opposite in sign) and will produce
low contrast pattern (see Fig. 2.28a). As a result we can remove the
center low frequency signal in the variance of spectrum to eliminate
the loss of local contrast (see Fig. 2.28b).

In addition, the profile of each oscillation is directly controllable
(i. e., sine wave, sawtooth, rectangular or any 1D profile) for the phasor
noise. The shape of the oscillation profile is the consists of the peri-
odic function without any undesirable fluctuations. This affords for a

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.3 details of implicit surface 45

(a)

(b)

Figure 2.28: Two bi-lobes noise.(a) Gabor noise and its spectrum of variance.
The nine Gaussians located at the center Gaussian (in yellow), the
bi-lobes Gaussians at ±2uk and ±2um (in blue and green), and
the interaction Gaussians at ±(2uk + 2um) and ±(2uk − 2um)
(outlined in orange and purple arrows) [150]. (b) Remove the
center Gaussians in the Gabor power spectrum of variance and
obtained the normalized noise [150].

precise control over the shape of the produced stochastic structures.
Its name originates from our reformulation, which exposes a sum of
phasors within Gabor noise [150]. Profiles are synthesized as weighted
sums of integer harmonics of the base pattern. Being able to orient
synthesized patterns while controlling their profile and distribution
is especially well suited for the definition of patterns such as hatches,
stripes, cracks, ridges, scales and ripples [150].

In short, the advantage of a procedural noise function are the fol-
lowing:

1. a procedural noise function is extremely compact, normally
requires a few kilobytes or even less of memory space compared
to megabytes of texture images or volumes

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

46 implicit surface : state of the art

2. a procedural noise function is intrinsically continuous, multi-
resolution, and not relies on sampled data. So it can produce
noise value at any resolution ranging from a distance overview
to extremely close inspection,

3. a procedural noise function is non-periodic, able to fill the entire
space ranging from 2D, 3D to nD. In other words, it is unlimited
in extent and able to cover an arbitrary size of area without
seams or unwanted repetition,

4. a procedural noise function is controllable, so it can generate a
class of patterns rather then one particular noise pattern. The
parameter of the kernel controls the power spectrum of the noise,
which characterizes the noise pattern,

5. a procedural noise function is randomly accessible in constant
time. That means, it can be evaluated regardless of the location
and the previous evaluation. This random accessibility and inde-
pendent evaluation makes the procedural noise function suitable
to harness the power of multi GPUs or multicore CPUs.

Procedural textures offered by the volumetric noise (3D procedu-
ral noise) is extremely useful in situations where an impression or
effects of natural-looking materials on a manifold surface is required,
regardless of the traditional necessities of creating an explicit texture
image. Also, rather than exploring how to figure out a mapping from
image textures onto the manifold surface, the volumetric nature of
noise-based procedural textures allows the evaluation at any locations.
In this way, it is possible to effectively carve out the desired pattern
on the solid material, which is much more straightforward than work
out a reasonable undistorted parametric mapping. Noise-based proce-
dural textures allows the evaluation in a resolution-independent way:
it can be kept crisp and detailed (i. e., adding higher frequencies of
noise components) when you get nearer to an object rather than the
effects of blurring out which occurs in the traditional image-based
textures. One limitation of the procedural textures is that you should
try to avoid adding very high frequencies which exceed the pixel’s
sampling rate. Because such super-pixel frequencies do not contribute
to the visual quality but result in the unwanted speckling when the
texture animates. The key to use noise-based textures efficiently is to
implement the noise function on GPUs which really makes use of the
parallelizability of the procedural noise.

These sorts of noise-based procedural textures have long been the
mainstay in the film industry, where their execution do without real-
time frame rates, yet do require high fidelity to the visual effect of
many natural materials. In fact, nearly all special-effects in the films
of today more or less make use of noise-based procedural textures.
For instance, the convincing effects of the ocean waves in "A Perfect
Storm" [147], and the atmosphere effects in "The Lord of the Rings"
trilogy [146], are just two interesting samples. Both films are highly
dependent on the extensive use of the noise function within shaders
where written by the language such as Pixar’s RenderMan [121].

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.4 visualization of implicit surface 47

2.4 visualization of implicit surface

The task to visualize implicit surfaces has always been considered chal-
lenging due to the implicit characteristic of the surface. Broadly, there
are two major methods for their visualization: they may be rendered
either sampling on the implicit surface and converting the sampling
discrete points into meshes from polygonization algorithms, or directly
ray-tracing the implicit surface and shading the intersection points.
The major problem of the polygonization based rendering algorithm is:
they probably can not precisely detect the correct topology or miss the
fine surface details. However, for the case of ray tracing, once the field
function are defined, the ultimate field function must be used to locate
the surface, and the complex shape can be rendered at any resolutions.
Moreover, the research of rendering implicit surfaces also present the
solution to visualize the scientific or medical dataset. In particular, the
implicit surface’s visualization algorithms are well suited to depict the
data collected from 3D or laser scans (i. e., computed tomography (CT),
point cloud and magnetic resonance imaging (MRI)) and digitizing
sophisticated objects.

2.4.1 Polygonization

The main focus of this section lies on the polygonization techniques
used in the implicit surface visualization. The most general and pop-
ular research on the polygonization of implicit surface is concerned
about presenting fast and accurate meshing methods.

Empirically, based on the sampling strategies they use, methods to
polygonize the implicit surface can be classified into four categories:
regular grid based methods such as marching-cubes, propagation
methods such as marching triangles, cage-based methods and particle
systems [164]. These space sampling strategies are able to convert
the continuous mathematical descriptive surface into a discrete linear
piecewise approximation. In this subsection, we only cover the most
typical and suitable method - marching cube - here which is directly
related to the subsequent Chapters.

Marching cube was proposed in 1987 by Lorensen [88] and soon
became one of the most popular polygonization techniques. Marching
cube was initially invented oriented toward volume data visualization
rather than implicit surface polygonization, and immediately gained
popularity in that area. In the area to visualize the implicit surface,
usually we will build a uniform voxel grid and define a field function
on each grid point to get an iso-value. Then the marching cube algo-
rithm allows us to generate the correct polygons within the uniform
voxel grid, from the given iso-values at its corners. As output, the algo-
rithm will produce zero to five polygons in each voxel (see Fig. 2.29).
In the case that the iso-value at the eight corners of a voxel have the
same sign (positive or negative), then the voxel is completely inside
or outside the manifold implicit surface, and no polygons will export.
In all other cases, the polygon lies on the boundary, and will produce

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

48 implicit surface : state of the art

one to five polygons. More specifically, for any point p in 3D space,
the field function f (p) will produce a scalar floating-point value. The
demarcation point between positive and negative corners - where the
field value is zero - is the explicit surface of the implicit surface. It
is along this surface the polygonal mesh we wish to construct will
produce.

Figure 2.29: The 14 fundamental cases for marching cubes [100].

More recently, the parallel version of marching cube is required for
many real-time applications. In order to harness the parallel power
of GPU, we can subdivide the space into blocks and in each block
we further partition it into even smaller voxels (also called cells). It is
within these voxels that we will construct polygons (triangles) which
represent the implicit surface. By launching each corner one thread to
compute the field value on the GPU, we can compute the iso-value of
all blocks simultaneously. Moreover, we can logically joint these eight
corner inside/outside bits to produce a byte in the range of 0 ∼ 255 to
represent the case of triangles (from zero to five). If the byte value is 0
or 255, then the voxel is entirely inside or outside the surface and, as
previously mentioned, no triangles will export. However, if the byte
value is in the range of 1 ∼ 254, then 1 ∼ 5 triangles will be generated.
Then the byte value is used to index into a lookup table (on the GPU,
the table can be preserved in a constant buffer) to determine how many
polygons will export for that case and how to build them (index of
the vertices order). Each triangle is created by connecting three points
(vertices) that lies on the edges of the voxel. More specifically, how to
place the vertex of each triangle is determined by the interpolation
between the corner point. The output is a sequential list of vertices,
every three vertices will produce a triangle and the fourth vertex is
the beginning of a new one. Two lookup tables are employed: the first
table is indexed by the byte value and tells us how many triangles
are needed; the second lookup table is much larger and offers the
information required to build up the zero to five triangles within each
voxel.

One limitation of marching cube algorithm is the ambiguity in the
lookup table and Nielson [101] proposed the dual marching cube to

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.4 visualization of implicit surface 49

eliminate this problem. In addition, spatial partition or spatial decom-
position techniques are also applied to accelerate the marching cube
algorithm. For instance, Velho [153] present a unified and general
tessellation algorithm for parametric as well as implicit surface. It
generates an adaptive mesh from the controlled subdivision surface.
The algorithm starts by building a simplified uniform spatial decom-
position to create a coarse triangulation of the surface. Afterward, a
refinement step is performed, sampling the edge of the coarse triangles
and subdivided the edge to better approximate the shape. Paiva [104]
present an algorithm to generate an adaptive mesh which captures
the exact topology of the implicit surface. The algorithm use the inter-
nal analysis of the implicit value and its gradient to construct three
subdivision criteria to build an octree and accelerated the tessellation
process.

2.4.2 Ray-tracing

As we mentioned the implicit surface is defined as a field function
with isovalue c (see Chapter. 2.1). The ray-tracing algorithm visualize
the implicit surface by shotting a ray and evaluate the intersection
point which enables implicit surfaces to be shaded directly from the
field function. This is a big advantage over the traditional method to
tessellate the surface into triangles or polygons. This process can be
defined as follows:

Ray : ray(t) = O⃗ + tD⃗

Field f unction : F(d) = f (O⃗, D⃗, t) = c
(2.31)

where O⃗ and D⃗ represent the origin and direction of the ray and we
can solve (finding the root of f (O⃗, D⃗, t) = c) the Equation 2.31 for the
smallest t (> 0). There are a few method to do this such as polynomial
root solving, interval analysis and Lipschitz methods.

Polynomial root solving

For the low degree of polynomial in Equation 2.31, it’s possible to
find all roots for the degree of two (quadrics), three (cubics) and four
(quartics) polynomials in a symbolic method. However, in general the
even higher polynomials requires numerical method. More recently,
Nishita et al. [103] use Beźier functions to represent the field function
along the ray direction and lower the computation. And meanwhile,
they have integrated the Beźier clipping to further accelerate the
intersection test. This method was also adapted to GPU with an
optimization method in [69] and showed vast potential in the particle-
based simulation system (see Fig. 2.30).

The major disadvantage of polynomial method is their low efficiency,
because the result always returns all roots include positive, negative
or complex pairs. Usually, only the smallest positive real result works
for the ray intersection test and the other computation is vanished.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

50 implicit surface : state of the art

Figure 2.30: Real-time animation with 1000 moving metaballs [69].

Interval analysis

Interval analysis originated as a method to solve the general numerical
analysis problems, and [98] was the first to introduce this method into
the evaluation of the intersection between a ray and an implicit surface.
For instance, they defined an interval [a, b] to represent the range of an
ordered pair. Then the closed arithmetic operators can be defined on
the interval. After that, they defined the value domain of the function
F and its derivative F′ equals to two particular intervals. If zero is
not inside the value domain (two intervals) of F and F′ means the
function F is monotonic and the root not exist in the definition interval.
Then we can do a divide and conquer operator which subdivide the
definition interval at midpoint to repeat the previous step again [98].
Otherwise, the definition interval of the function F contains one single
root and can be solved by Newton’s law. More recently, [71] optimized
the interval and affine arithmetic method and achieve interactive ray
tracing of arbitrary form implicit surfaces on CPU and GPU.

Lipschitz methods

Let F be a field function defining an implicit surface. Then if F satisfied
the Equation 2.32 and existing some positive constant λ, then we can
say that the implicit surface has the Lipschitz property [133].

|F(x)− F(y)| ≤ λ ∥x − y∥ (2.32)

Then we denote the Lip f as the Lipschitz constant only if the smallest
λ satisfies (Eq. 2.32). The Lipschitz constant eliminates the influence
of steeper area and makes the Lipschitz method the most efficient
algorithm.

The Lipschitz bound property is a robust method for ray tracing
implicit surface and attracted lots of research interests. Hart [60] intro-
duced the sphere tracing that move forward with the ray to its first
intersection, and the step length is guaranteed by the Lipschitz crite-
rion to not penetrate the implicit surface. More recently, Genevaux [54]
proposed a novel accelerated version of the sphere tracing algorithm

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.5 applications of implicit surface 51

Figure 2.31: Procedural terrain composed with other terrain primitives are
rendered with accelerated sphere tracing algorithm [54].

to compute the intersection between a procedural terrain (its height
field defined by a construction tree) and a ray (see Fig. 2.31). Seyb [133]
proposed another advance of sphere tracing for directly shading the
deformed algebraic surface to ease the computation as well as the
complexity of global Lipschitz bound estimation and achieved high
performance. Galin [48] extended the previous work by introducing
a Segment Ray Tracing through computing the Lipschitz bound λ

and also explains the way to compute those bounds for a variety of
geometric primitives and operators.

In theory, the intersection testing almost always benefit from the
preprocessing step on spatial partitioning. Generally, this step will
subdivide the space into regular or irregular size where different
data structure can be applied. For instance, the BSP-tree, Kd-tree
or Octree [60] were applied to render the implicit surface. Those
structures significantly reduced the query times of the field function
in the ray-tracing process, which is the most computationally intensive
part. However, the main flaw of this spatial partition method is that it
possibly miss the fine details on the implicit surface.

2.5 applications of implicit surface

Implicit surfaces have been used in various kinds of applications from
realistic terrain generation to sculpting characters, we will present
some of them in this subsection.

2.5.1 Procedural Terrain

Virtual terrain are the dominant visual element in many applications,
from real-time simulations to games or movies. Consequently, there
exists lots of methods to generate terrain procedurally. Here we only
cover the method most relevant to this thesis - the volumetric proce-
dural terrain generation.

The research of terrain generation has a long history due to its wide
applications, but how to effectively representing and generating true
3D landscape remains an unsolved problem. This is because most
solutions address the problem of heightfield (2.5D) based terrain quite
well, however, truely 3D terrain are not frequently present in the
literature. Until the last decade due to the fast development of GPU

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

52 implicit surface : state of the art

and the voxel based volumetric procedural method regains popularity
which lead to the prosperous of true 3D terrain generation.

Gamito [50] introduced a novel procedural method by deforming
the initial heightfield with a vector field. The heightfield is defined as
f : R3 → R and by warping the space along the vertical dimension
their method is able to generate landscapes with overhangs. The novel
deformation define the elevation h as a function of point in the domain
Ω ⊂ R3 instead of traditional two-dimensional domain, the warped
surface of the landscape is therefore procedurally defined as [49]:

S =
{︂

p ∈ R3 | f · w−1(p) = 0
}︂

The warping function w−1 : R3 → R deforms the discrete height space
and smooth the height jump between the point on the plane with
a 3D perlin noise into a concave surface resembling strata of rocks
or overhangs. In practice, the warping function can be defined as a
procedural displacement function based on a sum of octaves of 3D
perlin noise (Fractal Brownian Motion, fBm), and smoothly clamped
to a given region of influence in the terrain space.

The first volumetric terrain algorithm running on the GPU is pro-
posed by Geiss [100] to generate complex procedural terrain on the
infinite blocks of regular grid points. Conceptually, their terrain sur-
face is a fully implicit function. For any point p(x, y, z) on the voxel
grid, the implicit function (density function) produces a height value
and a marching cube algorithm is used to visualize the implicit sur-
face (0-isovalue) on-the-fly. Moreover, with the deformation operator
(warpping) their volumetric terrain is able to generate diverse over-
hangs or cliffs from the 2.5D heightfield (see Fig 2.32). This method
can be fully implemented on the GPU by computing all voxels in
parallel, therefore allowing the interactive terrain authoring. The only
limitation on the number of voxels is the memory size of GPU.

Figure 2.32: Procedural volumetric terrain generate on the GPU at real-time
frame rates [100].

Peytavie [117] present a hybrid terrain model that accumulate multi-
layer terrain primitives (materials, sand, air, water and so on) into a
complex terrain with overhangs, arches and caves. Each terrain primi-
tive is defined as a convolution surface and a stabilization parameter

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.5 applications of implicit surface 53

is used to uniform the action of different layers of materials to be
overlaid. The ultimate complex rocky scene is piled free of computa-
tionally expensive physically-based simulation [117]. After that, they
also provide a high-level tool to help user authoring more complex
scene, e.g. locally deforming and carving terrain primitives, or even
sculpting the bed rock or large canyons (see Fig 2.33).

Figure 2.33: Arches and caves are generated with different materials from
the hybrid terrain model [117].

More recently, Paris [108] proposed a framework to automatically
authoring complex realistic terrain primitives on the existing height-
field terrain (see Fig. 2.34). Their amplification workflow works as
follows: firstly, for a given heightfield H we can evaluate an approx-
imation implicit surface T, then the 3D terrain primitives (i. e., slot
canyons, sea arches) can be freely composed into the implicit surface T
through a construction tree. The internal nodes of the construction tree
are either binary operator or sub construction tree and the leaves are
implicit 3D terrain primitives. Secondly, T is defined as the bedrock
of the terrain and managed by a geology construction tree G which
defines the property of the bedrock in the form of strata and fault
lines [108]. In the construction tree G we can define and edit the area
of interest on the bedrock T with 3D terrain primitives or erosion
effect from the bedrock resistance ρ(p). Ultimately, an implicit surface
based sparse landform construction tree which supports the compact
encoding of local 3D terrains primitives are obtained. In the end, an
optimized marching cube polygonization method is proposed to speed
up the generation of the mesh to visualize the characteristics of the
implicit surface. As a result, this terrain model support the editing
and simulation of realistic terrain at interactive cycles.

2.5.2 Animation

Physically-based cloth animation is prevalent in the field of com-
puter graphics and attracted lots of interdiscipline researchers. In
order to fulfil a high quality dynamics for the individual part of
cloth, several challenges are needed to be considered. For instance,
physically-based cloth model is the first mandatory requirement for
the correct animation of cloth’s movement. Then efficient collision
detection and response algorithms are needed to assure the behave

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

54 implicit surface : state of the art

Figure 2.34: The floating islands were created by combining implicitized
terrain H with the erosion operator on the construction tree
automatically [108].

of cloth as expected. Implicit surface is qualified in both aspects and
becomes a promising candidate. Buffet [19] use the implicit surface to
approximate the 3D garment and this implicit representation enables
a multi-layer of garment to compute collision detection in a constant
time. Moreover, the global field value of implicit surface further helps
the evaluation of the penetration depth between different layers of
the garment. In addition, the penetration depth can also be reused to
calculate the deformation amount.

Skinning of virtual character as another important topic in computer
animation gained lots of research in the past decades. In [14], the first
skinning system use the implicit skeleton to represent the character,
and effectively eliminate the artifact around the skeleton joints during
the animation. Subsequently, Vaillant [152] improved the skinning sys-
tem through Hermite Radial Basis Functions (HRBF) to approximate
the individual parts (skeletons), and a distinct blending operator is
used to consist those parts (primitives). The new parameter surface
enables an experimentally parameter setting of the contact property be-
tween skin parts in a interactive session, without relying on the actual
collision detection step. During animation, the implicit primitives (pa-
rameter surface) associated with the character are rigidly transformed
and combined, result in a smooth distorted time-dependent implicit
volume [152]. The time-dependent property means continuous frames
can be evaluated in parallel. As a result, their skinning system is able
to generate plausible skin deformations and suitable for real-time
animation applications (see Fig. 2.35a). More recently, Turchet [151]
extended the previous implicit skinning system with wrinkles which
are important visual effects on the surface of deformable objects. The
wrinkle curves are invented as a set of line-segments blends into the
convolution surface and sum up their contributions into the final field
value. The new convolution surface can be easily integrated into the
previous implicit skinning system and each line-segment is smoothly
blended (see Fig.2.35b).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.5 applications of implicit surface 55

(a) (b)

Figure 2.35: (a) Implicit skinning [152].(b) Wrinkles on the implicit skinning
surface [151].

