
New Concepts for Virtual Testbeds

Data Mining Algorithms for Blackbox Optimization based on
Wait-Free Concurrency and Generative Simulation

Dem Fachbereich Informatik

der Universität Bremen

eingereichte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

von

Patrick Draheim

Referenten der Arbeit: Prof. Dr. Gabriel Zachmann

Prof. Dr. Marc Erich Latoschik

Tag der Einreichung: . Oktober 

Tag des Kolloquiums: . Dezember 

©  - Patrick Draheim

All rights reserved.

Für meine Familie

Acknowledgments

Finishing this thesis would not have been possible without many of the people who accompanied me

during the time of its creation. Some of them directly influenced my work, while others accompanied me

in life beyond. To each and everyone of them I owe the fact that I was able to successfully make it through

my Ph.D. time.

First and foremost, I am very grateful to my supervisor, Prof. Dr. Gabriel Zachmann, for providing me

with the opportunity to pursue my thesis. He always allowed me to follow my own ideas, providing helpful

discussions and advice whenever needed. Moreover, I am thankful for being given the opportunity to join

his research group and for the trust he placed in me during the past years.

I also would like to express my gratitude to Prof. Dr. Marc Erich Latoschik for accepting the co-

advisorship.

Undoubtedly, this thesis would not exist the way it does, if I had not been supported by my colleague

René Weller, who was a constant companion while conducting my research. I am sincerely grateful for his

support. I would also like to thank all members of my old research group at the University of Bremen. I

always enjoyed our very friendly atmosphere and interesting discussions.

I owe the greatest dept of gratitude to my family which supported me all the time, endured all my stays

abroad and extra hours, while constantly pushing me in my interests and ideas. This thesis is not my sole

merit and belongs to you, too.

Abstract

Virtual testbeds have emerged as a key technology for improving and streamlining complex engineering processes by
delivering long-term simulation and assessment of complex designs in virtual environments. In contrast to existing
simulation technology, virtual testbeds focus on long-term physically-based simulation of the overall design in its
(virtual) environment instead of only focussing on isolated, specific parts for short periods of time. This technology
has the major advantage that costly testing, prototyping, and assessment in real-life environments are replaced by a
cost-efficient simulation in virtual worlds for comprehensive and long-term analysis of designs.

For this purpose, engineering models and their requirements are abstracted into software simulation models and
objectives which are executed in virtual assessments. Simulation models are used to predict complex, real systems
which can be further a subject to random influences. These predictions are used to examine the effects of individual
configuration alternatives without actually realizing them and causing possible negative effects on the real system.
Virtual testbeds further offer engineers the opportunity to immersively and naturally interact with their simula-
tion model in these virtual assessments. This enables a greater and comprehensive understanding of possible design
flaws early-on in the design process for engineers because they can directly assess their design in the virtual envi-
ronment, based on the simulation objectives. The fact that virtual testbeds enable these realtime interactive virtual
assessments, makes their underlying software infrastructure very complex.

One major challenge is to minimize the development time of virtual testbeds in order to efficiently integrate
them into the overall engineering process. Usually, this can be achieved by minimizing the underlying concurrency
of the testbed and by simplifying its software architecture. However, this may result in a degradation of their very
concurrent and asynchronous behavior, which is usually required for immersive and natural virtual interaction.

A major goal of virtual testbeds in the engineering process is to find a set of optimal configurations of the simula-
tion model which maximizes all simulation objectives for the specified virtual assessments. Once such a set has been
computed, engineers can interactively explore it in the virtual environment. The main challenge is that sophisticated
simulation models and their configuration are subject to a multiobjective optimization problem, which usually can
not be solved manually by engineers or simulation analysts in feasible time. This is further aggravated because the
relationships between simulation model configurations and simulation objectives are mostly unknown, leading to
what is known as blackbox simulations.

In this thesis, I propose novel data mining algorithms for computing Pareto optimal simulation model configura-
tions, based on an approximation of the feasible design space, for deterministic and stochastic blackbox simulations
in virtual testbeds for achieving above stated goal. These novel data mining algorithms lead to an automatic knowl-
edge discovery process that does not need any supervision for its data analysis and assessment for multiobjective
optimization problems of simulation model configurations. This achieves the previously stated goal of computing
optimal configurations of simulation models for long-term simulations and assessments. Furthermore, I propose
two complementary solutions for efficiently integrating massively-parallel virtual testbeds into engineering pro-
cesses. First, I propose a novel multiversion wait-free data and concurrency management based on hash maps. These
wait-free hash maps do not require any standard locking mechanisms and enable low-latency data generation, man-
agement and distribution for massively-parallel applications. Second, I propose novel concepts for efficiently code
generating above wait-free data and concurrency management for arbitrary massively-parallel simulation applica-
tions of virtual testbeds. My generative simulation concept combines a state-of-the-art realtime interactive system
design pattern for high maintainability with template code generation based on domain specific modelling. This con-
cept is able to generate massively-parallel simulations and, at the same time, model checks its internal dataflow for
possible interface errors. These generative concept overcomes the challenge of efficiently integrating virtual testbeds
into engineering processes.

These contributions enable for the first time a powerful collaboration between simulation, optimization, visualiza-

tion and data analysis for novel virtual testbed applications but also overcome and achieve the presented challenges

and goals.

Zusammenfassung

Virtuelle Testumgebungen haben sich als Schlüsseltechnologie zur Verbesserung und Rationalisierung von kom-
plexen Entwicklungsprozessen, durch die Bereitstellung von Langzeitsimulationen und -bewertungen von kom-
plexen Entwürfen in virtuellen Umgebungen, entwickelt. Im Gegensatz zu existierender Simulationtechnik setzen
virtuelle Testumgebungen auf eine langzeitig, physikalisch-basierte, Simulation des gesamten Entwurfs in seiner
(virtuellen) Umgebung, anstatt nur spezifische Teile des Entwurfs isoliert für kurze Zeitspannen zu betrachten.
Diese Technologie hat den großen Vorteil, dass teure Tests, Prototypentwicklung und deren Beurteilung in realen
Umgebungen durch eine kostengünstige Simulation in virtuellen Welten für umfassende Langzeitanalysen der
Entwürfe ersetzt wird.

Zu diesem Zweck werden Ingenieursmodelle und deren Anforderungen in softwareseitige Simulationsmodelle
und -ziele abstrahiert und in virtuellen Assessments ausgeführt. Diese Simulationsmodelle werden verwendet, um
komplexe, reale Systeme vorhersagen zu können, die unter dem Einfluss stochastischer Prozesse stehen. Diese
Vorhersagen werden verwendet, um die Effekte einzelner Konfigurationsalternativen zu untersuchen und zu re-
alisieren, ohne mögliche negative Auswirkungen auf das reale System zu verursachen. Virtuelle Testumgebungen
ermöglichen es Ingenieuren zudem, in den virtuellen Assessments immersiv und natürlich mit ihrem Simulations-
modell zu interagieren. Diese Interaktion ermöglicht ein umfassenderes und tiefergehendes Ingenieurverständnis
für mögliche Konstruktionsfehler bereits im Entwicklungsprozess, weil Ingenieure ihre Entwürfe in der virtuellen
Umgebung direkt, auf der Grundlage der Simulationsziele, bewerten können. Die Tatsache, dass virtuelle Testumge-
bungen diese echtzeit-interaktiven, virtuellen Assessments ermöglichen, macht ihre zugrunde liegende Software-
Infrastruktur aber sehr komplex.

Eine große Herausforderung besteht hierbei, die Entwicklungszeit von virtuellen Testumgebungen zu min-
imieren, um sie effizient in den gesamten Entwicklungsprozess integrieren zu können. In der Regel kann dies durch
die Minimierung der Nebenläufigkeit der Testumgebung und Vereinfachung ihrer Softwarearchitektur erreicht
werden. Dies kann aber zur Folge haben, dass ihr sehr nebenläufiges und asynchrones Verhalten beeinträchtigt
wird, welches aber normalerweise für eine immersive und natürliche virtuelle Interaktion benötigt wird.

Ein wichtiges Ziel virtueller Testumgebungen im Entwicklungsprozess ist es, eine Reihe von optimalen Konfig-
urationen des Simulationsmodels zu finden, welche alle Simulationsziele für die angegebenen virtuellen Assess-
ments maximiert. Sobald ein solche Zusammenstellung berechnet wurde, können Ingenieure diese interaktiv in
der virtuellen Umgebung explorieren. Die größte Herausforderung besteht hierbei, dass anspruchsvolle Simulation-
smodelle und deren Konfiguration einem multikriteriellem Optimierungsproblem unterliegen, das von Ingenieuren
oder Simulationsanalysten, in annehmbarer Zeit, nicht manuell gelöst werden kann. Diese Problematik wird weit-
erhin dadurch verschärft, dass die Beziehungen zwischen Simulationsmodellkonfigurationen und Simulationszielen
meist unbekannt sind und dies zu sogenannten Blackbox-Simulationen führt.

In dieser Arbeit stelle ich neue Data-Mining Algorithmen für die Berechnung von Pareto-optimalen Simulations-
modellkonfigurationen vor, basierend auf einer Annäherung des zulässigen Entwurfraums, für deterministische
und stochastische Blackbox-Simulationen in virtuellen Testumgebungen. Diese neuen Data-Mining Algorith-
men führen zu einem automatischen Knowledge-Discovery Prozess, der keine Beaufsichtung der Analyse und
der Ergebnisse für multikriteriellen Optimierungsproblemen von Simulationsmodellkonfigurationen benötigt.
Damit wird das obige Ziel erreicht, optimale Konfigurationen von Simulationsmodellen für Langzeitsimulationen
und -bewertungen zu berechnen. Darüber hinaus stelle ich zwei komplementäre Lösungen für die effiziente In-
tegration von massiv-parallelen virtuellen Testumgebungen in Entwicklungsprozessen vor. Erstens stelle ich ein
neues warte-freies Daten- und Nebenläufigkeitsmanagement basierend auf Hash-Maps vor. Diese warte-freien
Hash-Maps erfordern keine Standard-Sperrmechanismen und ermöglichen eine Datenverarbeitung, -verwaltung
und -verteilung mit geringer Latenzzeit für massiv-parallele Anwendungen. Zweitens stelle ich neue Konzepte
für die effiziente Codegenerierung meines warte-freien Daten- und Nebenläufigkeitsmanagement für beliebige
massiv-parallele Simulationsanwendungen von virtuellen Testumgebugen vor. Mein generatives Simulation-
skonzept kombiniert ein modernes Entwurfsmuster von echtzeit-interaktiven Systemen für hohe Wartbarkeit
mit Template-Codegenerierung basierend auf domänenspezifischer Modellierung. Dieses Konzept ist in der
Lage, massiv-parallele Simulationen zu generieren bei gleichzeitiger Modellprüfung des internen Datenflusses
für mögliche Schnittstellenfehler. Dieses generative Konzept ermöglicht es virtuelle Testumgebungen effizient
in Entwicklungsprozesse zu integrieren.

Diese Beiträge ermöglichen erstmals eine leistungsfähige Zusammenarbeit zwischen Simulation, Opti-
mierung, Visualisierung und Datenanalyse für neue Anwendungen von virtuellen Testumgebungen und somit
die dargestellten Herausforderungen und Ziele zu überwinden und zu erreichen.

Contents

I Virtual Testbeds:
Challenges andThesis Contributions 

 Introduction 

. Motivation and Challenges . 

.. The Integration Challenge . 

.. The Workflow Challenge . 

.. Requirements . 

. Thesis Goal . 

. Overview and Summary of Contributions . 

.. Wait-Free Data and Concurrency Management

for Massively Parallel Virtual Testbeds . 

.. Generative Concepts for ECS based Virtual Testbeds 

.. Data Mining Algorithms for

Simulation based Optimization in Virtual Testbeds 

.. Multi-Agent System for Massively Parallel Optimization 

 Brief Overview of Techniques for

Data Management and Analysis,

and Simulation based Optimization 

. Data Management: Concurrency Control in

Realtime Interactive Systems . 

.. Multiversion Concurrency Control . 

. Simulation based Multiobjective Optimization . 

.. The Simulation based Optimization Process . 

.. Multiobjective Optimization . 

. Knowledge Discovery Processes and Data Mining . 

.. Data Mining . 

II Wait-Free Data and Concurrency Management
Enabling Massively Parallel Virtual Testbeds 

 Wait-Free Data and Concurrency Management 

. Related Work . 

.. Data Management in Virtual Reality Systems . 

.. Data Management in Virtual Testbeds . 

. Hash Map based Data Management . 

. Global Atomic Markers: Single Producer, Multiple Consumer 

. Local Atomic Markers: Multiple Producer, Multiple Consumer 

. Graph based Nested Hash Maps . 

.. Property Graph Model for Nested Hash Maps . 

.. Relational Core & Aggregate Queries . 

.. Wait-Free Caching . 

. Applications . 

. Results . 

.. Global Atomic Marker Concept . 

.. Local Atomic Marker Concept . 

.. Graph based Nested Hash Map . 

 Concepts for Generative Virtual Testbeds 

. Related Work . 

. Wait-Free Hash Maps for the Entity-Component-System Pattern 

.. The Entity-Component-System Pattern . 

.. Integration of Wait-Free Hash Maps . 

.. Memory Management of Wait-Free Hash Maps 

. Domain Specific Modelling for ECS based Virtual Testbeds 

.. Domain Framework and Dataflow . 

.. Domain Specific Modelling Language . 

.. Code Generation . 

.. Model Validation . 

. Results . 

.. Best Practices . 

III Algorithms and Concepts for
Blackbox Optimization
in Virtual Testbed Simulations 

 Data Mining Algorithms for

Pareto based Multiobjective Optimization 

. Related Work . 

. Process Overview . 

. Unveiling Hidden Relationships:

Forest based Association Rule Mining . 

. Approximating Unknown Objective Functions . 

.. Relationship Definition . 

.. Density Splines . 

.. Gradient Sampling . 

.. Recursive Correlation Analysis . 

. Multiobjective Optimization . 

. Use Case Studies . 

.. Spaceflight Orbit Optimization . 

.. Lotka-Volterra Optimization . 

. Results . 

 Multi-Agent System based

Multiobjective Optimization 

. Related Work . 

. Overview of Approach . 

. Parameters, Objectives and Utilities . 

. Solving Process Principle . 

. Use Case Study: Spacecraft Landing Scenario . 

. Results . 

.. Spacecraft Landing Scenario . 

.. Multiobjective Optimization . 

IV Crossroads 

 Epilogue 

. Summary . 

. Future Work . 

.. Wait-Free Data and Concurrency Management for

Massively Parallel Realtime Interactive Systems 

.. Knowledge Discovery Processes for Blackbox Simulations 

.. Application to Robotics and Evaluating the Reality Gap 

V Appendix 

Publications and Awards 

Glossary 

Bibliography 

Part I

Virtual Testbeds:
Challenges andThesis Contributions



Ignorance is the curse of God, knowledge the wing wherewith I fly to heaven.

William Shakespeare

1
Introduction

. Motivation and Challenges

The motivation of this thesis is the development of new algorithms and methods for improving the ef-

ficiency and efficacy of virtual testbeds within modern engineering processes by solving the current two

main challenges (see Sections .. and ..). In the following, I will introduce the motivation, require-

ments, and challenges of virtual testbeds that lead to my contributions to the field.

The concept of simulation is widely accepted as the third pillar of science, on par with theory and exper-

iments, and has been further successfully evolved into the modeling, simulation and optimization (MSO)

concept []. Not surprisingly, MSO fills a crucial role in the development within arbitrary engineering

processes. The ability to compute, test and assess simulation model configurations within arbitrary engi-

neering problems reduces development time and cost [, , ]. Therefore, engineering methods have

substantially changed in this context and evolved continuously over the past  years [, ] (see Figure

.). In the past, engineered entities such as assembly lines, supply chains in logistics, robotics or vehicles

were designed, prototyped, configured and tested in real life hardware environments (RLHEs), for instance

in hardware-in-the-loop processes.

This traditional approach leads to several major disadvantages: it is not only very difficult up to impos-

sible to prepare suitable RLHEs in order to adequately cover all required MSO constraints but it is also

very expensive [, , ]. Consequently, MSO in the form of simulation based optimization (SBO) has

emerged as a key technology for solving this problem because it enables a computer-based execution of

the engineered entities as simulation models that does not require any RLHE. This can drastically reduce

development cost and time depending on both, the entity to be engineered and its’ corresponding and

required SBO scenarios.



Mission

Requirements
System

Requirements
Engineering Testing

Figure 1.1: The evolution of the engineering process started with requirement based system modelling and im-
plementation with UML and SysML, went over enhanced CAD model approaches [116] and MATLAB/Simulink
based evaluations, and culminated in current novel virtual testbeds (e.g. [207]) for advanced engineering pro-
cess. In contrast to traditional approaches, virtual testbeds combine simulation, visualization and interaction to
enable a more in-depth analysis of simulation models.

With the advancement of SBO in recent years, based on the advancement of algorithms and computing

technology, realtime interactive systems (RISs), namely virtual testbeds, have emerged as a key player for

improving and streamlining such problems as vehicle design, manufacturing and development processes

[, , ]. Virtual testbeds derive from D simulation technology (DST) based approaches and have

been extended in the last years with virtual reality (VR) based interaction for better usability. The major

goal of virtual testbeds is to bring SBO to the extreme by implementing the simulation as close as possible

to reality in a virtual world.

For this purpose, engineering models and their requirements are abstracted into software simulation

models and objectives. These simulation models are executed in the virtual testbed as virtual assessments.

In these assessments, the simulation model performance is recorded and mapped the simulation objec-

tives. Simulation models are used to predict complex, real systems which can be further a subject to ran-

dom influences. These predictions are used to examine the effects of individual configuration alternatives

without actually realizing them and causing possible negative effects on the real system.

The idea is, in contrast to existing SBO applications (see Section . and Figure .), to focus on long-

term physically-based simulation of the overall design in its (virtual) environment instead of only focussing

on isolated specific parts for short periods of time. This technology has the major advantage that costly

testing, prototyping, and assessment in real-life environments are replaced by a cost-efficient simulation in

virtual worlds for comprehensive and long-term analysis of designs. This concept has the major advantage

that testing, prototyping and the assessment in RLHEs can be replaced by a cost-efficient virtual world.

This virtual world is, most often, generic and can be re-used for arbitrary purposes or enables the quick

generation of additional required scenarios.

This terminology encompasses the combination of a simulation and its’ visualization in three-dimensional virtual environ-
ments.



Figure 1.2: Example of traditional optimization of specific parts of a (simulation) model: optimization of plane
wings with respect to air drag [199]. The work presented in this thesis focusses on long-term simulation and
optimization of whole simulation models. In contrast to traditional approaches, the proposed idea is based on
understanding the simulation model as a set of unknown contradictory objective functions that can be approxi-
mated. By solving the approximated objective functions, the simulation model in its’ entirety is optimized under
multi objective constraints.

This means that costly investments for RLHE setups can be replaced by a cost-efficient software imple-

mentation. This leads to three fundamental advantages of virtual testbeds with respect to traditional SBO

applications:

• First, they give engineers the opportunity to immersively and naturally interact with their entity as

a simulation model in the virtual environment. These interactive virtual assessments can enlarge

the understanding and recognition of possible design flaws in different settings already in the en-

gineering process. This interaction is usually done via D interaction metaphors using either state-

of-the-art VR input devices such as body and hand tracking, head mounted displays or traditional

input devices (keyboard, mouse). This interactivity in the designated virtual environment with the

simulation model is not possible in standard SBO approaches, e.g. [].

• Second, virtual testbeds enable the generation of arbitrary environmental settings for the simula-

tion model. These settings can cover conditions which are not reproducible in RLHEs, for instance

arbitrary extreme conditions for the simulation model. Such extreme conditions (e.g. test cases in

which the real world entity could easily break) are essentially required in SBO studies to ensure full

test coverage of the simulated entity.

• Third, the resulting simulation data of these scenarios can be recorded, replayed and analyzed for

debriefing and in-depth analysis purposes. In addition to the already known advantages of such

data [, , ], this simulation data can be farmed with my novel data mining techniques in

order to approximate the behavior of the given simulation model (see Figure .). This simulation

model approximation is very important because it can be used to predict the simulation model per-

formance, even without actually simulating the underlying simulation model anymore (see Chapter

 for the related contributions of this thesis).

These three advantages lead to the aforementioned cost-effectiveness by reproducible, interactive vir-

tual assessments which can cover arbitrary environmental challenges for arbitrary simulation models. As

a result of this technological advancement, hardware-focused testing is becoming more and more testing

in virtual testbeds [, ].

Consequently, virtual testbeds are used, researched, and developed by different research and industrial

fields (e.g. supply chains and logistics [], autonomous space robotics [, , ], unmanned vehicles

[, ], automotive [], manufacturing [] and military operations [, ]) (see Figure .).



Figure 1.3: The approaches presented in this thesis allow for the first time to approximate simulation models
in virtual testbeds and their unknown objective functions. The approximation (left) of the unknown objective
function (right) via simulation model parametrizations leads to a loss of information (visible by the smoothing
of the surface), which however has no negative effect on the quality of the solutions due to the presented opti-
mization approaches in this work.

In these research fields, expensive hardware is connected with novel complex (mostly autonomous) con-

trol algorithms. Due to its complexity and novelty, this development can rarely rely on pre-production

experience (such as within the development of regular serial production). Consequently, mostly feasibility

studies are required. Therefore, the development, prototyping, and testing of these systems are extremely

expensive and error-prone. Virtual testbeds have been established especially in these fields of application

because they enable the aforementioned cost-efficient virtual assessments of the system designs prior buy-

ing expensive hardware [, , ].

However, virtual testbed research is still young and, thus, growing. Therefore, two important areas of

interest are emerging which I denote as the integration and workflow challenge. These challenges have

not yet been mastered and prevent virtual testbeds not only from being fully integrated into the engineer-

ing process but also their extraordinary potential for SBO studies can not be exploited. Both challenges

are presented in the following sections. It is immensely important and desirable to tackle these challenges:

overcoming these would result in a better (quicker) integration of virtual testbeds into the engineering pro-

cess and to a full exploitation of the virtual testbed opportunities for multiobjective optimization (MOO)

in complex and large SBO studies.



a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 1.4: Examples of state-of-the art virtual testbeds: a) Autonomous spacecraft navigation for deep space
navigation [149] b) Virtual forest testbed [89] c) Autonomous navigation virtual environment laboratory (AN-
VEL) [148] d) The rendezvous and capture test facility for spacecraft operations (INVERITAS) [85] e) Testbed
for intelligent building blocks concept for on-orbit satellite servicing, iBoss [136] f) Self-localization of mobile
robots on planetary surfaces, Selok [137] g) Virtual harvesting testbed [47] h) Virtual crater testbed for robotic
exploration [207] i) The mobility testbed for unmanned army ground vehicles [99] j) High fidelity dynamics
simulator for spacecraft entry, descent and surface landing [74, 128] k) Mars sample transfer testbed [98] l)
Testbed for landing and gravity campaigns for spacecraft operations [73].



5.1 Retrieve
simulation

results

5.2 Adapt
model

configuration

D
ev

el
op

m
en

t t
im

e
an

d
co

st

Traditional Virtual Testbed Approach Our Novel Approach

D
ev

el
op

m
en

t t
im

e
an

d
co

st1. Entity scenario objectives and
requirements specification

2. Entity design specification

3. Specification of virtual testbed with
respect to scenario and entity design

4. Implementation of virtual testbed

5. Simulation of model

1. Entity scenario objectives and
requirements specification

2. Entity design specification

3. Specification of virtual testbed with
respect to scenario and entity design

4. Implementation of virtual testbed
by code generation

5. Automated simulation and
optimization of model in virtual
testbed

D
ev

el
op

m
en

t t
im

e
an

d
co

st

Traditional Engineering Approach

1. Entity scenario objectives and
requirements specification

2. Entity design specification

3. Engineering of the entity

4. RLHE test and integration

4.1 Retrieve
hardware-in-
the-loop data

4.2 Adapt
entity

hardware

Figure 1.5: The integration challenge: traditional hardware-based testing (left) is currently (partly) replaced
with state-of-the-art virtual testbed technology (middle). By integrating virtual testbeds into the process, the
aforementioned interactive exploration and analysis of simulation model behavior is possible. However, too
much time is required for efficiently integrating these virtual testbeds into the engineering process because of
their complexity. My approach (right) aims at 1) efficient development of massively parallel virtual testbeds
based on code generation techniques, 2) at automatic optimization of the simulation model. This decreases the
development costs and time. Even more, it removes the closed-loop of manual simulation model adaptation
(see Chapter 5).

.. The Integration Challenge

Until now, virtual testbeds are usually integrated in linear fashion into the engineering process [], e.g. in

a five step approach [, , ] (see Figure .). The development of virtual testbeds requires a huge

amount of time as they need to incorporate the complete entity (e.g. structure, sensors, actuators, guid-

ance and control algorithms) and its environment (e.g. physically-based simulation) very accurately in

order to guarantee that the simulation results are close to reality. Otherwise, the simulation results are

not feasible, leading to unusable simulation data and virtual assessments. Implementing such a required

sophisticated simulation involves many disciplines for adequately covering all physically-based aspects.

This results in interdisciplinary research and development of virtual testbeds. However, this interdisci-

plinary development also entails a lot of integration and interface work because the involved disciplines

have a different understanding of physical and simulation model properties (e.g. reference frames) and

their requirements (e.g. continuous and discrete simulation, realtime behavior) which are required in the

simulation.

This integration and interface work is a typical source of error in complex software projects []. This

system complexity is further aggravated by the functional and non-functional virtual testbed requirements

(see Chapter ). Therefore, the development of the virtual testbed software requires often much time. This

leads to the integration challenge because the main idea of virtual testbeds is to provide engineers with

simulation results rapidly and constantly in the design part of the engineering process.

However, in current virtual testbeds approaches, the engineers have to wait for the completion of the

virtual testbed development while urgently requiring simulation results. This means that the development

of virtual testbeds within the engineering process is part of the critical project path and determines the

time-to-market of the engineered product.

In project management, a critical path is the sequence of project network activities which add up to the longest overall du-
ration, regardless if that longest duration has float or not. This determines the shortest time possible to complete the project
[].

Time to market is the length of time it takes from a product being conceived until its being available for sale [].



High dimensional

configuration space
Simulation

Simulation model

configuration

Simulation

objectives

Simulation model

performance

A
c
tu

a
to

rs

S
e
n

s
o

rs

Figure 1.6: The workflow challenge: in the traditional manual approach, engineers are trapped in a closed-loop
in order to find a suitable solution for the multiobjective optimization problem (MOP) with unknown objective
functions governing the simulation model. Due to the complexity of the optimization and the high dimensional
configuration space, no (Pareto) optimal configurations of simulation models can be calculated manually. An-
other complicating factor is that current virtual testbeds can’t perform in-depth analysis of simulation models
and their dependencies on parameterizations, which could support engineers in their analysis and decision mak-
ing.

.. The Workflow Challenge

In addition to the integration challenge, a second challenge arises. Today, sophisticated simulation models

are dominated by a MOP because they model real world problems. These problems involve decisions based

on multiple and conflicting criteria [], very closely. The goal of MOO is to compute optimal decisions

that consider the best trade-off among such criteria. MOPs can be found in the presented applications of

this thesis but also, for example, in product design where several criteria must be simultaneously satisfied

[, , ].

MSO in the form of SBO in virtual testbeds is used to compute a (optimal) solution of the MOP or

to determine the feasible design space (FDS) of the MOP (see Section .) which governs the simulation

model.

Such MOPs govern the simulation model because they directly determine the result of the defined sim-

ulation objectives. In state-of-the art simulations and virtual testbeds the analysis of the model behavior

and the determination of the valid design space, respectively, is usually done manually by simulation ex-

perts or the engineer himself.

Due to the increasing complexity of state-of-the-art simulations within virtual testbeds, objective func-

tions are not always available. Even more, there are many technical complex systems whose long-term

behavior can not be described by a set of equations. Therefore, it is extremely difficult to compute a set

of Pareto solutions or to find a local or global extrema. This kind of SBO problem is called blackbox sim-

ulation problem because the objective functions are unknown. Obviously, there exist some optimization

approaches (e.g. []) which can solve a MOP for known and unknown simulation objectives.

However, they do not consider data mining and analysis based approaches, as presented in this thesis,

which can provide viable heuristics. These heuristics originate from a very large pool of data which covers

much simulation model information that is usually unknown to the engineer. Thus, these data-driven

heuristics often lead to better solutions of the optimization solvers [, , ].



Generally, the model behavior analysis in these blackbox simulations and the determination of the FDS,

respectively, is done manually by simulation experts. The goal is to approximate the behavior of the ob-

jective function in order to interpolate and extrapolate the model behavior. The manual analysis method

is widely used [] although it yields many disadvantages because it is based on subjective judgements

from the simulation engineer [, ]: the simulation expert usually takes an educated guess based on

his experience which parameters might be influential on the simulation scope and varies these cleverly

in multiple simulations run in order to do both: approximate the FDS and reduce the process complexity

[].

The resulting simulation results are later manually analyzed with respect to the given simulation con-

straints. This workflow can be partly supported (e.g. visualization of parameter sets, clustering analysis of

results) by different tools [, , ] that can be used by the engineer or simulation expert. However,

state-of-the-art blackbox simulation problems are dominated by a MOP, as stated above. Such blackbox

simulations can not be determined by manual analysis []. Therefore, [] refers to this as the ”trial-and-

error approach” because the engineers are literally trapped within the endless possible simulation model

configurations (see Figure .).

.. Requirements

The integration and workflow challenge are further governed by several requirements. These requirements

originate from two different research fields. First, by the virtual testbed and its functional software ar-

chitecture and non-functional system requirements (see Chapter ), for instance re-usability, adaptability

and maintainability. These requirements mainly dominate the integration challenge because they deter-

mine the development time. Second, by the underlying SBO requirements (see Chapters  and ) which

are required to overcome the workflow challenge.

In the first case, we need to understand what aspects constitute virtual testbeds. Virtual testbeds are

essentially RISs because they are designed as very interactive systems with the focus on real-time per-

formance. Within this scope, virtual testbeds strive for being an efficient RIS in order to enable a better

understanding of simulation and optimization results. Therefore, they partially yield core aspects of the VR

system domain such as the immersive and interactive way to explore computer-generated environments.

As a result of this, their (software) development follows the best-practices of RIS and VR engineering

which imposes several functional and non-functional requirements on the virtual testbed implementation.

These requirements strive not only for high quality interaction but also on functional aspects. These func-

tional requirements are (realtime) performance, responsiveness, scalability, maintainability, consistency

and (re-)usability [, , –, , , , ].



It is very challenging to achieve these requirements within RIS development because they are usually

asynchronous and use highly parallel software architectures in order to satisfy their performance require-

ments [, , –, , , ]. Consequently, RIS research and development strives for reusable

patterns and software architectures in order to increase the satisfaction of the above mentioned require-

ments, especially for massive amounts of RIS software components [, ]. Such massive numbers of

software components are required by sophisticated simulations and impose additional requirements from

the research field of thread synchronization and data consistency. Usually, such design patterns can also

directly reduce the development time of RIS because they primarily enhance the re-usability and maintain-

ability of existing software code.

In the second case, we need to understand the underlying MOP that governs the simulated model be-

havior. Traditional SBO approaches [, ] usually require known objective functions which directly

describe the influence of all simulation input parameters on the specified simulation objectives (denoted

as model behavior).

Optimization toolsets (e.g. []) can use these objective functions (e.g. ordinary differential equations)

in order to approximate the FDS or to compute local and/or global minima which satisfy given constraints.

Even more, in some optimization problems, engineers and simulation analysts are interested in best trade-

off solutions among arbitrary criteria. These trade-off solutions, so-called Pareto solutions (see Section

.), define a subset of the input parameter space. However, it is extremely difficult to compute a set of

Pareto solutions or to find a local or global extrema for the aforementioned blackbox simulations. Here, the

objective functions are unknown to both: the simulation engineer and consequently optimization toolset.

Nevertheless, a solution for the underlying MOP has to be efficiently computed.

Simulation Optimization

Data Analysis

Simulation based

Optimization

Virtual Testbeds

3D Simulation

Technology

Realtime Interactive

Systems

Human Computer

Interaction

Design

Patterns

Model Driven

Engineering

Virtual

Reality

(Collaborative)

Virtual

Environments

Data and

Concurrency

Management

Figure 1.7: Virtual testbeds are an interdisciplinary approach that combines many fields of research ranging
from simulation to optimization to 3D simulation. The approaches and contributions presented in this thesis
are therefore also located in different research fields that are marked in green.



. Thesis Goal

My motivation for this work is the vision of new approaches and concepts for novel virtual testbeds which

overcome the above described integration and workflow challenge. These concepts are summarized in data

mining algorithms for blackbox optimization based on wait-free concurrency and generative simulation.

This summary directly shows that I make several contributions in different research areas (see Figure .),

which directly aim at tackling the presented challenges.

My contributions are technically explained in detail in the following sections. They lead at a high level,

in summary, to

• fast development of re-usable and maintainable virtual testbeds based on generative concepts. These

virtual testbeds execute simulation, visualization, data analysis and optimization based on wait-free

concurrency control,

• efficient approximation of the simulation model behavior based on novel data mining algorithms

and to

• automatic optimization of simulation model configurations within blackbox simulations for deter-

ministic and stochastic simulations.

Due to the generative aspect of my contributions, virtual testbeds can be efficiently developed and in-

tegrated. In addition, my wait-free concurrency and data management minimizes required software in-

terfaces and enables low-latency data exchange in scalable and massively-parallel virtual testbed applica-

tions. Even more, my contributions remove the error-prone closed-loop concept of state-of-the-art virtual

testbeds, resulting in an improved efficacy. Consequently, my contributions lead to a novel type of virtual

testbeds which are cost-efficient and highly productive for advanced engineering processes.

There are many important applications for my novel virtual testbeds: supply chains and logistics [],

autonomous space robotics [, , , ], unmanned vehicles [, , ], automotive [], collab-

orative training [] or vehicle design, manufacturing [] and development processes []. I already

outlined in the previous sections how my approach is connected to these research fields and what benefits

I contribute.

. Overview and Summary of Contributions

In summary, this thesis aims at tackling a number of difficult and interesting challenges by introducing

several novel concepts (see Figure .). The following sections of this chapter summarize my novel con-

cepts with their contributions in more detail. In short:

• Overcoming the integration challenge of virtual testbeds (see Section ..) I introduce a highly re-

usable, maintainable, generic, massively parallel software architecture for virtual testbeds. It enables wait-

free parallel execution of SBO applications for simulation, optimization and visualization by a hash map

based multi version concurrency control (MVCC). Even more, it leads to increased cohesion and decreased

coupling (C&C) by specifying all required interfaces of encapsulated software components within a cen-

tralized data management. It further satisfies the requirements of RISs and consists of:

. A novel efficient, low-latency, wait-free data structure based on hash maps for massively parallel

execution of simulation and optimization software components with little synchronization overhead

to achieve (above) real-time simulation execution.



. A novel centralized data architecture in order to avoid quadratic number of interfaces and to decrease

coupling between software components. This data architecture can further scale to massive amounts

of software components.

. A novel highly re-usable design concept based on the state-of-the-art entity component system pat-

tern (ECS) design pattern in combination with my hash map concept from above. It specifies the

key-value exchange of the hash map and increases the cohesion of the virtual testbed software com-

ponent.

. A novel generative concept based on my template based code generation (TBCG) approach within a

domain specific modelling language (DSML) concept to quickly generate from platform independent

models (PIMs) (based on above wait-free software infrastructure) arbitrary virtual testbed applica-

tions (platform specific models (PSMs)) in order to minimize the required virtual testbed develop-

ment time.

• Overcoming the workflow challenge of virtual testbeds (see Section ..) I remove the closed loop

between virtual testbed and engineers with novel data mining algorithms for an automatic knowledge

discovery process (KDP), and hierarchical multi agent system (MAS) optimization toolset. Both constitute

a novel concept for SBO and MOO in virtual testbeds for deterministic and stochastic blackbox simulations

which are governed by a MOP. This concept consists of:

. Novel data mining algorithms for a novel completely automatic KDP which uncovers hidden relation-

ships between simulation input and simulated model behavior. It uses novel data mining methods

which can approximate unknown objective functions in deterministic and stochastic blackbox sim-

ulations. These data mining methods are able to approximate the FDS and to compute gradients

towards the Pareto front.

. A novel optimization toolset based on a hierarchical MAS. The agents utilize above FDS approxima-

tion in order to compute an optimal solution for the given MOP.

XML definitionUser input

Workflow & dataflow definition

Massively Parallel Simulation via Wait-Free Data Management

Template-Based Code Generation3D Visualization and Analysis

Parameters Simulation objectives

Feasible design

space approximation

Simulation state

Simulation state

Knowledge Discovery for

Blackbox Simulations
Massively Parallel Optimization

Figure 1.8: Overview of my contributions: a massively parallel simulation based on my wait-free data man-
agement is generated by my code generation approach with templates. This code generation includes the au-
tomatic realization of the complete work- and dataflow of the virtual testbed as well as model checking. The
resulting massively parallel simulation is analyzed by my proposed knowledge discovery process for blackbox
simulation models. The result of this analysis, the approximation of the feasible design space, is used for com-
puting Pareto optimal solutions of simulation model configurations by my massively parallel optimization, based
on multi agent systems. Finally, simulation and optimization are interactively visualized and presented to the
user.



.. Wait-Free Data and Concurrency Management

for Massively Parallel Virtual Testbeds

A central part of RISs, such as collaborative virtual environments (CVEs), virtual environments (VEs), VR

systems and DST based applications, is the generation, management, and distribution of all relevant data

(resp. simulation) states. In modern manifestations of these systems, usually many independent, inho-

mogeneous software components need to communicate and exchange data in order to simulate the given

model as well as to provide data for the visual feedback [, , ]. In detail, such systems usually

consist of many different components such as graphics rendering, sound, several input devices, haptic ren-

dering, physically-based simulation, model behavior, etc. All these components have to share and commu-

nicate some kind of data. For instance, the physically-based simulation gathers data from the input devices

and passes its results to the graphics, haptic and sound rendering. This requires some kind of interface for

the data exchange between the components. This data can be extremely large, for instance in spacecraft

and spaceflight simulations [, ] (see Section .), where the position of thousands of celestial bodies

changes continuously by Newtons’ laws of motion. All transformations have to be passed from the sim-

ulation to the rendering component. This data exchange is usually done concurrently in highly parallel

manner in order to preserve a fast simulation and immersive visual feedback to the user [, , ].

Therefore, current RISs rely on some kind of data management or structure which is concurrently shared

between all software components. Thus, RISs, in general, require a data and concurrency management

that is easy to handle and guarantees fast access to data for both, reading and writing while maintaining a

consistent simulation state even in heavily concurrent access scenarios [].

My contribution within above research field is a novel concurrency control management (CCM) and data

management that manages concurrent multi-threaded access to shared data in any RIS. My approach does

not only reduce the number of required interfaces from O(n2) of standard approaches to O(n) which ben-

efits better maintainability. Even more, it minimizes the synchronisation overhead compared to standard

locking approaches and guarantees simultaneous, wait-free read and write operations. It is based on a wait-

free hash map data structure which does not suffer from traditional problems such as deadlocks or thread

starvation. This wait-free hash map implements a MVCC based on double buffering. This data structure

achieves high scalability because the wait-free concept only introduces small latencies even for massively

parallel access. In addition, it provides high performance because it is completely wait-free and in-memory

resident. Additionally, it provides high adaptability because it stores all simulation data in efficient object-

oriented structures within a graph-based look-up infrastructure. In contrast to the state-of-the-art DST

applications which utilize full-fledged database technology [, , ], the time-consuming serializa-

tion for data exchange as well as table-based coordination and separation of relational databases are elim-

inated. My approach stores static and dynamic parts of a simulation model, distributes changes caused by

the simulation and logs the simulation run. Even more, my approach implements the same functionality

as state-of-the-art relational databases such as aggregate queries and caching strategies. As a consequence,

my approach overcomes the associated drawbacks of relational database technology for sophisticated DST

applications. Additionally, my approach has several advantages compared to other state-of-the-art decen-

tralized methods [, , ], such as persistence for simulation state over time, fast object and data

identification, standardized interfaces for software components as well as a consistent world model for the

overall simulation system.

This terminology encompasses differences in type (graphics, physics, haptics, sound, input, craft, and many more) and fre-
quency of the software component.



At last, my data structure incorporates a versioning mechanism which generates a queryable archive

of the complete simulation. As a result, simulation components can be used in an online viewing mode

to replay a simulation run step by step, allowing analysis and debriefing. From the software engineering

point of view, this approach (in combination with my generative concept, see Sections .. and .) leads

to C&C by forcing the complete dataflow to be accessed by encapsulated software classes (see Section ).

For more details, see chapter .

.. Generative Concepts for ECS based Virtual Testbeds

As introduced in the previous section, a central part of RISs is the generation, management, and distribu-

tion of the global simulation a.k.a world state. Usually many independent software components need to

communicate and exchange data in these modern systems systems in order to generate this global state.

These components and their corresponding performance within a RIS are governed by the functional as well

as non-functional requirements of modern RIS development such as (realtime) performance, responsive-

ness, scalability, maintainability, consistency and (re-)usability [, , –, , , , , ].

It is very challenging to achieve these requirements within RIS development because they are usually asyn-

chronous and use highly parallel software architectures in order to satisfy their performance requirements.

Consequently, the need for suitable design patterns which enable reusable software architectures that aim

for massive amount of RIS components is rapidly growing in RIS development and research [, ].

In the past, the ECS approach has become a major design pattern used in modern architectures for

RISs [, , –, , ]. This pattern strives for high re-usability and architectural scalability.

The main idea of ECS is to decouple high-level modules such as physics, rendering or sound from the low-

level objects with their corresponding data. Therefore, ECS introduces three software architectural objects:

Entities, Components and Systems. These are used to describe objects of a RIS via composition instead

of object-oriented inheritance. It has been shown that this design pattern can be used to directly enhance

the software quality of RISs by introducing semantics [, , –], leading to highly maintainable

and re-usable applications and frameworks.

My contribution is an extension of the ECS pattern with my high performance wait-free hash maps

with efficient memory management which enables low-latency data exchange within the pattern and re-

duces their memory consumption. Consequently, I enable the previously described non-locking read and

write operations for any ECS pattern based system. Thus, leading to a highly responsive low-latency data

access for every System while maintaining a consistent state even for structured Components. Simulta-

neously, my contribution greatly reduces the memory footprint of my wait-free hash maps by introducing

novel garbage collection techniques. These deallocation techniques directly aim at minimizing the memory

footprint for RIS based applications. My novel approach is easy to implement and fits perfectly into the

implementation of wait-free hash maps without altering the ECS pattern. My approach therefore greatly

benefits the overall RIS performance when using the ECS pattern for improved maintainability and re-

usability.

Even more, my approach is combined with the concept of model driven engineering (MDE), namely

DSMLs. I developed a DSML that is able to define PIMs for arbitrary virtual testbed applications from

which, via code generation, various PSMs can be generated. My approach allows easy and quick modelling

of my ECS pattern based wait-free hash map software infrastructure for virtual testbeds. This leads to

efficient definition, implementation via code generation, and model checking of virtual testbeds.



My code generation is able to generate the workflow and dataflow for my wait-free hash map based

virtual testbeds which use the ECS pattern. This workflow and dataflow is model checked, this means

that, at code generation time, possible errors in the dataflow will be found and reported to the user. This

minimizes the tedious integration work in the interdisciplinary virtual testbed engineering. At the same

time, it uncovers hidden flaws in the designed software architecture of the virtual testbed application. For

more details, see chapter .

.. Data Mining Algorithms for

Simulation based Optimization in Virtual Testbeds

Traditional SBO approaches [, ] usually require pre-defined objective functions which directly de-

scribe the influence of all simulation input parameters on the specified simulation objectives (denoted as

model behavior). Optimization toolsets, for instance [], use these objective functions (e.g. ordinary

differential equations) in order to find a local or global minimum which satisfies given constraints. As a

consequence of the increasing complexity of state-of-the-art simulations within virtual testbeds, such ob-

jective functions are not always available. Even more, there are many technical complex systems whose

long-term behavior can not be described by a set of equations (e.g. the behavior of autonomous systems

in changing environments). This kind of SBO problem is called blackbox simulation problem because the

objective functions are unknown to both: the simulation engineer and consequently optimization toolset.

There is already a huge number of computational methods for solving MOPs (e.g. [, , , , ])

which usually do not consider the generation of vast amounts of simulation model behavior results that

can be derived from a KDP in simulations. Usually, the traditional approaches use heuristics of the un-

known objective functions for their algorithms. However, these approaches converge much better to local

or global minima when they are enhanced with additional information about the MOP []. I propose for

this purpose an approximation of the complete simulation model behavior.

In contrast to state-of-the-art approaches, which are not able to automatically analyze blackbox MOPs

in simulations, my approach automatically actively builds a model between simulation input and simula-

tion objectives. This approximation of the simulation model behavior directly leads to an approximation

of the FDS of the simulation model configuration space for a Pareto based MOO. My novel data mining

algorithms and concepts lead to a novel KDP that uncovers unknown causal relations in large parameter

sets between simulation input and model behavior which are assumed to be unknown non-linear objective

functions. In detail, it approximates objective functions (resp. the FDS) in arbitrary deterministic and

stochastic blackbox simulations as B-spline surfaces. It computes a gradient from this FDS approxima-

tion towards concave, convex or interrupted Pareto fronts. This gradient is used by my hierarchical MAS

approach, as described in the next section. My approach is completely automatic, it does not need any

supervision from simulation experts. Another advantage of my approach is its performance. It gains its

efficiency from a novel spline-based sampling of the parameter space in combination with a novel forest-

based simulation dataflow analysis. Another main advantage of my approach is that the evaluation of

my B-spline surface based FDS approximation for simulation model behavior data is computationally very

fast and can, thus, replace costly simulation-based evaluations which are usually required. Consequently,

my approach can also delivers a performance boost when computing a solution for the given MOP. Fur-

thermore, my approach is very generic. It can be easily incorporated into existing SBO approaches which

already use a KDP. Even more, the computed Pareto solutions from my evaluations are close to the Pareto

front for both, deterministic and stochastic simulations.



Another advantage of my approach are the provided optimization strategies which cover different as-

pects such as reliability of the solution or the coverage of the input space by my data mining approach.

These strategies can be used by state-of-the-art MOO solvers in order to investigate a larger bandwidth of

the simulated model behavior. For more details, see chapter .

.. Multi-Agent System for Massively Parallel Optimization

In order to utilize my FDS approximation for computing an optimal simulation model configuration solu-

tion, I use a highly parallel optimization system based on my wait-free data management. This optimiza-

tion system is a hierarchical MAS which aims at dynamically tuning all given input configuration parame-

ters with respect to the approximated FDS, which is retrieved from my KDP. Such hierarchical MAS have

already proven their feasibility for solving MOP [, , , , ]. My main idea is that every agent

introduces a part-wise modelling (singleobjective optimization (SOO) and MOO constraints per input pa-

rameter) of the problem and its behavimy and communication to other agents is used to solve the global

(MOO) problem.

Instead of using a costly evolutionary approach (such as proposed by [, , ]), my MAS directly

utilizes my cost-efficient FDS approximation and can converge in only a few iterations to the solution (see

Section .).

My MAS is composed of several agent organizations. Each of these organizations aim at optimizing a

subset of configuration parameters for one or more simulation objective, each one represented by my FDS

approximation. Within these organizations, the agents follow the principle of negotiation based agent

communication. In my case, all agents negotiate based on the provided FDS approximation from which the

agents compute gradients towards the Pareto front. Every agent organization is managed by an specific

negotiation agent. It handles requests between the other agents in order to satisfy the existing MOO

constraints. These requests are based on a heuristic which the agents apply. Based on the corresponding

subset of configuration parameters, this heuristic determines whether or not a better solution is reachable

and approximates a corresponding cost. This cost is the number of negatively affected simulation objectives

by changing the corresponding configuration parameter set.

My MAS perfectly harmonizes with my ECS based, wait-free, massively parallel data management ap-

proach because it delivers the required low-latency communication and adaptability for many homoge-

neous agents. In detail, all agents can communicate and exchange data very quickly, increasing the overall

performance of the optimization process. Additionally, agents can be added and removed at runtime to the

optimization system without the need of restarting the optimization run. For more details, see chapter .

In the following, I will explain the previously introduced concepts in more detail. Following a quick

overview of theoretical background in chapter , I explain my hash map based MVCC for RISs in chapter

. Further, I introduce in chapter  how the ECS pattern can be adopted for the previously described hash

map based data management and how this combined concept can be efficiently implemented by using a

DSML. I present my KDP in chapter  and the accompanying MAS based optimization approach in chapter

. I conclude with a summary of my contribtions and directions for future work in chapter . Finally, a

summary of my publications and awards is given.



Listen to many, speak to a few.

William Shakespeare

2
Brief Overview of Techniques for

Data Management and Analysis,

and Simulation based Optimization

In this chapter, I introduce several topics related to virtual testbeds namely RISs, SBO, MOPs, and knowl-

edge discovery in databases (KDD) (resp. data mining within KDPs). I recall some of the most relevant

research articles that have appeared in the international literature related to these topics. The presented

state-of-the-art does not have the purpose of being exhaustive; it aims to drive the reader to the main

problems of this interdisciplinary work and the approaches to solve them.

. Data Management: Concurrency Control in
Realtime Interactive Systems

As previously described, a central part of RISs, such as CVEs, VEs, VR systems and DST based applications,

is the generation, management and distribution of the global simulation state. In state-of-the-art RIS and

DST applications, usually many independent software components are required to execute the simulation

model as well as to provide data for the visual feedback. This data exchange is usually done concurrently

in highly parallel manner in order to preserve a fast simulation and immersive visual feedback to the user

[]. Consequently, when conceptualizing and implementing above applications in massively parallel

manner, efficiently managing concurrency control is inevitable.

Usually, these data management and concurrency control concepts (summarized as a CCM),are related

to database research. However, CCMs also have been applied on data management in virtual testbed re-

search, thus, I treat the terms database and data management equally within this section as database man-

agement system (DBMS).



A CCM ensures correct results for concurrent operations on shared data, while getting those results as

quickly as possible. When components operate concurrently by messaging or by sharing accessed data,

a certain components’ consistency may be violated by another component. This means that either a cor-

rupted state is generated or that information is lost when no concurrency control is introduced. In this

case, one could never rely on any parallel execution of operations.

The general area of CCM provides rules, methods, design methodologies, and theories to maintain the

consistency of components operating concurrently while interacting, and thus the consistency and cor-

rectness of the whole system. These concurrent operations are denoted as transactions.

[] defined the atomicity, consistency, isolation, durability (ACID) properties which each transaction

has to obey when executed in CCM system, based on the work by []:

• Atomicity Each transaction is ”all or nothing”: if one part of the transaction fails, then the entire

transaction fails, and the DBMS state is left unchanged. An atomic system must guarantee atomicity

in each and every situation, including power failures, errors, and crashes. To the outside world,

a committed transaction appears (by its effects on the DBMS) to be indivisible (”atomic”), and an

aborted transaction does not happen.