2.5.3 Additive Manufacturing

3D models plays an important role not only in the virtual environment
construction but also the modern product fabrication, and continuous
enhancing its status as additive manufacturing (AM) technologies are
gaining popularity in industrial practice. The most notably advantage
of AM is that fabrication cost is mainly determined by the amount
of material consumed (nearly no material loss) and independent of
the object’s complexity. More specifically, additive manufacturing
enables the fabrication of objects with unprecedented complexity
of interior as well as exterior structures. This capability is easy to
understand in terms of global shape and topology optimization and
interior microstructure optimization.

Implicit modeling tools, such as field function, blending operators,
helps built a watertight volume and able to integrate with physical-
based simulation by adding a few constraints (i. e., maximizing a partic-
ular object’s strength under particular loads while limiting its weight)
to create a low-stress design of the global shape effectively [105]. How-
ever, the tradition approach is based on the intuitive that eliminating
sharp concave corners improves stress behavior, and engineers tend
to make specific choices of geometry based on prior experience or
just a trial and error method. In contrast, the physical constraint [162]
is essential for many mechanical design problems, as it is able to
restrict the load stress evenly distributing on objects and detect high
stress concentration areas (see Fig. 2.36). In addition, the implicit rep-
resentation is 3D printer-friendly which allows arbitrary number of
high-resolution slices to be generated through the math equation over
the classical triangulated mesh format (i. e., STL file).

Moreover, it is also possible for implicit method to fabricate object
filled with microstructures - containing intricate internal details and
can be evaluated when needed. The first challenge is the microstruc-
turs has to produce the desired large scale rigid behavior. The direct
benefit of the microstructure is that the object is lighter and remain-

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

56 implicit surface : state of the art

Figure 2.36: 3D printing objects with different mass distribution [162].

Figure 2.37: A simple graded material applied to a ellipsoid 3D model with
inner micro-structure [93].

ing rigid which can ease the consuming of materials, shipping and
transportation simultaneously (see Fig. 2.37). The second challenge
is the optimal design - minimizing the global stress norm under a
set of constraints. However the implicit surface tend to be smooth,
"organic" free-form shapes, and usually small variations on the surface
will result in significant changes in local stress [93]. As a result, the
inner complex structures may progressively vary across the object
and meanwhile subject to different mechanical requirements between
regions under different local stresses.

Procedural noises is a promising technology to overcome those chal-
lenges, where infinite amount of repeated patterns are produced at
low, constant memory cost while precise manipulation of the statistical
properties of the pattern is achieved. This hints the possibility to gen-
erate procedural, stochastic microstructures that directly exhibit the
desired rigid property, without further optimization [93]. Tricard [150]
proposed a new procedural phasor noise which can be applied to
synthesis multi-material patterns for 3D printing (see Fig. 2.38). Their
phasor noise has several advantages: firstly, phasor noise broaden
the pattern of procedural noise able to deliver. For instance, the new
noise introduced a profile function which make it possible to precisely
control the properties of spatially vary materials for 3D printing. Con-
sequently, some special materials who have exotic properties, such as
negative Poisson’s ratio, can be achieved on a single-material printer
through the microstructure. This is especially interesting to grade

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

2.5 applications of implicit surface 57

Figure 2.38: a ratios of material, b orientation and c isotropy.The designer
control the three fields on the left and use a mixture type of
material to print a cross shape plate [150].

materials which have anisotropy effects. Secondly, the patterns can be
evaluated very efficiently. This characteristic make it possible for the
designer to check the small-scale structures beforehand and further
fine tune the parameter of the deformation behavior to achieve more
effective design before printing. Also, the structure is very small com-
pared to the size of the objects. Therefore, the traditional rasterization
of mesh becomes quickly prohibitively large structures, exerting a
bottleneck for fabrication and optimization. In contrast, the procedu-
ral noise is continuous and achieves arbitrary resolution on demand
to avoid the equally rasterization of the object. Thirdly, the virtual
grid affords for complete freedom in orientation. For instance, when
we seek to design a multi-material pattern akin to laminates, with
the precise control over the direction of material we can acquire un-
precedented effects (see Fig. 2.38). In particular, when we focus on
optimizing microstructures: assemble periodic tiled small cells with
free form orientation can significantly helps produces a particular
averaged (homogenized) elastic behavior [105]. We have described a
set of applications of procedural algorithm in producing optimized
global shape as well as microstructures of the object that cover an
extensive range of research on 3D additive manufacturing, such as
isotropic/anisotropic materials, minimizing stress concentrations, to
give an overview about the advantage of procedural method. In the
future procedural method is possible to play an even more important
position in all areas of additive manufacturing.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

Part II

N O V E L M E T H O D S

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3
3 D A S T E R O I D C L A S S I F I C AT I O N

In this chapter, we will present a novel statistical shape descriptor
for arbitrary three-dimensional shapes as a six-dimensional feature
vector for generic classification purposes. Our feature vector param-
eterizes the complete geometrical relation of the global shape and
additionally considers local dissimilarities while being invariant to
the shape’s translation, rotation, scaling. Our approach allows the
classification of large-scale shapes even with only small local dissimi-
larities. Our feature vector can be easily quantized and mapped into
a histogram, which can be used for efficient and effective classifica-
tion. We take advantage of GPU processing in order to efficiently
compute our invariant local shape descriptor feature vector even for
large-scale shapes. Our synthetic benchmarks show that our approach
outperforms state-of-the-art methods for local shape dissimilarity clas-
sification. In general, it yields robust and promising recognition rates
even for noisy data.

3.1 introduction

Robust scene interpretation in the form of detection and classification
of previously known 3D objects in arbitrary scenes is a key factor in
various computer vision approaches. Efficient and smart shape descrip-
tors are fundamental to object detection and classification. According
to Wahl et al. [155] and Rusu et al. [126] such shape representation
have to be

1. compact,

2. robust,

3. they should be invariant, i. e. not depending on a global coordi-
nate frame, and they

61

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

62 3d asteroid classification

4. should have the descriptive capacity to distinguish arbitrary
shapes.

Often, i. e. in robotics, the object detection and classification is done
on point cloud streams. Due to a continuously improving 3D sensing
technology (stereo systems, laser scanner, or consumer electronics
such as the Kinect), these point clouds do not only become larger but
additionally contain more details. Consequently, it is necessary that
object detection and classification approaches adapt to the increased
(local) 3D object detail. Hence, we identified the following additional
challenges for such kinds of shape descriptors:

5. they should consider small local dissimilarities,

6. their computation should be manageable to handle also large-
scale shapes (i. e., shapes consisting millions of polygons/ver-
tices).

Wahl et al.’s work effectively solve the first four requirements by
creating a surflet-pair histogram to represent the shape of 3D objects
and matching histograms with KL divergence [62]. However, their
approach fails to deal with the small locally dissimilar and large-scale
computing problems. The main reason for the performance issues
are the sequential computation of the histograms and the usage of
the statistical KL method for the classification. On the other hand,
Zhang et al. [171] already showed that the GPU can be applied to
accelerate the 3D object retrieval process. Moreover, machine learning
algorithms have become a very popular and powerful tool for 2D or 3D
object classification and regression problems, especially for large, high-
dimension histograms. In this chapter we will present a substantial
extension to the approach by Wahl. In detail, our contributions are:

• a novel local feature that considers small local characteristics of
the object,

• a parallelization of the histogram computation,

• a machine-learning-based classification algorithm that can han-
dle large-scale shapes.

Our approach is invariant to translation, rotation and scale of the
shapes and moreover, it is robust to noise. We have implemented our
algorithm using CUDA that allows it to completely run on the GPU.
As a use case scenario we chose the classification of 3D asteroids from
point cloud data. This scenario is typical for large-scale objects with
local dissimilarities and is currently discovered in spacecraft operation
studies for autonomous landing [119]. Additionally, we evaluated
regular objects from the NTU database. We compared our approach
to several state-of-the-art shape descriptors. Our results show that our
approach is capable of classifying both large-scale shapes with local
dissimilarities based on their local statistical properties and standard
shapes based on their global and local dissimilarities efficiently.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.2 related work 63

(a)

(b)

Figure 3.1: The dissimilarity of different resolution 3D models of Itokawa.

3.2 related work

The goal of shape-based 3D object classification is to formulate shape
properties which accurately represent the object. This shape descrip-
tors are used to efficiently classify them while focusing on (1) the
compactness of shape descriptors and (2) the robustness of shape
descriptors. A detailed overview of shape descriptors for shape-based
object classification can be found in [82, 142]. Here, we give an
overview of relevant approaches which are directly related to our
work.

In early research, Bay [6] established the SURF detector, and [89] pro-
posed SIFT using local invariant descriptors. More recent approaches,
e.g. from [27, 32, 42, 87, 155] focused on new shape descriptors.
Namely, [155] introduced a four- dimensional global shape descriptor.
They defined a 3D coordinate frame for each pair of oriented points
(so-called surflet-pairs), and defined a four-dimensional, pose invari-
ant shape descriptor, which describes these surflets. [27] proposed
the view-based global shape descriptors Light Field descriptor (LFD)
which aims at describing 3D models by a set of two-dimensional rep-
resentations. In contrast, [42] introduced two-dimensional spherical
harmonics based shape descriptors. This approach does not contain a
sophisticated classification scheme because the similarity between two
shapes is calculated by the Euclidean between two spherical harmonic
descriptors. Lo and Siebert [87] proposed Trift which extended the
idea of SIFT from 2D image to 2.5D domain. Their idea is to fusion
the histogram of range surface topology types with the histogram of
the range gradient orientations to form a new feature descriptor.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

64 3d asteroid classification

Another spectral-based shape analysis method called shapeDNA
[122] was proposed by Reuter. Their method extracts fingerprints of
an arbitrary surface by taking the eigenvalues of its respective Laplace-
Beltrami operator. This is the basis for a series of shape descriptors
based on such Laplace-Beltrami opearators, such as the wave ker-
nel signature (WKS) [3] or the scale-invariant heat kernel signature
(SIHKS) [72].

More recently, shape-based 3D object retrieval algorithm is exten-
sively applied from medical image classification to robot navigation.
Due to the success of Convolution Neural Network (CNN) [125] in
image retrieval task, numerous cutting edge deep-learning approaches
have been transferred into 3D object retrieval domain which signifi-
cantly boost the performance over traditional shape descriptor meth-
ods. However, as is well-known that training such neural network
requires massive amount of training data which leads to the devel-
opment of large-scale repositories of 3D shapes (i. e., shapeNet [26]
which consists of more than 50 thousand unique models spread over
55 common object categories) contains much bigger datasets to help
develop and evaluate new algorithms.

3D object shape retrieval is benefiting from the recent progress in
deep learning methods and based on the method to represent the 3D
object we can divide those approaches mainly into multi-projected
views [61], point sets [174] (point clouds), 3D voxel grids [132] and
traditional shape descriptors [44] groups. The key issue of 3D object
retrieval is to construct a particular shape representation which enables
distinguishing from different classes and aggregated within the same
category. Among these groups, view-based projection methods are the
most popular group because they are easy to utilize the additional
image information to help learn features for 3D shapes. In view-based
3D shape retrieval, images are obtained by first projected 3D shape
from different viewpoints, and then those images are dropped into
CNNs to obtain the discriminative shape representation [61]. As a
result, the view-based projected approach outperforms on the normal,
consistently aligned 3D model’s retrieval tasks. However, in the case
of unknown and randomly oriented 3D models the point set-based
approach which uses local invariant features works better than the
view-based approaches [174]. Moreover, when adding the normal
3D model dataset with the perturbed (un-aligned 3D model) noisy
data we can notice that, as expected, there is a decline of retrieval
performance for all methods, however, the sinking rate is much less
for point-set and voxel grid based methods [132, 174].

These approaches indicate that neural network outperforms tradi-
tional non-learning 3D shape descriptors approaches. An promising
direction for future work is to consider integrating the discriminative
power of view-based approaches and the robustness to arbitrary ori-
entation exhibited by i. e., point-set or voxel based methods which use
the locally geometry properties. There is still much space for improve-
ment using mixture of view-based, point-set based and volumetric
based methods together to handle more challenging tasks of 3D object
retrieval.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.3 our descriptors 65

The approaches mentioned above trace the development on 3D
shape analysis from early general shape description to recent spectral
shape analysis. However, none of them considers local shape dissimi-
larities of large-scale objects and and moreover, they are susceptible to
noise that often appears in point clouds.

3.3 our descriptors

Wahl et al.’s four-dimensional geometric feature is the basis of our
novel six-dimensional geometric feature. Basically, they proposed
surflet-pair histograms to describe the shape of 3D objects. We start
with a short recap of this approach.

3.3.1 Recap: Surflet-Pair-Relation Histograms

An important advantage of Wahl et al.’s approach is its transforma-
tional invariance. In order to realize this, they introduced a canonical
coordinate system by extracting features U⃗, V⃗, W⃗ (see Fig. 3.2a) as
a transformation independent reference. They defined a canonical
coordinate system as follows:

1. Extract the whole pairwise points and its normals from the
surface mesh of object (pi, ni⃗). Randomly select surflet-pairs
(pi, ni⃗) and (pj, nj⃗). If point pi satisfies Equation 3.1 we simply
set pi as the origin of the canonical coordinate system otherwise
pj (and ∥·∥2 denotes the Euclidean norm, i. e., ∥u∥2 = (uTu)

1
2 ,

same below).⃦⃦
ni⃗ · (pj − pi)

⃦⃦
2 ⩽

⃦⃦
nj⃗ · (pj − pi)

⃦⃦
2 (3.1)

2. Then he constructs the canonical coordinate system by comput-
ing U⃗, V⃗, W⃗ as the base vectors: Assuming pi as the origin so ni

is U, we normalize the vector pi − pj by ρ⃗ =
pi−pj

∥pi−pj∥2

in order

ensure that the feature is invariant to scaling. The canonical
coordinate system is then given by V⃗ = U⃗ × ρ⃗, W⃗ = U⃗ × V⃗.

From this canonical coordinate system, we derive Wahl et al.’s
global features as follows: Given an object represented by a point set
(pi, pj), for each pair of points we define four features for the complete
four-dimensional vector G⃗ :

G⃗(pi, pj) = (α, β, γ, δ) (3.2)

by

• α = atan(W⃗ · n2⃗ , U⃗ · n2⃗), α ∈ (−π
2 , π

2)

• β = V⃗ · n2⃗ , β ∈ (−π, π)

• γ = U⃗ · ρ, γ ∈ (−π, π)

• δ = ∥p1−p2∥
max(∥pi⃗ −pj⃗ ∥) , δ ∈ (0, 1).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

66 3d asteroid classification

(a) (b)

Figure 3.2: (a) Pairwise points p1, p2 and their normal vectors n1⃗ , n2⃗ . U⃗, V⃗,
W⃗ are the intrinsic reference frame built by the pairwise points.
And n2′⃗ is the projection of n2⃗ to UW plane, α , β , γ represents
the angles between (n1⃗ , n2′⃗) , (V⃗, n2⃗), and (n1⃗ , p2 − p1). δ is the
distance between the pairwise points. (b) O denotes the geometric
center of the object. Vector OA⃗ and AB⃗ represents the position
vector and normal vector of vertex A, θ is the inclined angle.

3.3.2 Our Adaptive Hybrid Shape Descriptor

Our novel invariant local geometric features extend the basic four-
dimensional G⃗(pi) by two additional dimensions. They are inspired
by the human cognition. Early psychophysical experiments showed
that human visual system decomposes complex shapes into parts
based on curvature and processes salient features before higher level
recognition [135]. This research motivates us to focus on curvature
to represent the local shape of the 3D model. This local geometric
feature L⃗(pi) for each point can be represented by the following two
parameters η and κ:

L⃗(pi) = (η, κ) (3.3)

with

• η represents the local normal perturbation of the object’s normal

• κ is the Gaussian curvature.

In order to obtain a smooth curvature at each point Pi, we apply the
discrete curvature analysis according to [36]. Additionally, we consider
the normal perturbation with the parameter κ. The main challenge is
to represent the point’s normal in a transformational invariant way.
Let c be the geometric center of the model and ni the normal of point
pi. Then we define κ= (pi-c)ni, i.e. κ represents the angle between the
vector that is spanned by the object’s center and the point’s position
and the normal of the point (see Fig. 3.2b).

The global shape descriptor according to Wahl et al. and our local
shape descriptor can be easily combined to our new adaptive hybrid
shape descriptor (AHD):

AHD (pi, pj) = (G⃗(pi, pj), L⃗(pi)) = (α, β, γ, δ, η, κ) (3.4)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.4 training and classification 67

Since G⃗(pi, pj) as well as L⃗(pi) are transformation invariant, also
G⃗(pi, pj) is transformation invariant. For a point cloud consisting of n
points, G⃗(pi, pj) can be computed in O(n) and L⃗(pi) in constant time
for each individual point pi.

3.4 training and classification

Our geometric feature described above is the basis for object recog-
nition tasks. To do that, we create a database of histograms for a set
of point clouds. The histograms are generated for each point cloud
individually by computing our AHD-feature for all pairs of points
and then discretizing them into bins. Similar to Wahl et al., we follow
Wahl’s setting by choosing five bins per dimension. This results in a
total number of 56 = 15, 625 bins for each object. In the end, we get a
15,625-dimensional vector that represents the object.

3.4.1 Parallelization

A nice property of our geometric feature is that the histogram gener-
ation can be easily parallelized. Obviously, the parameters for each
pair of points can be computed independently (see Algorithm 2). In
order to bin the resulting six-dimensional vectors, we additionally
have to sort these vectors. In detail, we use a parallel bitonic sort and
a parallel reduction algorithm to count the number of entries per bin
(see Algorithm 1). Please note, that our local features η and κ have to be
computed only once per point, whereas the global features α, β, γ, δ are
computed per pair of points. Consequently, the total parallel running
time of our algorithm is in O(n) assuming a perfect PRAM.

Algorithm 1: Compute Histogram (Pointcloud A)

In Parallel forall points pi ∈ A do
featureSet[i]=computeFeature(pi, A);

In Parallel sort(featureSet);
histogram = In Parallel reduction(featureSet);

Algorithm 2: Compute Feature (Point p, Poincloud A)

compute curvature η(p);
compute angle κ(p);
In Parallel forall points pi ∈ A do

compute α, β, γ and δ(p, pi);

3.4.2 Histogram Cluster Analysis

Choosing the best classification algorithm is a non-trivial task. For
instance, it highly depends on the dataset and the number but also

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

68 3d asteroid classification

the identifiability of the clusters. For our use case of asteroid clas-
sification (see Sec. 3.5), we first tried to use the linear discriminant
analysis in combination with a PCA. The results show that that the
distribution can be hardly linearly divided into meaningful clusters
(see Fig. 3.3). On the other hand, random forest have shown to achieve
high accuracy for the classification of non-linear datasets and they
can easily handle multi-class classification challenges [81]. Moreover,
the dataset of asteroid is relatively small (several thousands samples)
which restricted the usage of neural network especially deep neural
network [73]. Consequently, we decided to use random forests which
shows the advantage of robustness and accuracy with relative small
datasets over competitors.