• ConsistencyEvery transaction must leave the DBMS in a consistent (correct) state, i.e., maintain the

predetermined integrity rules of the DBMS (constraints upon and among the objects of the DBMS).

A transaction must transform a DBMS from one consistent state to another consistent state (given

that the transaction itself is correct, i.e., performs correctly what it intends to perform while the

predefined integrity rules are enforced by the CCM). Since a DBMS can be normally changed only by

transactions all the states of the DBMS are consistent.

• IsolationTransactions can not interfere with each other (as an end result of their executions). More-

over, usually (depending on the concurrency control method) the effects of an incomplete transac-

tion are not even visible to another transaction. Providing isolation is the main goal of concurrency

control.

• Durability Effects of successful (committed) transactions must persist through crashes (typically by

recording the transactions’ effects and its commit event in a non-volatile memory).

Therefore, a transaction, by definition, must obey the ACID properties. If transactions are executed

serially, i.e., sequentially with no overlap in time, no transaction concurrency exists.

However, if concurrent transactions with interleaving operations are allowed in an uncontrolled man-

ner, some unexpected, undesirable result may occur, such as:

• The lost update problem A second transaction writes a second value of a data-item on top of a

first value written by a first concurrent transaction, and the first value is lost to other transactions

running concurrently which need, by their precedence, to read the first value. The transactions that

have read the wrong value end with incorrect results.

• The dirty read problem Transactions read a value written by a transaction that has been later

aborted. This value disappears from the DBMS upon abort, and should not have been read by any

transaction (”dirty read”). The reading transactions end with incorrect results.
A transaction symbolizes a unit of work performed within a DBMS against a shared data structure, and treated in a coherent

and reliable way independent of other transactions. A transaction generally represents any change in a DBMS.



• The incorrect summary problem While one transaction takes a summary over the values of all the

instances of a repeated data-item, a second transaction updates some instances of that data-item.

The resulting summary does not reflect a correct result for any (usually needed for correctness) prece-

dence order between the two transactions (if one is executed before the other), but rather some ran-

dom result, depending on the timing of the updates, and whether certain update results have been

included in the summary or not.

Most high-performance transactional systems need to run transactions concurrently to meet their per-

formance requirements. Thus, without CCM such systems can neither provide correct results nor maintain

their DBMSs consistent.

The main categories of CCMs are:

• OptimisticDelay the checking of whether a transaction meets the isolation and other integrity rules

(e.g. serializability and recoverability) until its end, without blocking any of its (read, write) oper-

ations, and then abort a transaction to prevent the violation, if the desired rules are to be violated

upon its commit. An aborted transaction is immediately restarted and re-executed, which incurs an

obvious overhead (versus executing it to the end only once).

• Pessimistic Block an operation of a transaction, if it may cause violation of the rules, until the possi-

bility of violation disappears. Blocking operations is typically involved with performance reduction.

• Semi-optimistic Block operations in some situations, if they may cause violation of some rules, and

do not block in other situations while delaying rules checking (if needed) to transaction’s end, as

done with optimistic.

These categories provide different performance, i.e., different average transaction completion rates

(throughput), depending on transaction types mix, computing level of parallelism, and other factors. If

selection and knowledge about trade-offs are available, then the category and method are usually chosen

to provide the highest performance.

The mutual blocking between two or more transactions (where each one blocks the other) results in a

deadlock, where the transactions involved are stalled and can not reach completion. Most non-optimistic

mechanisms (with blocking) are prone to deadlocks which are resolved by an intentional abort of a stalled

transaction (which releases the other transactions in that deadlock), and its immediate restart and re-

execution. The likelihood of a deadlock increases with the number of transactions. Blocking, deadlocks,

and aborts result in performance reduction.

Many CCM methods exist which reside within one of the main categories above (see Figure .). The

major methods [] have many variants and overlay in some cases:

• Locking Controlling access to data by locks assigned to the data. Access of a transaction to a data

item (DBMS object) locked by another transaction may be blocked (depending on lock type and access

operation type) until lock release.

• Serialization graph checking/Precedence graph checking Checking for cycles in the schedules’

graph and breaking them by aborts.

• Timestamp ordering Assigning timestamps to transactions, and controlling or checking access to

data by timestamp order.



• Commitment ordering Controlling or checking transactions’ chronological order of commit events

to be compatible with their respective precedence order.

• Multiversion concurrency control Increasing concurrency and performance by generating a new

version of a DBMS object each time the object is written, and allowing transactions’ read operations

of several last relevant versions (of each object) depending on scheduling method.

• Index concurrency control Synchronizing access operations to indexes, rather than to user data.

• Private workspacemodel (deferred update) Each transaction maintains a private workspace for its

accessed data, and its changed data become visible outside the transaction only upon its commit.

Many DBMSs rely upon locking strategies to provide ACID capabilities. In more detail, locking means

that the transaction marks the data that it accesses so that the CCM knows not to allow other transactions

to modify it until the first transaction succeeds or fails. The lock must always be acquired before processing

data, including data that is read but not modified. Non-trivial transactions typically require a large number

of locks, resulting in substantial overhead as well as blocking other transactions. For example, if software

component A is running a transaction that has to read a row of data that software component B wants

to modify, component B must wait until component As’ transaction completes. There a several variants

of these locking approaches such as LCN (Locking a Central Node), GPL (Global Two-Phase Locking),

Weaker Consistency or PCL (Primary Copy Locking) [] (see Figure .). An alternative to this kind of

locking approach is MVCC, a powerful CCM concept, which is described in the next section.

Concurrency Control

Pessimistic

Locking Time Stamp

2PL

PCL

LCN

G2PL

Weaker Consistency

S2PL

BC

DC/POS-TAI-2P

Basic

CSM

CSM Correctness

OSN

TPM

Multiversion

Deferred Sync

Ordered Transactions

SDD1

Optimistic

Locking

OCC

Figure 2.1: Overview of current CCM approaches for ensuring ACID for transactions (adopted from [139]).
The approaches follow classical pessimistic (synchronized or merge based execution of transactions) or opti-
mistic (direct execution of transactions and rollout in case of detected conflicts) approaches. Pessimistic ap-
proaches such as the two phase lock approaches based on 2PL, which allow only low data throughput, are
widely used. In this thesis, a classical timestamp based approach to multiversion concurrency for hash maps
is researched and pursued.



.. Multiversion Concurrency Control

MVCC is a commonly used CCM by DBMSs programming languages to implement transactional memory.

Since , MVCC has been researched in various implementations and has already confirmed its efficiency

and performance countless times [, , , , , , , , , , , , , , , ].

It is an alternative to locking, in which the DBMS provides each reading transaction the prior, unmod-

ified version of data that is being modified by another active transaction. This allows readers to operate

without acquiring locks, i.e. writing transactions do not block reading transactions, and readers do not

block writers.

In detail, when MVCC needs to update an item of data, it will not overwrite the old data with new data,

but instead marks the old data as obsolete and adds the newer version elsewhere. Thus, there are multiple

versions stored, but only one is the latest. This allows readers to access the data that was there when they

began reading, even if it was modified or deleted part way through by someone else. It also allows DBMSs

to avoid the overhead of filling in holes in memory or disk structures but requires (generally) the system

to periodically sweep through and delete the old, obsolete data objects.

MVCC provides point in time consistent views. Read transactions under MVCC typically use a times-

tamp or transaction ID to determine the latest version of every DBMS object. Read and write transactions

are thus isolated from each other without any need for locking. Writes create a newer version, while con-

current reads access the older version.

In its most basic implementation, MVCC ensures a transaction (T) never has to wait to read a DBMS

object (O) by maintaining several versions of the object. Each version of objectOhas both a read timestamp

(RT) and a write timestamp (WT) which lets a particular transaction Ti read the most recent version of the

object which precedes the transaction’s read timestamp RT(Ti). If transaction Ti wants to write to object

O, and there is also another transaction Tk happening to the same object, RT(Ti) must precede the RT(Tk),

i.e., RT(Ti) < RT(Tk), for the object write operation to succeed. A write can not complete if there are

other outstanding transactions with an earlier RT to the same object and are therefore either merged or

sequentially applied.

The drawback of MVCC is the cost of storing multiple versions of objects in the DBMS. On the other

hand, the access is never blocked, which can be important for workloads mostly involving reading values

from the DBMS. MVCC is particularly adept at implementing true snapshot isolation, something which

other methods of concurrency control frequently do either incompletely or with high performance costs.

MVCC is widely used in several popular DBMSs, such as ArangoDB, Berkely DB, CouchDB, IBM DB and

Cognos, eXtremeDB, MemSQL, Microsoft SQL, MongoDB, MySQL, Oracle, PostgreSQL [, , , ,

, , ].

Transactional memory uses transactions rather than locks to synchronise processes that execute in parallel and share mem-
ory. It uses designated code sections as transactions and guarantees for consistent execution of parallel transactions. It does this
by monitoring their access to designated transactions variables. If the systems detects a conflict, it will initiate a rollback of the
transaction, without noticing the user of the transactional memory.



. Simulation based Multiobjective Optimization

The idea of SBO is to combine simulation models with an optimization component that varies certain

variables of a simulation model to minimize or maximize a set of objective functions. Thus, SBO combines

mathematical optimization techniques with simulation (analysis).

Simulation models are used to predict complex, real systems which can be further a subject to random

influences. Typically, simulation models are used to examine the effects of individual configuration al-

ternatives without actually realizing them and causing possible negative effects on the real system. The

classical method for selecting an optimal configuration alternative for a given simulation model and sim-

ulation scenario is to carry out large simulation experiments and to make the selection manually.

SBO aims to make this selection of the optimal or ”best” configuration alternatives automated by means

of an algorithm using an underlying simulation model. The basic idea of SBO is to cleverly vary the con-

figuration alternatives in order to approximate or compute the optimal configuration alternatives for the

given scenario. State-of-the-art simulations increase steadily and rapidly in their complexity. Therefore,

the underlying objective functions become difficult and expensive to evaluate.

Thus, it is vital for a SBO application that the simulation is executed very quickly and that the number

of simulation executions is minimized. Even more, in many complex systems, objective functions can not

be formulated.

In analogy to ”classical” optimization, the simulation result, corresponds to the objective function of an

optimization problem, and the variables of a simulation model correspond to the variables of an optimiza-

tion model. A major difference is, however, that the objective function can be stochastic, which means

that it is subject to random fluctuations, depending on which scenario is considered in a simulation run.

Even more, objective functions can be completely unknown, which means that, for instance, no ordinary

differential equations or partial derivatives ar given, leading to so-called blackbox simulations.

Specific SBO methods can be chosen based on the decision variable types (see Figure .). Within this

context, SBO exist in two fashions, either the optimization is dynamic per simulation state (optimiza-

tion control) or static for the complete simulation run (parametric optimization). Both approaches aim at

maximizing or minimizing a set of functions.

.. The Simulation based Optimization Process

A SBO study or process can be subdivided into three phases, including a preprocessing phase, an optimiza-

tion phase and a post processing phase [] (see Table .).

The preprocessing phase plays a significant role in the success of the SBO study. In this phase, the

most important task is the formulation of the optimization problem (resp. the definition of objective

functions), if possible. This task is not trivial because it is very interdisciplinary: it lays directly between

mathematics and the corresponding engineering field of the given simulation model. Therefore, it requires

rich knowledge of mathematical optimization and domain knowledge. It is valuable to note that, within

my virtual testbed concept, the simulation model should not be simplified too much in order to prevent

the risk of simplification and/or inaccurate modeling of the problem. Conversely, such complicated models

may severely delay the whole SBO study because the simulation requires more computational time.

In the optimization phase, the most important task of analysts is to monitor convergence of the opti-

mization and to detect errors which may occur during the whole process.



Objective Functions Optimization Settings

Optimization Program

Simulation
Input

Files

Output

Files

Thres-

hold

Opt.

Results

OPTIMIZATION

SIMULATION

Yes

No

Figure 2.2: The coupling loop between simulation and optimization (adopted from [16]). In state-of-the-art
approaches, objective functions are known and required. The simulation is parametrized, executed several times
via an optimization algorithm and the objective functions are evaluated. This is done until a minimum or max-
imum value is reached. In contrast to these approaches, my work replaces this coupling loop by an approxima-
tion of the simulation model because the objective functions are unknown.

It is necessary to note that a convergent optimization process does not necessarily mean the global min-

imum (or minima) has been found. Convergence behaviors of different optimization algorithms are not

trivial and are a crucial research area of computational mathematics []. Errors during the optimization

process may rise from insolvable solution spaces, infeasible combination of variables, etc. Even more, a

single simulation failure may crash the entire SBO process. These errors can be detected by monitoring

the optimization progress, considering simulation time report, simulation data retrieval, convergence be-

havior or optimization termination criteria []. There are a great number of termination criteria which

are mostly dependent on the used optimization algorithm, e.g. maximum optimization time, objective

function convergence and approximation, population convergence, change of variables, step size reduc-

tions or maximum iterations. An optimization may have more than one termination criterion and the

optimization process ends if at least one of these criteria is satisfied. The termination criteria must be set

correctly unless the optimization will fail to converge to a stationary solution or result in useless evalua-

tions, thereby extra optimization time. However, in sophisticated SBO applications, it is often impossible

to identify whether a global optimum is reached by the optimization.



Phase Major tasks

Pre-processing

Formulation of the optimization problem:
- Building the simulation model
- Setting objective functions and constraints
- Selecting and setting independent (design) variables and
constraints
- Selecting an appropriate optimization algorithm and its
settings for the problem
- Coupling the optimization algorithm and building the
simulation program
- (Optional) Screening out unimportant variables by using
sensitivity analysis to reduce the search space and increase
efficiency of optimization[, , ]
- (Optional) Creating a surrogate model (a simplified sim-
ulation model) to reduce computational cost of the opti-
mization [, , ]

Running optimiza-
tion

Monitoring convergence
Controlling termination criteria
Detecting errors or simulation failures

Post-processing

Interpreting optimization results
- (Optional) Verification [] and comparing optimization
results of surrogate models and ”real” models for reliabil-
ity []
- (Optional) Performing sensitivity analysis on the result
[]
Presenting the results

Table 2.1: Major phases in simulation based optimization studies. Adopted from [16].

Nevertheless, even if the optimization results in a non-optimal solution, one may have obtained a better

building performance compared to not running any optimization [].

In the post processing phase, the analysts have to interpret optimization data into charts, diagrams or

tables from which useful information of optimal solutions can be derived [].

The simulation part of the SBO application can be implemented as a discrete event simulation or con-

tinuous simulation. A discrete event simulation models the operation of a system as a discrete sequence

of events in time. Each event occurs at a particular instant in time and marks a change of state in the

system. Between consecutive events, no change in the system is assumed to occur; thus the simulation

can directly jump in time from one event to the next. This contrasts with continuous simulation in which

the simulation continuously tracks the system dynamics over time. Instead of being event based, this is

called an activity based simulation; time is broken up into small time slices and the system state is updated

according to the set of activities happening in the time slice. Because discrete-event simulations do not

have to simulate every time slice, they can typically run much faster than the corresponding continuous

simulation [].



.. Multiobjective Optimization

Today, simulation models are dominated by a MOP because many real world problems involve decisions

based on multiple and conflicting criteria [] (see Section .). Therefore, it is necessary survey the defi-

nition and constraints of MOPs. I define MOP according to []:

Given a subset X of Rn and p functions fj : X → R for j = 1, 2, ..., p, MOP is defined as:

(MOP)max
x∈X

F(x) = (f1(x), f2(x), ..., fp(x)) (.)

where F : X → Rp is the objective function vector. I assume thatX is of the formX = {x = (x1, x2, ..., xn) ∈
Rn : ai ≤ xi ≤ bi, i = 1, 2, ..., n}, where ai and bi are the lower and upper bound of the ith component

of variable x, respectively. When the objective functions conflict with each other, no single solution can

simultaneously minimize all scalar objective functions fj(x), j = 1, ..., p. In these scenarios, the goal of

MOP is to identify a subset of the Pareto optimal points (P∗) which are able to represent the Pareto front

or to compute a single trade-off solution x ∈ P∗ (see Figures .a and .b) []. The definition of Pareto

optimality can be provided by using Pareto dominance relation []:

• Let xu, xv ∈ X be two decision vectors (samples of X). F(xu) dominates F(xv) (denoted F(xu) ≺ F(xv))

if and only if fi(xu) ≤ fi(xv) ∀i ∈ {1, 2, ..., p} and fj(xu) < fj(xv) ∃j ∈ {1, 2, ..., p}
• A point x∗ ∈ X is globally Pareto optimal if and only if there is no x ∈ X such that F(x) ≺ F(x∗).

Then, F(x∗) is called globally efficient. The image of the set of globally efficient points is called the

Pareto front. In general, computational methods can not guarantee global Pareto optimality [],

but at best local Pareto optimality that is defined as:

• A point x∗ ∈ X is locally Pareto optimal if and only if there exists an open neighborhood of x∗,B(X∗),
such that there is no x ∈ B(x∗)∩X satisfying F(x) ≺ F(x∗). F(x∗) is then called locally efficient. The

image of the set of locally efficient points is called the local Pareto front.

In general, identifying the set of all Pareto optimality points is not a tractable problem and mostly impos-

sible, particularly when the knowledge on the structure of the problem is very minimal or not available

[].

An example of a convex Pareto front is illustrated in Figure .a. Here, all the points between

(f2(x̂), f1(x̂)) and (f2(x̃), f1(x̃)) define the Pareto front. These points are called non-inferior or non-

dominated points.

An example of local and global Pareto optima is illustrated in Figure .b. The points p1 and p5 are local

Pareto optima; points p2, p3 and p4 are global Pareto optima.

There a numerous approaches in order to solve MOPs in order to find a single Pareto solution or to

determine the Pareto front. Tables . and . give an overview of the mostly-used algorithms. Obviously,

all algorithms have in common that they achieve better results (in terms of number of found solutions

or distance to Pareto front), when the objective functions are known. In addition, they do not consider

data mining and analysis based approaches which can provide viable heuristics [, ], thus, leading

to better solutions of the optimization solvers [].



𝑓1(𝑥)

𝑓2(𝑥)

(𝑓2 ො𝑥 , 𝑓1(ො𝑥))

(𝑓2(෤𝑥), 𝑓1(෤𝑥))

Pareto curve

C

2.3a: Example of a Pareto front (black) of the fea-
sible design space. Adopted from [115]. This Pareto
front yields all best trade-off solutions of the MOP. In
this thesis, solutions shall be computed that are very
close or directly at the Pareto front.

𝑓1(𝑥)

𝑓2(𝑥)

C
𝑝1
𝑝2

𝑝3

𝑝4 𝑝5

2.3b: Example of local (p1, p5) and global (p2,p3,p4)
Pareto solutions that reside on the Pareto front.
Adopted from [115]. Normally, these global Pareto
solutions are shown to the user who can then decide
on a suitable trade-off.

Family Strength and weakness Typical algorithms

Direct search
(including general-
ized pattern search
methods)

-Derivate-free methods
-Can be used if cost function
has small discontinuities

-Some algorithms can not
exactly compute minimum
-May be attracted by a local
minimum
-Coordinate search methods
often have problems with
non-smooth functions

Exhaustive search,
Hooke-Jeeves,
coordinate search,
mesh adaptive search,
generating set search,
simplex algorithm

Integer
Programming

Solving problems which
consist of integer or mixed-
integer variables

Branch and bound methods,
simulated annealing,
tabu search,
hill climbing method

Gradient-based

-Fast convergence, a
stationary point can
be guaranteed

-Sensitive to discontinuities
in the cost function
-Sensitive to multi-modal
function

Bounded BFGS,
Levenberg-Marquardt,
discrete Armijo gradient,
CONLIN method, etc.

Table 2.2: Classification of mostly-used optimization algorithms in SBO studies (1). Adopted from [16].



Family Strength and weakness Typical algorithms

Meta-heuristic
methods

-Do not get stuck in
local optima

-Large number of cost
function evaluations
-Global minimum can not be
guaranteed

Evolutionary optimization
family:

GA, genetic programming,
differential evolution

Swarm intelligence:

Particle swarm optimization,
ant and bee colony algo-
rithm, intelligent water drop

Trajectory search

-Easy implementation even
for complex problems
-Appropriate for discrete
optimization problems
(continuous variables
can also be used),
e.g. travelling salesman
problems

-Only effective in discrete
search spaces
-Unable to tell whether the
obtained solution is optimal
or not
-Problems of repeated
annealing

Simulated annealing,
tabu search,
hill climbing

Other
Harmony search,
firefly,
invasive optimization

Hybrid Combining the strength
and limiting the weak-
ness of above mentioned
approaches

PSO-HJ, GA-GPS,
CMA-ES/HDE, HS-BFGS

Table 2.3: Classification of mostly-used optimization algorithms in SBO studies (2). Adopted from [16].



Selection
Preprocessing

Transformation

Data Mining

Interpretation

Target Data

Preprocessed
Data

Transformed
Data

Patterns

Knowledge

Database

Figure 2.4: The traditional KDD process (adopted from [200]): low level data is extracted from a database
and after preprocessing and transformation of the data, data mining methods generate specific representations
and patterns of the data. Extensive manual evaluation of these representations leads finally to low level data
knowledge. In this thesis, a novel automatic KDD for virtual testbeds is presented.

. Knowledge Discovery Processes and Data Mining

KDD is motivated by the trend that arbitrary data is being collected and accumulated at a dramatic pace

across a wide variety of research and industrial fields. There is an urgent need for a new generation of

computational theories and tools to assist humans in extracting useful information (knowledge) from the

rapidly growing volumes of digital data. These theories and tools are the subject of the emerging field of

KDD []. Originally, KDD is defined as making sense of data collections that are too big to manually re-

view each and every single record. Input sources for such kinds of data are complex simulations, graphs, or

data warehouses []. [] describe the KDD process as multiple steps to ultimately transform low level

data into useful knowledge (see Figure .). This knowledge might be more compact (for example, a short

report), more abstract (for example, a descriptive approximation or model of the process that generated

the data), or more useful (for example, a predictive model for estimating the value of future cases) [].

Consequently, KDD deals with the non-trivial task of identifying valid, novel, potentially useful, and ul-

timately understandable patterns in data by the application of specific data mining methods for pattern

discovery and extraction []. The actual combination of diverse data mining methods in order to obtain

above illustrated knowledge for a specific use case is summarized as a KDP.

In detail, the KDP is usually a highly interactive five-step-process that requires many decisions made by

the user. Some of these steps (e.g. target data selection or interpretation of patterns) have to be iteratively

repeated by the user for convincing results. Hence, the KDP is usually semi-automatic because the user is

ultimately responsible for interpretation and evaluation of mining results. This particularly applies for the

evaluation of the usefulness of the generated knowledge [].

Generally, a KDP can be separated into five steps:

. Selection In the first step, the target data set (e.g. selecting a data set or focusing on a subset of

variables) has to be defined on which the necessary discovery is to be performed.

. Preprocessing In the second step, the target data is cleaned and preprocessed: removing noise if ap-

propriate, collecting the necessary information to model or account for noise, deciding on strategies

for handling missing data fields, and accounting for time-sequence information and known changes.



. Transformation In the third step, the preprocessed data is transformed (e.g. reduced) for finding

useful features to represent the data depending on the goal of the task. With dimensionality re-

duction or transformation methods, the effective number of variables under consideration can be

reduced, or invariant representations for the data can be found.

. Data Mining In the fourth step, the goals of the KDP are matched to a set of data-mining meth-

ods, e.g. classification, regression or clustering, as described in the next section, and patterns are

extracted.

. Interpretation In the last step, the mined patterns are interpreted. This step can also involve visual-

ization of the extracted patterns and models or visualization of the data given the extracted models.

This step can lead to another iteration of the KDP until the mined patterns yield useful results.

The most interesting and challenging step is the data mining, which is further outlined in the next

section.

.. Data Mining

Data mining is the computational process of discovering patterns in large data sets involving methods at

the intersection of artificial intelligence, machine learning, statistics, and DBMSs. The overall goal of the

data mining process is to extract information from a data set and transform it into an understandable

structure for further use. Aside from the raw analysis step, it involves DBMS aspects, data pre-processing,

model and inference considerations, metrics, complexity considerations, post-processing of discovered

structures, visualization, and online updating []. Within the above mentioned KDP process, data min-

ing methods are chosen based on the KDP goals.

Generally, these goals can be differentiated into verification and discovery. With verification, a KDP is

used to verify a users’ hypothesis while for discovery, the KDP has to find new patterns. The discovery goal

can be further subdivided into prediction, where the KDP has to find patterns for predicting future behavior

of some entities, and into description, where the KDP has to find human-understandable representations

for unknown patterns. However, the boundaries between prediction and description are not sharp (some

of the predictive models can be descriptive, to the degree that they are understandable, and vice versa) but

the distinction is useful for understanding the overall discovery goal.

Data mining involves six common classes of tasks (see Figure .):

• Anomaly detection (outlier/change/deviation detection) is the identification of unusual data

records, that might be interesting or data errors that require further investigation.

• Association rule learning (dependency modelling) searches for relationships between variables.

For example, a supermarket might gather data on customer purchasing habits. Using association

rule learning, the supermarket can determine which products are frequently bought together and use

this information for marketing purposes. This is sometimes referred to as market basket analysis.

• Clustering is the task of discovering groups and structures in the data that are in some way or an-

other ”similar”, without using known structures in the data. Examples of clustering applications in

a knowledge discovery context include discovering homogeneous sub-populations for consumers in

marketing DBMSs, identifying subcategories of spectra from infrared sky measurements [] or

the classification of cost-drivers in air fleet management [].