Figure 3.3: Using PCA transform to efficiently reduce raw feature histogram
from 15,625 dimensions to 3 dimensions. The asteroid classes are
color-coded.

3.5 use case : asteroid classification

As one challenging example for the application of our algorithm
we outline celestial bodies, especially asteroids. Asteroids differ in
many ways from other (human created) objects because of their com-
plex shapes, internal structures and material properties. For instance,
Itokawa has significant porosities which are a key evidence for its
belongingness of its corresponding taxonomic class [68]. Therefore,
this kind of local dissimilarity pose a competitive challenge to our
shape descriptors.

There is an increasing interest in the field of spacecraft flight to per-
form autonomous surface analysis and safe landing operations [119].
For these autonomous systems it is crucial to efficiently and accurately
classify and recognize the shape and local surface details for the land-
ing operations. Thus, the need for the ability of recognizing asteroids
in arbitrary scenes based on 3D point clouds without large databases
has occupied an important position.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.6 evaluation 69

A major drawback in the classification of asteroids is the lack of data.
High-quality models of asteroids are usually recorded during rare and
costly spacecraft fly-by or rendezvous missions [131]. Consequently,
it is hard to obtain a large database for training and classification
purposes. In order to overcome this limitation, we decided to use
Poisson disk sampling on an asteroid database to increase the number
of available data. Poisson disk sampling is one of the most classical
methods for the fast resampling of surface points [37] and it is proven
to be very robust Corsini [31].

Actually, the Poisson-sampled data draws a special challenge to our
algorithm because the generated data is usually a lower-resolution
model of the original high-resolution asteroid. Hence, it may lack
some details on the surface. Figure 3.4 illustrates the Poisson sampled
asteroid models.

(a) (b)

(c) (d)

Figure 3.4: Example 3D asteroids and sampled asteroids. a, c are the raw
asteroid named Churyumov (128,002 points) and Eros (99,846

points). b, d represent the poisson-disk sample asteroids each
with 25,994 and 18,172 points.

3.6 evaluation

We have implemented our adaptive hybrid shape descriptor (AHD) in
Python 3.5. We performed our experiments on a machine with Intel
Core i7 quad core processor with Hyperthreading enabled, 8 GB of
memory, and a Nvidia Geforce GT 640M, operated by Windows 10.
We applied three experiments to measure the performance as well as
the quality of our shape descriptor approach.

First, we performed a comparison of the sequential CPU algorithm
and our massively parallel GPU implementation for the histogram
generation and the hybrid-feature computation (see Fig. 3.5). Second,
we evaluated the quality of our approach and its competitors for

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

70 3d asteroid classification

our previously outlined use case study of asteroid classification for
autonomous spaceflight operations. Third, we evaluated the quality of
our approach and its competitors based on the standard shape NTU
database set.

Figure 3.5: Computation times of CPU VS GPU.

We compared the quality to three state-of-the-art methods, namely
the 3D Harmonics [43], LightField descriptor [27] and shapeDNA [122].
Here, we used freely available open source implementations. Addi-
tionally, we compared our approach to Wahl et al.’s original implemen-
tation (Global shape descriptor). In order to find the best parameters
for our random forest for this competitive evaluation, we used grid
search and selected appropriate parameters for estimators, depth, lea
size and split criterion.

For our quality evaluation we use the well-known precision and
recall diagram. Each of our evaluation plots precision versus recall
averaged over all classified models in the database. The plot axes can
be interpreted as follows [42]: For each target model in class C and any
number K of top matches, “recall” represents the ratio of models in
class C returned within the top K matches, while “precision” indicates
the ratio of the top K matches that are members of class C. A perfect
retrieval result would produce a horizontal line along the top of the
plot, indicating that all the models within the target object’s class are
returned as the top hits. Otherwise, plots that appear shifted up and
to the right generally indicate superior retrieval results.

3.6.1 GPU-based Histogram Generation

We compared the performance of a traditional sequential CPU im-
plementation and massively parallel GPU implementation for our
histogram generation (see Fig. 3.5). Here, we used Python 3.5. and
pycuda for the implementation respectively. Our first evaluation shows
that the massively parallel GPU implementation easily outperforms
the traditional sequential one with an increasing number of vertices.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.6 evaluation 71

Our GPU-based implementation gradually outperforms the sequential
CPU implementation by up to a factor of 1000. The GPU timings do
not include transferring data between the host CPU memory to the
GPU’s global memory.

3.6.2 Asteroid Classification Study

In the second evaluation study, we evaluated our approach and its
competitors for our previously outlined use case study of asteroid
classification for autonomous spaceflight operations.

We randomly selected 20 asteroids from the Planetary Data Sys-
tem [95] and utilized our Poisson sampling approach in order to
obtain a large set of asteroids 1000 for training, testing, and evaluation
purposes (see Fig. 3.4). We add some random noise to all asteroid
meshes during evaluation process to simulate realistic situation in
space exploration.

Our evaluation shows that our shape descriptor approach with ran-
dom forest based classification outperforms the competing methods
(see Fig. 3.6). This means that our approach is the most discriminative
and effective method among all evaluated approaches. Compared with
the 3D harmonic descriptor, lightfield, and shapeDNA, our method
owns an average of more than 70% precision rate when average the
recall axis.

Figure 3.6: Asteroid experiment precision-recall curve performance evalua-
tion of our approach (under three schemes), compared with 3D
harmonic and light field descriptors.

Even more, our methods works well for almost all classes of aster-
oids, except for some difficult shapes as illustrated in the confusion
matrix (see Fig. 3.7).

In summary, these good results demonstrate that, although we
merely sampled 10∼20% vertices from the raw meshes, our shape

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

72 3d asteroid classification

Figure 3.7: Plots the confusion matrix for the experiment of asteroid classifi-
cation.

descriptor is able to robustly represent the noise asteroid shape while
achieving high classification rate.

3.6.3 Standard Dataset Testing

In the last evaluation study, we evaluated our approach and its com-
petitors based on the standard shape NTU database set1 [27]. The NTU
database currently contains 10,911 3D models from 352 categories,
from which we selected 1,218 representative models from the database
as our testing database. These 1,218 3D models are composed into 10

classes which have the most models in each class in the database (see
Table 3.1). Several examples of 3D models contained in these 10 most
well-annotated classes are shown in Figure 3.8.

Table 3.1: Subset of NTU database

Category Number of models Training set

Tree 120 84

Gun 120 84

Enterprise 80 56

Wheel 78 55

Table 115 81

Potted-plant 84 60

Human 192 133

Helicopter 98 68

Fighter-plane 234 164

Four-legged-chair 97 68

We split the above determined 10-class dataset randomly into train-
ing, validation and test set and used this data as the evaluation base-
line. Our approach outperforms its competitors also in this evaluation
study (see Fig. 3.9). Our shape descriptor achieves the best perfor-
mance with classification accuracy of 62.5% and 57.1% under invariant

1 http://3d.csie.ntu.edu.tw/ dynamic/database/

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

3.7 conclusions and future works 73

Figure 3.8: The example of all selected class of 3D models in NTU database.

descriptor and global descriptor respectively, after averaging over
all the recall axis. While 3D harmonic, lightfield and shapeDNA de-
scriptors achieved 52.8%, 53.5% and 53.1% accuracy under the same
conditions. Surprisingly, shapeDNA performed worst. The reason
for this could be low quality and incompleteness of some meshes
in the NTU database. As a result, shapeDNA is not robust enough
to distinguish them. In this evaluation study, our approach does not
outperform its competitors to the same extent as in the previous eval-
uation. We believe that the shapes of the NTU database have less local
shape information than the asteroid shapes of our use-case study.

Figure 3.9: NTU database experiment precision-recall curve performance
evaluation of our approach (under three schemes), compared
with 3D harmonic and light field descriptors.

3.7 conclusions and future works

We have presented a novel statistically invariant shape descriptor
for large-scale shapes with local dissimilarities. The main idea is
to combine features that describe the global shape with two novel
features that represent the local curvature and the normal perturbation,
respectively. This enables our hybrid-feature to classify both large-scale
shapes with local dissimilarities based on their local appearance and

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

74 3d asteroid classification

standard shapes based on their global and local dissimilarities. Our
novel features are robust to noise and invariant to translation, rotation
and scale of the shapes. Furthermore, we presented a parallelization
of the histogram computation using GPU processing in order to deal
with massive data from high-resolution 3D shapes. The results show
that our GPU implementation is more than three orders of magnitude
faster than the equivalent CPU implementation.

Due to its generality, our approach is applicable to a wide variety of
classification domains for three-dimensional shapes. The results from
our benchmarks show that our approach is able to efficiently classify
large-scale shapes with local dissimilarities in a special asteroid use
case but also for common objects.

In the future, we would like to further evaluate our approach with
more shape databases, especially in a terrestrial context. However,
we are mainly interested in improving our current approach for the
outlined asteroid classification use case study. Here, we would like to
incorporate reinforcement learning with our hybrid shape descriptor.

Hinton and Krizhevsky [73] proposed unsupervised deep learning
method for image retrieval, this method can be a good example for our
classification algorithms. Another interesting idea would be to extend
our approach with additional shape descriptors to further improve it’s
accuracy.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4
A S T R O G E N - P R O C E D U R A L G E N E R AT I O N O F
H I G H LY D E TA I L E D A S T E R O I D M O D E L S

In this chapter, we will present a novel algorithm, called AstroGen,
to procedurally generate highly detailed and realistic 3D meshes of
small celestial bodies automatically. AstroGen gains its realism from
learning surface details from real world asteroid data. We use a sphere
packing-based metaball approach to represent the rough shape and a
set of noise functions for the surface details. The main idea is to apply
an optimization algorithm to adapt these representations to available
highly detailed asteroid models with respect to a similarity measure.
Our results show that our approach is able to generate a wide variety
of different celestial bodies with very complex surface structures like
caves and craters.

4.1 introduction

The study of small celestial bodies in the solar system (i. e., asteroids,
comets) has become an area of great interest for astronomy science in
the past decades. For instance, Galileo and Cassini are successful mis-
sions to investigate small celestial bodies and collected abundant inter-
esting data about several asteroids. More recently, JAXA’s Hayabusa2

spacecraft will, after studying Ryugu in depth from orbit for about a
year, drop three rovers and a lander onto the asteroid’s surface this
month and hopefully, some samples will be sent back.

Such long distance missions are challenging for several reasons: first,
the communication takes a very long time. Hence, it is not possible
to immediately react on complications during i. e. the landing phase
by the mission control on earth. Consequently, spacecrafts operating
in such space environments are usually equipped with some sort of
autonomy. Second, the terrain of the asteroids is usually unknown in
advance during the planning phase of the mission. The most economic
and common way to observe asteroids from earth is to obtain data
radar or lightcurve inversion. However, these methods do not deliver
surface details. Nevertheless, the landing spacecrafts and rovers has
to be designed with such very limited information.

Usually, space missions are planned with support of virtual testbeds
(VTBs) before building physical mock-ups (see Fig.4.1). These testbeds
consist of physically-based simulation of terrain that provide a real-
time, immersive and 3D interaction environments which give engi-
neers the opportunity to interact with the simulated spacecraft or
rover to gain comprehensive understanding of possible design flaws
during the early design process as well as later mission stages like
training and supervision [78]. In order to simulate a large amount
of possible scenarios to be prepared for a lot of circumstances, it is
essential to have a large number of highly detailed and realistic 3D

75

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

76 astrogen - procedural generation of highly detailed asteroid models

asteroid models available in such a virtual testbed. In the case that
autonomous algorithms on board of the spacecraft support the landing
operation, there is even more need for such 3D models because these
algorithms usually have to be trained with a large amount of such
data.

The generation of such models has two major challenges: the lack
of ground truth data and the missing of appropriate methods to
synthesize realistic models of irregular shaped small bodies. Actually,
the only available highly detailed asteroid model is that of Itokawa1.
Moreover, traditional terrain generation algorithms are almost all
optimized for spheroidal planetary models where a simple heightmap
can be used. This is not directly applicable to irregular celestial objects
such as asteroids especially if terrain details such as caves have to be
considered.

We present, to our knowledge, the first algorithm that is able to
compute realistic highly detailed 3D models of irregular celestial
bodies fully automatically. The main idea is to combine different
implicit object representations with an optimization algorithm to adapt
their implicit parameters to real world models. These parameters
can be varied or applied to completely different basic shapes while
remaining the overall surface texture.

More precisely, we use a two-tier approach: For a given ground
truth asteroid shape, we first approximate the basic asteroid shape
by a polydisperse sphere packing. A first optimization step adapts
parameters of a metaball approach. In a second optimization step, we
learn the surface details by optimizing the parameters of several noise
functions that are well chosen to represent typical surface structures
of celestial bodies such as craters and caves. This makes it easy to
transfer the surface details to other basic shapes. During the training
phase, we allow small intervals of all parameters with respect to the
distance function. This enables us to further vary the surface details
but also the underlying metaball shape.

Our algorithm, called AstroGen supports:

• Full automatic generation of almost endless variations for a given
ground truth asteroid model within a pre-defined error bound.
However, the parameters of the synthetization algorithm are
easy to understand which makes it easy to manually adjust the
generated models.

• High performance due to an almost full GPU implementation of
all time consuming parts of the algorithm.

• Arbitrary Resolutions: due to the implicit representation it is easy
to generate polygonal models at any resolution with the march-
ing cube algorithm.

In a use case scenario we have applied AstroGen to the currently
only available high resolution asteroid model of Itokawa and generated

1 The data from the Rosetta mission was published simultaneously to this submission.
Hence, we could not include this in our algorithm. However, our algorithms would
obviously also work with this model.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.2 related work 77

Figure 4.1: Simulated rover cruise on the virtual testbed of unknown asteroid
stein [40].

several variations of it. Moreover, we applied the surface details to
low-poly models of Stein [40], Ceres [148] and Lutetia [136].

4.2 related work

There are four main approaches to generate terrain features: proce-
dural, physics-based, sketch-based and example-based [51]. Physics-
based methods generate terrain features geologically correct, but often
computationally expensive and lack of scalability in simulation dif-
ferent natural phenomenons. Sketch-based methods require heavy
manual intervention while example-based methods are limited by
the input data and restricted to two-dimensional terrain features [51].
In contrast, procedural methods are fast and easy to generate arbi-
trary resolution of realistic terrain in the virtual world, see [74, 137]
for a broader overview. Often, such methods rely on some kind of
noise function. Perlin noise is known as efficient and its inherent
self-similarity, consistency properties are suitable for terrain genera-
tion [113]. Enhanced version, like simplex noise [114] reduce some
artifacts or generate particular terrain features, such as ridges or rolling
hills [39]. The Commercial software Terragen [172] and i. e., a bunch
of researcher’s papers [51, 107, 149] created diverse and realistic ter-
rain based on noise method. Togelius [149] introduced evolutionary
algorithm with noise method to generate terrain map and balanced
on several objectives, such as playability and realistic of terrain. [51]
focused on Hydrology terrain simulation by using fractal interpolation
to connect predefined physical-based terrain features such as river net-
works, mountain ridges and valleys. [107] proposed a method based
on real elevation statistics and utilize value noise – a variant of perlin
noise – to generate geotypical terrain. Recently, compact mathematical
definition [54] and sparse procedural [57] method are proposed which
efficiently combine different terrain primitives and give user more in-
tuitive control about the scene. However, noise-based methods usually
tend to create terrain that is uniform at fixed amplitude and frequency
values, and often require massive post-process to generate interesting

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

78 astrogen - procedural generation of highly detailed asteroid models

features and choosing the correct parameters for this post-processing
is often unintuitive. Moreover, none of these algorithms supports the
generation (or variation) of irregular celestial bodies.

Implicit modeling gained attentions and interests of many scholars
due to an intuitive representation of objects in a mathematical way,
rather than explicit geometric representation. The mainstream path
of implicit surface construction can be divided into two parts: non-
skeleton implicit surface and skeleton implicit surface. For the sake of
clarity, here we give an overview of skeleton implicit surface.

The idea of skeleton implicit surface origin from metaball model-
ing [11] which is a side effect of a visualization of electron density
field from the early 1980s. This kind of methods can be seen as a
point based scalar field integrate blending and deformation opera-
tors which allows solid models to be easily described. [13] expanded
metaball with convolution implicit surface. Their method is actually
an extension of point-based primitives into a line or a plane based
primitives. Subsequently, Wyvill and Brian [163] introduced general
construction trees called the BlobTree greatly enhance the range of
models that can be defined with a skeleton implicit surface system.
More specifically, they proposed a hierarchical method which allows
arbitrary compositions of models that make use of blending, warping
and boolean operations.

The core point of these modeling methods are assembling separate
parts with composition operators, and each part have been defined by
a geometric primitives’ scalar function. [16] proposed an autonomous
way through building a sphere-tree to represent the complete approxi-
mation of the object. They use medial axis approximation algorithm
to cover the object completely with spheres, that do not contain gaps,
without adversely affecting the fit to the original object. [144] pro-
pose parallel version of sphere packing algorithm which effectively
compute the sphere to represent the arbitrary object.

Once fitted the shape with the geometry primitives, composition
operators control the way how they combined. For instance, in early
research the max (min) of two scalar functions produces a union opera-
tor which is the basis of Constructive Solid Geometry (CSG) [13]. The
blending operator [11], in some cases a simple sum of the combined
scalar functions, smooth the sharp transition between parts produced
by the union. More recent research the gradient-based blending op-
erators [1, 56] help approximate a mesh by deforming on 3D scalar
functions and becomes popular. [56] proposed the idea that scalar
functions should not only be combined based on their values but also
on their gradients. And their method solve the problem of bulging
and topology while merge two shapes. [1] introduced an approach
to design gradient-based operator which can achieve desired effect
on the resulting surface. Our method address the benefits provided
by integrate these concepts into a sphere-based metaball modeling
system in the following section.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3 our approach 79

4.3 our approach

The goal of our algorithm is to generate a wide variety of different as-
teroid models considering the underlying basic irregular shape as well
as the surface details. We want to achieve high realism and detailed
high polygon models. In order to guarantee realism, AstroGen relies
on the usage of real world data, namely surface details from previous
space missions, like that of Itokawa and data from earth observation
that delivers the rough shape and can be found in extensive asteroid
databases [176]. Due to the flexibility of our algorithm, it is easy to
also include more data (like that from the Rosetta mission that was
just released or from the Hayabusa2 mission).

The two different kinds of data already suggest a two-tier approach.
Consequently, AstroGen consists mainly of two stages:

1. We use an implicit shape approach to represent the underlying
rough shape. The advantage is that it easily allows to make small
variations in the rough shape and additionally, we can generate
high-poly meshes from it.

2. The surface details are represented by different noise functions.
Again, this enables us to generate poly meshes in arbitrary
resolution.

In order to adapt our asteroids to the real world data mentioned
above, we use an optimization algorithm to optimize the parameters
of our rough shape as well as the surface details. However, we allow
small variations in the parameter range to generate an almost infinite
number of variations. Finally, we present a method to generate a
polygonal mesh from our implicit asteroid representation based on
marching cubes.

All these steps can be performed entirely massively parallel on the
GPU what guarantees a high performance. However, the optimization
steps are required only once per ground truth data. For the gener-
ation of a wide variety of asteroid models it is sufficient to simply
vary the parameters and generate a mesh using the final step in our
algorithm. Figure 4.2 shows an overview on the complete process. In
the following, we will present the details of the individual steps of
our automatic pipeline.

4.3.1 Implicit Shape Representation

Generally, there are two main types of method to represent a free-
form surface: parametric surfaces and implicit surfaces. In the first case,
Hermite-spline, B-spline and NURBS are most commonly used. For
the latter, metaballs, skeleton and convolution surfaces are the most
popular methods. Implicit surface modeling produce smooth and
aesthetic shapes that can be seamlessly modified while keeping a
consistent structure. In addition, their function definition is compact
and require quite simple primitives such as sphere or ellipsoid to
construct a model which is suitable for real-time simulation. Finally, it

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

80 astrogen - procedural generation of highly detailed asteroid models

Figure 4.2: The pipeline of two parts simulation.The dark box means the
program running on the GPU while the white box on the CPU
side.

is possible to adapt this representation to existing polygonal shapes,
like the low-poly models from the asteroid database. These are the
main reasons, we decided to use an implicit surface representation for
the basic shape of our celestial bodies.

In principle, implicit surfaces define a 2-D manifold, where a surface
S embedded in the three-dimensional space R3:

S = {(x, y, z)|F(x, y, z) = T} (4.1)

For a skeleton implicit surface, we usually have given a set of n dis-
tinct constraint points c1, ..., cn and a set of corresponding potential
functions F(ci). These defines a smooth surface M as:

M = {c ∈ R3|F(c) =
n

∑
i

ωiF(ci) + t = T} (4.2)

The challenge is to select an appropriate set of points and potential
function.

4.3.2 Polydisperse Sphere packing

Recap:Polydisperse sphere packing

Polydisperse sphere packing denotes a method to fill arbitrary object
with masses of random size of non overlapping spheres. The main

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3 our approach 81

insight of the algorithm is to define two primary constraints during the
filling process. The first constraint is the newly inserted sphere must
not intersect with the sphere already exists. The second constraint is
that all spheres must inside the object. Generally, the algorithm begins
with filling the largest sphere s into the object and incrementally
insert new spheres while keep to the two constraints. Then, for the
case of largest sphere s inside the watertight constraint object O will
produce at least 4 contact points (2D at least 3 contact points), and
no extra points on the object inside the sphere. This property means
the sphere center is a Voronoi node (VN) of the object. As a result,
it is possible to reformulate the greedy object filling problem as an
interactive evaluation of a generalized Voronoi diagram (VD) of object
with the sphere already exists. The details of the algorithm is explained
below [159]:

Algorithm 3: Converge Prototype (prototype p, object O)
place p randomly inside O
while p has not converged do:

qc = argmin∥p − q∥ : q ∈ sur f ace o f O
choose ε ∈ [0, 1]
p = p + ε(p − qc)

It is easy to understand, by randomly selecting a single point inside
inside the object, the prototype, iteratively move towards one of the
voronoi node and it must stays inside the object. The constraint p =

p + ε(p − qc) (see Alg. 3) guarantees that, because the entire sphere
around p with radius ∥p − qc∥ is inside the object, then after each
iteration, the prototype is ensured inside the object [159]. Nevertheless,
moving prototype away from the border, into direction of (p − qc),
leads potentially to bigger spheres in the next iteration step [159].
Commonly, the ε is defined as an attenuation function instead of
a constant scalar value which allows the movement range of the
prototype shrinking along with each iterations. The filling rate as well
as the stability of the approximated Voronoi node is heavily relies on
the strategy of the attenuation function and the number of iteration
steps (see Fig. 4.3).

Our method

Our idea is based on the approach by Wyvill and Brian [163] that ex-
tends the metaballs algorithm [11] by using a so-called BlobTree to rep-
resent the skeleton. However, with this method, the points are located
on the medial axis of the object. This makes it complicated to add i. e.,
additional hills or to remove parts to form valleys. Hence, we decided
to modify this idea by adopting a sphere packing-based approach.
Originally invented for collision detection, the Protosphere [144] algo-
rithm delivers a polydisperse sphere packing of arbitrary 3D objects.
This is ideal for metaball-based modeling systems and for our ap-
plication in particular because the greedy choice of the algorithm

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

82 astrogen - procedural generation of highly detailed asteroid models

Figure 4.3: A model of armadillo filled with over 15,000 spheres [159].

automatically leads to a level-of-detail representation (hierarchy of
spheres) for the model, i. e. it offers an easy trade between the speed
and accuracy. Moreover, it is easy to simply add or remove individual
spheres to create diverse topologies as well as small varieties on the
basic shape. Finally, the algorithm is fast and works completely on
the GPU. The voronoi node in the sphere packing algorithm defines
our constraint points (metaball center) in Equation 4.2. The Figure 4.4
shows a sphere packing (Protosphere) approximation of the asteroid
Itokawa.

Figure 4.4: The sphere packing [144] representation of asteroid Itokawa by
Protosphere algorithm.

Blending

After obtaining the constraint points, we have to define the potential
functions in Equation 4.2. Remember, that the surface details are added
in the second step, hence, we first want to create an overall smooth

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3 our approach 83

shape. To do that, we slightly modified Blinn’s [11] original potential
function to fit our constraint points:

f (ri) =

{︄
ea−br2

i i f ri ∈ [0, 5R]

0, otherwise
(4.3)

with

• a and b are the tension factors that control the smoothness in the
overlapping areas and the softness of each metaball

• and ri is the radius of each spheres and R = max{ri} to limit
the influence area

Summarizing, we get the complete potential function of p in 3D space
as:

f (r) =
n

∑
i=1

f (ri(p, ci)) (4.4)

While implicit surface deformation is represented by multiple meta-
balls, bulge, crease and tearing frequently appear in overlapping areas.
In order to eliminate multiple metaball influences on an overlapping
area we additionally added some blending function according to [163]:

f (A · B) = (f m(A) + f m(B))
1
m (4.5)

with

• f (A) and f (B) represent two metaball’s potential functions

• and m controls the influence of the overlap in the distance field;
With m = 1 we get the traditional overlapping method. In case
of high convexity we can modestly change this parameter.

Figure 4.5 shows the optimized metaball surface to approximate the
asteroid of Itokawa.

Figure 4.5: The implicit metaball shape of Itokawa (892k vertices).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

84 astrogen - procedural generation of highly detailed asteroid models

4.3.3 Noise Based Surface Features

The basis of almost every procedurally generated landscape algorithm
is a noise function. Due to these noise we can procedurally produce
mountains, valley, craters or even pebbles, however these landscape
must be created manually. In order to generate a realistic surface
features, we also apply several noise functions to the underlying
metaball model described above. In the following, we will describe
the different layers of noise we used.

Perlin Noise

Perlin noise is a usual type of noise that is often use to generate terrain
because it fulfills Tobler’s First Law of Geography [97]. Basically, Perlin
noise is a lattice-based gradient noise. However, simple Perlin noise
often leads to repetitive patterns. The complexity of the generated ter-
rain can be controlled by several parameters. The most important is the
number of octaves. For a given frequency and amplitude we can gener-
ate an octave by doubling the frequency and halving the amplitude or
vice versa. For instance, progressively adding lower frequencies (with
higher amplitudes) generates larger terrain structures, such as large
mountains and trenches [100]. Accumulate eight octaves are called
Fractional Brownian Motion (FBM). In our implementation we used
FBM. Moreover, we use simplex noise (see Alg. 4), a derivative of
Perlin noise that uses a simplex instead of a quadrangular lattice. This
improves the performance significantly. Additionally, the combination
allows us to enhance the control of the generated details. Figure 4.6
shows the surface created by different combinations of Perlin noise.

Algorithm 4: Compute Density Value (Block A)

In Parallel forall points pi(x, y, z) ∈ A do

freq = 4, amp =1, octaves = 8, density_value = f(blend(r(pi),
r(pi)))

while octaves > 0

density_value = density_value + simplex_noise(pi, freq)
freq = freq * 1.95

amp = amp * 0.5
octaves = octaves - 1

Caves

Using too many octaves of Perlin and simplex noise results in isotropic
details that can give the terrain an artificial look. A usual way to
overcome this problem is to modulate the original shape (in our
application, the rough shape generated by the metaballs) with another
noise function. This technique, called warping is very common in
computer graphics for generating procedural textures or geometry.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3 our approach 85

Figure 4.6: The rough shape of the asteroid Itokawa with surface details
generated by Perlin noise.

The warping is a small perturbation to the given point p and can
be defined as follows (fbm is the fractional brownian motion which
denotes the multi-octave of perlin noise):

q = vec3(f bm(p + ϵ), f bm(p + ϵ), f bm(p + ϵ))

warping(p) = p + q
(4.6)

where p, q represent the point in the 3D space, ϵ denotes random
small deviation to the point p. Using medium frequencies and mild
amplitudes results in surreal ropey organic-looking terrains. Lower
frequencies and higher amplitudes increase the occurrence of caves,
tunnels, and arches [100]. Figure 4.7 shows the Itokawa model with
warped coordinates.

Figure 4.7: The cave occurs through warping the input grid point.

Craters

Craters are one of the most prominent visual terrain elements of
celestial bodies without atmosphere. Unfortunately, Perlin noise is not
able to generate structures that look like craters, or at least, it is not

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

86 astrogen - procedural generation of highly detailed asteroid models

known how to set the parameters until now. Consequently, we use
another type of noise to support this sort of terrain.

In contrast to Perlin noise, Worley noise [161] (see Alg. 5) is not
gradient-based, but value-based. The basic idea of Worley noise is to
grow points until another growing point is hit [111]. This leads exactly
to terrains that look like craters. We adopted a simplified GPU-based
version similar to [59]. Figure 4.8 shows the result when applying
Worley noise only (without adding additionally Perlin noise).

Algorithm 5: Generate Craters (Block A)

In Parallel forall points pi(x, y, z) ∈ A do

freq = 4, weight =1, octaves = 4

while octaves > 0

density_value -= worley_noise(pi,
freq*weight*worley_noise(pi, freq))

freq = freq * 2.05

weight = weight * 0.5
octaves = octaves - 1

Figure 4.8: The rough shape of Itokawa with pure Worley noise and craters
appear.

4.3.4 Optimizing Noise Parameters

For simulations in VTBs or the training of autonomous algorithms to
steer landing spacecrafts it is essential that the generated asteroids are
as realistic as possible. Hence, we do not choose the parameters of
our generation methods arbitrary. Manually selecting the parameters
is also not an option because they often behave unexpectedly. Conse-
quently, we add an initial optimization step to adapt the parameters
automatically.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.3 our approach 87

Table 4.1: The number of parameters of the solution domain in the surface
detail optimization for the individual noise functions.

Para Perlin Simplex Worley Gradient

Weight 1 1 1 1

Frequency 1 1 1 0

Octave 1 1 1 0

Amplitude 1 1 1 0

Coords_w 3 3 3 0

Coords_b 3 3 3 0

Optimization Algorithm

Given some ground truth data, e.g. the detailed model of Itokawa
and asteroid databases that provide polygonized rough shapes of
asteroids, we can use any optimization algorithm for the parameter
adaption provided a good fitness function is available. For several
reasons, we decided to apply particle swarm optimization (PSO) [38].
PSO is a stochastic convergence analysis algorithm containing param-
eter selection and changing. In principle, PSO is a population-based
iterative algorithm and the swarm behavior guide the particle in the
population to search for globally optimal solutions: The standard PSO
algorithm maintains a population of N particles, and each particle
defines a potential solution in a D-dimensional solution domain. There
exists many factors that influence the convergence property as well as
performance of the standard PSO algorithm. In our implementation
we rely on fixed parameters according to [127].

The structure of PSO makes it easy to map our parameters to the
algorithm. Moreover, PSO is fast and stable with respect to the initial
parameter values and it does not require gradient information. We
optimize the implicit shape representation and the noise-based (see
Sec. 4.3.2) surface details (see Sec. 4.3.3) individually.

Fitness Function

Choosing a good fitness function to compare the result generated
by PSO to the real-world model is essential for the success of the
optimization. In our implementation we used a histogram-based shape
descriptor presented in [85]. It was developed with the special scope
of considering large-scale models with local similarities that typically
appear in celestial bodies (see Chapter 3 for more details). In other
words, our optimization problem can be defined as:

minimize :
⃦⃦

histgenerate − histtarget
⃦⃦

2 (4.7)

Where histgenerate denote the histogram (see Chapter 3) of our proce-
drual asteroid and histtarget represent the target asteroid 3D model’s

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

88 astrogen - procedural generation of highly detailed asteroid models

histogram. The histogram histgenerate is a statistical property and we
choose the heuristic optimization method - Particle Swarm Optimiza-
tion (PSO) to execute random search on domain of definition. More-
over, the generation of histogram for each asteroid model is fast and
works completely on the GPU, thus, it fits perfectly in our heuristic
optimization pipeline. However, it is easy to include other fitness
functions.

Implicit Shape Optimization

In order to optimize the rough shape defined by the sphere-packing in
combination with the metaball approach (see Sec. 4.3.1), we simply use
the parameters from its description for PSO, namely, the number of
spheres, the two tension factors of the potential function (see Eq. 4.3)
and the blending parameter from Equation 4.5. This defined a 4D
parameter space. Figure 4.5 shows the results of this first optimization
stage for Itokawa.

4.3.5 Surface Detail Optimization

The surface details are represented by three different noise functions –
Perlin, simplex and Worley noise – and additionally, the noise mod-
ulation of the gradient of the Perlin and simplex noise. In addition
to the individual parameters (like frequency, amplitude, the number
of octaves) of the particular noises, we add four weight parameters
to control their individual amount. Moreover, we include three pa-
rameters to scale (scaling) the input grid point’s 3D coordinate axis
and another three parameters to define biases (translation) to the axis.
Another important parameter is the gradient and we directly multi-
ply our fractal noise with its gradient value. What’s more, we have
another three parameters to control the number (octaves) of perlin
noise, simplex noise and worley noise. In total we have 34 parameters
to control the possible pattern of the surface details (see Table 4.1).

4.3.6 Polygonization

VTBs usually require the 3D objects as polygon meshes instead of im-
plicit representations. However, it is easy to generate such a polygonal
mesh by using marching cubes (see Alg. 6) to compute an isosur-
face. In our recent implementation, we use an hierarchical GPU-based
version in order to quickly generate any required resolution. Please
note, also our fitness function described above requires a polygonal
(point cloud of the surface) representation to generate an appropriate
histogram based on the vertices [85]. However, we do not generate a
complete high-poly model, but our experiments have shown, that it is
sufficient to content with only a subset of around 10% of a full two
million vertex model when using Possion disk sampling [37] .

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.4 results and discussions 89

Figure 4.9: We use a hierarchical marching cubes algorithm to polygonize
our implicit object representation. The blue grid divides the object
into several smaller blocks. The marching cubes algorithm is then
performed on these smaller blocks individually.

Algorithm 6: Generate Triangles (Point pi, Block A)

In Parallel forall points pi ∈ A do
get pi eight neighbor grid points
compute marching cube case index m
compute number of polygons in current point grid n
for i in n:

check edge connect table[m, i]
interpolate between edges
emit point

4.4 results and discussions

We have implemented AstroGen in C++ and CUDA, including the
implicit generation and the optimization algorithm. The computa-
tion of the noise values is implemented using computer shaders and
marching cubes algorithm relies on geometry shaders in OpenGL.
We performed our experiments on a machine with Intel Core i7 8-
core processor with 8GB of RAM and an Nvidia GTX1080Ti. We have
evaluated the performance as well as the quality in two different test
scenarios. The basis is the optimization of all parameters for an avail-
able high poly-asteroid model of Itokawa. We set the problem space
to D = 34 according to Section 4.3.5. The population size of PSO was
set to N = 20 and we allowed at most 100 generations.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

90 astrogen - procedural generation of highly detailed asteroid models

Figure 4.10: The time required by our algorithm to generate 3D models of
Itokawa in several resolutions.

First, we investigated the performance to generate 3D objects from
our implicit representation with respect to the polygon count. Fig-
ure 4.10 shows the mean average computation time for the specific res-
olutions. The time increases almost linear with an increasing number
of polygons. Please note, that our current marching cubes implemen-
tation is not yet fully optimized. In the future, we hope to improve the
performance i. e. by additionally applying an octree to accelerate the
generation time. The training phase took approximatively 8 hours for
the implicit shape representation and 100 hours for the noise-based
surface features. Most time was spend on the generation of the high-
resolution model (90%), while the computation of the fitness function
required 10% of the overall time.

In our first test scenario, we applied our method to automatically
generate similar asteroids with small variations that are below a δ <

20% with respect to the fitness function. Figure 4.11 shows the original
model and some of the results2. Figure 4.11b exhibits most similarity
with the original Itokawa model, followed by a rapidly decreasing
in similarity but two different terrain patterns in Figure 4.11c and
Figure 4.11d.

In our second scenario, we transferred the parameter set for the
surface details that were trained with the Itokawa model to other (low-
poly) basic shapes from an asteroid database that were never explored
with a spacecraft. Figures 4.12 , 4.13 and 4.14 show the results for
Stein, Ceres and Lutetia, respectively.

4.5 conclusions and future works

We have presented the first fully automatic method to generate highly
detailed realistic models of small celestial bodies. The main idea
is to combine a two-tier approach of implicit shape representation

2 For more results please visit https://github.com/XZ-CG/asteroid-result

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.5 conclusions and future works 91

and different noise functions with an optimization algorithm. This
enables us to "learn" from real world or hand crafted models and
automatically generate an almost infinite number of small (or larger)
variations. Even more, our results have shown that we can apply the
learned parameters also to other, i. e. low-poly, models to generate a
similar surface structure. AstroGen runs completely massively parallel
on the GPU which indicates a high performance. As the trend in
future space exploration tends to focus on objects in deep space, the
importance of autonomy increases on-board of spacecraft. Hence,
AstroGen could be an important step to enable decision making in
virtual testbed by considering different scenarios and for the training
of autonomous algorithms in space crafts. Moreover, our sphere based
implicit surface be can easily extended to support a mascons-based
model to simulate the gravity of asteroid more accurately, even within
the Brouillon-sphere [139].