• Classification is the task of generalizing known structure to apply to new data. Examples of classifi-

cation methods used as a part of knowledge discovery applications include the classifying of trends

in financial markets [], the automated identification of objects of interest in large images DBMSs

[], or the classification of ”legitimate” or ”spam” mails in e-mail programms.

• Regression attempts to find a function which models the data with the least error. Regression has

many applications, for instance, estimating cost drivers in airfleet management [].

• Summarization provides a more compact representation of the data set, including visualization and

report generation. A simple example would be tabulating the mean and standard deviations for

all fields. More sophisticated methods involve the derivation of summary rules [], multivari-

ate visualization techniques, and the discovery of functional relationships between variables [].

Summarization techniques are often applied to interactive exploratory data analysis and automated

report generation.

Every data mining algorithm (which consists of a set of above classes) contains three primary compo-

nents: model representation (data structure used to describe the discoverable patterns), model evaluation

(quantitative statements or fit functions of how well a particular pattern meets the goals of the KDP pro-

cess) and search (once the model representation and the model-evaluation criteria are fixed, then the data

mining problem has been reduced to purely an optimization task: find the parameters and models that

optimize the evaluation criteria) [].

Debt

Income

Debt

Income

Debt

Income

Debt

Income

Debt

Income

Debt

Income

Cluster 2

Cluster 3

Cluster 1

No loan

No loan

No loan

Loan

Loan

Loan

Loan

No loan
x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x x

x

x

x
x

x

x

x

x

xxx

x
x

x
x

x
x

x

x

xx

x
x

xx

x
x

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o o

o

o

+

+

+

+

+

+
+

+

+

+

+

+

+

++
+

+ +

+

+ +

+
+

o

o

o
o

o
o

o
o

o

o

o

o

Figure 2.5: Typical examples of data mining algorithms (left: linear classification, linear regression and gaus-
sian clustering; right: non-linear classification and nearest-neighbor classification) for a simple data set with two
classes. Adopted from [200].



Part II

Wait-Free Data and Concurrency Management
Enabling Massively Parallel Virtual Testbeds



Nothing is worth more than this day.

Johann Wolfgang von Goethe

3
Wait-Free Data and Concurrency Management

In this chapter, I introduce my novel wait-free data and concurrency management based on hash maps. I

recall some of the most relevant research articles that have appeared in the international literature related

to this topic and emphasize my contributions.

A central part of RISs, such as CVEs, VEs, VR systems and DST based simulations, is the generation,

management, and distribution of all relevant data (resp. simulation) states. In modern manifestations of

these systems, usually many independent, inhomogeneous software components need to communicate

and exchange data in order to simulate the given model as well as to provide data for the visual feedback

[, , ]. In detail, such systems usually consist of many different components such as graphics

rendering, sound, several input devices, haptic rendering, physically-based simulation, model behavior,

etc. All these components have to share and communicate some kind of data.

For instance, the physically-based simulation gathers data from the input devices and passes its results

to the graphics, haptic and sound rendering. This requires some kind of interface for the data exchange

between the components. This data can be extremely large, e.g. think about a spacecraft simulation in

the asteroid main belt [, ] (see Section .), where the position of thousands of asteroids changes

continuously by Newtons’ laws of motion. All transformations have to be passed from the simulation to the

rendering component. This data exchange is usually done concurrently in highly parallel manner in order to

preserve a fast simulation and immersive visual feedback to the user. Therefore, current RISs rely on some

kind of data management or structure which is concurrently shared between all software components.

Thus, RISs, in general, require a data and concurrency management that is easy to handle and guarantees

fast access to data for both, reading and writing while maintaining a consistent simulation state even in

heavily concurrent access scenarios []. In order to achieve above objectives, the problem can be tackled

from two different perspectives. It can be explored either by traditional VR, VE, RIS engineering research

or by current virtual testbed (resp. DST) research.

This terminology encompasses differences in type (graphics, physics, haptics, sound, input, craft, and many more) and fre-
quency of the software component.



Figure 3.1: Collaborative virtual assembly of cars as an example of RIS consistency (interaction and changes
of continuously changing model), scalability (amount of users) and responsiveness (rendering of the continu-
ously changing assembly) [22].

In the traditional VR based research, RISs, i.e. standard VR approaches, describe and encode VE in

the classic fields-and-routes based dataflow paradigm, as for instance specified in VRML and XD [].

In this paradigm, ”wires” are implemented between the in- and output fields of the components and the

data is routed through these wires. Consequently, the number of interfaces grows quadratically with the

number of components. This is manageable, as long as the number of components is relatively small. How-

ever, modern VR systems or VEs (or above mentioned related technologies) are often not restricted to a

single user or software component but may contain thousands of users or software components which syn-

chronously or asynchronously access the shared global data state. Additionally, adding new components

to the system requires changes to the interfaces of many other components and the implementation of

new routes. This reduces the maintainability significantly and can affect the performance of the overall

system negatively. A second major challenge for modern VR systems is the data consistency: for instance,

in multi-user VEs, all users interact simultaneously but the system has to provide a consistent view on the

VE to all users.

This problem also arises in multi-threaded single-user VEs, for instance when a haptic rendering thread

runs at  Hz and the graphical rendering requires only Hz. As a result, RISs require a method to

synchronize the data exchange between the components. This required massively parallel software ar-

chitecture can be obtained by design patterns or toolkits for high performance multiprocessing for RIS

applications such as []. These classic VR systems often use locks on shared data to avoid race conditions

and barriers for data synchronization. The approaches presented in this part of my thesis are not directly

derived from these concepts but can be used to implement wait-free concurrency in such architectures.

Unfortunately, locking approaches decrease the performance of the whole system because components

have to wait until all other components have finished their operations. Consequently, it is extremely com-

plicated to guarantee time-critical access to data for the components (see Chapter .). In case of haptics

this may result in poor immersion or even damage of the expensive devices. Furthermore, modern CVEs

like large-scale virtual cities or open space training have increased in popularity tremendously over the

past years.



All of these applications have in common that a large number of users or components interact simulta-

neously in real-time in a shared virtual world. Interaction usually means that either users can manipulate

objects or that software components algorithmically change data in the VE. In order to maintain a common

and consistent state of the CVE for all users, interactions made by one user have to be made visible to all

other users immediately. This requires a high responsiveness of the system, i.e. system changes have to be

distributed with low-latency. Actually, experiments have shown that a bad responsiveness (high-latency)

can lead to frustrated participant experience [] and even to users completely losing interest in the appli-

cation []. However, distributing shared data with low-latency is not enough to keep a shared VE plausible

and fair.

A second challenge is the consistency of the system. This challenge is essential if several users or software

components are allowed to manipulate the same object simultaneously, e.g. in above mentioned open

space training scenarios, when a group of users jointly solve tasks, or in collaborative virtual sculpting

tools []. Here, interactions of one user directly influence the simultaneous interactions of the other

users. Finally, the demand for larger CVEs, i.e. VEs that allow a higher number of participants, more

artificial intelligence components, or more interactive objects, increased significantly during the past years.

Consequently, modern CVEs (and above related technologies) should allow a high scalability in order to be

prepared for today but also future applications. Figure . illustrates these key requirements for a virtual

assembly scenario.

Obviously, these three key requirements responsiveness, consistency and scalability are not indepen-

dent of each other and apply for any RIS. For instance, low-latency is the prerequisite for the consistency

while higher scalability is often contradictory to high responsiveness (see Figure .). Usually, this func-

tionality of handling all simultaneous user an software component interactions and allowing access to the

common parts of the shared VE is implemented within a CCM. This CCM enables and maintains parallel,

dynamic behavimy of the CVEs shared world state. A perfect CCM should fulfil all three partly conflict-

ing requirements. Most current CCMs for VR based applications use a simple locking mechanism for si-

multaneous access to shared objects: if a component wants to manipulate an object, it locks the object,

manipulates it, and when it has finished his manipulation, it releases it. This mechanism guarantees a con-

sistent system and avoids race conditions; but if many components try to access the same object, it results

in a bad responsiveness because other users have to wait until they gain access to the object, and it limits

the scalability. Actually, locking mechanisms serialize concurrent user access, hence, they are only limited

CCMs.

Virtual testbed research or DST applications tackle above described problem differently. The goal of

these applications is usually to simulate a given model and to provide the users visual feedback, most

often in real-time. Like in above research fields, many independent inhomogeneous software components

need to communicate and exchange data in order to simulate the model as well as to provide data for

the visual feedback [, ]. Again, this data exchange is usually done concurrently in highly parallel

manner in order to preserve a fast simulation and immersive visual feedback to the user. In state-of-

the-art virtual testbed research, relational databases are often used for the task of data management and

distribution [, ] (see Figure .). They are well-researched, easy-to-use and deliver out-of-the-box

functionality for a consistent data management. Unfortunately, they also have some drawbacks when

considering DST applications. For instance, they do not scale well to massively parallel access due to

their inherent serialization of access queries.



Figure 3.2: Example of a virtual testbed based on relational database technology: the virtual crater testbed
[207].

Moreover, the relational data model requires a strict definition of a schema (consisting of tables with the

defined data fields in row-column format) prior to storing any data. This constraints typical simulation en-

gineering tasks such as capturing new simulation data which was previously not considered or introducing

simulation behavior changes due to new data formats and content.

Finally, simulation application developers usually use object-oriented programming languages to build

DST applications as handling object-oriented data is nowadays most efficient. In contrast to this, the data

needs to be collected from many tables (often hundreds or thousands in todays’ simulation applications)

and combined before it can be provided to the application. Similarly, when writing data, the write access

needs to be coordinated, separated and performed on many tables []. This results in a fundamental

mismatch between the way a simulation application would like to see its data and the way it’s actually

stored in a relational database.

My contribution for above research field perspectives is a novel centralized CCM and data management

that manages concurrent multi-threaded access to shared data in any RIS, such as CVEs, VEs, massively

parallel DST applications or VR systems.

The main idea is to implement a wait-free CCM based on centralized hash maps which implement MVCC

and support the ACID properties. My approach contributes many benefits. It reduces the number of in-

terfaces from O(n2) to O(n) which benefits better maintainability and lower synchronisation overhead.

Even more, it enables wait-free read and write operations. It is based on my novel wait-free hash map

data structure which does not introduce unwanted side effects such as possible deadlocks or thread star-

vation. Additionally, this wait-free access allows high performance access even for massive numbers of

concurrent read and write operations. Within above concept, my hash map stores static and dynamic

parts of (for instance a simulation model), distributes changes caused by the simulation and logs the sim-

ulation run. Here, I use my novel wait-free hash map techniques in graph-based schema-less, in-memory

resident manner in order to store object-oriented content. As a result, the time-consuming serialization

as well as table-based coordination and separation of relational databases are eliminated. Additionally,

my approach implements the same functionality as state-of-the-art relational databases such as aggregate

queries and caching strategies. As a consequence, my approach overcomes the associated drawbacks of

relational database technology for sophisticated DST applications.



Additionally, my approach has several advantages compared to other state-of-the-art decentralized

methods, such as persistence for simulation state over time, object identification, standardized interfaces

for software components as well as a consistent world model for the overall simulation system.

At last, my data structure incorporates a versioning mechanism which generates a queryable archive of

the complete simulation. As a result, simulation components can be used in an online viewing mode to

replay a simulation run step by step, allowing analysis and debriefing. Therefore, my approach fulfils all

todays’ needs for data and thread management in virtual testbeds.

Concluding, my approach satisfies the three main requirements of data managements for RIS and DST

applications. It incorporates a highly responsive low-latency data access for any number of simulation

components. It achieves high scalability because the wait-free access for all simulation components does

not require high coupling. The dependencies between the components are managed via unique keys which

define the component communication. My implementation further avoids data inconsistencies based on

a few atomic operations for this type of wait-free access.

. Related Work

In the following, I introduce related work from the domains of VR systems and DST applications. Both

domains consider and treat the problem of data management for RISs and present different approaches.

.. Data Management in Virtual Reality Systems

When introducing any data management concept, such as my proposed centralized approach, for any RIS,

one immediately encounters the well-known problem of concurrent shared data structures and race condi-

tions (see Section .). Consequently, a CCM has to be implemented which manages the access to the cen-

tralized data management of all software components. A distinctive characterization of CCMs is whether

they are locking or non-locking (see Chapter .). In this section, I investigate these concepts closer from

the RIS engineering point of view, outlining the current approaches for VR and CVE applications.

Locking approaches usually allocate resources exclusively by using various well-studied techniques such

as mutexes, semaphores or condition variables. Concurrent threads have to wait until a resource has been

released. This may result in a loss of efficiency and parallelization or even deadlocks.

C
onsistency

Figure 3.3: All presented CCM approaches of RIS related research try to achieve three main requirements
(scalability, consistency and responsiveness) while providing high performance access. These requirements are
contrary to each other (for instance, high scalability with many components leads to poor responsiveness in tra-
ditional locl-based approaches). In the context of this work, these requirements are considered equally from the
aspect of data throughput for high performance access.



However, a main advantage of locking CCMs is that they avoid race conditions and naturally guaran-

tee consistency of the system. Many scenegraph systems like OpenSG or toolkits such as IRIS [] use

blocking mechanisms for synchronization. Most classic CCMs like [] relied directly on standard locking

approaches. Unfortunately, [] reported that the locking approach scales only to at most ten peers on

a local area network. This is mainly because of the problem that concurrent threads have to wait until a

resource has been released. This may result in a loss of efficiency because problems like thread starvation

or deadlocks can occur. Consequently, more modern CCMs like [, , ] tried to avoid this problem

by extending the basic locking mechanism. [] used a simple first-come-first-serve locking, in which a

central server granted manipulating access to a user on request. All other participants could only work on

a local copy but their local changes were not transmitted to the server site. Hence, only one user of the CVE

could really interact whereas all other users could only observe the changes. [] further presents a lock-

based approach for the special case of collaborative sculpting. They split a mesh into different regions. For

each region, a lock could be acquired. This allowed several users to work in parallel on the same mesh but at

different parts. However, only one user could modify a region at the same time, multiple access was again

not possible due to the lack of an suitable algorithm which could solve for parallel access. Additionally,

the approach does not scale well with the number of users because the lock acquirement is slow. Filtering

approaches basically offer a more general approach such as [, ].

The main idea is to reduce the acquirement latency by restricting the number of users which can request

a lock. To do that, constraints have to be defined that are used to filter the requests. Even if the basic idea is

generic, the constraints have to be adjusted for each individual application. Moreover, defining constraints

which can not be met by all users simultaneously is challenging if not impossible in CVEs. Therefore, these

filtering constraints are not generally valid for all kind of CVE applications. They also also do not solve the

inherent problem of lock acquirement latency. Other approaches for collaboration in VEs or generic VR

system architectures (e.g. [, , , ]) neglect the problem of efficient data access to a shared world

state.

Non-blocking approaches avoid this exclusive allocation of resources by introducing very smart designs

mostly using a few atomic operations [, , ]. These atomic operations, like compare and swap

(CAS), are usually directly supported by the processor. Consequently, non-blocking data structures avoid

inconsistencies and deadlocks. Non-locking approaches can be further classified into lock-free and wait-

free methods. Both approaches avoid locks when solving concurrent access. Lock-free approaches guar-

antee progress of at least one of the threads accessing the shared data structure. All other threads can be

arbitrarily delayed. In most approaches, all reading operations can happen in wait-free manner whereas

all writers are delayed. Unfortunately, this can lead to thread starvation of the writers. Today, there exist

efficient non-blocking implementations for almost any common data structure [, , ]. However,

due to the restriction to processor-supported primitive data types that allow atomic operations, they can

be hardly extended to RISs, such as CVEs, VEs, VR systems and DST based simulations, that require more

complex data structures, e.g. matrices to store transformations. Additionally, memory management has to

be taken into account: the design has to ensure that under no circumstances memory is freed, which is still

in use by a concurrent thread. Actually, non-blocking approaches can be further classified into lock-free

and wait-free methods. Lock-free approaches do not use any locks and guarantee progress of at least one of

the threads accessing the shared data structure. Lock-free approaches incorporate that some threads can

be delayed arbitrarily, in most cases the producer, which waits until every reader (which is in most cases

wait-free) has finished its operations on the shared data structure.



Concurrency Control
Mechanisms

Locking Non-Locking

Standard Filtered Lock-Free Wait-Free

Consumer

Consumer

Producer AccessLock

Wait Access Wait

Lock Access Lock

Lock Access Lock

Consumer

Consumer

Producer AccessWait

Wait Access Wait

Access

Access

Consumer

Consumer

Producer Access

Wait Access Wait

Access

Access

Figure 3.4: Classification of CCMs. Left: traditional locking approaches can delay threads arbitrarily. Mid-
dle: lock-free approaches that only delay the producer. Right: my novel wait-free approaches that do not delay
other threads at all.

This approach is vulnerable for dead-locking the producer, however, statistically all threads will make

progress [].

Wait-free approaches guarantee each thread access to the shared data structure in a finite number of

steps, regardless of other threads accessing the shared data structure []. Wait-free approaches have

been developed, for instance, for queues [] or linked lists []. Some lock-free solutions have also

addressed this challenge, including per-thread timestamps [, ], reference counters [], expensive CAS

approaches [] or global pointers, such as [, ].

With regard to the overhead needed for synchronizing the access of threads, wait-free approaches of-

fer the least overhead, while lock-free mechanisms incur more overhead, and lock-based mechanism the

most. Wait-free approaches additionally support different thread cycle times because no thread is blocked

by another, promising high performance when asynchronously accessing a shared data structure in par-

allel. Such kind of asynchronous, parallel access most often occurs in RIS (see Chapter .). Some of the

above stated approaches had been compared by Hart []. Hart summarizes, that the reclamation over-

head of non-blocking schemes can dominate the overall execution time of these approaches, decreasing the

performance boost with respect to traditional blocking approaches. Hart also concludes, that for accessing

single data sets a pointer based approaches (for instance, the hazard pointer scheme []) perform very

well, except when these data sets have to be traversed. He further concludes, that it is desirable to create a

pointer inspired scheme that avoids per-element atomic instructions. Such a wait-free approach, based on

pointers, could guarantee access to the shared data structure in a finite number of steps for each thread,

regardless of other threads accessing the shared data structure []. Unfortunately, most of them are re-

stricted to a single writer, as described above. However, RISs and DST applications require, simultaneous

writing and readings operations are essential in order to achieve performance requirements (see Chapter

). Figure . illustrates the classification CCMs for locking and non-locking approaches.

The concept of a pointer denotes here a identifier for a memory block, e.g. a standard pointer from the programming lanuage
C++.



.. Data Management in Virtual Testbeds

The subject of data management was also investigated more extensively in the research area of DST ap-

plications, namely virtual testbeds. Here, the combination of database technology, simulation and ren-

dering methodology has attracted increasing interest in the last decade because databases have been inte-

grated into virtual testbeds in many different ways. Though many attempts have been made to incorporate

database technology into DST systems, to my knowledge, no one has used in-memory schema-less tech-

nology with wait-free access behavior before.

State-of-the-art research in the integration of database technology into DST systems use standard

full-fledged SQL databases because they are easy-to-use and deliver out-of-the-box functionality for a con-

sistent data management. [, ] introduced schema and data synchronization for distributed DST

systems with a versioning interface. In more basic applications, databases have been used to store ad-

ditional meta-information (e.g. about scene objects [, ]). More sophisticated approaches use the

database to store the scene data itself [], where some do support collaboration [, , , , ]

while others do not [, ]. A flexible support for different data schemata is not widespread among these

systems [, , ]. The simplest realizations allow schema alteration by adding attributes to generic

base objects []. The more advanced systems support different static [] or dynamic [] schemata.

However, these data management approaches can only alter their relational table schema based on a new

schema delivered by another simulation architecture component (e.g. a simulation server). Consequently,

this schema alteration is done manually by hand and is only distributed automatically. In all applications,

the table schema alteration is complex and computationally expensive.

To summarize, the above mentioned related studies were focussed on combining traditional relational

databases with simulation technology. However, traditional database technology has three main technical

limitations:

• the adaptability to object-oriented data due to rigid table-based schema,

• the scalability to massive amounts of components accessing the database in real-time manner,

• the performance with respect to massively parallel read and write operations due to serialization of

access queries.

The database research community established in-memory resident databases and the not only SQL

(NoSQL) methodology to compensate for these technical limitations shared by the majority of relational

database implementations. NoSQL started out as industry developments in companies such as Amazon,

Google, Twitter or Facebook which discovered these serious limitations of relational database technology

[].

In order to overcome these limitations, database architects had sacrificed many of the most central

aspects of relational databases, such as joins and fully consistent data, while introducing many complex

and fragile pieces into the operations puzzle. They simplified the database schema and introduced various

query caching layers. Finally, schema devolved from many interrelated fully expressed tables to something

much more like a simple key/value look-up in an attempt to address these new requirements [].

Relational and NoSQL data models are very different. The relational model takes data and separates it

into many interrelated tables consisting of rows and columns. These tables reference each other through

foreign keys that are stored in columns as well. Every piece of data is then stored only once in one table.

Consequently, the relational model minimizes the amount of storage space required, which was a key

requirement when relational database were created due to expensive hardware [].



Key-

Identifiers

Independent software

components, retrieve

local data states

Centralized KVPool /

GraphPool, stores

global data state

3.5a: In my centralized data management approach,
software components communicate via unique keys.
The centralized hash map contains the global data
state (every data that has to be shared within the
application). Each software retrieves from this global
state a temporary local state that is used for compu-
tation. The access is modelled via a key look-up.

“Craft“

Producer

References

Consumer

References

Key-Identifier

A
c
c
e

s
s
 M

o
d

e

Key-Value Pool

3.5b: The access to the global data state is imple-
mented with a unique key and access mode. The
unique key refers to the required data and the ac-
cess mode defines which version of the data should
be returned. The data is stored in two versions in or-
der to implement the proposed wait-free access: for
producing and consuming operations.

However, space efficiency comes at expense of increased complexity when inserting and looking up

data. Developers generally use object-oriented programming languages to build DST systems as han-

dling object-oriented data is nowadays most efficient. In contrast to this, the data needs to be collected

from many tables (often hundreds or thousands in todays’ simulation applications) and combined before

it can be provided to the application. Similarly, when writing data, the write needs to be coordinated, sepa-

rated and performed on many tables []. Consequently, a fundamental mismatch exists between the way

a simulation application would like to see its data and the way it’s actually stored in a relational database.

Another major difference is that relational technologies have rigid schemas while NoSQL models are

schema-less []. The relational data model requires a strict definition of a schema (consisting of all tables

with the defined data fields in row-column format) prior to storing any data. This requirement makes typ-

ical simulation engineering tasks such as capturing new simulation data which was previously not consid-

ered or introducing simulation behavior changes due to new data formats and content extremely disruptive

and frequently avoided.

This is the exact opposite of the desired behavior in the area of simulation and modelling, where devel-

opers need to rapidly, and constantly, incorporate new types of data to enrich their simulation models and

applications. In comparison, schema-less databases allow the format of the data being inserted or changed

at any time, without application disruption [].



KVPoolKVInterface

ECS-System ECS-ComponentECS-Entity

m : 1
unique keys

KVPair

Knows

1 : n
contains

1 : n
contains

Figure 3.6: Integration of my wait-free hash map based data management into the ECS pattern only requires
two abstract software classes: the KVInterfaces encapsulates the presented wait-free access via producer and
consumer version based on copy on write (COW). The abstract KVPair encapsulates the value that should be
stored in the key value pool (KeyValuePool). Both classes are realized by the ECS architectural concepts by
implementing the actual behavior of the System and by defining member variables of the Components within
the key value pair (KeyValuePair) concept.

. Hash Map based Data Management

In the following chapters, I use the notations KeyValuePool and KVPool in order to differentiate between

the concept and the actual software implementation, in order to avoid confusion.

The core of my data management and concurrency control is a wait-free hash map which I denote as

KVPool (KeyValuePool). It stores all data that can be accessed concurrently by all software components

which I define within the ECS pattern (see Figure . and Section .). In general, the proposed hash map

based data management implements a MVCC (see Section ..) within my centralized KVPool concept

for the ECS pattern and solves for ACID. (see Figures .a and .b).

The shared data is stored in the pool in form of KVPairs (KeyValuePairs). Basically, the key of such a

KeyValuePair. is the identifier for the Systems. There is no global main loop required; each System can

access the data, i.e. read or write, at any point in time.

The main challenge is to avoid inconsistencies, as my CCM has to ensure that no data that is currently

read by an System will be overwritten by another System that concurrently writes the data. Moreover, all

these access operations are be performed without the necessity to wait for any System within my novel

wait-free CCM. This CCM, the KeyValuePool itself, is implemented in three manifestations, each handling

and tackling different constraints and challenges. In general, all manifestations are based on a COW mech-

anism which implements a double-buffering of KeyValuePairs, guarded by atomic operations and a delay

of memory de-allocation. This double-buffering implements a MVCC - for each write operation a clone is

generated.

Within my proposed CCM, I differentiate between consumers Systems that just read the data, e.g. the

rendering thread that reads the transformations of the D objects in the scene, and producers Systems
that are allowed to write data, like the physically-based simulation that changes the transformations.

These producer and consumer Systems retrieve the Components of each Entity, which is stored in the

corresponding KeyValuePool manifestation of the hash map. These different manifestations of my hash

map based data management are introduced in the following sections.



Here, the Systems retrieve a local simulation state (LSS) for their computations, while the consistent

global simulation state (GSS) is stored in the hash map. The LSSs, copies of key-related sub-parts of the

GSS, allow the implementation of my wait-free MVCC.