However, AstroGen also offers interesting avenues for future work.
For instance, we want to investigate heteromorphic shape reproduction
and improve the quality of the mesh in general. For instance, we
want to consider different basic shapes, instead of spheres, for the
implicit surface reconstruction with metaballs such as cubes, tori
or ellipsoids. This can be further combined with a tree-like structure
similar to BlobTrees [33]. For the surface details, we want to investigate
other noise functions and more parameters, but also thermal erosion,
hydraulic erosion algorithms are interesting [76]. This could improve
the naturalness of AstroGen. Finally, we want to improve the mesh
generation, for instance by adopting dual marching cube [130] to
enhance the visual fidelity of the isosurfaces.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

92 astrogen - procedural generation of highly detailed asteroid models

(a)

(b)

(c)

(d)

Figure 4.11: (a) The original model of the asteroid Itokawa (1,780k vertices).
Generated asteroid models with a similarity of (b) 95% (1,986k
vertices), (c) 90% (2,173k vertices) and (d) 85% (2,335k vertices).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.5 conclusions and future works 93

(a)

(b)

Figure 4.12: The original low-resolution Stein model (10k vertices) and our
automatically generated model with surface details (710k ver-
tices).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

94 astrogen - procedural generation of highly detailed asteroid models

(a)

(b)

Figure 4.13: The original low-resolution Ceres model (128k vertices) and
our automatically generated model with surface details (1,063k
vertices).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

4.5 conclusions and future works 95

(a)

(b)

Figure 4.14: The original low-resolution Lutetia model (122k vertices) and
our automatically generated model with surface details (778k
vertices).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5
P R O C E D U R A L 3 D A S T E R O I D S U R FA C E D E TA I L
S Y N T H E S I S

In this chapter, we will present a novel noise model to procedurally
generate volumetric terrain on implicit surfaces. The main idea is to
combine a novel Locally Controlled 3D Spot noise (LCSN) for authoring
the macro structures and 3D Gabor noise to add micro details. More
specifically, a spatially-defined kernel formulation in combination
with an impulse distribution enables the LCSN to generate arbitrary
size craters and boulders, while the Gabor noise generates stochastic
Gaussian details. The corresponding metaball positions in the un-
derlying implicit surface preserve locality to avoid the globality of
traditional procedural noise textures, which yields an essential feature
that is often missing in procedural texture based terrain generators.
Furthermore, different noise-based primitives are integrated through
operators, i.e. blending, replacing, or warping into the complex volu-
metric terrain. The result is a completely implicit representation and,
as such, has the advantage of compactness as well as flexible user
control. We applied our method to generating high quality asteroid
meshes with fine surface details.

5.1 introduction

The evolving space technologies for planetary missions have grown
from flyby observation to collect samples from celestial bodies. Studies
of celestial bodies has progressed from observe their activities, i. e.,
orbit and spin to touching physical properties such as surface and sub-
surface materials, and the latter may provide insight into the Earth and
the formation and early evolution of the solar system. For instance,
currently there are two ongoing sample return missions: NASA’s
OSIRIS-REx and JAXA’s Hayabusa2 study the asteroids Bennu and
Ryugu, respectively. Both spacecraft are orbiting around the asteroid
and has begun assessing the safety and sample-ability of potential
sample collection site.

To ensure the success of such asteroid sampling missions it is es-
sential to test the missions in advance with a wide variety of diverse
scenarios of the hardly known asteroid shapes and surfaces. Further
accurate data on robotic performance and sampling must be gathered.
In pursuit of this goal, a method to synthesis huge amount of complex
asteroid surface details as the virtual testbed is needed. This is typi-
cally done in virtual testbeds. In addition, the demanding for diverse
high quality asteroid models in space video games, i. e., Kerbal Space
Program, or movies has advanced significantly over the past decades.
Hence, highly detailed 3D models of asteroids shapes and surfaces
are required to cover a wide variety of possible scenarios. Obviously,
also the video game or movie industry are interested in complex and

97

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

98 procedural 3d asteroid surface detail synthesis

realistic high quality 3D models of celestial bodies. Generating them
manually is not an option because of the large amount of test cases.
Consequently, automatic shape generation is required.

The generation of diverse virtual testbeds for asteroid sampling
mission is challenging for two reasons: first, the uneven distribution of
asteroid’s microgravity field leads to the terrain can no longer treated
as the heightfield on a regular 2D grid but 3D heightfield embedded
into a surface. Second, the surface of real asteroid presents locality
which reflect their interior properties as well as the impact from outer
space. For instance, Hayabusa2’s detailed images of Ryugu reveal
asymmetries of the asteroid, the western region is smoother than
the eastern part [63]. Traditional procedural texture method generate
similar pattern globally and require manually re-editing the texture to
achieve locality.

As explained in Chapter 2.3, one of the most promising technique
to alleviate the challenge of authoring complex asteroid models is
procedural content generation. Proceduralism refers to a method that
abstracts the underlying shape to be represented into by compact,
elegant rule or equation that can be amplified on demand to produce
complex models. Moreover, once those rules or equations have defined
we can easily manipulate it to create a procedural workflow which will
dramatically decrease the amount of manual intervention in complex
space scene authoring. On the other hand, the compact essence of
procedural method make it suitable for virtual testbed platform.

We introduce a novel noise model that combines local controlled spot
noise (LCSN) [112] with Gabor noise by example (GNBE) [46] to solve the
challenge of automatic asteroid surface detail generation. Our main
contributions are:

• a new spatial defined kernel formulation of spot noise relying on
several intuitive parameters to generate arbitrary sized craters
and boulders and

• an integration of GNBE with our 3D noise model which can
extract noise parameters from example textures.

The new noise model mix both spot noise focus on spatial macro
structures i.e. craters or boulders of asteroid surface, and gabor noise
generate gaussian textures as the micro terrain details. With procedural
volumetric terrain generator to achieve a fully implicit representation
of complex asteroid model.

In order to generate a rough shape of the celestial bodies we have
modified AstroGen [83] which is a volumetric modeler that can use
existing geometric models as constraints to implicitly approximate
the shape by a polydisperse sphere packing [159]. Our method can
be a supplement to the procedural workflow (see Fig. 5.2) to generate
diverse complex surface details of celestial bodies (Figure 5.1 present
the possibilities offered by our new noise model to generate volumetric
terrain through the rough shape of several asteroids).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.2 related work 99

Figure 5.1: Asteroid field. All asteroid models are generated with our volu-
metric terrain model.

5.2 related work

Procedural approaches have been widely used since the seminal work
by Perlin in 1980s. Since then, it has shown extraordinary advantage
in modeling, rendering and texture synthesis. Our work is related to
procedural noise and procedural modeling.

Procedural noise gained attention and interests of many researchers
in the past decades due to its efficiency, low storage requirements and
its non-periodicity. A detailed overview of procedural noise functions
can be found in [75]. Here, we review more recent developments
which are directly related to our work.

Galerne and Lagae [46] proposed Gabor noise by example, a segmen-
tation approach of the exemplar Gaussian texture’s power spectrum
into a sparse sum of Gaussian envelops, to generate noise with a simi-
lar power spectrum. However, the Gaussian texture fails to preserve
large structures which is very important in many applications. Several
attempts have been made to deal with structured patterns as well as
the efficiency of the algorithm. Gilet et al. [55] introduced local-random
phase (LRP) noise that demonstrated great ability to generate noise
textures with spatial and spectral control. Their noise function was
defined on a regular grid to sum localized cosine functions with ran-
dom or deterministic phases, and the local phases of the input texture
can be preserved to generate structure patterns. Subsequently, Pavie
et al. [112] proposed Locally Controlled Spot Noise as an extension of the
LRP noise model that is based on a controlled density profile distribu-
tion of Gaussian kernels to generate near-regular to irregular patterns.
Galerne [47] proposed texton noise which improves the Gabor noise by
example significantly in the aspect of parameter estimation and the
efficiency. More recently, Tricard et al. [150] presented phasor noise
which addressed the contrast oscillation problem and reformulates
the Gabor noise into local density and phase, providing fine controls
over the fine microstructures through editing the profile function.
Cavalier et al. [24] further strengthened LCSN by introducing an intu-
itive geometric matrix formulation to the kernel and an anisotropic

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

100 procedural 3d asteroid surface detail synthesis

Figure 5.2: The workflow of our new procedural noise model.

filtering scheme which significantly improved the rendering result
of procedural textures. We extend 2D Gabor noise by example to 3D
procedural modeling, where the heightmap with structure pattern is
used as exemplar to generate terrain on the base implicit surface.

Procedural modeling have been used in computer graphics for
decades. This method represent models in a mathematical way, and
despite the considerable progress in procedural modeling the terrain
generation is still an open problem [53]. In large outdoor environments,
the geometry of terrain landscapes requires significant storage and
rendering bandwidth. In a procedural approach, rather than explicitly
specifying and storing all the complex details of a scene or sequence,
which abstract them into a function or an algorithm and evaluate that
procedural when and where needed. As a results, systems offering
procedural modeling techniques are under intensive studies,i. e. [30,
52, 53, 128]. Those techniques can be divided into two directions,
fractal noise based terrain and physical based terrain.

First, fractal noise based terrains are created by summing band
limited noise octaves each having a randomly varying amplitude.
For instance, Musgrave [99] presents the famous fractal terrain us-
ing Perlin noise as the base function. [52] focus on Hydrology ter-
rain simulation, they use fractal interpolation to connect predefined
physical-based river network, mountain ridges and valleys of the
terrain. Santamaria [128] introduce a method for volumetric terrain
generation that utilizes Perlin noise for the terrain layer generation.
Layers are the base parts of the resulting volumetric terrain, obtained
by sampling Perlin noise do determine the layer thickness and shape.
However, designing those lattice-based noise summations and mod-

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.3 our approach 101

eling to achieve desired results inherently unintuitive and requires
extensive manual work.

Second, physics-based modeling enable the terrain landscape to
cope with its environment and produce realistic motion and behavior.
[53] introduced skeletal implicit surface with feature-based primitives
(i. e., rivers, mountains) into a construction tree to describe complex
terrains. [30] incorporate several phenomena, sunlight, temperature,
prevailing wind direction with snow evolution to simulate the dynamic
snow-covered terrain.

Although those algorithms can generate infinite realistic terrains,
they either need intensive human intervention or less user control.
Therefore, reproducing terrain features using a height map as a source
which effectively cover an arbitrarily large area without seams or ob-
jectionable repetition while maintain the source height map’s features
can be a good option. As a result it would be useful if combining
and parameterizing noise could be done automatically by using an
example height map from which noise parameters are extracted. In
this paper, we are the first to integrate implicit surface with Gabor
noise by example [46, 47] to synthesize features of an example terrain
topology as our base mesh and give user more control compared with
the traditional Perlin noise based fractal terrain.

More closely, Martin [92] proposed a method to synthesis the crater
and boulder on the surface of asteroid for the landing system.

5.3 our approach

The basis of our implicit asteroid generation is a metaball represen-
tation defined by a sphere packing of the rough shape according
to AstroGen [83] (details also explained in Chapter 4). Additionally,
we add surface details via spot and Gabor noise. Hence, the com-
plete asteroid can be represented as an isosurface of the function
S =

{︁
p ∈ R3 | f (p) = T

}︁
with:

f (p) = m(p) +
I

∑
i=1

dist(p − pi)ni(p) (5.1)

where m(p) represents the implicite surface of the metaballs for each
point p ∈ R3 in 3D. Additionally, we assign a noise function ni to each
sphere i = 1, ..., I to control the influence of the individual spheres
to the surface details. This guarantees the locality of our approach.
Obviously, the influence also depends on the distance (∥p − pi∥2 − r)
of the sphere’s center pi to the point p. Each sphere i control the
weight of noise pattern on its surface based on the distance (dist(p) =
w · tan−1(dist(p− xp)), pi represent the center of each metaballs, tan−1

to restrict the value into range [0, π/2]). In Figure 5.3 we showed the
spatial heterogeneity effects of our inverse distance weight function.

The noise functions for the surface details ni(p) are a multi-layer of
spot and Gabor noise functions and can be written as

ni(p) =
J

∑
j=1

spot_noisej(p) +
Q

∑
q=1

gabor_noiseq(p) (5.2)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

102 procedural 3d asteroid surface detail synthesis

(a)

(b)

Figure 5.3: The distance factor dist(p − pi) control the influence area of noise
layers on the surface of each inner metaballs, with the parameter
w controls the size of influence area. For instance, in (a) the
parameter w = 1 and (b) the parameter w = 2.

In the following, we will concentrate on the surface details ni(p).
We refer the interested reader to Chapter 4 to find more about the
computation of the metaballs shape m(p).

5.3.1 Macro Terrain Structure

Recap: Locally controlled spot noise

Here we will go through the locally controlled spot noise [112] algorithm
to make it better understanding our main idea. The LCSN aim at spa-
tial macro characteristics that cannot be produced by the sole power
spectrum definition. As Leeuw [34] mentioned that the spot noise
is able to transfer the characteristic of the kernel, such as anisotrop-
ic/isotropic or shape contour, into the texture. Thus spot noise is able
to produce a wide range of patterns with structural features. In other
words, when the kernel contains some structures, this structure is
shifted directly to the texture. The LCSN can be defined as:

spot_noise(p) =
I

∑
i

J

∑
j

wj(pi,j)kernel((p − pi,j)V−1(p − pi,j)) (5.3)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.3 our approach 103

where pi,j is a random impluse position of the kernel, and matrix
V−1 = (MRS)−T(MRS)−1 consist the information of shift (M), ro-
tation (R), and scaling (S) matrix related to the underlying kernel
function (i. e., Gaussian function kernel = Aex and its extensions are
the most commonly used functions). The outer summation I is a com-
position of several spot noise and each spot noise is able to model a
specific set of patterns (see Fig. 5.4). That means several kernels can be
consists into a more complex shape. Moreover, the particular pattern
in the kernel of the spot noise can also be modulate into the lattice, by
simply changing the shape of the lattice will result in diverse regular
patterns (see Fig. 5.5) on the texture. The manipulation of the lattice
(angle between the cell) introduce a new level of control over diversity
of the generated texture and can be used to regulate the large scale
structure.

Figure 5.4: The left image is the kernel of the spot noise (summation of four
ellipsoid gaussian function) and the right image is the correspond-
ing noise [112].

Figure 5.5: The left image is irregular lattice (change the angle of the cell) and
the right image is texture from the spot noise kernel modulate
onto the lattice [112].

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

104 procedural 3d asteroid surface detail synthesis

Our Macro Terrain Structure

Recent data from the spacecraft OSIRIS-REx and Hayabusa2 proved
the surface of both target asteroids are consistent with a rubble-pile
structure, an aggregate of numerous boulder blocks [79, 141]. And
another dominant terrain feature on asteroid is the crater, which
occurs due to impacts and various in shape and depth of different
asteroids [5]. The morphometry of these craters can be classified into
two types: for the first type the impact happens on the bedrock and
the second volcanic type where the impact on the soft surface and the
material accumulate at the border. Here we focus on large and middle
size boulders and craters through LCSN.

The LCSN model is a kind of sparse convolution noise introduced
by Pavie et al. [112]. It relies on the summation of spatial kernels at
uniform positions in texture space and the structural feature of the
spatial kernel can be transferred to the texture. In order to generate
two different types of craters we introduce two spatial kernels (see
Eq. 5.5 and 5.6) as well as new control parameters for the synthesis of
various shapes of craters:

spot_noisej(p) =
L

∑
l=1

wl(k1(p − pl) + k2(p − pl)) (5.4)

with the two different kernels

k1(p) = e−αpT p (5.5)

k2(p) = κe−β(log(γpT p))2
(5.6)

where k1 is a Gaussian kernel that generates normal craters where
the parameter α controls the depth. In contrast, k2 generates volcanic
craters where κ controls the depth and β and γ define the radii of
the outer and the inner ring, respectively. The individual kernels are
combined with the weighting factors wl ∈ [0, 1] in Equation 5.4. pl is a
simple impulse following a Poisson distribution according to [112].

Moreover, we want to control the shape of the craters to allow
also ellipsoidal shapes. Our approach is different from Pavie [112] by
introducing the ellipsoidal gaussian kernel. Our basic idea is to simply
truncate the pure gaussian kernel outside a certain area named kernel
area to control the shape. By simply setting k1,2 = 0 in the case that
(p− pl)

TV−1(p− pl) > σ for a diagonal matrix V and a user-definable
influence radius σ we can easily achieve this.

These definitions for our macro details have several advantages:

1. By introducing J layers of LCSN we can generate different sizes
of craters simultaneously through the scaling of input point
(p − pl) for each layer. Moreover, doubling the scale of the input
point also scales the number of craters. This is according to the
literature that states the distribution of large size craters and
smaller size craters obey an exponential trend [79].

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.3 our approach 105

2. The Poisson distribution of impulses pl controls the position of
craters which leads to a random distribution of the craters (see
Fig. 5.7a).

3. By introducing the kernel area σ we can achieve shape control
while avoiding possible repetitions: normally, the structure gen-
erated by the spot kernel relies on a regular grid and within each
grid cell, it generates similar pattern. In our case, the density of
craters follows the user-definable probability within each grid
cell. By defining the kernel area σ and the distribution range
of the impulse we can easily control the occurrence of craters
to break the repetition on the surface of the asteroid because
the impulse position is not limited to one grid cell but includes
neighbour areas.

For the generation of boulders we can simply inverse the value
of the spot noise and design a different ellipsoidal shapes similar to
boulders (see Fig. 5.6). This definition provides intuitive control of the
result: the shape of craters (boulders) in each layer can be explicitly
authored by setting up the diagonal matrix V, while the distribution
of craters in each layer can be achieved by controlling the distribution
of impulses and the size of kernel area σ.

(a)

(b)

Figure 5.6: The image shows the corresponding boulders generated by invert-
ing the value of our spot noise model. (a) The ellipsoid boulder
generate by the kernel k1. (b) The ellipsoid boulder generate by
the kernel k1 under the restriction of kernel area σ.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

106 procedural 3d asteroid surface detail synthesis

(a)

(b)

Figure 5.7: (a) The image shows some craters generated by our spot noise
model on the implicit surface. With the intuitive noise parameters
we can easily change the shape and density of the crater (The big
volcanic crater we set κ = −4.9, β = −10.0, γ = 0.2, for the tiny
normal craters we set α = 0.09). (b) The image shows the effects
of diagonal matrix M&V to the shape of volcanic crater.

5.3.2 Micro Terrain Details

Recap:Gabor noise by exmaple

Noise by example texture algorithm origin from the same property
they own, as what is known their spatial domain in statistics can
be seen as Gaussian random field. More specifically, both noise and
example texture are completely characterized by their power spectrum.
Here, the example texture specifically means Gaussian texture, a
class of stochastic textures whose phase spectrum information are
destroyed [45]. The problem of procedural noise by example can thus
be solved by choosing a appropriate noise function and setting the
parameters such that the power spectrum of the noise is similar to
that of exemplar. The challenge for noise by example algorithm is
to efficiently compute a precise approximation of a given Gaussian
texture’s power spectrum. The Gabor noise by example algorithm can
be mainly divided into two step: Gabor noise function and power
spectrum estimation.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.3 our approach 107

Gabor noise was initially proposed by Lagae et.al [77], since it has
a complete user control on the power spectrum that can be used
as the basis to approximate arbitrary power spectra. The origin of
their algorithm is the power spectrum of Gaussian texture can be
decomposed into G symmetric pairs of Guassians patches. Due to
the consistency of gaussian function under Fourier transform the
corresponding Gabor noise in spatial domain can be evaluated with a
combination of G noises into bandwidth-quantized Gabor noise. The
two-dimensional anisotropic bandwidth-quantized Gabor noise [46] is
defined as

g(x) = ∑
b∈B

1√
λb

∑
i

1
√pb,i

g(x − xb,i; Kb,i, ab, wb,i, ϕb,i) (5.7)

where ab = 2−b√︁ π
2 ln 2 [15] and λb = ∑g λb,g represent the parameters

of each Gabor kernel {(Kb,i, wb,i)} are randomly chosen from Gaussian
patches G, under probability of pb,g = λb,g/λb. The corresponding
power spectrum of the noise g(x) is

Sn(ε) = ∑
b∈B

Gb−1

∑
g=0

K2
b,g

8a2
b

G(ε;±wb,g,
ab

2
√

π
) (5.8)

From this first step we get the bandwidth-quantized Gabor noise
g(x) and its shape in power spectrum Sn(ε). We need to determine the
parameters of Sn(ε) to partition the Gaussians into the power spectrum
to fit with the power spectrum of the example Gaussian textures. For
the given M × M exemplar’s power spectrum Sex(ε0, ε1)(ε0, ε1 ∈
−M

2 , . . . , M
2 − 1), by placing each discrete frequency (m0, m1 ∈ −M

2 ,
. . . , M

2 − 1) with a Gaussian under each bandwidth b with magnitude
K. The goal of the parameter estimation is to find a parameter vector
(b, m0, m1) satisfying three constraints:

1. the power spectrum of the noise with the exemplar must be close
to each other,

2. all Gaussian’s parameter must be positive, and

3. α is sparse, i.e. the representation is compact and computation
efficient.