The corresponding wait-free read and write behavior for the LSSs is achieved via my global atomic marker

(GAM) or local atomic marker (LAM) concepts and is described in the following sections.

In general, a major advantage of my global KeyValuePool approach is that it reduces the many-to-many

interface of classic approaches to a simple many-to-one interface. One of the standard approaches to de-

scribe and encode VR systems is the classic fields-and-routes-based dataflow paradigm, as for instance

specified in VRML and XD. In that paradigm, one has to draw ”wires” between the in- and output fields

of the components and route the data through these wires. Consequently, the number of interfaces grows

quadratically with the number of components. This is manageable, as long as the number of components

is relatively small. However, modern RISs are often not restricted to a single user or software component

but may contain an arbitrary number of them. In addition, adding new components to the system re-

quires changes to the interfaces of many other components and the drawing of new routes. This reduces

the maintainability significantly and can affect the performance of the overall system negatively.

In contrast to this approach, my basic idea is very simple: first, I identify all kinds of data that need to

be shared between different components, e.g. the transformations of the objects in the scene. Instead of

drawing a quadratic number of routes between the software components, I assign a single unique KeyVal-

uePair to each data packet. I register the key of the KeyValuePair to my global KeyValuePool and reserve

memory for the data. My global KeyValuePool holds the complete shared GSS of the system. If any System
wants to access the data, it simply has to look up the key from the Component. Note that I actually do not

require a full-fledged SQL database. Instead I rely purely on very fast hash maps.

Moreover, adding new interfaces between existing software components or adding new software com-

ponents (resp. Systems) to the application, is extremely simple and does not necessarily require the intro-

duction and implementation of more interfaces. I just introduce a new KeyValuePair to the KeyValuePool

(see Figure .).

Overall, I get a highly adaptable wait-free system for massively-parallel access in ECS based RIS imple-

mentations. Obviously, my approach does not directly rely on the ECS pattern and can also be used in

any other pattern. However, in combination with the ECS pattern we directly C&C by the KVInterface
encapsulation and the corresponding constraint on the centralized data access.



Figure 3.7: Comparison of my approach (left) to the standard approach (right). Standard approaches (such
as the fields-and-routes based dataflow) for data exchange and communication incur a quadratic number of
communication interfaces. My approach reduces this significantly because its a centralized approach based on
key identifiers. This improves the maintainability of the overall architecture directly because the complete data-
and workflow is modelled with a minimum number of interfaces and these interfaces can be implemented very
efficiently by using a small set of key exchanges.

. Global Atomic Markers: Single Producer, Multiple Consumer

Even if the previously introduced basic concept is relatively simple, its actual implementation holds some

challenges. In the following, I will describe these challenges and present solutions for the use-case of single

producer and multiple consumers, based on my novel GAM based CCM implementation for the KeyValue-

Pool. The global KVPool provides three core functionalities:

• Putting values into the KVPool
• Getting values from the KVPool
• Release of unused memory

The put function is used to insert a KVPair into the KVPool. If the key is not already stored in the pool,

it simply creates a new KVPair. Otherwise the existing KVPair will be updated. The value can be retrieved

in constant time using a simple hash function. Moreover, the put function contains the proposed COW

mechanism: when I update the value for a key, the consumer copy of the value is updated by a clone of

the producer reference. Note that the memory of the old consumer copy is untouched and no memory is

freed at this point, only the pointer has been replaced. This implements the copy-on-write mechanism, the

MVCC.

The get function is used to retrieve an existing KVPair from the KVPool. However, I have to indicate

whether I have to return the producer reference or the consumer copy. To do that, I additionally include

a variable that indicates the access right. Finally, the pool implements the scan function to free allocated

memory, based on Michaels approach []. The scan function checks whether the entries of a given list

of retired KVPairs (retired KVPairs, which are returned by a put function call) are currently under use.

More specifically, if there is any hazard pointer from a concurrent thread pointing towards a given entry.

The memory of the KVPairs will be freed if there is no intersection between the list of a threads retired

KVPairs and the global hazard pointer list (see Michael [] for more details). Each software component

(resp. System) that can access the KVPool is considered as a thread.



Algorithm  KVPool::put(key,value)
: if key in map then
: slot = map.get(key)
: slot.producerreference = value
: retired = slot.consumercopy
: slot.consumercopy = value.copy()
: return retired
: else
: map.insert(key,value)
: end if

Algorithm  KVPool::get(key,access)
: if key not in map then
: return empty
: else
: slot = map.get(key)
: if access is producer then
: return slot.producerreference
: else
: return slot.consumercopy
: end if

: end if

I define an abstract class called KVInterface, which serves as a wrapper for every software component

that wants access to the KVPool. It provides two wrapper functions of the KVPools' put and get function.

These wrapper functions additionally provide the management of the thread-local lists of acquired hazard

pointer as well as retired consumer copies. The KVInterface::put wrapper calls the put function of the

KVPool and retrieves the retired KVPair, if available. The retired KVPair is inserted into a thread-local list

of retired KVPairs, which is later used to free the retired working copy. Similar to the get function of the

KVPool, the KVInterface::get wrapper function distinguishes whether the access is from the producer

or from a consumer of the KVPair. If the producer of the KVPair access the KVPool, the corresponding

KVPair (replaced consumer copy) is returned.

Algorithm  KVInterface::put(key,value)
: retired = pool.putPool(key,value)
: if retired is not null then
: retiredKVPairs.add(retired)
: end if

Algorithm  KVInterface::get(key,access)
: if access is consumer then
: value = pool.getPool(key,consumer)
: hp = &value
: acquiredHazardPointers.add(hp)
: return value
: end if
: return pool.getPool(key,producer)

As there is only one producer for each KVPair no memory management is needed because the producer

works on the producer reference of the KVPool record. If a consumer wants to access the KVPool, a hazard

pointer is created for the record and saved to a thread-local list of used hazard pointers, indicating that no

other concurrent thread should free the memory of the KVPair.

Algorithm  KVInterface::release()
: for all acquired hazard pointers hp do
: release hp
: end for
: pool.scan(GlobalHazardPointers, RetiredPairs)



KVPool

KVPair

Producer
Reference

Consumer
Reference

ConsumersProducers

k

m

1

1

LocalpMarkers

KVPool

get(Key, Access): KVPair
put(Key, KVPair): KVPair
release(KVPair)
mergeCheck()

KVPair

clone()
queue(KVPair)
dequeue()
merge()

m n

Figure 3.8: UML class diagrams of the actual KeyValuePool implementation illustrating the difference between
LAM and GAM based concept: the newly introduced LAM based concepts are marked in blue. The KeyVal-
uePair introduces the new merging concept for multiple writing operations and several producer versions. The
KeyValuePool itself has to provide a new function for ensuring that the required merge operations of KeyVal-
uePairs are called whenever a producer version is outdated. At last, the atomic references are no longer stored
in the KeyValuePairs itself because they can’t themselves determine anymore if they should be merged because
other KeyValuePairs are in other thread scopes.

The calling of several KVInterface::put and KVInterface::get, inserts arbitrary KVPairs (old con-

sumer copies of threads, produced by updating KVPairs) and hazard pointer (references to used KVPairs)

to the thread-local lists. After finishing all operations in one thread cycle, the KVInterface::release
function is called. This release function releases all acquired hazard pointers from KVInterface::get
calls, indicating other threads that the memory can be safely freed.

For producers that additionally call the KVInterface::put function, the second part of the release

function tries to free old consumer copies of the thread produced KVPairs, by calling the scan function of

the central KVPool. This is similar to the deletion of retired pairs from the KVPair list. After each data

access of each KVInterface all used references to KVPairs are released. It may happen that an arbitrary

number of old consumer copies could not be freed because some concurrent threads are still using them.

Due to the wait-free access of the KVPool that guarantees progress of each thread, every claimed memory

of a KVPair will be freed after some time. The maximum time is defined by the thread cycle time of the

slowest KVPair consumer.

Each Component implementation has to define its own pool record by implementing the abstract class

KVPair and by defining arbitrary member variables. These member variables can be accessed via a key,

which is determined when the KVPair is first stored in the KVPool. This allows us to generate an arbitrary

number of complex values for each key and it reduces the amount of required KVPairs. Moreover, it avoids

unnecessary calls of get functions.



. Local Atomic Markers: Multiple Producer, Multiple Consumer

In this section, I present an extension of my GAM KeyValuePool based CCM which overcomes the limita-

tion of single producers. Namely, I present a novel method that avoids the global hazard pointer manage-

ment, and I present a mechanism that also allows wait-free write access for several concurrent producers.

Still, the approach is a MVCC and leads to C&C.

In the GAM based KeyValuePool concept, I used hazard pointers to avoid race conditions. If a consumer

wants to read a consumer copy, it generates a hazard pointer that will be destroyed when the reading opera-

tion has been finished. All hazard pointers are stored in a global list of the KeyValuePool. I used a wait-free

list with atomic operations to organize this global hazard list. The main problem of this implementation

are the relatively large amount of memory – each reading operation requires a pointer – and the time that

is needed to release the pointers – I have to iterate through the list to find the pointer before I can release

it. Moreover, after each hazard release, I have to search the list if there are more hazards pointing to the

same consumer copy in order to decide whether to delete the copy or not.

The main idea to avoid this problem is to use LAM instead of global hazard pointers. Basically, a LAM

is a single atomic integer value stored with each consumer copy. If a consumer wants to read the copy, it

simply increments this LAM with an atomic operation. When it has finished the reading, it decrements

the marker. Obviously, the local copy can be deleted if and only if the marker equals zero, because in this

case, no reader is reading it any more.

The advantage is that I need only one single atomic integer for each consumer copy and not a hazard

pointer for each consumer that access the copy. Moreover, the time consuming search for other hazards

accessing the same copy can be omitted and I do not need complicated data structures like the wait-free

list.

In detail, if a producer wants to modify data in a KVPair, the KVPool returns it a copy of the current data.

Each concurrent producer gets its individual copy and all copies are labeled with a time code. Obviously,

concurrent reading copies will get the same time code. After finishing the modification, the producers

informs the KVPool by writing back the data. Now, two possible cases may happen: first case, both the

current consumer copy and the new producer copy have the same time code. In this case, I can simply

replace the consumer copy and assign the current time code to it.

The second case is more interesting: the time code of the consumer copy and the producer copy are

different. This means, the consumer copy has been already replaced by another producer. In this case, I

combine the data of both copies to a new consumer copy. In order to combine both copies, the creator of

the KVPair has to define an individual merge function which is used by the KVPair to solve the conflict.

This function allows a high flexibility and covers all cases that may happen in a concrete RIS implemen-

tation. For instance, it can simply overwrite all values, compute the maximum or minimum of both values,

or in case of virtual sculpting or assembly it can summarize the data via performing a linear interpola-

tion between modified vertices. Obviously, as a special case, it can implement the first-come-first-serve

strategy of [] by simply keeping the first change and throwing away all others, but also the local lock

mechanism described by [].

Several producers are allowed to write back their copies simultaneously. Because of this, I have to buffer

this backwriting with a wait-free queue for each KVPair. Copies that are put into the queue are merged

sequentially by the KVPool, outside the producers and consumers thread scope, using the merge function.



Algorithm  KVPool::get(key,access)
: if key not in map then
: return empty
: else
: slot = map.get(key)
: if access is producer then
: return slot.producerreference.clone
: else
: slot.consumerreference.localMarker++
: return slot.consumerreference

: end if
: end if

Algorithm  KVPool::put(key,value)
: if key in map then
: slot = map.getValue(key)
: if slot.timecode = value.timecode then
: slot.producerreference = value
: retired = slot.consumerreference
: slot.consumerreference = value.clone
: else
: slot.producerreference.queue(value)
: retired = slot.consumerreference

: pool.notify
: end if
: else
: map.insert(key,value)
: end if
: return retired

Consequently, this sequential merging does neither influence the wait-free read, nor the wait-free write

capability of my data structure. All components can still access all KVPairs for reading and writing. Figure

. illustrates the above stated LAM concept as well as the relationship of producers and consumer with

respect to the KVPairs stored in the KVPool.

The LAM based KeyValuePool, implemented as a hash map like the GAM one, offers two access functions

for the components: put and get. If consumer wants to read a value, it calls the get function and the LAM

based KVPool returns the current consumer copy. Moreover, it increments the LAM (see Algorithm ).

Algorithm  KVPool::mergeCheck()
: while slots are being marked do
: for all marked slots of map do
: slot.producerreference.dequeue
: slot.consumerreference = slot.producerreference.clone
: end for
: end while

If the consumer has finished reading, the release function will be called that decrements the LAM

again. Additionally, it checks whether the LAM is zero and, probably, allows the deletion of the consumer

copy if no other consumers still reads it.

Writing access also begins with a call of the get function. However, in this case, the LAM based KVPool
returns a clone of the producer copy. When the producer has finished writing, it calls the put function (see

Algorithm ). The put function ensures the above stated wait-free reading access: it either replaces the old

consumer copy by the new value or it collects those KVPairs that need to be merged (see Algorthm  line

). Actually, the compare of the time code has to be performed atomically in order to avoid race conditions

during concurrent writes. Collected KVPairs are put in a queue that the LAM based KVPool maintains for

each entry individually.

Additionally, the put function allows the insertion of new KVPairs to the LAM based KVPool. More-

over, it returns the old consumer reference as retired. This allows the deletion of this pair by the release
function.



If the put function recognizes concurrent writes, i.e. a queue for a KVPair is not empty, the LAM based

KVPool calls a mergeCheck function (see Algorithm ) that processes the merges of those KVPairs.

Each KVPair can store arbitrary data, hence, the merge function has to be implemented per KVPair.

The merge function operates on the defined member variables of the KVPair which should be merged.

Obviously, the users can implement their own functions to provide the required merge for their KVPairs.

When introducing a merging function for my concurrency control management, I have to define those

operations on KVPairs which can be conducted in the proposed wait-free manner. This means that the

concept does not allow to implement new parallelizations but only to operate existing approaches (e.g.

[]) with the highest possible throughput. These wait-free operations must be abelian because there is

no synchronization between the write processes.

In abstract algebra, an abelian group, also called a commutative group, is a group in which the result

of applying the group operation to two group elements does not depend on the order in which they are

written. This means that the group obeys the axiom of commutativity. Commutative operations are, for

instance, insert, deletion, overwrite, addition, and multiplication.

Mathematically, an abelian group is a set, A, together with an operation · that combines any two ele-

ments a and b to form another element denoted a · b. The symbol · is a general placeholder for a concretely

given operation. To qualify as an abelian group, the set and operation, (A, ·), must satisfy five requirements

known as the abelian group axioms:

• Closure: ∀a, b ∈ A, the result of the operation a · b is ∈ A.

• Associativity: ∀a, b, c ∈ A, the equation (a · b) · c = a · (b · c) holds.

• Identity element: ∃e ∈ A, such that for ∀a ∈ A, the equation e · a = a · e = a holds.

• Inverse element: ∀a ∈ A, there exists an element b ∈ A such that a · b = b · a = e, where e is the

identity element.

• Commutativity element: ∀a, b ∈ A, the equation a · b = b · a holds.

PUT GET AGGREGATE

GRAPHPOOL

GRAPHCACHE

GraphNodes

WAIT-FREE API

SYSTEM COMPONENTS

Figure 3.9: The graph based key value pool (GraphPool) has two access workflows for all system components
(for instance threads or any software class that implements the required interface). The stored data is available
is via the previously introduced put and get functionalities of the KeyValuePool as well as aggregate functions.
These aggregate functions imitate relational queries and also the graph based key value pool cache (Graph-
Cache) that stores results from previously executed aggregate calls for fast data retrieval.



. Graph based Nested Hash Maps

Based on my GAM and LAM wait-free hash maps within the ECS pattern, I present in this section the last

development stage: graph based nested hash maps, the GraphPool. The GraphPool is a data management

approach for virtual testbeds, that, in addition to the previously described benefits, eliminates the disad-

vantages of DBMS based approaches for DST applications. In order to do so, I extend the original GAM

and LAM KeyValuePool approaches with relational database technology, specifically aggregate queries and

caching.

This combination solves the main requirements of data managements for virtual testbed research: scala-

bility, adaptability, and performance []. My wait-free data access enables high scalability while requir-

ing only low latencies, even for massive concurrent data transactions. In addition, my hash maps store

object-oriented data formats. As a result of this, the time consuming separation of data into interrelated

tables of relational database technology is eliminated. This leads to a better adaptability of new data for-

mats.

In order to implement these concepts, my approach uses the previously introduced GSS, based on wait-

free access using my GAM or LAM KeyValuePool concept. The GSS is stored in my GraphPool, resulting

in a centralized data management. This means, the GraphPool is used for storing and managing all parts,

dynamic as well as static, of the shared simulation data (e.g. a simulation model) in a consistent object-

oriented data schema. This object-oriented approach correlates to typical D construction and environ-

mental data used in DST applications.

During runtime, every simulation component can replicate any parts of the GSS into its LSS while local

changes are tracked and written back into the GSS. These read and write processes execute in wait-free

behaviour, without synchronisation (see Sections . and .). As mentioned above, not only all static

parts of a D simulation model (e.g. the D environment) are stored in the GraphPool, but also all dynamic

objects which are changed by the running simulation. These changes are likewise written to the GSS, hence

communicating the new state of the simulation model to all software components.

Consequently, the GraphPool drives the simulation itself as it represents the central communication

(dataflow and workflow) hub.

Many more advantages arise from using centralized data management system for a DST application

[]: different applications (e.g. for authoring) can be employed using its standardized interfaces, an

inherent rights management provides means for fine grained access control, consistent data schema, solu-

tion to object identification (”id problem”), and (spatial) queries allow very selective loading and changing

of the simulation state and simulation model.

In order to use my wait-free CCM for all data transactions, I use my proposed framework consisting of

ECS pattern and KeyValuePool concept. Thus, I identify all kinds of data that need to be shared between

different components, e.g. simulation time or the transformations of the objects in the scene. In addition

to the original concept, I further arrange this data into logically structured data packets. This allows use

to define aggregate queries on the data (see Section ..). For instance, the D geometry of a car but also

its’ individual components in a car simulation, such as mass, position, velocity or acceleration are logically

arranged into one data packet. I store these data packets in my GraphPool. I further assign a set of unique

key-identifiers (object-key and member-keys) to each of these data packets. The member-key references the

complete data packet while member-keys reference a specific data type within the packet. I denote this

combination of identifiers and GraphPool as graph based key value pool node (GraphNode).



ID Name University Degree

23 Smith Stanford Prof.

42 Jones Yale Ph.D.

227 Walker Cambridge Ph.D

Hash function

Object key

Member key

S
t
o

r
e

d
a

s
a

G
r
a

p
h

N
o

d
e

Figure 3.10: Access query example for my property graph model: member- and object-key can be used like
SQL-ish aggregate functions. These aggregate queries of my GraphPool retrieve a data set (marked in green).
This data set is collected from an arbitrary amount of GraphNodes (blue) as indicated by the used keys. This
imitates a table-based storage of data as it is done by traditional databases. However, instead of using a rigid
table schema, my approach uses object-oriented GraphNodes leading to a NoSQL like data management. This
facilitates a faster data access and removes the previously mentioned drawbacks of relational databases for vir-
tual testbeds.

All GraphNodes are registered in my GraphPool and memory is reserved for the data, like in the origi-

nal KeyValuePool approach. However, the GraphPool connects all GraphNodes into a graph-based lookup

structure and construct thereby the GSS. Consequently, the GraphPool is technically a wait-free nested

hash map because each GraphNode internally implements a hash map which can be obtained from the

GraphPool.

Hash maps outperform other container types (e.g. lists or arrays) due to their constant lookup, insertion

and deletion time of O(1) which makes them perfectly suitable for a high performance data management.

My nested hash map approach enables row and column based queries for the stored data and is a NoSQL

data management. From a relational database point of view, a GraphNode is a -by-n schema-less table in

which all columns n can be accessed separately by n member-keys. Figure . illustrates this concept with

an simple person data example while Figure . illustrates the main concept of the GraphPool consisting

of GraphNodes.



GraphPool

GraphNodes

Properties

Relationships

Records Records

Organize

Have

Reference via object-

key

Reference via

member-key

History

Labels
Have

Keys

Figure 3.11: The building blocks of my property graph model: the GraphPool consists of linked GraphNodes.
Each GraphNode has a querable history and can be, in its’ entirety, retrieved with a unique object-key. Each
property of the GraphNode can be retrieved via a unique member-key. GraphNodes are structured with relation-
ships in the graph and are semantically annoated with labels.

As all intermediate states of the simulation are made persistent in the GraphPool, a simulation run can

easily be captured by my versioning mechanism. This versioning mechanism generates a time-stamped

history of all GraphNodes. These recorded time-stamped GraphNodes represent a query-able archive of

the complete simulation.

Every simulation component can be used in an off-line viewing mode to replay a simulation run step by

step, allowing analysis and debriefing of the complete simulation. Consequently, my approach allows the

subsequent replay, archiving, debriefing and analysis of the complete simulation. Additionally, simulation

components can also be used in an off-line viewing mode to replay a simulation run step by step, allowing

analysis and debriefing.

.. Property Graph Model for Nested Hash Maps

In order to allow for relational core and aggregate functions, I arrange the GraphNodes in my property

graph model (PGM) structure. I define this graph structure as G = {N ,R,K,P L} with N nodes, R
relationships, K keys, P properties and L labels.

The property graph contains all GraphNodes as a connected graph which can hold any number of prop-

erties within its hash map. GraphNodes can be tagged with labels representing their different roles in the

simulation domain. Labels can serve as a contextualization for GraphNode and relationship properties.

Furthermore, labels may also denote constraint or metadata information of GraphNodes.

Every relationship provides a directed, named semantically relevant, connection between two GraphN-

odes. A relationship always has a direction, a start node, an end node and a type.

The relationship type can be arbitrary, for instance a weight, cost, time interval, distance or inheri-

tance/tree structure.



GraphNodes can share any number or type of relationships because they are stored efficiently, without

sacrificing performance. In order to enable fast traversion of the GraphNodes, the GraphPool can navigate

between GraphNodes regardless of relationship direction.

Furthermore, I follow the consistent rule that no broken links shall be present in the graph. Since a

relationship always has a start and end GraphNode, a GraphNode can not be deleted without also delet-

ing its associated relationships. Consequently, an existing relationship will never point to a non-existing

endpoint. Moreover, the GraphPool provides a versioning mechanism that archives every previous state of

the GraphNodes as a time-stamped version. This mechanism provides transparent access to these historic

states. A user interface element or any other component of the simulation system can then set a reference

time and the versioning interface takes care of reloading the appropriate versions of the object data. Fur-

thermore, there is no global main loop required; each simulation component can access the GraphNodes,

i.e. read or write, at any point in time. Figures . and . illustrate my property graph structure.

.. Relational Core & Aggregate Queries

In this section, I described how relational core and aggregate queries can be implemented within my PGM

structure with caching. The GraphPool has to provide two relational core functionalities:

• Pushing a LSS to the GSS, respectively putting values into the GraphPool
• Retrieving a LSS from the GSS, respectively getting values from the GraphPool

The GSS is thereby defined by the complete set of GraphNodes which are stored in the GraphPool.

As a result, the LSS is a subset of these GraphNodes which a simulation component can access by the

GraphPools put and get function.

The put function is used to update a GraphNode via its object-key in the GraphPool. If the object-key

is not already stored in the pool, it simply creates a new GraphNode. Otherwise the existing GraphNode
will be updated. The value can be retrieved in constant time using my hash function as described below.

The get function is used to retrieve an existing GraphNode from the GraphPool.

As previously described (see Section .), also the GraphPool differentiates between consumer and pro-

ducer simulation components. Furthermore, it also uses the proposed LAM concept for wait-free transac-

tions. The principle applies here to the same extent: consumer components only read a set of GraphNodes
whereas producer components read and write a set of GraphNodes. Therefore, the GraphPool maintains

two copies of the GraphNodes, a producer reference and a consumer reference, like in my proposed Key-

ValuePool approach. This means, that read requests for a GraphNode will return the consumer reference

and that write requests for a GraphNode will return the producer reference.

If a consumer wants to read a value, it calls the get function and the GraphPool returns the current

consumer copy. This is decided via an access request which every get query contains. Moreover, it incre-

ments a LAM (see Algorithm ) of the consumer reference. If the consumer has finished reading, the

consumer decrements the LAM again. In addition, it checks whether the LAM is zero and, in case no con-

sumer is reading it anymore, deletes the consumer reference. If the memory can not be directly deleted,

the GraphPool will take care of releasing the memory at a later time point as described in Section ..

Writing access also begins with a call of the get function in order to retrieve the data which should be

manipulated. In this case, the GraphPool returns the producer reference and sets the ownership of the

simulation component.



Algorithm  GraphPool::put(K object-key, V
value)

: R retired graph node
: if K ∈ GraphPool then
: N graph node = GraphPool[K]
: if VId = N .Producer.Id then
: N .Producer = V
: R = N .Consumer
: N .Consumer = Vclone

: else
: N .Producer.Queue(V)

: R = N .Consumer
: GraphPool.notify
: end if
: else
: GraphPool.insert(pair(K,V))
: end if
: GraphCache.update(K)
: return R

Algorithm  GraphPool::get(K object-key, A ac-
cess)

: if K /∈ GraphPool then
: return empty
: else
: N graph node = GraphPool[K]
: if A is producer then
: N .Producer.Id = A.Id
: return N .Producer.Clone
: else
: N .Consumer.MarkerIncrement

: return N .Consumer
: end if
: end if

This ownership is an atomic id of the producer reference. It is set and checked in the get and put
function. In the get function, the producer reference is marked with the corresponding producer id. When

the write operation is conducted, the producer checks whether its id is the current one. If this is not the

case, another producer has updated the producer reference in the meantime (see Algorithm ). This means

that another system component has changed the GraphNode and the changes have to be merged in order

to preserve a consistent GraphNode state. The required merge is then implemented as described in section

..

Algorithm  aggregate(K object-keys, I member-keys, A aggregator)
: H = getHash(K, I , A)

: if Hvalid then
: return GraphCache.get(H)
: end if
: C = empty collection
: forKi ∈ K do
: N GraphNode = GraphPool[Ki]
: C += N [I]
: end for

: R = A(C)
: GraphCache.set(H,R)
: return R

In short, conflicting producer references are sorted into a producer queue and the GraphPool calls a

merge function that processes the merges of those GraphNodes. In order to do so, every GraphNode con-

tains a merge strategy (e.g. first-come first-serve or averaging the values). Algorithms  and  illustrate

the implementation.



In contrast to the above introduced relational core functionalities which use single data, relational ag-

gregate functions use multiple data. Aggregate functions are essential functions of relational databases.

These functions collect in their original database implementation the values of multiple columns and rows.

They use this collection as input on certain criteria which further filter the result. Typically, selective (equal,

not, smaller, greater, between) and numerical (average, min, max, sum) operators are most commonly used

for aggregate functions.

Algorithm  illustrates the general implementation of an aggregate function in the PGM structure.

First, the corresponding hash is determined. If the result of the aggregate function was computed before,

I take the value from the my cache structure, the GraphCache. If not, I recalculate the result of the aggregate

function. In order to do so, I collect the corresponding data and apply the associated aggregate function

onto this data and store the result in the GraphCache. I detail the GraphCache in the next section.

.. Wait-Free Caching

Caching is widely used in database technology to store results of expensive aggregate query results. This

enables the database to quickly deliver previously computed results. I also provide a caching strategy based

on a tree data structure, called GraphCache.

The GraphCache supports two types of workflows. First, if a GraphNode is updated in the GraphPool

from a software component by calling the put function, the associated stored data in the GraphCache

is marked as outdated. Second, if an aggregate query is used, either a cached result is returned or the

associated nodes in the GraphCache are marked as valid and the corresponding data is updated.

For the first case, the GraphPool has to support a GraphCache traversal via object-key in order to find

those hash values which (partly) consist of the given GraphNode. For the second case, the GraphPool

needs to support a traditional cache traversal via hash value in order to find the corresponding cached

query result.

Key

Root

Hash

Root

O1 O2

H1 H2

Key Update Workflow Cache Update Workflow

M1 M2

A1 A2A1 A2

M1 M2

A1 A2A1 A2

H3 H4 H5 H6 H7 H8

Object- & member-

key and aggregate

type level

Stored data and

hash values

Figure 3.12: The GraphCache stores results from previously executed aggregate function calls. When an ag-
gregate function is called, the GraphCache ic checked to see whether the result has already been calculated
once before. If not, the result is recalculated, returned and stored in the GraphCache. For this procedure the
GraphCache is traversed from the hashroot. If GraphNodes change in the GraphPool, the pre-calculated results
in the GraphCache are no longer valid and may no longer be used. To do so, the GraphCache is traversed from
the keyroot and the cache entries are marked invalid.



Algorithm  initGraphCache(O object-keys, M
member-keys , A aggregate types)

: KR = key root

: CR = cache root

: forOi ∈ O do

: R = node with Oi

: forMi ∈M do

: T = node with Mi

: forAi ∈ A do

: U = node with Ai

: Ti−childs += U
: end for

: Ri−childs += T
: CRchilds += hash(Oi, Mi,Ai)

: end for

: KRchilds += R
: end for

Algorithm  hash(K object-keys, M member-
key, A aggregate-type)

: V = empty hash value

: P = prime number

: H = hash function

: forKi ∈ K do

: V = V · P + H(Ki);

: end for

: V = V · P + H(M);

: V = V · P + H(A);

: return V

Consequently, the GraphCache is accessible via two root nodes: the key-root and the hash-root. This

enables fast access because unnecessary tree traversal is avoided (see Figure .).

Due to the main principle of wait-free access of the underlying CCM (see Sections . and .), I propose

a wait-free caching approach in order to maintain overall wait-free access control of the GraphPool. When

a wait-free data management system is implemented, every access workflow to the stored data has to be

wait-free, in order to guarantee the wait-free behavior of the complete system. Therefore, I initialize the

complete GraphCache at application startup. This initialization at startup has the advantage that cache

entry insertion and deletion does not have to be implemented in wait-free manner, but only the update.

Implementing efficiently wait-free insertion and deletion tree data structures is hard to achieve and, up to

now, does not yield any performance boosts [].

However, the required update process can be implemented with an atomic boolean, which is used as

an indicator whether a cache entry is outdated or not. The GraphCache initialization involves all possible

combinations of object-, member-keys and aggregate types because the queries conducted by the system

components are unknown at application startup. This results in a tree structure with o ·m · a nodes, where

o is the number of object-keys, m is the number of member-keys and a is the number of aggregate types.

In detail, the initialization of the GraphCache involves the creation of the aforementioned two root

nodes, the key-root KR and cache-root CR. These roots are created at first. The GraphCache further

consists of three node levels: object-keys, member-keys and aggregate types. For each of possible com-

binations of these keys, I have to generate one hash value, in order to uniquely identify the cached data.

In order to generate these hash entries, I iteratively concatenate them as nodes within the GraphCache.

Object-keys are added to the KR as nodes and all member-keys are added to the object-key nodes. Finally,

all aggregate types are added to the member-key nodes (see Algorithm ). After the initialization, the

GraphCache can be directly used for caching operations.



The GraphCache contains a large number of cache entries for sophisticated simulations. I use a uniform

distribution of hash values in order to avoid collisions for cache lookup. In order to deliver such a uniform

distribution of hash values, even for massive amounts of cache entries, I use a prime-based hash generation

in order to generate unique hash values for all concatenations of object- and member-keys with respect to

all defined aggregate functions (see Algorithm ).

However, most of these possible key combinations will never be used during runtime. In order to reduce

the memory overhead, I propose a pruning strategy that removes unused nodes from the GraphCache. The

main idea is to remove those nodes which have not been used by the application after a predefined timespan

(resp. amount of cache operations).

. Applications

The presented KeyValuePool and GraphPool based approaches enable the implementation of very different

categories of virtual testbed applications. Exemplarily, I present the application of a high fidelity dynamics

and spacecraft EDL (entry, descent and landing) end-to-end spaceflight mission simulator called KaNaRiA

[, ]. However, there are currently many more applications in their design phase, e.g. for swarm-based

exploration of planetary surfaces.

KaNaRiA (from its German acronym: Kognitionsbasierte, autonome Navigation am Beispiel des

Ressourcenabbaus im All) is a joint venture of the University of Bremen and the Universität der Bun-

deswehr in Munich financed by the German Aerospace Centre (DLR - Deutsches Zentrum für Luft- und

Raumfahrt). KaNaRiA comprises the major goal to develop a software mission simulator which serves

as a platform for test, verification and validation of novel autonomous spacecraft navigation algorithms.

This mission simulator, a virtual testbed for feasibility studies, concerns the following spacecraft mission

concepts: long cruise phases, multi-body fly-bys, planetary approach and rendezvous, orbiting in a-priori

unknown dynamic environments, controlled descent, precise soft landing, docking or impacting, surface

navigation or hopping.

In order to develop the KaNaRia virtual testbed, I implemented a simplified version of ESAs ARCHEO-

EE system [] that defines a reference architecture for spacecraft engineering feasibility studies within

my proposed software architecture.

I defined, modelled and implemented all required modules of the testbed ass Systems, Entities and

Components. These modules of the ECS pattern communicate via my KeyValuePool approach, as described

previously. Examples of these modules are:

• different spacecraft types ranging from orbiter to lander designs,

• instruments and actuators of the spacecraft such as spectrometers, startrackers, cameras, inter-

ferometers, range-finders, etc.,

• guidance, navigation and control concepts are modelled as Systems which can easily exchange

transactions via the KeyValuePool,

• space environment including the spacecraft orbit and attitude.



The sensor input (e.g. camera and range finder measurements) for the instruments is synthesized from

the simulated environment. In my implementation, all this synthesized data and the current world state

(e.g. spacecraft pose, positions of celestial bodies, sensor configurations, scene nodes) are represented

as Components in my central KeyValuePool. The instruments and the physically-based simulation read

and write the entries periodically. Consequently, this scenario has a large amount of concurrent read- and

write operations on my KeyValuePool based architecture. Currently, measurements show that up to 

transactions per simulation step are conducted. Figure . shows the visual output of the simulation in

which a spacecraft conducts scientific experiments while orbiting an asteroid.

Figure 3.13: Use case study: the KaNaRiA simulator [14, 149] is using the presented approaches for simu-
lating long-term spacecraft missions to asteroids. The figures show how a spacecraft is orbiting an asteroid.
Rangefinder (red) and landmark (green) measurements are generated for spacecraft self-localization [48, 75]
purposes.



. Results

I implemented my new KeyValuePool based CCMs in C++. I performed experiments on a machine with an

Intel Core i -core processor (. GHz) with enabled Hyperthreading, using the Microsoft Visual C++ 

compiler with all optimizations, operated by Windows   bit and GB of RAM. Due to the limitations

of the competitive approaches I had to limit the data pairs to basic primitives like doubles, integers and

pre-allocated lists with fixed size of  Bytes, for the evaluation setup for the KeyValuePool evaluation.

I performed . read- and write-operations for each test. Additionally, I repeated each individual test

 times and averaged the resulting timings.

The KeyValuePool and GraphPool based implementations contained . KeyValuePairs or GraphN-

odes, each representing a virtual object with its properties. The access to the KeyValuePool and Graph-

Pool was modelled with different numbers of concurrent components, ranging from  to . To prevent

caching, I inserted for each test run the KeyValuePairs and GraphNodes at random positions. The key size

was set to  Bytes.

.. Global Atomic Marker Concept

I compared the performance of my GAM based KeyValuePool to two different existing methods. The first

competitor was a standard blocking hash map. I used the well-known boost library [] that uses shared

mutexes and allows multiple readers and a single writer accessing the hash map. Additionally, I adopted a

lock-free hash map of the original hazard-pointer algorithm that supports wait-free reading and lock-free

writing []. The GAM based KeyValuePool outperforms both competitors for reading as well as writing

operations (see Figures .a and .b). More precisely, it is more than two orders of magnitude faster

than the traditional lock-based hash map for reading operations. Obviously, the speed-up increases with an

increasing number of threads because the concurrent thread access is limited by the locks in the standard

approach (see Figure .a). Even more interesting is the comparison with the lock-free hash map. The

GAM based KeyValuePool wait-free method, as well as the lock-free method, support wait-free concurrent

reading access of the data. Consequently, both methods perform almost identically for reading operations

(see Figure .a). However, the GAM based KeyValuePool also allows wait-free writing access using the

COW mechanism instead of CAS, used by the lock-free hash map.

In that case the GAM based KeyValuePool outperforms the lock-free competitor by an increasing factor,

depending on the number of threads. Surprisingly, the lock-free hash map is even slower than the tradi-

tional lock-based approach in writing operations. This is mainly because the lock-free method was imple-

mented with a spinlock-wait until it can CAS the KeyValuePair between reading operations. The lock-based

approach was implemented using boost mutexes [], which do sleep-waiting, while claiming the writer-

lock. They allow other threads to continue with their operations, explaining these results. The GAM based

KeyValuePool is independent of the number of concurrent threads. Consequently, the performance boost,

compared to both competitors, increases with an increasing number of threads.

Figure .a and .b show how the concrete timings of the approaches, when using  or  threads.

The illustrations go along with my previous findings, indicating the performance decrease of the lock-based

and lock-free approach, explaining the performance boost of the GAM based KeyValuePool. The only bot-

tleneck is the COW mechanism during write operations because it clones the current data. Finally, Figure

. shows that the GAM based KeyValuePool incurs only a very small performance decrease while the

KeyValuePair size increases. This means that the COW mechanism mainly determines the access timing.



0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

A
cc

es
sF

tim
eF

[μ
s]

NumberFofFthreads

Read operation comparison

ClassicFLock-BasedFApproach

Lock-FreeFImplementationF[119]

GAMFbasedFKVPool

3.14a: Reading KeyValuePairs from the GAM based
KeyValuePool. My approach outperforms locking and
non-locking competitors.

0

100

200

300

400

500

600

0 20 40 60 80 100 120

A
c
c
e

s
s
 t
im

e
 [
μ

s
]

Number of threads

Write operation comparison

Classic Lock-Based Approach

Lock-Free Implementation [119]

GAM based KVPool

3.14b: Writing KeyValuePairs to the GAM based
KeyValuePool. My approach outperforms locking and
non-locking competitors.

NumberIofIthreads

0

2

4

6

8

10

12

14

ClassicILock-BasedIApproach Lock-FreeIImplementationI[119] GAMIbasedIKVPool

A
c
c
e

s
s
It
im

e
I[
μ

s
]

Comparison of read operations

4IThreads
32IThreads

3.15a: Overview of timings compared to my GAM
based KeyValuePool for writing operations.

0

10

20

30

40

50

60

70

80

90

ClassicnLock-BasednApproach Lock-FreenImplementationn[119] GAMnbasednKVPool

A
c
c
e

s
s
nt
im

e
n[
μ

s
]

Comparison of write operations

4nThreads
32nThreads

3.15b: Overview of timings compared to my GAM
based KeyValuePool for reading operations.



5

5,5

6

6,5

7

7,5

8

8,5

128 256 512 1024 2048

S
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 l
o

c
k

-f
re

e
 o

p
e

ra
ti

o
n

s

Key-value pair size [Bytes]

Performance analysis of GAM based write operations

Figure 3.16: Dependency of the GAM based KeyValuePool performance of data package sizes with respect to
the lock-free implementation.

.. Local Atomic Marker Concept

I applied two test scenarios for my LAM based KeyValuePool, in addition to the previous evaluations. In

the first scenario the components were equally divided into producers and consumers of the KeyValuePairs.

The second scenario involved more producers, namely twice as much as consumers.

I compared the performance of the LAM based KeyValuePool to fmy different existing methods, which

I adopted to the KeyValuePool scheme. The first competitor was a standard locking scheme based on the

boost locking library []. The second approach was a typical filtered concurrency locking implementa-

tion based on []. The third competitor was an optimistic concurrency locking implementation which

simply recomputes the values in case of a concurrent write based on []. Finally, I compared LAM based

KeyValuePool to the GAM based KeyValuePool.

Figures .a and .b show a comparison of the performance with respect to the two proposed test

cases.

My evaluations show that the LAM based KeyValuePool outperforms all other competitors. Obviously,

its’ speed-up increases with an increasing number of components accessing the LAM based KeyValuePool.

My approach is almost independent of the number of concurrent components. Additionally, the LAM

based KeyValuePool outperforms also the GAM based KeyValuePool. For less than approximately  com-

ponents that concurrently access the LAM based KeyValuePool, the filter-based approach performs almost

identically to my approach. However, if more than  components concurrently share data, the GAM and

LAM based KeyValuePools, easily outperform the filter-based approach.

Figure .a shows a comparison of the memory usage with respect to a distributed KeyValuePair with

 Byte size. Surprisingly, the LAM based KeyValuePool uses less memory than GAM based KeyValuePool

implementation, though using multiple COW clones for the concurrent write operations. Consequently,

I expected a higher memory usage. However, the LAM based KeyValuePool performs much better due to

the LAM. This results in a faster release of retired KeyValuePairs and benefits therefore the overall memory

demand of my new approach.



0

20

40

60

80

100

120

140

160

4 20 36 52 80 144 256 512

A
c
c
e

s
s
-t

im
e

-[
μ

s
]

Number-of-components-accessing-the-key9value-pool

Performance-comparison-read-operations

LAM-based-KVPool

Lock9Based-Approach-[125]

GAM-based-KVPool

Optimistic-Approach-[42]

Filtered-Approach-[59]

3.17a: Timings for a combined read and write opera-
tion with an equal producer consumer distribution for
the LAM based KeyValuePool.

0

100

200

300

400

500

600

4 20 36 52 80 144 256 512

A
c
c
e

s
s
-t

im
e

-[
μ

s
]

Number-of-components-accessing-the-keyFvalue-pool

Performance-comparison-write-operations

LAM-based-KVPool

LockFBased-Approach-[125]

GAM-based-KVPool

Optimistic-Approach-[42]

Filtered-Approach-[59]

3.17b: Timings for a combined read and write oper-
ation with twice as much producers as consumers for
the LAM based KeyValuePool.

0

10

20

30

40

50

4 8 16 32 64 128 256 512

M
e

m
o

r
y
Kc

o
n

s
u

m
p

t
i
o

n
K
[
M

B
i
t
]

NumberKofKcomponentsKaccessingKtheKKVPool

MemoryKconsumptionKofKGAMKandKLAMKbasedK KVPool

GAMKbasedKKVPool

LAMKbasedKKVPool

3.18a: Memory consumption of the GAM and LAM
based KeyValuePool.

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

M
a

r
k
e

r
va

c
q

u
i
s
i
t
i
o

n
v
t
i
m

e
v
[
μ

s
]

Numbervofvkey-valuevpairsvinvthousands

Markervperformancevcomparison

GAMvbasedvKVPool

LAMvbasedvKVPool

3.18b: Performance gain of the LAM approach with
respect to the GAM one.

Figure .b shows the performance gain of the LAM based KeyValuePool with respect to the GAM

concept by comparing the timings of hazard pointer acquisition and marker usage for the above stated

test cases. In average, the LAM concept performs nearly twice as fast as GAM based approach with haz-

ard pointers. Overall, the LAM concept makes approximately  of the overall performance gain. The

multiple wait-free writing constitutes  of the overall performance boost.

With respect to the overall performance, I can conclude that the LAM based KeyValuePool outperforms

the competitors (in average between a factor of  and ) while using less memory than the original ap-

proach (on average ).



.. Graph based Nested Hash Map

I conducted different experiments to measure the performance as well as the quality of my GraphPool For

the quality measurement, I used the use case scenario described in Section .. However, as the scenario

is domain-dependent, it can be hardly used to evaluate the performance of my approach. Hence, I addi-

tionally implemented a synthetic benchmark for performance measurements.

The GraphPool contained  GraphNodes for the synthetic benchmark. I performed . read-,

write- and aggregate queries for each test. Each test was additionally repeated  times and I averaged

the resulting timings. The access to the GraphPool was modelled with an equal read/write distribution

of concurrent system components. The transactions to the GraphPool and its competitors varied in size

from  Byte to  Megabyte. I compared the performance of my new approach with three competitors.

The first competitor was a lock-based implementation of my GraphPool. The other two competitors were

a relational SQLite database and a MySQL database.

I compared the performance with the traditional on-disk option as well as in-memory resident versions

of the databases. Furthermore, I validated if the results from my GraphPool implementations yield the

same results as the database competitors.

My results show, that, in case of a single component, my wait-free GraphPool outperforms all in-memory

and relational databases for every query type in several orders of magnitude. However, the traditional

lock-based implementation of the GraphPool is slightly outperformed by in-memory resident relational

databases. In this case, the lock acquisition introduces a computational overhead with respect to the wait-

free implementation. In addition, standard relational databases can not compete with the in-memory

databases and GraphPool implementations (see Figures .a and .b).

This performance gain of my GraphPool increases with an increasing number of simulation components

accessing the data management systems. In this case, the wait-free access shows its strengths when several

components simultaneously access the GraphPool. Like in the single access case, the in-memory relational

database slightly outperforms the lock-based GraphPool implementation. The in-memory and relational

databases are again outperformed by the wait-free GraphPool by several orders of magnitude (see Figures

.a and .b).

Overall, my evaluation underlines the aforementioned technical limitations of current DST applica-

tions which rely on relational databases: The relational databases scale not very well with many concur-

rent components accessing them. Furthermore, my evaluation shows that the hash map backbone of my

GraphPool can effectively solve the problems of the rigid table format of relational databases because no

transformations of object-oriented data into tables is necessary. Additionally, the wait-free access of the

GraphPool improves the overall performance even for massive concurrent read and write operations. In

summary, my approach improves the overall system performance of DST applications by several orders

of magnitude in all access query cases.



0,000 1,000 2,000 3,000 4,000

Relational[databases

In-memory[relational[databases

Lock-based[GraphPool

GraphPool

Access[time[[ms]

Aggregate
Statement

Insert[Statement

Select[Statement

3.19a: Performance comparison of core & aggregate
queries for single access scenarios: overall, my Graph-
Pool outperforms all competitors for all query types
for multi-component access.

0,000 0,050 0,100

Relational databases

In-memory relational databases

Lock-based GraphPool

GraphPool

Access time [ms]

3.19b: Detailed view from the same evaluation: in-
memory resident relational databases outperform the
traditional lock-based implementation of the Graph-
Pool.

0,000 50,000 100,000 150,000 200,000

Relational]databases

In-memory]relational]databases

Lock-based]GraphPool

GraphPool

Access]time][ms]

Aggregate
Statement

Insert]Statement

Select]Statement

3.20a: Performance comparison of core & aggregate
queries for multi access scenarios: overall, my Graph-
Pool outperforms all competitors for all query types
for multi-component access.

0,000 2,000 4,000 6,000

Relational]databases

In-memory]relational]databases

Lock-based]GraphPool

GraphPool

Access]time][ms]

3.20b: Detailed view from the same evaluation: in-
memory resident relational databases outperform the
traditional lock-based implementation of the Graph-
Pool.



Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

4
Concepts for Generative Virtual Testbeds

In this chapter, I introduce my novel approaches for generative virtual testbeds. They are based on my

wait-free hash maps, the KeyValuePool and GraphPool, within the ECS pattern and a novel DSML. I recall

some of the most relevant research articles that have appeared in the international literature related to

this topic and emphasize my contributions.

As introduced in the previous chapters, a central part of RISs is the generation, management and distri-

bution of the global simulation a.k.a world state. Usually many independent software components need

to communicate and exchange data in these systems in order to generate this global state. These com-

ponents and their corresponding performance within an RIS are governed by the functional as well as

non-functional requirements of typical RIS development such as (realtime) performance, responsiveness,

scalability, consistency and (re-)usability [, ]. Consequently, RIS research and development strives

for reusable patterns and software architectures in order to increase the satisfaction of the above men-

tioned requirements, especially for massive amounts of RIS software components [, ].

Hence, diverse approaches have been presented to tackle this kind of challenge. In the past, the ECS

pattern has become a major design pattern used in modern architectures for RIS []. This pattern strives

for high re-usability and architectural scalability. The main idea of ECS is to decouple high-level modules

such as physics, rendering or sound from the low-level objects with their corresponding data. Therefore,

ECS introduces three software architectural objects: Entities, Components and Systems. These are used

to describe objects of a RIS via composition instead of object-oriented inheritance. Many advantages arise

when using ECS. For instance, the behavior of Entities can be changed at runtime by adding or remov-

ing Components. Moreover, Systems are likewise interchangeable as they are not part of the entity nor

Component implementation. This allows even the quick swap of e.g. a physics engine. This leads to the

elimination of ambiguity problems of wide and deep inheritance hierarchies, often encountered in tra-

ditional RIS development. As a result of this, the ECS pattern and variations of it have been applied to

many RISs [, , , –, , ]. However, the ECS pattern does not aim at satisfying the

performance requirement of RIS architectures as it does not specify any low-level implementation.



For instance, the System access implementation to the Components is not defined. Usually, every

System iterates over a container (e.g. an array) of all Entities and applies the Systems behavior on the

corresponding Components. In fact, modern RIS can consist of hundreds or thousands of Components
and Systems. Therefore, an access parallelization (e.g. in the form of threads or OpenMP support) is

necessary in order to maintain realtime performance of the whole application. Consequently, this con-

tainer of Components (and therefore every Component) has to be implemented as a shared data structure.

Such shared data structures can quickly become bottlenecks of modern RIS applications as they typically

use crucial software synchronization patterns such as mutexes, semaphores and consequently synchro-

nization which can lead to thread starvation or system deadlock []. The ECS pattern does not cover any

guidelines or specifications for effectively solving this problem but my previously described wait-free hash

maps, the KeyValuePool and GraphPool, can be integrated into the ECS pattern.

As stated before, the KeyValuePool and GraphPool guarantee access to a shared data structure in a finite

number of steps for each System (eg. as a traditional thread or OpenMP implementation), regardless of

other System accessing the shared data structure.

My contribution is an extension of the ECS pattern with my high performance wait-free hash map with

efficient memory management which enables low-latency, massively parallel access within the pattern and,

additionally, reduces its memory consumption. Hence, my contribution allows non-locking read and write

operations of Systems, leading to a highly responsive low-latency data access while maintaining a consis-

tent state even for structured Components. Simultaneously, my contribution greatly reduces the memory

footprint of my wait-free hash maps by introducing novel garbage collection techniques. My novel ap-

proach is easy to implement and it fits perfectly into the implementation of wait-free hash maps without

altering the ECS pattern itself. My approach therefore greatly benefits the overall RIS performance. This

integration into the ECS pattern further enables a high cohesion of the KVInterfaces as Systems in the

ECS pattern. In addition to the previous contributions of the hash map based data management, it C&C.

Even more, I show how above approach can be further improved with the concept of MDE, namely DSMLs.

My ECS pattern based wait-free hash map concept can be easily modelled with a DSML, leading to efficient

definition and implementation of virtual testbeds via code generation.