Those equations can be solved by using the fast iterative shrinkage
thresholding algorithm (FISTA) [7], combined with the duality gap
stopping criterion associated to the corresponding convex problem (see
Eq.5.9 [46]) with the solver in Matlab. In Equation 5.9 the definition
domain is a convex set [0,+∞) and the Sn as a set of gaussian functions
is not convex but the quantized bandwidth b is a fixed set. The discrete,
fixed size Sn becomes a convex problem [46]. As a result, the f (α) as
the ł2-norm of Sn is also a convex problem and can be solved by FISTA.
For more details of the algorithm see [46].

{︄
minimize f (α) = ∥Sn − Sex∥2

2 + ν ∥α∥1 ,

subject to α ≥ 0
(5.9)

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

108 procedural 3d asteroid surface detail synthesis

Our Micro Terrain Details

Fractal-based terrain was introduced by Mandelbrot [91] in 1980s,
which exhibits the self-similarity of terrain. Textures generally are
referred to as a surface or area composed of repeating patterns and
the fine details of terrain can be reproduced by textures.

Micro details of terrain can be defined as Gaussian random fields [106].
Gabor noise was initially proposed by Lagae et.al [77], since it has a
complete user control on the power spectrum that can be used as the
basis to approximate arbitrary power spectra. Subsequently, Galerne
et al. [46] proposed a GNBE algorithm using a sparse representation
of examplar’s power spectrum and a bandwidth-quantized Gabor
kernel for the efficient computation. According to Gilt et al. [55] and
Pavie et al. [112] both LRP and LCSN noise models are able to gener-
ate textures from examples. However, LCSN and LRP models focus
on synthesizing structured textures and the parameters have to be
selected manually. Our goal is a sparse representation of fine terrain
details without structures. Actually, GNBE allows a higher level of
flexibility in controlling the final results.

First, We briefly present a summary of the GNBE approach and
then introduce the details of our terrain generated by the GNBE.

By-example Gabor noise is based on a spectrum segmentation to
G symmetric pairs of Gaussian patches, and extract the magnitudes
and phases of structural energy to compute the approximation of
gabor kernels. Therefore, the gabor noise by example algorithm can
be mainly divided into two step: gabor noise function and power
spectrum estimation. Galerne use a sparse representation of power
spectrum to efficiently compute a precise approximation of a given
gaussian texture’s power spectrum. Due to the consistency of gaussian
function under fourier transform the corresponding gabor noise in
spatial domain can be evaluated with a combination of G noises into
bandwidth-qauntized Gabor noise. The problem thus be solved by
choosing the appropriate bandwidth-gabor kernel and setting the
corresponding parameters such that the power spectrum of the noise
is similar to that of exemplar.

The anisotropic bandwidth-quantized Gabor noise [46] is defined
for each point p ∈ R3 as

gabor_noiseq(p) = ∑
bϵB

1√
λb

∑
i

1√︁
Pb,i

kernel(p − pi) (5.10)

with

kernel(p − pi) = Ke−πa2|p−pi |2 cos(2π(p − pi) · w + ϕ) (5.11)

Where pi denotes the impulse and follows a Poisson distribution.
The corresponding impulse density λ in expected number of impulses
N per kernel area πr2, which corresponds to an impulse density of
N/π impulses per voxel cell (see Fig. 4.9). The kernel parameter
K, w, a and ϕ controls the amplitude, frequency, bandwidth, and phase
of each Gabor kernel which are randomly chosen from G Gaussian

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.3 our approach 109

patches, under probability of Pb,g = λb,g/λb. Then the properties asso-
ciated with the Gabor kernels, such as their amplitude and frequency,
are randomly generated according to the corresponding probability
distributions. Through quantize the bandwidth a into a small set of
B bandwidths is able to simplify the parameter estimation, and the
resolution of the fine details can be controlled.

By decomposing the example’s power spectrum into a sparse sum
of Gaussian patches using a non-negative basis pursuit denoising we
can compute the parameters of the bandwidth-quantized Gabor noise
to fit with the power spectrum of the example Gaussian textures [46].
Here, we evaluate the parameter of example textures (see Fig. 5.8
left) and apply the corresponding parameter into our 3D Gabor noise
model to generate similar terrain details (see Fig. 5.8 right).

(a)

(b)

Figure 5.8: (a) The left column is the input image, the top image is the texture
of a rocky surface and the bottom image shows a sand ground.
The right column shows the corresponding terrain details from
our example textures. (b) By applying different pattern of example
input we can generate different surface details.

Like for the LCSN, we also extend the GNBE into three dimensions.
The final result is a noise model on an implicit surface. Inspired
by Lagae’s et.al [77] surface noise, we simply project the Poisson
distribution of impulses onto the tangent space of the implicit surface

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

110 procedural 3d asteroid surface detail synthesis

and compute our noise model within each grid point’s tangent space.
Due to the essence of volumetric representation our volumetric terrain
can easily generate caves or overhangs on the surface of the asteroid
which is impossible for traditional 2D grid heightfield methods.

5.3.3 Erosion

In order to provide a proof-of-concept, we added a physically based
erosion to our procedural terrain, even though erosion hardly affects
asteroids in the real world. Such physical-based simulations are sensi-
tive to distortions, hence a traditional 2D parameterizations does not
produce good result in general, while our 3D grid terrain model fits
very well with these kinds of simulations.

Temperature variation plays an important role in triggering the
fracture of bedrock - referred to as thermal erosion. Therefore, erosion
becomes one of the most important terrain modification algorithms. It
is a simple simulation function performed on the entire terrain that
sums target grid point’s height difference for neighboring points, apply
a height modification according to the terrain flow ability parameter,
and adds some randomization to achieve a better natural look. The
simulation is done by a cellular automation residing on the surface of
the object. Because the point is built around a 3D surface, the average
number of connected neighbors is 6.

The erosion algorithm was initially proposed by Musgrave [99]
as a two-tire process: the hydraulic erosion and thermal weathering.
Considering the inexistence of hydraulic erosion on asteroid but the
thermal erosion is pervasive. Consequently, we have implemented a
fractal thermal erosion algorithm proposed by Musgrave [99], which
improves the level of realism in the surface details. This erosion model
is a method to simulate the loose material falls down to pile up at the
bottom. The result incline to generate a terrain with talus slopes of
uniform angle. More specifically, at each time step t + 1, the erosion
model will compare the difference between the altitude av

t at the
previous time step t of each vertex v and its neighbors u to the (global)
constant talus angle T [99]. When the evaluated slope av

t − au
t is larger

than T, we will move a fixed number of extra slope onto the neighbor
(see Eq. 5.12(1)).

au
t+1 =

{︄
av

t − au
t > T : au

t + ct(av
t − au

t − T) (1)

av
t − au

t ≤ T : au
t (2)

(5.12)

We have integrated this effective and efficient erosion model with
our procedural volumetric terrain which chips away steep terrain
features and forms smooth talus slopes. As a consequence, we can see
clearly that as the time evolution the sediment located at the area with
higher slope eroded and the flat areas become smoother which is the
same with the physical world observation (see Fig. 5.9).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.4 results 111

Figure 5.9: We simulate the erosion phenomenon on the surface of mountain-
like terrain and we can see the tendency of sediment concentrate
to area with higher slope (the mesh with 3,043K vertices).

5.4 results

We have implemented our system in C++ with the use of OpenGL
and GLSL. All examples in this paper were created on a desktop
computer equipped with Intel 3GHz Core i7 with 32GB RAM and
an NVIDIA GeForce GTX 1080Ti. In order to generate a waterproof
mesh we extract the isovalue points from a 3D grid and use a screened
Poisson surface reconstruction algorithm [70] to generate the final
mesh from the extracted point cloud. The output mesh was streamed
into Blender to produce photorealistic asteroid surfaces (see Fig-
ures 5.1, 5.7a, 5.6, 5.8, 5.10, 5.11, 5.12).

5.5 conclusions and future work

We have presented a novel noise model for generating diverse ter-
rain types on the surface of small celestial bodies. Our noise model
combines LCSN with GNBE to synthesis the macro terrain features
like craters or boulders and micro details. Moreover, our method pro-
vides local control from the metaball positions in the implicit surface,
which avoids the globality of traditional procedural texture methods.
Also, our approach makes it easy for non-professionals to almost au-
tomatically author diverse complex 3D models by changing just a few
parameters.

Through our procedural method we can build a fully procedural
workflow , which can alleviate the demands for high-quality 3D mod-
els in the 3D industry, i. e., entertainment, 3D printing. Our volumetric
object representation is very memory efficient: we just have to store a
set of spheres together with a set of noise functions. the sphere pack-
ing representation automatically leads to a level-of-detail algorithm
by considering the largest spheres first.

Our results show the quality of the generated terrains and the
comprehensibility of the parameters. The performance is dominated
by the evaluation of the Gabor noise and locally controlled spot noise

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

112 procedural 3d asteroid surface detail synthesis

patches which is computationally more expensive than computing
simple Perlin noise. Even though our implementation is currently not
suitable for real-time editing, it can certainly be accelerated further,
i. e., improving the computation of Gabor noise [143]. However, this
has to be considered carefully to remain continuity.

In the future, we plan to extend our method to more general use
cases, such as terrain covered with icebergs or complex terrestrial
terrains including overhangs and caves. Furthermore, our method can
be integrated with other terrain synthesis approaches, such as the
simulation of physical phenomena, i. e., erosion. Potentially, it could
also be applied to more general physical simulations of elastic objects,
with volume preservation or even topological changes, which would
be essential, for instance, in medical applications.

(a)

(b)

Figure 5.10: Results from our procedural noise model applied to a low reso-
lution Itokawa model.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

5.5 conclusions and future work 113

(a)

(b)

Figure 5.11: Results from applying our implicite method to represent the
asteroid Eros.(a) We show the local control with the right part
boulders only and left part a mixture of micro details with
different size craters.(b) We show a gravel tiled surface.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

114 procedural 3d asteroid surface detail synthesis

(a)

(b)

Figure 5.12: Our procedural noise model applied to a low resolution model
of the asteroid Bennu.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

Part III

E V E RY E N D I S J U S T A N E W B E G I N N I N G

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

6
E P I L O G U E

In this chapter, we will summarize the key contributions presented in
this thesis at first. Then, we will venture to discuss possible research
benefits in the field of procedural method and close areas. For the
sake of simplicity, we will restrict the summary section to the basic
concepts or results which appears in the previous chapters. You will
find further specific explanation about those concepts or results in
each separate sections of the relevant chapters. Nevertheless, you can
also find the discussion of technical advance and extension of our
procedural method, and conceivable applications in the corresponding
chapters. In the future directions section, we try to depict a broaden
overview of future research challenges of the procedural method in
computer graphics.

6.1 summary

The work presented in this thesis can be mainly divided into two
types of contribution to procedural modeling: firstly, automate the
traditional manual implicit modeling process into a machine learn-
ing task; secondly, strengthen the accuracy of implicit modeling and
widening the application of procedural modeling shapes that can be
applied.

Procedural modeling as one of the enabling technology adopted
by lots of applications where needs to deal with objects in motion
or visualization. Often this method begins from a set of predefined
skeleton vertices or hand drawing sketches defined by the designer
and then the modeler assemble basic geometric primitives and blend
them into a whole. This process is usually cubersome, expensive,
low efficiency and can hardly cope with the widespread desire of
procedural method. Moreover, the ever-increasing complexity of the
photorealistic scene, which enabled by the exponential growth of the
computing power (i. e., GPU, cloud computing), also brings continually
growing demands on the procedural modeling method to relief the
deficiency of more accurate collision detection algorithms.

We have introduced a new procedural method (AstroGen) to auto-
matically implicitization any watertight constraint shape in order to
ease the increasing demands in authoring arbitrary shapes as well as
collision detections. It is partly based on the sphere-packing algorithm.
However, we have optimized the blending function so it can better
approximate the given shape as well as reduce manual interventions.
The new method is able to make the creation of free-form surface
easier and more intuitive.

The lack of details is one of the main problems of implicit surfaces.
Another contribution we presented is a new noise model to remedy
the drawback of lacking surface details, and from the noise model we

117

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

118 epilogue

can synthesis desirable spatial geometric details. This noise model is
based on the Gabor noise by example algorithm for the micro details and
the Locally Controlled Spot Noise for the macro structures. The mixture
of two kinds of noise provide a much larger type of patterns can be
generated and especially well-suited for asteroid surface details syn-
thesis. A coherent distribution of the noise pattern with respect to the
underlying implicit surface is obtained through the position of inner
metaballs. In addition, the procedural noise texture is parameteriza-
tion free, so the geometric details in the noise function can be applied
to the implicit surface seamlessly and with no distortion. Furthermore,
the noise model enables a few intuitive parameters to precisely control
the shape of the kernel which helps simulate the physically correct
virtual testbed when working with real terrain simulation.

6.2 future directions

Recent AAA games (e. g., The Legend of Zelda [145]) already shows a
fully immersive and interactive virtual environment that comparable
to the real world. However, the pursue of efficiency and more precise
photorealistic scene is endless. Nowadays, the advance in hardware
and software offers possibilities that were unimaginable just in a few
years. In this section, we will present some short-term objectives tar-
geting the more efficient and realistic procedural modeling algorithms,
with particular attention on the shape approximation, visualization
and animation that will probably concern the computer graphic re-
search community in the next few years.

6.2.1 Modeling with Artificial Intelligence

Graphs are a kind of data structure which models a set of objects
(nodes) and their neighbor connections (edges). As an unique non-
euclidean data structure the graph neural network (GNN) focuses
on node classification, link prediction, and clustering [18]. GNN is a
connection model that capture the dependency information within the
graph via message passing between nodes. Different from the standard
neural networks, graph neural networks utilize the state to preserve
neighborhood information with arbitrary depth. Although the early
GNN has been found difficult to train for a fixed point [138], recent
advances in network architectures, optimization techniques, and paral-
lel computation have enabled successful learning with them [86]. Our
previous metaball-based representation is an ideal case for building
graphs. For instance, the position of each metaballs (nodes) and the
connection of their neighbor balls (edges) are able to build a graph.
Subsequently, we can directly apply GNN forward or backward op-
erators to do the node classification and prediction. There are many
great advantages to solve the problem in graph domain, because 1)
graph is the most intuitive structure to represent the locally connected
non-euclidean structure; 2) sharing weights between nodes will signif-
icantly decrease the computation cost compared with the traditional

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

6.2 future directions 119

spectral-based graph theory [138]; 3) multi-layer structure of the graph
is key to manage hierarchical patterns. All those advantages possible
helps our optimization of metaball-based rough shape more accurate
and also speed up the convergence process.

6.2.2 Visualization

It would be important to improve the efficiency and accuracy of the
visualization. The core idea of the ray-tracing algorithm is to test the
intersection between the surface and the individual ray. In our research,
the virtual scene can be represented with an implicit equation where
the intersection can be evaluated in linear time O(n). Moreover, we
can also compute the intersection in advance or in demand to further
reduce the computation time. In addition, our representation can be
integrated with the accelerate data structure (i. e., octree, sphere tree)
to further decrease the time consuming of ray-tracing especially in the
complex scene. Meanwhile, we can assign various optical properties to
the implicit surface to boost the visual qualities during the ray-tracing
process.

6.2.3 Animation

There is probably some work to be done on animation with proce-
dural representation surfaces. For instance, it will be interesting to
introduce constraints such as constant volume deformation during
animation. Different deformation states associate with different pa-
rameter spaces, and we can build a smooth interpolation between
those parameter spaces to achieve continuous movements under the
deformation. Another interesting topic is to improve the user’s manip-
ulation, for instance it should taken into account how the particular
sets of parameters manipulate their counter part skeletons (i. e., a
set of parameters to manipulate muscles on an arm), and we can
create some animations directly from those parameters. Hierarchical
deformation will also require procedural method: for instance, if a
skeleton inflated into a surface from an existing shape, this property
should be retained during animation. Lastly, our surface details can
be applied to animation, such as the avatar’s hair can be generated
from some physically-based noise model. More specifically, procedural
noise model is able to generate wisps or other sharp features that able
to freely and smoothly merged or divided during animation.

As a conclusion, we hope that this thesis will help procedural
method becomes more popular in all areas of computer graphics.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

Part IV

A P P E N D I X

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

B I B L I O G R A P H Y

[1] Baptiste Angles, Marco Tarini, Brian Wyvill, Loïc Barthe, and
Andrea Tagliasacchi. “Sketch-based implicit blending.” In: ACM
Transactions on Graphics (TOG) 36.6 (2017), p. 181.

[2] Michael Ashikhmin. “Synthesizing natural textures.” In: Pro-
ceedings of the 2001 symposium on Interactive 3D graphics. 2001,
pp. 217–226.

[3] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. “The
wave kernel signature: A quantum mechanical approach to
shape analysis.” In: Computer Vision Workshops (ICCV Work-
shops), 2011 IEEE International Conference on. IEEE. 2011, pp. 1626–
1633.

[4] Aurélien Barbier, Eric Galin, and Samir Akkouche. “A frame-
work for modeling, animating, and morphing textured implicit
models.” In: Graphical Models 67.3 (2005), pp. 166–188.

[5] OS Barnouin, MG Daly, EE Palmer, RW Gaskell, JR Weirich, CL
Johnson, MM Al Asad, JH Roberts, ME Perry, HCM Susorney,
et al. “Shape of (101955) Bennu indicative of a rubble pile with
internal stiffness.” In: Nature geoscience 12.4 (2019), p. 247.

[6] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
“Speeded-up robust features (SURF).” In: Computer vision and
image understanding 110.3 (2008), pp. 346–359.

[7] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.” In: SIAM
journal on imaging sciences 2.1 (2009), pp. 183–202.

[8] Adrien Bernhardt, Loic Barthe, Marie-Paule Cani, and Brian
Wyvill. “Implicit blending revisited.” In: Computer Graphics
Forum. Vol. 29. 2. Wiley Online Library. 2010, pp. 367–375.

[9] Pravin Bhat, Stephen Ingram, and Greg Turk. “Geometric tex-
ture synthesis by example.” In: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing. 2004,
pp. 41–44.

[10] James F Blinn. “Simulation of wrinkled surfaces.” In: ACM
SIGGRAPH computer graphics 12.3 (1978), pp. 286–292.

[11] James F Blinn. “A generalization of algebraic surface drawing.”
In: ACM transactions on graphics (TOG) 1.3 (1982), pp. 235–256.

[12] James F Blinn. “A generalization of algebraic surface drawing.”
In: ACM transactions on graphics (TOG) 1.3 (1982), pp. 235–256.

[13] Jules Bloomenthal. “Bulge elimination in convolution surfaces.”
In: Computer Graphics Forum. Vol. 16. 1. Wiley Online Library.
1997, pp. 31–41.

123

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

124 bibliography

[14] Jules Bloomenthal. “Medial-based vertex deformation.” In: Pro-
ceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 2002, pp. 147–151.

[15] Alan C. Bovik, Marianna Clark, and Wilson S. Geisler. “Mul-
tichannel texture analysis using localized spatial filters.” In:
IEEE Transactions on Pattern Analysis & Machine Intelligence 1

(1990), pp. 55–73.

[16] Gareth Bradshaw and Carol O’Sullivan. “Adaptive medial-
axis approximation for sphere-tree construction.” In: ACM
Transactions on Graphics (TOG) 23.1 (2004), pp. 1–26.

[17] Robert Bridson, Jim Houriham, and Marcus Nordenstam. “Curl-
noise for procedural fluid flow.” In: ACM Transactions on Graph-
ics (ToG) 26.3 (2007), 46–es.

[18] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun.
“Spectral networks and locally connected networks on graphs.”
In: arXiv preprint arXiv:1312.6203 (2013).

[19] Thomas Buffet, Damien Rohmer, Loïc Barthe, Laurence Boissieux,
and Marie-Paule Cani. “Implicit untangling: a robust solution
for modeling layered clothing.” In: ACM Transactions on Graph-
ics (TOG) 38.4 (2019), pp. 1–12.

[20] Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin.
“Seamless parametrization with arbitrary cones for arbitrary
genus.” In: ACM Transactions on Graphics (TOG) 39.1 (2019),
pp. 1–19.

[21] Florian Canezin. “Study of the composition models of field
functions in computer graphics.” PhD thesis. 2016.

[22] Florian Canezin, Gaël Guennebaud, and Loïc Barthe. “Ade-
quate inner bound for geometric modeling with compact field
functions.” In: Computers & graphics 37.6 (2013), pp. 565–573.

[23] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J
Mitchell, W Richard Fright, Bruce C McCallum, and Tim R
Evans. “Reconstruction and representation of 3D objects with
radial basis functions.” In: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques. 2001, pp. 67–
76.

[24] Arthur Cavalier, Guillaume Gilet, and Djamchid Ghazanfar-
pour. “Local spot noise for procedural surface details synthe-
sis.” In: Computers & Graphics 85 (2019), pp. 92–99.

[25] Matthaus G Chajdas, Christian Eisenacher, Marc Stamminger,
Sylvain Lefebvre, Pau Panareda Busto, Lefebvre Sylvain, Ares
Lagae, Philip Dutré, Laurent Alonso, Edward M Reingold, et al.
“Virtual texture mapping 101.” In: GPU Pro (2010).

[26] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. “Shapenet: An information-
rich 3d model repository.” In: arXiv preprint arXiv:1512.03012
(2015).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

bibliography 125

[27] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhy-
oung. “On visual similarity based 3D model retrieval.” In:
Computer graphics forum. Vol. 22. 3. Wiley Online Library. 2003,
pp. 223–232.

[28] Robert L Cook, Loren Carpenter, and Edwin Catmull. “The
Reyes image rendering architecture.” In: ACM SIGGRAPH Com-
puter Graphics 21.4 (1987), pp. 95–102.

[29] Robert L Cook and Tony DeRose. “Wavelet noise.” In: ACM
Transactions on Graphics (TOG) 24.3 (2005), pp. 803–811.

[30] Guillaume Cordonnier, Pierre Ecormier, Eric Galin, James Gain,
Bedrich Benes, and M-P Cani. “Interactive Generation of Time-
evolving, Snow-Covered Landscapes with Avalanches.” In:
Computer Graphics Forum. Vol. 37. 2. Wiley Online Library. 2018,
pp. 497–509.

[31] Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno.
“Efficient and flexible sampling with blue noise properties of
triangular meshes.” In: IEEE Transactions on Visualization and
Computer Graphics 18.6 (2012), pp. 914–924.

[32] Tal Darom and Yosi Keller. “Scale-invariant features for 3-D
mesh models.” In: IEEE Transactions on Image Processing 21.5
(2012), pp. 2758–2769.

[33] Erwin PH De Groot. Blobtree modelling. University of Calgary,
2008.

[34] Wim De Leeuw and Robert Van Liere. “Divide and conquer
spot noise.” In: Proceedings of the 1997 ACM/IEEE conference on
Supercomputing. 1997, pp. 1–13.

[35] Distance Function 3D. https://www.iquilezles.org/www/
articles/distfunctions/distfunctions.htm. Accessed: 2020-
04-23.

[36] Nira Dyn, Kai Hormann, Sun-Jeong Kim, and David Levin.
“Optimizing 3D triangulations using discrete curvature analy-
sis.” In: Mathematical methods for curves and surfaces 38.8 (2001),
pp. 135–146.

[37] Mohamed S Ebeida, Scott A Mitchell, Andrew A Davidson,
Anjul Patney, Patrick M Knupp, and John D Owens. “Efficient
and good Delaunay meshes from random points.” In: Computer-
Aided Design 43.11 (2011), pp. 1506–1515.

[38] Russell Eberhart and James Kennedy. “A new optimizer using
particle swarm theory.” In: Micro Machine and Human Science,
1995. MHS’95., Proceedings of the Sixth International Symposium
on. IEEE. 1995, pp. 39–43.

[39] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken
Perlin, Steven Worley, William R. Mark, and John C. Hart.
Texturing and Modeling: A Procedural Approach: Third Edition.
United States: Elsevier Inc., 2003. isbn: 9781558608481.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm

126 bibliography

[40] Jorda Farnham. SHAPE MODEL OF ASTEROID 2867 STEINS,
RO-A-OSINAC/OSIWAC-5-STEINS-SHAPE-V1.0. NASA Plane-
tary Data System, 2013.

[41] Mark Fox, Callum Galbraith, and Brian Wyvill. “Efficient use
of the BlobTree for rendering purposes.” In: Proceedings Interna-
tional Conference on Shape Modeling and Applications. IEEE. 2001,
pp. 306–314.

[42] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick
Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and
David Dobkin. “Modeling by example.” In: ACM Transactions
on Graphics (TOG). Vol. 23. 3. ACM. 2004, pp. 652–663.

[43] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce
Chen, Alex Halderman, David Dobkin, and David Jacobs. “A
search engine for 3D models.” In: ACM Transactions on Graphics
(TOG) 22.1 (2003), pp. 83–105.

[44] Takahiko Furuya and Ryutarou Ohbuchi. “Deep Aggregation
of Local 3D Geometric Features for 3D Model Retrieval.” In:
BMVC. Vol. 7. 2016, p. 8.

[45] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. “Ran-
dom phase textures: Theory and synthesis.” In: IEEE Transac-
tions on image processing 20.1 (2011), pp. 257–267.

[46] Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Dret-
takis. “Gabor noise by example.” In: ACM Transactions on Graph-
ics (TOG) 31.4 (2012), p. 73.

[47] Bruno Galerne, Arthur Leclaire, and Lionel Moisan. “Texton
noise.” In: Computer Graphics Forum. Vol. 36. 8. Wiley Online
Library. 2017, pp. 205–218.

[48] Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. “Seg-
ment Tracing Using Local Lipschitz Bounds.” In: Computer
Graphics Forum. 2020.

[49] Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordon-
nier, Marie-Paule Cani, Bedrich Benes, and James Gain. “A
review of digital terrain modeling.” In: Computer Graphics Fo-
rum. Vol. 38. 2. Wiley Online Library. 2019, pp. 553–577.

[50] Manuel N Gamito and F Kenton Musgrave. “Procedural land-
scapes with overhangs.” In: 10th Portuguese Computer Graphics
Meeting. Vol. 2. 3. Citeseer. 2001.

[51] Jean-David Génevaux, Éric Galin, Eric Guérin, Adrien Pey-
tavie, and Bedrich Benes. “Terrain generation using procedural
models based on hydrology.” In: ACM Transactions on Graphics
(TOG) 32.4 (2013), p. 143.

[52] Jean-David Génevaux, Éric Galin, Eric Guérin, Adrien Pey-
tavie, and Bedrich Benes. “Terrain generation using procedural
models based on hydrology.” In: ACM Transactions on Graphics
(TOG) 32.4 (2013), p. 143.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

bibliography 127

[53] Jean-David Génevaux, Eric Galin, Adrien Peytavie, Eric Guérin,
Cyril Briquet, François Grosbellet, and Bedrich Benes. “Ter-
rain modelling from feature primitives.” In: Computer Graphics
Forum. Vol. 34. 6. Wiley Online Library. 2015, pp. 198–210.

[54] Jean-David Génevaux, Eric Galin, Adrien Peytavie, Eric Guérin,
Cyril Briquet, François Grosbellet, and Bedrich Benes. “Ter-
rain modelling from feature primitives.” In: Computer Graphics
Forum. Vol. 34. 6. Wiley Online Library. 2015, pp. 198–210.

[55] Guillaume Gilet, Basile Sauvage, Kenneth Vanhoey, Jean-Michel
Dischler, and Djamchid Ghazanfarpour. “Local random-phase
noise for procedural texturing.” In: ACM Transactions on Graph-
ics (TOG) 33.6 (2014), p. 195.

[56] Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill,
Adrien Bernhardt, Mathias Paulin, and Herbert Grasberger.
“A gradient-based implicit blend.” In: ACM Transactions on
Graphics (TOG) 32.2 (2013), pp. 1–12.

[57] Eric Guérin, Julie Digne, Eric Galin, and Adrien Peytavie.
“Sparse representation of terrains for procedural modeling.” In:
Computer Graphics Forum. Vol. 35. 2. Wiley Online Library. 2016,
pp. 177–187.

[58] Stefan Gustavson. “Simplex noise demystified.” In: Linköping
University, Linköping, Sweden, Research Report (2005).

[59] Stefan Gustavson. “Cellular Noise in GLSL: Implementation Notes.
2011.

[60] John C Hart. “Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces.” In: The Visual Com-
puter 12.10 (1996), pp. 527–545.

[61] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang
Bai. “Triplet-center loss for multi-view 3d object retrieval.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 1945–1954.

[62] John R Hershey and Peder A Olsen. “Approximating the Kull-
back Leibler divergence between Gaussian mixture models.”
In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on. Vol. 4. IEEE. 2007, pp. IV–317.

[63] Masatoshi Hirabayashi, Eri Tatsumi, Hideaki Miyamoto, Goro
Komatsu, Seiji Sugita, Sei-ichiro Watanabe, Daniel J Scheeres,
Olivier S Barnouin, Patrick Michel, Chikatoshi Honda, et al.
“The western bulge of 162173 Ryugu formed as a result of a
rotationally driven deformation process.” In: The Astrophysical
Journal Letters 874.1 (2019), p. L10.

[64] Kai Hormann, Bruno Lévy, and Alla Sheffer. “Mesh parameter-
ization: Theory and practice.” In: (2007).

[65] Samuel Hornus, Alexis Angelidis, and Marie-Paule Cani. “Im-
plicit modelling using subdivision-curves.” In: (2003).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

128 bibliography

[66] Alex Jarauta, Pavel Ryzhakov, Jordi Pons-Prats, and Marc Se-
canell. “An implicit surface tension model for the analysis
of droplet dynamics.” In: Journal of Computational Physics 374

(2018), pp. 1196–1218.

[67] Xiaogang Jin, Chiew-Lan Tai, Jieqing Feng, and Qunsheng
Peng. “Convolution surfaces for line skeletons with polynomial
weight distributions.” In: Journal of Graphics Tools 6.3 (2001),
pp. 17–28.

[68] Martin Jutzi, Keith Holsapple, Kai Wünneman, and Patrick
Michel. “Modeling asteroid collisions and impact processes.”
In: arXiv preprint arXiv:1502.01844 (2015).

[69] Yoshihiro Kanamori, Zoltan Szego, and Tomoyuki Nishita.
“GPU-based fast ray casting for a large number of metaballs.”
In: Computer Graphics Forum. Vol. 27. 2. Wiley Online Library.
2008, pp. 351–360.

[70] Michael Kazhdan and Hugues Hoppe. “Screened poisson sur-
face reconstruction.” In: ACM Transactions on Graphics (ToG)
32.3 (2013), p. 29.

[71] Aaron Knoll, Younis Hijazi, Andrew Kensler, Mathias Schott,
Charles Hansen, and Hans Hagen. “Fast ray tracing of arbi-
trary implicit surfaces with interval and affine arithmetic.” In:
Computer Graphics Forum. Vol. 28. 1. Wiley Online Library. 2009,
pp. 26–40.

[72] Iasonas Kokkinos, Michael Bronstein, and Alan Yuille. “Dense
scale invariant descriptors for images and surfaces.” PhD thesis.
INRIA, 2012.

[73] Alex Krizhevsky and Geoffrey E Hinton. “Using very deep
autoencoders for content-based image retrieval.” In: ESANN.
2011.

[74] Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George
Drettakis, David S Ebert, John P Lewis, Ken Perlin, and Matthias
Zwicker. “A survey of procedural noise functions.” In: Com-
puter Graphics Forum. Vol. 29. 8. Wiley Online Library. 2010,
pp. 2579–2600.

[75] Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George
Drettakis, David S Ebert, John P Lewis, Ken Perlin, and Matthias
Zwicker. “A survey of procedural noise functions.” In: Com-
puter Graphics Forum. Vol. 29. 8. Wiley Online Library. 2010,
pp. 2579–2600.

[76] Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony Derose, George
Drettakis, David S Ebert, John P Lewis, Ken Perlin, and Matthias
Zwicker. “State of the art in procedural noise functions.” In:
EG 2010-State of the Art Reports. The Eurographics Association.
2010.

[77] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip
Dutré. “Procedural noise using sparse Gabor convolution.” In:
ACM Transactions on Graphics (TOG) 28.3 (2009), p. 54.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

bibliography 129

[78] Patrick Lange, Rene Weller, and Gabriel Zachmann. “Multi
agent system optimization in virtual vehicle testbeds.” In: Simu-
Tools. 2015, pp. 79–88.

[79] DS Lauretta, DN DellaGiustina, CA Bennett, DR Golish, KJ
Becker, SS Balram-Knutson, OS Barnouin, TL Becker, WF Bot-
tke, WV Boynton, et al. “The unexpected surface of asteroid
(101955) Bennu.” In: Nature 568.7750 (2019), p. 55.

[80] Sylvain Lefebvre and Hugues Hoppe. “Appearance-space tex-
ture synthesis.” In: ACM Transactions on Graphics (TOG) 25.3
(2006), pp. 541–548.

[81] Victor Lempitsky, Michael Verhoek, J Alison Noble, and An-
drew Blake. “Random forest classification for automatic delin-
eation of myocardium in real-time 3D echocardiography.” In:
International Conference on Functional Imaging and Modeling of the
Heart. Springer. 2009, pp. 447–456.

[82] Chunyuan Li and A Ben Hamza. “Spatially aggregating spec-
tral descriptors for nonrigid 3D shape retrieval: a comparative
survey.” In: Multimedia Systems 20.3 (2014), pp. 253–281.

[83] Xi-zhi Li, René Weller, and Gabriel Zachmann. “AstroGen–
Procedural Generation of Highly Detailed Asteroid Models.”
In: 2018 15th International Conference on Control, Automation,
Robotics and Vision (ICARCV). IEEE. 2018, pp. 1771–1778.

[84] Xin Li, Xiaohu Guo, Hongyu Wang, Ying He, Xianfeng Gu, and
Hong Qin. “Harmonic volumetric mapping for solid modeling
applications.” In: Proceedings of the 2007 ACM symposium on
Solid and physical modeling. 2007, pp. 109–120.

[85] Xizhi Li, Patrick Lange, René Weller, and Gabriel Zachmann.
“Invariant local shape descriptors: classification of large-scale
shapes with local dissimilarities.” In: Proceedings of the Computer
Graphics International Conference. ACM. 2017, p. 9.

[86] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel.
“Gated graph sequence neural networks.” In: arXiv preprint
arXiv:1511.05493 (2015).

[87] Tsz-Wai Rachel Lo and J Paul Siebert. “Local feature extraction
and matching on range images: 2.5 D SIFT.” In: Computer Vision
and Image Understanding 113.12 (2009), pp. 1235–1250.

[88] William E Lorensen and Harvey E Cline. “Marching cubes: A
high resolution 3D surface construction algorithm.” In: ACM
siggraph computer graphics 21.4 (1987), pp. 163–169.

[89] David G Lowe. “Object recognition from local scale-invariant
features.” In: Computer vision, 1999. The proceedings of the seventh
IEEE international conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[90] Ives Macedo, Joao Paulo Gois, and Luiz Velho. “Hermite radial
basis functions implicits.” In: Computer Graphics Forum. Vol. 30.
1. Wiley Online Library. 2011, pp. 27–42.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

130 bibliography

[91] Benoit B Mandelbrot. The fractal geometry of nature. Vol. 173.
WH freeman New York, 1983.

[92] Iain Martin, Steve Parkes, Martin Dunstan, and Nick Row-
ell. “Asteroid Modeling for Testing Spacecraft Approach and
Landing.” In: IEEE computer graphics and applications 34.4 (2014),
pp. 52–62.

[93] Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. “Pro-
cedural voronoi foams for additive manufacturing.” In: ACM
Transactions on Graphics (TOG) 35.4 (2016), pp. 1–12.

[94] Jon McCormack and Andrei Sherstyuk. “Creating and render-
ing convolution surfaces.” In: Computer Graphics Forum. Vol. 17.
2. Wiley Online Library. 1998, pp. 113–120.

[95] Susan K McMahon. “Overview of the planetary data system.”
In: Planetary and Space Science 44.1 (1996), pp. 3–12.

[96] G Wyvill C McPheeters and Brian Wyvill. “Data structure for
soft objects.” In: The Visual Computer 2.4 (1986), pp. 227–234.

[97] Harvey J Miller. “Tobler’s first law and spatial analysis.” In:
Annals of the Association of American Geographers 94.2 (2004),
pp. 284–289.

[98] Don P Mitchell. “Robust ray intersection with interval arith-
metic.” In: Proceedings of Graphics Interface. Vol. 90. 1990, pp. 68–
74.

[99] F Kenton Musgrave, Craig E Kolb, and Robert S Mace. “The
synthesis and rendering of eroded fractal terrains.” In: ACM
Siggraph Computer Graphics. Vol. 23. 3. ACM. 1989, pp. 41–50.

[100] Hubert Nguyen. Gpu gems 3. Addison-Wesley Professional,
2007.

[101] Gregory M Nielson. “Dual marching cubes.” In: IEEE Visualiza-
tion 2004. IEEE. 2004, pp. 489–496.

[102] Hitoshi Nishimura. “Object modeling by distribution function
and a method of image generation.” In: Trans Inst Electron
Commun Eng Japan 68 (1985), p. 718.

[103] Tomoyuki Nishita and Eihachiro Nakamae. “A method for
displaying metaballs by using Bézier clipping.” In: Computer
Graphics Forum. Vol. 13. 3. Wiley Online Library. 1994, pp. 271–
280.