. Related Work

Research in increasing scalability, maintainability, re-usability and performance as well as managing con-

currency within RIS frameworks has attracted increasing interest in the last decade [, , –]. This

research can be broadly classified into two classes: high-level and low-level concepts. High-level concepts

describe the overall RIS software architecture in terms of software classes which use standard libraries

for solving parallelization and concurrency of the low-level implementation. Examples for such high-level

concepts are Simulator X [] with its actor model [] or other high-level approaches, e.g. based on

dataflows []. Further comprehensive high-level work in the area of reusability, scalability for RIS was

carried out by [, , –]. My work is complementary to this work because my concepts improve

the low-level communication with the wait-free hash map concept. This means that the high-level con-

cepts can be linked with my work and that the achieved advantages can be used in combination with my

work, too. Further, [] gave an overview of high-level architectures aiming at solving consistency and

concurrency for CVEs. However, this overview neglected wait-free synchronization approaches.
OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared mem-

ory multiprocessing programming in C, C++, and Fortran, on most platforms, processor architectures and operating systems.



In contrast to these high-level concepts, low-level concepts investigate programming language specific

implementations of synchronization approaches for RIS challenges. In the past, low-level concepts mainly

introduced lock-based CCM approaches for RIS, VR, and CVE frameworks in order to efficiently implement

the high-level concepts, i.e., [].

A distinctive characterization of CCMs is whether they are locking or non-locking (see Chapter .). To

recap, locking approaches allocate resources exclusively by using various well-studied techniques such as

mutexes, semaphores or condition variables. A main advantage of locking CCMs is that they avoid race

conditions and naturally guarantee consistency of the system.

Many traditional RISs, especially CVEs, such as [, ] used lock-based approaches until [] re-

ported that the locking approach scales only to at most ten components. This is mainly because of the

problem that concurrent threads have to wait until a resource has been released. This may result in a loss

of efficiency because problems like thread starvation or deadlocks can occur. Consequently, more mod-

ern CVEs like [, , ] tried to avoid this problem by extending the basic locking mechanism, e.g.

by a first-come-first-serve locking []. Further, more sophisticated concurrency control approaches in-

troduced fine-grained locks per object for single-write and multiple-read operations [, , ]. Due to

the limitations of lock-based approaches, I proposed a wait-free approach based on hash maps for RIS (see

Chapter ).

Wait-free approaches guarantee access to the shared data structure in a finite number of steps for each

thread, regardless of other threads accessing the shared data structure by introducing a few atomic opera-

tions []. This means that these approaches do not need any traditional locking mechanism in order to

preserve a consistent data state. My extensive evaluations have shown a superior performance of wait-free

approaches with respect to traditional locking approaches (see Section .). My wait-free approaches not

only support structured Components such as arrays or lists but also use fast hash key operations in order

to find and retrieve the stored Component inside the used hash table. Due to their excellent scalability,

they are perfectly suited for RIS frameworks which need to support massive amounts of Systems, such as

MAS based VR and RIS applications [, ]. Consequently, using wait-free data structures as a data

access backbone can highly improve the performance and scalability of RIS frameworks.

However, my wait-free hash maps come at a cost: In order to achieve wait-free behavior of read and

write operations, I use double-buffering for write operations. This means that every write access on the

shared data structure is preceded by a double-buffering which clones the data [, ]. All ongoing

read operations can still access the old data state while new read queries are directly routed to the new

(manipulated) data state.

Therefore, after a given timespan, the old data will not be used any more. When all read operations on

the old data state are finished, the data is released. Hence, the amount of cloned data directly responds to

the amount of write operations (see Sections . and .).

In the following sections, I will describe the integration of double-buffered wait-free hash maps into

the ECS pattern. Furthermore, I will describe my novel memory management for these data structures

which reduces their memory demand greatly. Therefore, my integration and novel memory management

overcomes the limitations of the presented related work.

In addition, advancements in software engineering can improve the development of sophisticated vir-

tual testbeds. MDE allows aspects of RISs, specifically virtual testbeds, to be represented formally as an

abstract graphical model which can be automatically transformed into software artefacts and subsequently

into complete RIS applications.



MDE enables domain experts through a DSML to produce RISs for arbitrary scenarios easily and quickly,

as MDE notably promises great benefits to its practitioners. From a software development context, MDE

offers an increase in productivity, promotion of interoperability and portability among different technol-

ogy platforms, support for generation of documentation, and easier software maintenance [].

In addition, it can also lead to production of better code quality and reliability due to integration of

domain rules into the DSML. Such domain rules minimize modelling errors and increase the reliability of

mapping from model to code [], which is highly desirable for researchers, engineers and industry. Con-

sequently, a DSML can decrease the development time and increases overall comprehension of simulation

and optimization aspects of my virtual testbeds.

. Wait-Free Hash Maps for the Entity-Component-System Pattern

As previously outlined in the introduction, RIS research and development strives for reusable patterns,

for instance the ECS pattern. As outlined in the introduction, this pattern has become a major design

pattern used in modern architectures for RIS. However, the ECS pattern does not aim at satisfying the

performance requirement of RIS architectures as it does not specify any low-level implementation. This

leads to the problem that the container of Entities becomes are heavily shared data structure []. In

order to solve this concurrent data access, I propose my KeyValuePool and GraphPool which deliver high

performance access even for massive numbers of concurrent read and write operations.

However, as a drawback they accompany a large memory footprint because they rely on a double-

buffering approach with atomic operations in order to achieve wait-free behavior. This double-buffering

creates for every write access to the shared data structure a clone of the manipulated data. When all read

operations on the cloned data are finished, the cloned data is released. Hence, the amount of cloned data

directly responds to the amount of write operations (see Chapter .).

I present a novel solution to this challenge; my ECS based approach allows concurrent read- and write

access even for highly data driven RIS applications (resp. RIS applications which inherit many Components
and/or Systems). Moreover, it can even handle multi-modal RIS applications in which different Systems
interact with each other in different frequencies.

In detail, my contribution is

• an extension of the ECS pattern for high performance double-buffered wait-free hash maps (KeyVal-

uePool, GraphPool) with

• centralized as well as decentralized approaches for efficient memory management of these data

structures which greatly reduces their memory consumption.

My contribution allows non-locking read and write operations of Systems, leading to a highly respon-

sive low-latency data access while maintaining a consistent global state even for structured Components.

Simultaneously, my contribution greatly reduces the memory footprint of my KeyValuePool based data

management. My novel memory management is easy to implement and it fits perfectly into the KeyVal-

uePool / GraphPool implementations without altering the ECS pattern itself. Thus, my approach greatly

benefits the overall RIS performance.



.. The Entity-Component-System Pattern

In the past, the ECS pattern has become a major design pattern used in modern architectures for RISs

[]. The main idea of ECS is to decouple high-level modules such as physics, rendering or sound from the

low-level objects with their corresponding data. Therefore, ECS introduces three software architectural

objects: Entities, Components and Systems:

• The Entity is a general purpose object which is usually defined as a unique id. These Entities can

be further described via composition of Components.

• The Component is the raw data for one aspect (e.g. a position, velocity or sprite) of general purpose

objects.

• The System performs global actions on every Entity that possesses a Component with the same

aspect as that System. Each System thereby runs continuously (e.g. as a thread).

These concepts are used to describe objects of a RIS via composition instead of object-oriented inheri-

tance. The traditional way to implement simulation or game objects within RISs was to use object-oriented

programming. Each object was modelled and implemented within a typical class hierarchy which intu-

itively allowed for an instantiation of these classes. This enabled simulation or game objects to extend to

other objects through polymorphism. However, with an increasing complexity of the RIS, this leads to

large, rigid class hierarchies.

These wide and deep hierarchies become consequently increasingly difficult to maintain. In addition,

placing a new simulation or game object into the hierarchy is further complicated if the object needs a

lot of different types of functionality from different domains. Figure . illustrates this limitation in a

game-based RIS scenario. Usually, the conflicting code is then moved to the base class which results in

super classes. These super classes gradually decrease the maintainability and scalability of the overall RIS

architecture [].

Typically, these deep and wide inheritance structures can be vertically decomposed with the ECS pattern

(see Figure .). This allows greater flexibility and adaptability in defining simulation or game objects (e.g.

vehicles, sensors, enemies, etc.) as every object is an Entity. Every Entity consists of one or more

Components which add aspects (e.g. position, velocity, sprite, etc.) to the Entity. Within this context,

the behavior of an Entity can be changed at runtime by removing or adding Components [].

BaseClass

• Position

Enemy

• Velocity

Base

• Health

Tower

• Range

Shooting Enemy

?

SuperClass

• Position

• Velocity

• Range

EnemyBase

• Health

Tower

Shooting Enemy

Figure 4.1: Evolving problems in inheritance based object design in RIS applications: In order to preserve
class-wise consistency, super classes are constructed. These super classes degenerate maintainability and re-
usability of the whole application.



SuperClass

• Position

• Velocity

• Range

EnemyBase

• Health

Tower

Shooting Enemy

Base Enemy Tower Shooting Enemy

Position Range Velocity Health

• ID • ID • ID • ID

Entities

I
n
h
e
r
it
a
n
c
e

Components

C
o
m

p
o
s
it
io

n

Figure 4.2: Deep and wide inheritance structures arise in traditional RIS development that is based on object-
oriented design (left). The ECS pattern decouples the data and algorithms via composition into Entities and
Components (right).

Furthermore, even Systems are decoupled as each System applies its computation on the same

Component types which are referenced via Entities. As an example, think of a physically-based simu-

lation for gravitational forces: the corresponding System will apply Newton’s law of gravity every time

on the same Component types (position and velocity) but it does not concern any more properties of the

Entity.

As a consequence, even Systems can be easily added, removed or changed as they are not part of Entity
or Component implementation. Actually, object-oriented problems of deep and wide inheritance struc-

tures as mentioned above are eliminated.

.. Integration of Wait-Free Hash Maps

As previously stated, the ECS pattern does not specify the low-level implementation of the System ac-

cess to the Components. In this section, I demonstrate the applicability of my wait-free hash maps for

this System access to the Components as they promise high performance even for massive numbers of

concurrently acting Systems.

My wait-free hash maps (KeyValuePool and GraphPool) can be easily integrated in to the ECS pattern as

follows: All Components (which can represent primitive or structure data) are stored inside the wait-free

hash map. These Components are accessible via a unique key which is generated for every Component. All

Systems and Entities can refer to these Components via their unique keys which retrieve the Component
from the hash map. Every Entity has a list of keys which defines the Component-wise composition.

Adding and removing Components from the Entity are implemented as insertion and deletion opera-

tions on this key list. Every System iterates over the Entities and uses the stored keys in order to retrieve

the corresponding Components for computation. This integration of wait-free hash maps does not alter

the original ECS approach (see Figure .). Overall, the System access to all Components is implemented

straightforward, for instance with OpenMP support (see Algorithm .). Note, that no locking operations

are needed in order to maintain consistency of the hash map and consequently of all Components.

The Component access of the wait-free hash map is implemented in accordance to the previously de-

scribed double-buffering approach (see Sections . and .): Every System can retrieve a Component
from the hash map by looking up the corresponding key. Within the double-buffering approach, every

Component is stored as a producer and consumer version in the hash map.



For all read operations, the hash map returns a pointer to a dedicated consumer version of the

Component. Consequently, all read operations work on the same memory as they can not affect each

other. All actively reading Systems notify their access by incrementing (read operation starts) and decre-

menting (read operation has ended) an atomic marker of the consumer version. For write operations,

Systems retrieve a producer version of the Component which is a different memory object than the

consumer version. After modifying a Component, a System can notify its changes to all other Systems by

storing the Component back to the hash map. This write process uses the aforementioned double-buffering

and returns the cloned Component. In detail, the whole write operation of a System can be decomposed

into six steps: A System wants to modify a Component which is stored inside the hash map.

Position Range Velocity Health

Physics Input Animation

Keys

Wait-Free Hash Map

Base Enemy Tower Shooting Enemy

• ID • ID • ID • ID

Entities

Systems

Hash Function

Components

Retrieve keys of Components

Figure 4.3: The ECS pattern does not specify a high performance access of Systems to Entities and Compo-
nents. The integration of my wait-free hash map concept into the ECS pattern enables high throughput. For
integration, all Components reside inside my hash map which is concurrently shared by all Systems. The access
is managed via unique keys that also belong to the ECS required IDs of Components.



To do that, the corresponding hash map access returns the producer version of the Component. The

System can then modify the Component and stores it back to the hash map. In order to notify all other

Systems about these modifications, this write operation creates automatically a clone of the producer

version which is used as the new consumer version. All concurrent read operations are routed to the old

consumer version as long as the actual write operation of the hash map lasts. When the new consumer

version is available, all concurrent read operations are routed directly to the new consumer version.

/ / D e f i n e OpenMP p a r a l l e l i z a t i o n w i th n t h r e a d s

pragma omp p a r a l l e l fo r num_threads (n)
fo r (auto E n t i t y i n E n t i t i e s)
{

i f (E n t i t y . Type == System . Type)
{

ComponentKeys = E n t i t y . W r i t e K e y s
fo r (auto CompKey i n ComponentKeys)
{

Component c = Hashmap . g e t (CompKey)
System . ApplyComputat ion (c)
Component c l o n e = Hashmap . s e t (c)
/ / D e l e t e c l o n e a f t e r a l l c o n c u r r e n t

/ / r e a d o p e r a t i o n s have f i n i s h e d

}
ComponentKeys = E n t i t y . ReadKeys
fo r (auto CompKey i n ComponentKeys)
{

Component c = Hashmap . g e t (CompKey)
c . incrementReadMarker
/ / Use da t a a s l o n g a s n e ed ed

/ / w i t h o u t a l t e r i n g i t

/ / . . .

c . decrementReadMarker
}

}
}

Listing 4.1: System access on Entities and Components in C++ pseudocode



In the meantime, the old consumer version is not deleted to prevent memory failures. When all ongoing

read operations on the old consumer data are finished, the corresponding memory will be deleted, hence

completing the double-buffering principle. Parallel write operations are merged when required (see Section

.). Figure . illustrates this double-buffering approach. The main challenge remains the efficient release

of the old Component data which is described in the next section.

1
Consumer
Systems #n

Producer
System

Component

Producer Version

Consumer Version [0]

2
Consumer
Systems #n

Producer
System

Component

Producer Version Consumer Version [n]

w
ri

te
a

cc
e

ss

3
Consumer
Systems #n

Producer
System

Component

New Producer Version Consumer Version [n]

4
Consumer
Systems #n

Producer
System

Component

New Producer Version Consumer Version [n]

5 Consumer
Systems #n

Producer
System

Component

New Producer Version

Consumer Version [n]

re
a

d
a

cc
e

ss

New Consumer Version

cl
o

n
e

6 Consumer
Systems #n

Producer
System

Component

New Producer Version

Consumer Version [0]New Consumer Version

Figure 4.4: The double-buffering approach applied to the ECS pattern, simplified into six steps: Every write
access is preceded by a cloning process of the Component data. When all parallel read operations are finished,
the old data is deleted. In detail, 1) producing Systems retrieve the producer version and (n) consuming Sys-
tems retrieve the consumer version. 2) parallel write access is done without any locking while read operations
may take place. 3) read and write operations may overlap or not. 4) as soon as the producing System has fin-
ished, the data is updated regardless of any read operations. 5) the consumer version is updated, while the con-
suming Systems operate on their local copies. 6) new read operations of consuming Systems are directly routed
to the new data and the old local copy is freed.



Systems

Wait-Free Hash Map

System #2

System #n

Release

System #1

System #2

System #n

Release

Release

Release

Systems Components Components

Component #2

Component #n

Component #1

Wait-Free Hash Map

…

System #1

…

Component #2

Component #n

Component #1

…

Figure 4.5: The centralized and decentralized memory management approaches: In the centralized approach,
every System notifies the central hash map via atomic markers. The hash map itself releases the memory in
either periodic or threaded implementation (left). In the decentralized approach, all Systems notify themselves
about ongoing and finished read operations. In addition, every System itself takes care of releasing its cloned
Component data (right).

.. Memory Management of Wait-Free Hash Maps

In this section I present centralized as well as decentralized approaches for the memory management of

cloned Component data in wait-free hash maps for the ECS pattern. First, I present two centralized ap-

proaches based on periodic memory release as well as threaded memory release. These approaches are lo-

cated in the central hash map itself and rely on finished read notifications that are triggered by all Systems.

Second, I present a decentralized approach which defines an individual memory release per System. In this

case, every System itself takes care of releasing unused Components.

All approaches follow the presented main principle of LAM (see Section .): all Systems notify each

other when they read or write data via notifications. This notification is implemented as an LAM which is

increased when the read access begins and which is decreased when the read access has finished. Conse-

quently, if this LAM is zero, the data can be safely deleted. Note that the proposed integration can also be

implemented with the GAM approach.

The basic challenge is the management, i.e. the saving and the efficient release, of the generated

Component clones. The nature of RIS applications leads to different generation, update and deletion

frequencies of different Components. For instance, a collision detection query is updated at  Hz and

an animation of a scene node is played when a certain event has triggered in the RIS. In these cases the

resulting Components (e.g. the resulting collision volume and rotation matrix) are more frequently or

rarely updated.

Consequently, different Components types (e.g. player-input, physically-based simulation results or

animators) are more frequently updated than other Components types. This means that also the cor-

responding clone data is more frequently generated. In this case, it is desirable to handle the memory

release per Component type. This leads to my approach which introduces Component-wise queues for stor-

ing the cloned Component data per Component type. These queues basically split all cloned Components
into smaller chunks which can be faster checked than a single container for all cloned Components. Every

cloned Component data is directly sorted into the corresponding queue immediately after its creation.



…

Atomic Boolean Markup

Enqueue

Dequeue

Front Back

Component type #1 Component type #2

Component clones ordered

by ascending lifetime

Figure 4.6: The Component-wise queue concept: for every Component type a corresponding queue of cloned
Component data is created. This avoids searching unstructurally the cloned data. Instead, my memory man-
agement can now iterate for every System only the corresponding queues of related Component types. This
speeds-up the search for deletable memory immensely.

Additionally, every queue itself has a atomic boolean markup. Every time a System notifies a finished

read operation (by decrementing the corresponding LAM of the Component), this queue markup will be set

to true. The marker will be set to false when the release function has finished its checks (see Algorithm .).

This release function iterates over all queues and checks their boolean markers. If a queue marker is set to

true (resp. a System has finished its reading operation on a cloned Component data within the queue) it will

further iterate the Component queue. After a queue check, the release function will set the corresponding

queue markup to false (see Figure .). Algorithm . shows how these Component-wise queues can be

iterated in order to efficiently release the unused cloned Component data. The efficient iteration over these

Component-wise queues remains challenging. As mentioned above, I present two approaches for tackling

this challenge: centralized and decentralized.

fo r (auto CompQueue i n ComponentQueues)
{

i f (CompQueue . Markup == true)
{

fo r (Component c = CompQueue . peek () ;
CompQueue . s i z e () >  ;
c = CompQueue . peek ())

{
i f (c . ReadMarker == )
{

CompQueue . pop ()
de l e t e c

}
}
CompQueue . Markup = f a l s e

}
}

Listing 4.2: Cloned Component data access via queues in C++ pseudocode



DSL

Platform Independent Model

Rules

Automatic Realization,

Checking and Optimization

Runs inside

Platform Specific Model

Domain Framework

Figure 4.7: The main concept of my generative approach: a DSML defines generic PIMs for specific use-cases
of virtual testbeds in XML. These PIMs enable the automatic generation of PSMs for specific computing plat-
forms via automatic realization for the programming language C++. The required domain framework for these
PSMs are based upon the previously presented ECS pattern with my hash map concept.

The centralized memory management approach is implemented in three variations: periodic, contin-

uously threaded and on-demand threaded. In all cases, the memory management is located within the

central wait-free hash map and all Systems notify the hash map with respect to the above mentioned

atomic memory markup. The continuously threaded approach implements a complete separate thread

that runs constantly in parallel within the RIS and checks the queues as shown above. The on-demand

threaded approach implements a complete separate thread that is only activated when one System has

finished its operations and generated new cloned data. After one check for all queues, it goes back to sleep

state until it is notified by another System again. The periodic centralized approach is called in accordance

to the System frequencies. Systems usually apply their computations to the Components periodically:

The physically-based simulation (e.g. collision detection) runs traditionally at  Hz while animations

require  Hz or  Hz. Hence, it is also favourable to directly couple the frequency of the memory release

with the actual implemented System frequencies of the RIS. I propose three frequencies for the periodic

memory release: First, the memory release can be performed at the slowest frequency of all Systems.

Second, the memory release can be performed at the fastest frequency of all Systems. At last, the

memory release can be performed at the average frequency of all Systems. The periodic approach builds

upon application domain knowledge. For instance, if it is known to the RIS developer that mostly fast-

paced physically-based simulations are present in the application, also a rapid periodic check for memory

release could be useful and vice versa. In contrast, the decentralized memory management is located within

the System implementation. All Systems notify each other with respect to the above mentioned atomic

memory markup. Every System actively checks on his own after each completed computation whether

memory can be deleted or not (see Figure .).

. Domain Specific Modelling for ECS based Virtual Testbeds

In this section I present my novel comprehensive approach to modelling, simulation and optimization

of arbitrary simulation models within virtual testbeds. This approach encompasses several contribution

of my work, namely my KeyValuePool and GraphPool based ECS software infrastructures for RIS based

applications, MAS based optimization (see Chapter ), and KDPs for SBO (see Chapter ). My approach

is based upon the concept of a DSML, a software engineering methodology for designing and developing

complex systems.



It represents the various facets of a system in a PIM. From these PIMs, PSMs are generated via code

generation techniques (see Figure .).

Enabling SBO applications require a virtual simulation environment for the parameter optimization to

take place. In this section, I will describe my simulation environment as well as domain framework and how

both are related to my DSML. My modelling approach is based on the lightweight DSML [] approach. It

introduces more generalized model artefacts to be used in order to decrease the overall development time

when using DSML concepts. Generalized model artefacts do not support complete source code generation

as their modelling concept focusses mainly on the dataflow. However, for a generic virtual testbed, which

should support highly different simulation models or even other domains, complete source code generation

is no prerequisite.

My lightweight DSML approach is used to define generic components of a simulation. For instance, a

robot or craft simulation should cover the environment, craft sensors and actuators, internal craft control

components, and the corresponding three-dimensional representations. These components are situated in

a simulation model loop which ensures that the craft can only perceive its environment via its sensors and

that only actuator information are routed to the environment. My lightweight DSML enables modelling

of such components in a straightforward manner as described in the next sections. My approach enables

domain experts to easily model generic PIMs for various simulation applications. These PIM are then used

to automatically generate the source code of the corresponding virtual testbed, the PSM, via horizontal

model transformations []. This contribution enables an efficient development of a virtual testbeds

based SBO. Even more, my approach model checks the given simulation model for interface (dataflow and

workflow) errors. Thus, this leads to less errors in the development of virtual testbeds. It utilizes my Key-

ValuePool and GraphPool based software infrastructure for massively parallel execution of simulation and

optimization. In addition, it uses my MAS based optimization (see Chapter ) and automatically integrates

my KDP for SBO studies (see Chapter ). Within my DSML approach, the overall development time of the

virtual testbed is greatly reduced because

• it allows for quick modelling of the simulation and optimization modules within the virtual testbed,

• it enables code generation for arbitrary PSMs from the specified PIMs,

• it conducts a complete model checking for dataflow and workflow of the simulation in order to detect

possible errors from the given simulation requirements and architecture.

Consequently, my DSML represents high-level modelling concepts for expressing SBO related function-

ality while providing model checking within my high performance wait-free software infrastructure (see

Figure .).

.. Domain Framework and Dataflow

Within my DSML approach, a domain framework is required to execute the generated code artefacts. Such a

domain framework additionally reduces the amount of generated software clones as the domain framework

encapsulates common interfaces and data structures. This approach is well-known from other applications,

such as the Java Runtime Environment [], and incorporates many advantages.



Lightweight DSL

based on GOPRR

Maintained and developed by domain experts

Leverages

Platform Independent Models

Domain Framework:

KVPool / GraphPool

Game / Rendering

Engine

Enables modelling

Platform Specific Models

– Simulation Model Behaviors -

Based

on
Knowledge

Discovery Process

MAS based

Optimization

A
c
tu

a
to

rs

S
e

n
s
o

rs

Automated realization and model validation
A

c
tu

a
to

rs
S

e
n

s
o

rs

A
c
tu

a
to

rs

S
e

n
s
o

rs

ECS Pattern
Baseline

Figure 4.8: Overview of my proposed approach. From a lightweight DSML, arbitrary domain-unrelated PIMs
for specific virtual testbeds are defined which are used to generate the corresponding actual virtual testbed im-
plementation (PSM) with my proposed SBO methodologies in C++. The used domain framework is my pre-
viously described hash map based data management. The baseline, the ECS pattern, is also used to define the
descriptive objects of the lightweight DSML in order to enable a efficient implementation of the overall code
generation process.

The required domain framework should be a solution that satisfies state-of-the-art software engineering

advantages from current virtual testbed approaches [, ] but should not introduce a performance

bottleneck to the overall simulation and optimization (see Chapters . and ).

I presented in the previous chapters my wait-free software infrastructure concept based on KeyValue-

Pool and GraphPool with its extensive benefits and contributions. Consequently, I use my KeyValuePool

and GraphPool as the domain framework. The domain framework is responsible for driving the simulation

and optimization in a consistent manner. I describe in the following how a discrete event simulation (DES)

can be implemented within the proposed domain framework. In addition, I describe the integration of the

ECS pattern within the DSML and the incorporation of SBO concepts.

The core of the proposed DSML approach is the domain framework, namely my KeyValuePool and Graph-

Pool based software infrastructure. Therefore, every domain component that is defined in the PIM is a

KVInterface (resp. a System), as introduced in Chapter . Consequently, every domain component ben-

efits from my proposed wait-free, ECS based software infrastructure.