[104] Afonso Paiva, Hélio Lopes, Thomas Lewiner, and Luiz Hen-
rique De Figueiredo. “Robust adaptive meshes for implicit
surfaces.” In: 2006 19th Brazilian symposium on computer graphics
and image processing. IEEE. 2006, pp. 205–212.

[105] Julian Panetta, Abtin Rahimian, and Denis Zorin. “Worst-case
stress relief for microstructures.” In: ACM Transactions on Graph-
ics (TOG) 36.4 (2017), pp. 1–16.

[106] Athanasios Papoulis and S Unnikrishna Pillai. Probability, ran-
dom variables, and stochastic processes. Tata McGraw-Hill Educa-
tion, 2002.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

bibliography 131

[107] Ian Parberry. “Designer worlds: Procedural generation of in-
finite terrain from real-world elevation data.” In: Journal of
Computer Graphics Techniques 3.1 (2014).

[108] Axel Paris, Eric Galin, Adrien Peytavie, Eric Guérin, and James
Gain. “Terrain Amplification with Implicit 3D Features.” In:
ACM Transactions on Graphics (TOG) 38.5 (2019), pp. 1–15.

[109] Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir
Savchenko. “Function representation in geometric modeling:
concepts, implementation and applications.” In: The Visual
Computer 11.8 (1995), pp. 429–446.

[110] Giuseppe Patané and Michela Spagnuolo. “State-of-the-art and
perspectives of geometric and implicit modeling for molecular
surfaces.” In: Computational Electrostatics for Biological Applica-
tions. Springer, 2015, pp. 157–176.

[111] Jen Lowe Patricio Gonzalez Vivo. The book of shaders. https:
//thebookofshaders.com/. 2015.

[112] Nicolas Pavie, Guillaume Gilet, Jean-Michel Dischler, and Djam-
chid Ghazanfarpour. “Procedural texture synthesis by locally
controlled spot noise.” In: (2016).

[113] Ken Perlin. “An image synthesizer.” In: ACM Siggraph Computer
Graphics 19.3 (1985), pp. 287–296.

[114] Ken Perlin. “Noise hardware.” In: Real-Time Shading SIGGRAPH
Course Notes (2001).

[115] Ken Perlin. “Improving noise.” In: ACM Transactions on Graphics
(TOG). Vol. 21. 3. ACM. 2002, pp. 681–682.

[116] Ken Perlin and Fabrice Neyret. “Flow noise.” In: (2001).

[117] Adrien Peytavie, Eric Galin, Jérôme Grosjean, and Stéphane
Mérillou. “Arches: a framework for modeling complex ter-
rains.” In: Computer Graphics Forum. Vol. 28. 2. Wiley Online
Library. 2009, pp. 457–467.

[118] Serban D Porumbescu, Brian Budge, Louis Feng, and Kenneth I
Joy. “Shell maps.” In: ACM Transactions on Graphics (TOG) 24.3
(2005), pp. 626–633.

[119] Alena Probst, Graciela Peytavi, David Nakath, Anne Schattel,
Carsten Rachuy, Patrick Lange, et al. “Kanaria: Identifying the
Challenges for Cognitive Autonomous Navigation and Guid-
ance for Missions to Small Planetary Bodies.” In: International
Astronautical Congress (IAC). 2015.

[120] Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre
Alliez. “Periodic global parameterization.” In: ACM Transactions
on Graphics (TOG) 25.4 (2006), pp. 1460–1485.

[121] Renderman Pixar. https://renderman.pixar.com/. Accessed:
2020-06-23.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://thebookofshaders.com/
https://thebookofshaders.com/
https://renderman.pixar.com/

132 bibliography

[122] Martin Reuter, Franz-Erich Wolter, Martha Shenton, and Marc
Niethammer. “Laplace–Beltrami eigenvalues and topological
features of eigenfunctions for statistical shape analysis.” In:
Computer-Aided Design 41.10 (2009), pp. 739–755.

[123] Antonio Ricci. “A constructive geometry for computer graph-
ics.” In: The Computer Journal 16.2 (1973), pp. 157–160.

[124] Alyn P Rockwood. “The displacement method for implicit
blending surfaces in solid models.” In: ACM Transactions on
Graphics (TOG) 8.4 (1989), pp. 279–297.

[125] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. “Imagenet large scale visual
recognition challenge.” In: International journal of computer vision
115.3 (2015), pp. 211–252.

[126] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai
Dolha, and Michael Beetz. “Towards 3D point cloud based
object maps for household environments.” In: Robotics and
Autonomous Systems 56.11 (2008), pp. 927–941.

[127] Nayan R Samal, Amit Konar, Swagatam Das, and Ajith Abra-
ham. “A closed loop stability analysis and parameter selection
of the particle swarm optimization dynamics for faster con-
vergence.” In: Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on. IEEE. 2007, pp. 1769–1776.

[128] Aitor Santamaría-Ibirika, Xabier Cantero, Mikel Salazar, Jaime
Devesa, Igor Santos, Sergio Huerta, and Pablo G Bringas. “Pro-
cedural approach to volumetric terrain generation.” In: The
Visual Computer 30.9 (2014), pp. 997–1007.

[129] Vladimir V Savchenko, Alexander A Pasko, Oleg G Okunev,
and Tosiyasu L Kunii. “Function representation of solids re-
constructed from scattered surface points and contours.” In:
Computer Graphics Forum. Vol. 14. 4. Wiley Online Library. 1995,
pp. 181–188.

[130] Scott Schaefer and Joe Warren. “Dual marching cubes: Primal
contouring of dual grids.” In: Computer Graphics and Applica-
tions, 2004. PG 2004. Proceedings. 12th Pacific Conference on. IEEE.
2004, pp. 70–76.

[131] Daniel Scheeres, R Gaskell, S Abe, O Barnouin-Jha, T Hashimoto,
J Kawaguchi, T Kubota, J Saito, M Yoshikawa, N Hirata, et
al. “The actual dynamical environment about Itokawa.” In:
AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2006,
p. 6661.

[132] Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and
Thomas Brox. “Orientation-boosted voxel nets for 3d object
recognition.” In: arXiv preprint arXiv:1604.03351 (2016).

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

bibliography 133

[133] Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wo-
jciech Jarosz. “Non-linear sphere tracing for rendering de-
formed signed distance fields.” In: ACM Transactions on Graphics
(TOG) 38.6 (2019), pp. 1–12.

[134] Andrei Sherstyuk. “Kernel functions in convolution surfaces:
a comparative analysis.” In: The Visual Computer 15.4 (1999),
pp. 171–182.

[135] Philip Shilane and Thomas Funkhouser. “Selecting distinc-
tive 3D shape descriptors for similarity retrieval.” In: IEEE
International Conference on Shape Modeling and Applications 2006
(SMI’06). IEEE. 2006, pp. 18–18.

[136] Holger Sierks, Philippe Lamy, Cesare Barbieri, Detlef Koschny,
Hans Rickman, Rafael Rodrigo, Michael F A’Hearn, F Angrilli,
M Antonella Barucci, J-L Bertaux, et al. “Images of asteroid 21

Lutetia: a remnant planetesimal from the early solar system.”
In: science 334.6055 (2011), pp. 487–490.

[137] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich
Benes. “A survey on procedural modelling for virtual worlds.”
In: Computer Graphics Forum. Vol. 33. 6. Wiley Online Library.
2014, pp. 31–50.

[138] Alessandro Sperduti and Antonina Starita. “Supervised neural
networks for the classification of structures.” In: IEEE Transac-
tions on Neural Networks 8.3 (1997), pp. 714–735.

[139] Abhishek Srinivas, Rene Weller, and Gabriel Zachmann. “Fast
and Accurate Simulation of Gravitational Field of Irregular-
shaped Bodies using Polydisperse Sphere Packings.” In: ICAT-
EGVE. 2017, pp. 213–220.

[140] Alvaro Javier Fuentes Suárez, Evelyne Hubert, and Cédric
Zanni. “Anisotropic convolution surfaces.” In: Computers &
Graphics 82 (2019), pp. 106–116.

[141] Satoshi Sugita, Rie Honda, Tomokatsu Morota, Shingo Kameda,
Hirotaka Sawada, Eisuke Tatsumi, Matsuichi Yamada, Chikatoshi
Honda, Yasuhiro Yokota, Toru Kouyama, et al. “The geomor-
phology, color, and thermal properties of Ryugu: Implica-
tions for parent-body processes.” In: Science 364.6437 (2019),
eaaw0422.

[142] Sarah Tang and Afzal Godil. “An evaluation of local shape
descriptors for 3D shape retrieval.” In: IS&T/SPIE Electronic
Imaging. International Society for Optics and Photonics. 2012,
82900N–82900N.

[143] Vincent Tavernier, Fabrice Neyret, Romain Vergne, and Joëlle
Thollot. “Making Gabor Noise Fast and Normalized.” In: 2019.

[144] Jörn Teuber, René Weller, Gabriel Zachmann, and Stefan Guthe.
“Fast sphere packings with adaptive grids on the gpu.” In: In
GI AR/VRWorkshop (Würzburg, Germany 4 (2013).

[145] The Legend of Zelda. https://www.zelda.com/. Accessed: 2020-
06-23.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://www.zelda.com/

134 bibliography

[146] The Lord of the Rings. https://en.wikipedia.org/wiki/The_
Lord_of_the_Rings. Accessed: 2020-06-23.

[147] The Perfect Storm. https://en.wikipedia.org/wiki/The_
Perfect_Storm_(film). Accessed: 2020-06-23.

[148] PC Thomas, J Wm Parker, LA McFadden, Cc T Russell, SA
Stern, MV Sykes, and EF Young. “Differentiation of the asteroid
Ceres as revealed by its shape.” In: Nature 437.7056 (2005),
p. 224.

[149] Julian Togelius, Mike Preuss, and Georgios N Yannakakis. “To-
wards multiobjective procedural map generation.” In: Proceed-
ings of the 2010 workshop on procedural content generation in games.
ACM. 2010, p. 3.

[150] Thibault Tricard, Semyon Efremov, Cédric Zanni, Fabrice Neyret,
Jonàs Martínez, and Sylvain Lefebvre. “Procedural Phasor
Noise.” In: (2019).

[151] Fabio Turchet, Oleg Fryazinov, and Marco Romeo. “Extending
implicit skinning with wrinkles.” In: Proceedings of the 12th
European Conference on Visual Media Production. 2015, pp. 1–6.

[152] Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule
Cani, Damien Rohmer, Brian Wyvill, Olivier Gourmel, and
Mathias Paulin. “Implicit skinning: real-time skin deformation
with contact modeling.” In: ACM Transactions on Graphics (TOG)
32.4 (2013), pp. 1–12.

[153] Luiz Velho. “Simple and efficient polygonization of implicit
surfaces.” In: Journal of Graphics Tools 1.2 (1996), pp. 5–24.

[154] Voxel World 3D. http://paulbourke.net/fractals/noise/
sample10.html. Accessed: 2020-05-22.

[155] Eric Wahl, Ulrich Hillenbrand, and Gerd Hirzinger. “Surflet-
pair-relation histograms: a statistical 3D-shape representation
for rapid classification.” In: 3-D Digital Imaging and Modeling,
2003. 3DIM 2003. Proceedings. Fourth International Conference on.
IEEE. 2003, pp. 474–481.

[156] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk.
“State of the art in example-based texture synthesis.” In: 2009.

[157] Li-Yi Wei and Marc Levoy. “Fast texture synthesis using tree-
structured vector quantization.” In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. 2000,
pp. 479–488.

[158] Li-Yi Wei and Marc Levoy. “Texture synthesis over arbitrary
manifold surfaces.” In: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques. 2001, pp. 355–
360.

[159] René Weller and Gabriel Zachmann. “ProtoSphere: a GPU-
assisted prototype guided sphere packing algorithm for arbi-
trary objects.” In: SIGGRAPH ASIA. 2010.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://en.wikipedia.org/wiki/The_Lord_of_the_Rings
https://en.wikipedia.org/wiki/The_Lord_of_the_Rings
https://en.wikipedia.org/wiki/The_Perfect_Storm_(film)
https://en.wikipedia.org/wiki/The_Perfect_Storm_(film)
http://paulbourke.net/fractals/noise/sample10.html
http://paulbourke.net/fractals/noise/sample10.html

bibliography 135

[160] Holger Wendland. Scattered data approximation. Vol. 17. Cam-
bridge university press, 2004.

[161] Steven Worley. “A cellular texture basis function.” In: Proceed-
ings of the 23rd annual conference on Computer graphics and inter-
active techniques. ACM. 1996, pp. 291–294.

[162] Jun Wu, Lou Kramer, and Rüdiger Westermann. “Shape inte-
rior modeling and mass property optimization using ray-reps.”
In: Computers & Graphics 58 (2016), pp. 66–72.

[163] Brian Wyvill, Andrew Guy, and Eric Galin. “Extending the csg
tree. warping, blending and boolean operations in an implicit
surface modeling system.” In: Computer Graphics Forum. Vol. 18.
2. Wiley Online Library. 1999, pp. 149–158.

[164] Jihun Yu and Greg Turk. “Reconstructing surfaces of particle-
based fluids using anisotropic kernels.” In: ACM Transactions
on Graphics (TOG) 32.1 (2013), pp. 1–12.

[165] Cédric Zanni. “Skeleton-based implicit modeling and applica-
tions.” PhD thesis. Grenoble, 2013.

[166] Cédric Zanni, Paul Bares, Ares Lagae, Maxime Quiblier, and
Marie-Paule Cani. “Geometric Details on Skeleton-based Im-
plicit Surfaces.” In: 2012.

[167] Cédric Zanni, Adrien Bernhardt, Maxime Quiblier, and M-P
Cani. “SCALe-invariant Integral Surfaces.” In: Computer Graph-
ics Forum. Vol. 32. 8. Wiley Online Library. 2013, pp. 219–232.

[168] Cédric Zanni, Michael Gleicher, and M-P Cani. “N-ary implicit
blends with topology control.” In: Computers & Graphics 46

(2015), pp. 1–13.

[169] Cédric Zanni, Evelyne Hubert, and M-P Cani. “Warp-based
helical implicit primitives.” In: Computers & Graphics 35.3 (2011),
pp. 517–523.

[170] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and
Heung-Yeung Shum. “Synthesis of progressively-variant tex-
tures on arbitrary surfaces.” In: ACM Transactions on Graphics
(TOG) 22.3 (2003), pp. 295–302.

[171] Qian Zhang, Jinyuan Jia, and Hongyu Li. “A GPU based 3D
object retrieval approach using spatial shape information.” In:
Multimedia (ISM), 2010 IEEE International Symposium on. IEEE.
2010, pp. 212–219.

[172] Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. “Terrain
Synthesis from Digital Elevation Models.” In: IEEE Transactions
on Visualization and Computer Graphics 13.4 (2007), pp. 834–848.

[173] Jiaran Zhou, Changhe Tu, Denis Zorin, and Marcel Campen.
“Combinatorial Construction of Seamless Parameter Domains.”
In: Computer Graphics Forum (2020). issn: 1467-8659. doi: 10.
1111/cgf.13922.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://doi.org/10.1111/cgf.13922
https://doi.org/10.1111/cgf.13922

136 bibliography

[174] Yin Zhou and Oncel Tuzel. “Voxelnet: End-to-end learning for
point cloud based 3d object detection.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 4490–4499.

[175] Xiaoqiang Zhu, Xiaogang Jin, Shengjun Liu, and Hanli Zhao.
“Analytical solutions for sketch-based convolution surface mod-
eling on the GPU.” In: The Visual Computer 28.11 (2012), pp. 1115–
1125.

[176] J. Ďurech, V. Sidorin, and M. Kaasalainen. “DAMIT: a database
of asteroid models.” In: Astronomy & Astrophysics 513.A46

(2010). doi: 10.1051/0004-6361/200912693. url: http://www.
aanda.org/articles/aa/abs/2010/05/aa12693-09/aa12693-

09.html.

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

https://doi.org/10.1051/0004-6361/200912693
http://www.aanda.org/articles/aa/abs/2010/05/aa12693-09/aa12693-09.html
http://www.aanda.org/articles/aa/abs/2010/05/aa12693-09/aa12693-09.html
http://www.aanda.org/articles/aa/abs/2010/05/aa12693-09/aa12693-09.html

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

Xizhi Li, René Weller and Gabriel Zachmann: Procedural 3D Asteroid
Surface Detail Synthesis. In Eurographics’2020, Norrköping, Sweden,
May 25-29, 2020

Xizhi Li, René Weller and Gabriel Zachmann: AstroGen - Procedural
Generation of highly detailed Asteroid Models. In ICARCV’2018, Singapore,
November 18-21, 2018

Xizhi Li, Patrick Lange, René Weller and Gabriel Zachmann: Invari-
ant Local Shape Descriptors:Classification of Large-Scale Shapes with Local
Dissimilarities. In CGI’2017, Yokohama, Japan, June 27-30, 2017

137

[October 10, 2020 at 14:20 – version 4.0classicthesis v4.6]

	Title
	Abstract
	Acknowledgments
	Contents
	 That was then, This is now
	1 Introduction
	1.1 Contribution

	2 Implicit Surface : State of the art
	2.1 Modeling Implicit Surfaces
	2.1.1 Skeleton-based Implicit Surfaces
	2.1.2 Convolution Surfaces

	2.2 Combining Implicit Surfaces
	2.2.1 The BlobTree
	2.2.2 Blending

	2.3 Details of Implicit Surface
	2.3.1 Image Texture & Texture Mapping
	2.3.2 Procedural Texture

	2.4 Visualization of Implicit Surface
	2.4.1 Polygonization
	2.4.2 Ray-tracing

	2.5 Applications of Implicit Surface
	2.5.1 Procedural Terrain
	2.5.2 Animation
	2.5.3 Additive Manufacturing

	 Novel Methods
	3 3D Asteroid Classification
	3.1 Introduction
	3.2 Related Work
	3.3 Our Descriptors
	3.3.1 Recap: Surflet-Pair-Relation Histograms
	3.3.2 Our Adaptive Hybrid Shape Descriptor

	3.4 Training and Classification
	3.4.1 Parallelization
	3.4.2 Histogram Cluster Analysis

	3.5 Use Case: Asteroid Classification
	3.6 Evaluation
	3.6.1 GPU-based Histogram Generation
	3.6.2 Asteroid Classification Study
	3.6.3 Standard Dataset Testing

	3.7 Conclusions and Future Works

	4 AstroGen - Procedural Generation of highly detailed Asteroid Models
	4.1 Introduction
	4.2 Related Work
	4.3 Our Approach
	4.3.1 Implicit Shape Representation
	4.3.2 Polydisperse Sphere packing
	4.3.3 Noise Based Surface Features
	4.3.4 Optimizing Noise Parameters
	4.3.5 Surface Detail Optimization
	4.3.6 Polygonization

	4.4 Results and Discussions
	4.5 Conclusions and Future Works

	5 Procedural 3D Asteroid Surface Detail Synthesis
	5.1 Introduction
	5.2 Related Work
	5.3 Our Approach
	5.3.1 Macro Terrain Structure
	5.3.2 Micro Terrain Details
	5.3.3 Erosion

	5.4 Results
	5.5 Conclusions and Future Work

	 Every end is just a new beginning
	6 Epilogue
	6.1 Summary
	6.2 Future Directions
	6.2.1 Modeling with Artificial Intelligence
	6.2.2 Visualization
	6.2.3 Animation

	 Appendix
	 Bibliography
	Publications