In addition to this wait-free access, the KeyValuePool and GraphPool software infrastructure delivers

a homogeneous interface for accessing the simulation state as well as for KVInterface communication.

These relationships are defined by a set of KeyValuePair read and write operations. The read and write oper-

ations are easily represented by two sets of the correspondig Component keys which indicate the producer

and consumer of the data.



This encapsulation leads to simpler DSML concepts because the code generation for accessing simulation

states and for simulation component data exchange can be represented by simply delivering these two sets

of keys per domain component.

In contrast to my straightforward approach, current virtual testbed data managements use full-fledged

SQL databases [, , ]. These approaches introduce additional complexity to the code generation

process because complete SQL-queries would need to be generated for accessing the simulation state but

also for domain component interaction. Consequently, my software infrastructure delivers not only fast

low-latency data access performance but, even more, high software cohesion which facilitates efficient code

generation of the overall virtual testbed.

Within this concept, I describe a DES loop of my domain framework as follows: A state S = (t, I, P, E) of

my virtual testbed consists of simulation time t and sets of KVInterfaces I, KeyValuePairs P and events

E. Additionally, a transition function δ is defined:

δ(tn, I, P, E) = (tn+1, I, P′, E′)

In each transition, the KeyValuePairs (resp. the GSS) are updated by the KVInterfaces and new tran-

sition events are generated by the system. In order to enable a generic modelling concept for arbitrary

simulation models, KVInterfaces can be grouped into various groups which can be defined within the

DSML. These groups define synchronization barriers between the KVInterfaces, if required. Within each

group, all domain components run completely in parallel, for instance as a OpenMP implementation (see

Chapter ..).

As an example of above concept, domain components for a vehicle or robot based SBO application could

incorporate these five groups (see Figure .):

• Environment: Defines simulation aspects from the environment in which the craft is situated. These

aspects can incorporate physical forces such as gravitation, air drag, pressure, kinematics or even

Virtual Reality based approaches like collision detection.

• Interface: Defines the sensors and actuators of a craft, e.g. thrusters, gyroscopes, cameras or

rangefinder sensors.

• Craft: Defines internal craft components such as control loops, localization concepts, sensor fusion

algorithms, BDI-structures or target detection.

• Optimization: Defines a SBO for craft related configurations.

• Simulation Analysis: Defines the KDP properties for analyzing the simulation model behavior.

.. Domain Specific Modelling Language

My DSML is based on the industry MetaCase+ graphs, objects, properties, relationships, roles (GOPRR)

notation []. All objects used within GOPRR are drawn into graphs that contain the objects role and the

relationships thereof. GOPRR objects can be for example a process, a thread, a class or an instance of class.

A property describes features of graphs, objects, roles and relationships. A relationship connects objects

by assigning them roles in the activity of the object. The aim of my DSML is to describe all required SBO

aspects, namely simulation model, simulation model analysis and MOO, within GOPRR. Using GOPRR has

the major advantage that there are existing applications for the creation of GOPRR based languages.



Environment Group

System Entity Component

Sensors Group

Vehicles Group

Actuators Group

Entities

(instantiated

vehicles)

KVPool /

GraphPool

Reference

S
im

u
la

tio
n

 lo
o

p

Systems in every

group are parallelized

Figure 4.9: Generated vehicle simulation example: synchronization groups (e.g. a classical sensor-actuator loop
here) are mapped to my ECS based software infrastructure with wait-free CCM. Within each synchronization
group, all domain components (Systems that apply operations on instantiated vehicles as Entities) run in paral-
lel (OpenMP parallelization) with high throughput based on my wait-free hash map concept.

Therefore, the required functionality is defined in the GOPRR notation: Graphs in my DSML are syn-

chronization groups which can belong to either simulation, optimization or visualization. Every graph

contains a set of objects, domain components, namely KVInterfaces. Every object involves three main

concepts: a role, relationships and properties. There are arbitrary roles which can be defined for every do-

main component and define the belonging of each domain component to a specific synchronization group.

Relationships between objects are expressed by KeyValuePair exchanges (resp. as two key sets, see

above). Furthermore, object properties (resp. KVInterface member variables) can be arbitrary data,

such as numbers or strings.

Formally, let G = (SynchronizationGroup, {G}, {O}) be a graph definition with child graphs {G} and

objects {O}, where O = (KVInterface,Ro, {Re}, {P}) is an object with P = {(Data type, name)} vari-

ables, role Ro = (Generic set, defined by domain expert) and relationships Re = {KVPair} (see Figure

.).

Graph: Synchronization-Group

Object: KVInterface

Role: Generic set

Relationship: KVPairs

Property: Data type | Name

1

1

1

n n

n

Figure 4.10: Simplified hierarchical depiction of my lightweight DSML approach, based on the GOPRR no-
tation, for the ECS pattern. GOPRR specifies abstract DSML concepts: the graph and the objects with their
role, relationships and properties. The graphs are the previously introduced synchronization groups in which the
objects (actual implementations of KVInterfaces, i.e., Systems) are located. Each object has a role (Entity type
and id) and relationships to other KVInterfaces represented as keys of KeyValuePairs as well as the correspond-
ing properties (represented as Components).



XML .h .cpp .cpp

Custom

code

Code

(Pass 1)
Code

(Final)

Figure 4.11: My two-pass TBCG approach: templates with all read and write operations are generated (green)
and the interface behavior is added manually (red) (see Algorithm 14).

.. Code Generation

I use TBCG [] in order to generate source code for my PSMs from my PIM. TBCG is a generative technol-

ogy that transforms a given model into source code, through the use of templates in two passes (see Figure

.). These templates provide a high level of flexibility for the generated output required by custom gen-

eration scenarios. Furthermore, it is extensively used throughout the industry [], leading to good docu-

mentation and continuous development. A template thereby consists of imperative control and structural

source code patterns such as loops or conditional statements. As everything in my virtual testbed is im-

plemented as homogeneous interface to my KeyValuePool and GraphPool based software infrastructure,

my TBCG directly aims at generating all read and write interfaces of the corresponding KVInterfaces.

Currently, PSM can be generated for the programming language C/C++ (see Pseudocodes . and .).

In order to implement above concept, the following information is derived from the DSML:

• ω : all specified KVInterfaces
• α : name of one KVInterface ∈ ω

• β : role (represented as base class) of one KVInterface ∈ ω

• γ : list of properties per KVInterface, structured as tuples with data type and name

• δ : list of KeyValuePairs which are read by the KVInterface, represented as a key list

• ϵ : list of KeyValuePairs which are written by the KVInterface, represented as a key list

• ζ : KVInterface unique synchronization group id and name

Algorithm  GenerateKVInterfaceImplementation(α, β, γ, δ, ϵ, ζ from ∀ωi ∈ ω)

: Generate header file with derived class α from β
: for γi ∈ γ do
: Generate private variable γi − name with γi − type in header file declaration
: end for
: Generate cpp file with include to class α
: Generate empty read, write and work function of α
: for δi ∈ δ do
: Generate key-value pool read of key δi for variable γi − name in read function
: end for

: for ϵi ∈ ϵ do
: Generate key-value pool write of key ϵi for variable γi − name in write function
: end for
: Add KVInterface to synchronization group ζ in simulation loop



c l a s s System−α : pub l i c β

{
pub l i c :
/ / G e n e r i c a c c e s s f u n c t i o n s f o r da t a

void r e a d () ;
void w r i t e () ;
void work () ;

pr i v a t e :
/ / G en e r a t e f o r e a c h γi ∈ γ :

γi − type γi − name ;
/ / S y n c h r o n i z a t i o n g r o up

unsigned in t ζ

/ / KVPool o r GraphPoo l r e f e r e n c e

P o o l p
} ;

Listing 4.3: KVInterface header class generation

 inc lude ”βα . h ”

void α : : r e a d ()
{
/ / G en e r a t e f o r e a c h δi ∈ δ :

γi − name = p−>g e t (δi) ;
}

void α : : w r i t e ()
{
/ / G en e r a t e f o r e a c h ϵi ∈ ϵ :

p−>put (ϵi) ;
}

void α : : work ()
{
/ /TODO: Imp l ement b e h a v i o r

}

Listing 4.4: KVInterface cpp generation



a) b)

c)

KV

Interface

A

KV

Interface

A

KV

Interface

A

KV

Interface

B

KV

Interface

B

KV

Interface

B

KV

Interface

C

KV

Pair

X

KV

Pair

X

KV

Pair

X

KV

Pair

Y

Logical graph

Non-existent workflow

Figure 4.12: Model validation of the simulation dataflow besides the evident checks a) and b), also interface
communication is checked: c) if data from domain component A should be perceived by C, which is not situ-
ated in the same logical graph (synchronization group) as A, it has to be transmitted by an interface domain
component B which is placed between the two logical graphs.

.. Model Validation

Model validation is, besides code generation, one of the main aspects and benefits of a DSML based ap-

proach []. It aims at checking whether a model conforms to its specified requirements. As mentioned

earlier, the huge complexity of virtual testbeds with the ever increasing amount of software interfaces be-

tween simulation, optimization, user interaction and visualization makes interface development tedious

and often stressful (see Chapter ). I therefore validate the simulation dataflow as it exactly constitutes the

internal interfaces of the simulation. This validation check is modelled as finite state machines which are

generated by the overall KeyValuePair access of all KVInterfaces (see Figure .). I validate three simula-

tion dataflow constraints. If a KeyValuePair is defined and written by one KVInterface, at least one other

KVInterface must read it, otherwise the modelling and generation of this KeyValuePair is unnecessary.

Analogous, if a KeyValuePair is read by at least one KVInterface, another KVInterface must create this

KeyValuePair beforehand. In addition to these evident requirements, I also validate whether the simulation

and optimization is itself not violated: KVInterfaces can only communicate with other KVInterfaces
within their logical graph. For instance, my SBO approach (see Chapter ) must only change its designated

parameters, a simulated vehicle must only perceive its environment by simulated sensor measurements

and the simulated environment must only retrieve actuator information from the vehicle.



0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50 60 70 80 90 100

F
r
e

e
d

bC
o

m
p

o
n

e
n

t
s
bi

n
ba

v
e

ra
g

e
b[

h
]

NumberbofbSystemsbaccessingbthebwait:freebhashbmap

Performancebcomparisonbofbmemorybmanagementbapproaches

Decentralized Periodicbatbminimumbfrequency

Centralized:bperiodicbatbmediumbfrequency Centralized:bperiodicbatbhighbfrequency

Continuouslybthreaded Centralized:bthreadbonbdemand

Originalbimplementation

Figure 4.13: Performance comparison of the proposed memory management approaches. None of my ap-
proaches delivers 100% performance for arbitrary numbers of Systems. However, diverse use cases emerge in
which certain approaches perform best. This leads to best practices as described in the evaluation.

. Results

I conducted different experiments to measure the management efficiency my ECS based KeyValuePool and

GraphPool approach. The basis of these experiments is the end-to-end spaceflight mission simulator, as

described in Section .. I implemented my ECS based software infrastructure with KeyValuePool and

GraphPool as well as DSML in C++. I performed experiments on a machine with an Intel Core i -core

processor (. GHz) with enabled Hyperthreading, using the Microsoft Visual C++  compiler with all

optimizations, operated by Windows   bit and GB of RAM

I compared my different memory management strategies in several set-ups of my use case. My eval-

uation concerned different amounts of active Systems within the use case study as well as varying

Component types. The Components represented simple three-dimensional positions, x and x ma-

trices, point clouds (ranging between . and . points), three-dimensional line segments and

geometry as well as standard programming language objects such as strings or integers. Furthermore, the

Components varied in size between a few Byte and several Megabyte. I performed . read- and write

operations for each test. In order to avoid caching effects I repeated all tests  times and I averaged the

resulting timings.

Figure . illustrates the performance of my novel memory management. Here, I evaluated how many

unused Components are deleted each simulation step in the virtual testbed scenario. Clearly, my novel

memory management outperforms the original implementation. Actually, all of my proposed strategies

outperform the original implementation but they also perform diverse for varying numbers of Systems.

Each implementation, whether centralized or decentralized, exhibits a sweet spot in which it outperforms

the competitors. In detail, the decentralized approach outperforms the centralized implementations the

more Systems access the Components. In case of less active Systems, the centralized approaches, espe-

cially the frequency dependent variations, perform better. I believe that an increasing number of Systems
increases the overall memory dependency between the Systems.



0 5 10 15 20 25 30 35

Decentralized

Centralized:OPeriodicOatOhighOfrequency

Centralized:OPeriodicOatOmediumOfrequency

Centralized:OPeriodicOatOslowOfrequency

Centralized:OContinuousOthreaded

Centralized:OThreadOonOdemand

OriginalOimplementation

SimulationOloopsOinOtheORIS

ComparisonOofOclonedOComponentOdataOlifetime

Figure 4.14: Comparison of the unused Component data lifetime before they are deleted in a RIS setting for
virtual testbeds with 100 Systems. The original implementation is based upon the initially described memory
management of the wait-free hash maps without the ECS integration. This is a configuration excerpt from the
previous evaluation to show how strongly the individual approaches differ in their performance.

This means that the more active Systems a RIS inherits, the more Systems are likely to use the same

Components. Therefore, they are ”blocking” the release of the cloned Component data.

Consequently, the responsibility of releasing the memory shifts from the overall collective of Systems
more to the single System, resp. to the decentralized approach. At last, the centralized approaches always

outperform the original KeyValuePool and GraphPool based implementation which uses a standard global

list for the management of unused Components.

Clearly, my novel memory management approach outperforms the original implementation also for

minimizing the lifetime of cloned Components (see Figure .). In detail, the decentralized approach

outperforms all competitors while the centralized approach with high frequency can nearly compete with

it. It can be further observed that the frequency of the periodic centralized implementation directly relates

to the lifetime of the unused Component data.

I also compared the actual access performance of the presented enhanced memory management with the

original implementation and a lock-based implementation. It can be observed, that my enhanced memory

management for the wait-free hash maps does not introduce any performance bottleneck to the original

implementation and it behaves almost identical for wait-free read and write operations. Furthermore,

my results show, in accordance to my other evaluations (see Section .), that the wait-free access imple-

mentation gradually outperforms the traditional lock-based implementation with an increasing amount

of Systems by several orders of magnitude.



10

30

50

70

90

110

130

1 5 10 15 20 25 30 35 40 45 50
Ac

ce
ss

uti
m

eu
[�

s]

Performanceucomparisonuofuwait-freeuandulock-basedu
concurrencyucontroluapproaches

Wait-Freeuwithuenhancedumemoryumanagementuimplementation

Wait-Freeuoriginaluimplementation

Traditionalulock-baseduimplementation

Figure 4.15: Performance comparison of my memory management enhanced wait-free implementation, original
wait-free implementation and standard locking approach. The integration of ECS does not influence the wait-
free performance and does perform equally. Both wait-free approaches clearly outperform a traditional lock-
based implementation.

.. Best Practices

It can be summarized, that my evaluation revealed different advantages of the presented memory man-

agement approaches. In detail, for only a few active Systems in the RIS, the centralized (periodic with any

frequency) approaches outperform their competitors. However, if the RIS inherits more than  active

Systems, the decentralized approach outperforms all competitors. Furthermore, the memory is deleted

fastest in the decentralized approach, followed by the centralized (periodic with high frequency and contin-

uously threaded implementation) approaches with an increasing number of active Systems. I can derive

from this some best practices for RIS development which use my wait-free hash maps with double buffer-

ing. Tables . and . illustrate my findings for different use cases, namely: RIS applications which inherit

few/many Systems as well as RIS applications which inherit small (e.g. only primitives like vectors, ma-

trices) or large Component data (such as large structured data such as point clouds or triangles).

Few Systems

Small Component Data Large Component Data

Centralized (periodic with any fre-
quency) management

Centralized (periodic with high fre-
quency) management

Table 4.1: Guideline for memory management approaches for few Systems within a RIS.

Many Systems

Small Component Data Large Component Data

Decentralized management Decentralized management

Table 4.2: Guideline for memory management approaches for many Systems within a RIS.



Part III

Algorithms and Concepts for
Blackbox Optimization

in Virtual Testbed Simulations



Wise men speak because they have something to say; Fools be-

cause they have to say something.

Plato

5
Data Mining Algorithms for

Pareto based Multiobjective Optimization

In this chapter, I introduce my novel data mining algorithms and concepts for my novel automatic KDP for

MOO in virtual testbeds. This approach is able to uncover unknown causal relations in simulation models

and to approximate unknown objective functions. This information is gathered with a novel data mining

concept and enables a MOO of the high-dimensional input space, for parametric optimization (see Section

.) of the simulation model. Such approximations and optimizations are currently not available for vir-

tual testbeds. I recall some of the most relevant research articles that have appeared in the international

literature related to this topic and emphasize my contributions.

Traditional SBO approaches [, ] usually require pre-defined objective functions which directly

describe the influence of all simulation input parameters on the specified simulation objectives (denoted

as model behavior). An optimization toolset (e.g. []) uses these objective functions (e.g. ordinary dif-

ferential equations) in order to find a local or global minimum which satisfies given constraints. As a

consequence of the increasing complexity of state-of-the-art simulations, such objective functions are not

always available.

Even more, there are many technical complex systems whose long-term behavior can not be described by

a set of equations (e.g. long-term behavior of autonomous systems in changing environments). This kind of

SBO problem is called blackbox simulation problem because the objective functions are unknown to both:

the simulation engineer and optimization toolset (see Chapters  and ). In these blackbox simulations,

and in regular simulations, is the analysis of the model behavior and the determination of the valid design

space, respectively, usually done manually by simulation experts, guided by mathematical methods which

introduce heuristics on the unknown objective functions.

This manual analysis is generally performed by identifying a few distinct parameters according to the

simulation project scope given as a set of simulation objectives. An optimization is not conducted by a

simulation itself, but rather through execution of multiple simulation runs.



Offline preprocessing

Simulation

Optimization

Adaption

input
disturbances

output

controlled

variables

controlled

values

Measurement

measured

values

manipulated

variables

Simulation

Optimization

Adaption

input
disturbances

output

data

mining

controlled

values

Approximation

gradient

manipulated

variables

values

Figure 5.1: My KDP approach introduces a offline pre-processing step (right) to the traditional SBO loop
consisting of simulation, optimization, objective measurement and configuration adaptation (left). This pre-
processing unveils hidden relationships in the simulation model, approximates the unknown objective functions
based on B-Spline surfaces and delivers finally a FDS approximation for a optimization toolset.

In order to reduce complexity and number of runs, the input parameters of each single run have to

be varied cleverly []. The simulation expert usually takes an educated guess based on his experience

which parameters might be influential on the project scope and therefore time and effort is invested in

experimenting with these focus parameters in a fixed system configuration environment. Hence, for each

simulation run, the input configuration has to be adjusted if the simulated model performance does not

meet scenario or engineering expectations. Currently, this adjustment of input parameters in simulations

is either done externally by simulation experts that need to guide the simulation process, or by defining a

number of scenarios. These scenarios are pre-defined by simulation experts to cover almost all aspects of

the simulation model. The use of expert guidance can lead to quite effective simulation results. However,

such experts are rare and expensive. Additionally, its not always feasible to have an expert available for con-

figuring and supervising the simulation. Nevertheless, this approach is widely used [] but yields many

disadvantages as this workflow is based upon subjective judgment of simulation results. These judgments

are insufficient for efficiently solving this problem because they can not survey the whole underlying MOP

of the simulation model, especially for blackbox simulations.

[] refers to this as the ”trial-and-error approach” to finding a good solution and recommends that sim-

ulation experts should spend more time in analyzing than building the model. Furthermore, pre-defined

scenarios may lead to less optimal adaptation [].

Consequently, it would be beneficial to automatically compute suitable input configurations for a given

simulation model without the need of an expert guiding this process []. In addition, recent simulation

models are dominated by a MOP because many real world problems involve decisions based on multiple

and conflicting criteria [].

There is already a number of computational methods for solving MOPs, for instance [, ], available.

Some of these computational methods also work for some use cases in blackbox simulations. However,

they usually do not consider the generation of vast amounts of simulation model behavior results that

can be easily derived from simulation data farming via a KDP. Although, this data could be used to deliver

additional (gradient) information to traditional MOP solving approaches. In the best case, optimization

approaches can directly benefit from this information.



Simulation

Relationship

Analysis

Design Space

Approximation

Pareto

Gradient

Heuristic

Simulation

configuration

Simulation

objectives

Optimization

toolsets

Figure 5.2: Simplified steps of my proposed KDP: a relationship analysis is conducted based on simulation
data. After discovering unknown relations between simulation input and simulation model behavior, the design
space of the simulation model input is approximated and the information are given to an optimization toolset.

Unlike traditional approaches for solving MOP in blackbox simulations, these KDPs in simulations are

not limited to a static, pre-determined input dataset for model behavior and optimization. Instead, the

simulation is used as a generator for new data by a simulation sampling process.

By definition, KDPs incorporate some kind of data mining process which samples the simulation input

parameter space [, ]. This enables a KDP to investigate the simulated model behavior in more detail

and larger bandwidth [] via its data mining scheme. This data mining scheme directly determines the

efficiency and quality of the resulting objective function approximation because it defines the simulation

sampling process.

I present a different approach, a generic KDP for simulations (see Figure .), which is directly based

on this observation and the idea of KDD []. Unlike traditional approaches for solving MOP, KDD resp.

KDPs in simulations are not limited to a static, pre-determined input dataset for model behavior and op-

timization. Instead, the simulation can be used as an generator for new data by itself.

This enables the investigation of the whole bandwidth or at least the largest part of possible model be-

havior by conducting cleverly designed simulation data farming in order to discover surprises and potential

[, ] which can be re-used in the MOP solving process, too. More precisely, I adopted techniques from

KDD research to a generic KDP for multiobjective Pareto-based optimization in deterministic and stochas-

tic simulations with unknown objective functions. My KDP approximates these objective functions via a

novel data mining concept.

State-of-the-art KDP approaches do not support stochastic simulation behavior and are therefore re-

stricted to deterministic simulations. Nevertheless, sophisticated simulations involve real-world scenarios

which incorporate stochastic processes or properties.

Approximating objective functions in stochastic simulations is more difficult and complex because the

underlying noise of the stochastic process involves variations in the simulation and consequently in the

data farming process. State-of-the-art studies model stochastic processes as deterministic ones which leads

not only to inferior approximation of the objective functions but also to inferior solutions of the MOO

toolset as I will show in my evaluation.



Stochastic Simulation

Knowledge Discovery Process

D
a

t
a

 m
in

in
g

:
 G

D
S

Multi-Objective Optimization

Offline Preprocessing

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑠1 𝑥 , 𝑠2 𝑥 , … , 𝑠𝑝 𝑥)
𝑥 ∈ 𝑋

Computationally expensive
evaluation based on
unknown objective functions

Efficient B-Spline surface
objective function representation

Stochastic Simulation Multi-Objective Optimization

𝑀𝑂𝑃 min𝐹 𝑥 = (𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑝 𝑥)
𝑥 ∈ 𝑋

Computationally expensive
evaluation based on
unknown objective functions 𝑓𝑖 𝑛𝑜𝑡 𝑘𝑛𝑜𝑤𝑛

Simulation objectives
Simulation parameter space

Optimal configuration

Simulation objectives
Simulation parameter space

Optimal configuration

a)

b)

Figure 5.3: My data mining approach introduces an computationally efficient objective function approximation
based on my gradient based density spline surface (GDS) concept within my offline KDP via novel B-spline
response surface representations for deterministic and stochastic simulations. These response surfaces are used
to replace the unknown objective functions for MOO of the simulation model.

My approach automatically builds an active model between simulation input and simulation objectives

which is capable of

• uncovering unknown causal relations in large parameter sets between simulation input and model

behavior which are assumed to be unknown non-linear objective functions,

• approximating objective functions (resp. the FDS) in arbitrary deterministic and stochastic blackbox

simulations as B-spline surfaces,

• computing a Pareto gradient from the FDS approximation for concave, convex or interrupted Pareto

fronts, which can be used with different optimization strategies,

• computing a Pareto solution from the FDS approximation with my proposed hierarchical MAS ap-

proach (see Chapter ).

My approach is completely automatic. It does not need, in contrast to existing approaches, any supervi-

sion from simulation experts. Another advantage of my approach is its performance. It gains its efficiency

from a novel B-spline based sampling of the parameter space in combination with a novel forest-based sim-

ulation dataflow analysis. Another main advantage of my approach is that my B-spline surface based FDS

approximation evaluation is computationally very fast and replaces costly simulation evaluations which

are usually required. Consequently, my approach also delivers a performance boost when computing a

solution for the given MOP. Furthermore, my approach is very generic. It can be easily incorporated into

existing SBO approaches. Even more, the computed Pareto solutions are close to the Pareto front for deter-

ministic and stochastic simulations. Additionally, of my approach provides three different optimization

strategies. These strategies can be used by state-of-the-art MOO solvers in order to investigate a larger

bandwidth of the simulated model behavior.

Within my KDP, I present my GDS data mining algorithm. GDS is able to approximate arbitrary un-

known objective functions in deterministic and stochastic blackbox simulations, for convex and concave

as well as interrupted Pareto fronts.



GDS runs as a pre-processing step before the actual SBO process and replaces the traditional variable

based simulation result measurement step (see Figure .). GDS consists of three main concepts:

• B-spline surface representation of the relationship space (see Section ..),

• density based clustering of objective function samples which determines the noise behavior of the

stochastic simulation (see Section ..),

• gradient based sampling of the parameter space which reduces the required amount of samples (see

Section ..).

The result of GDS is an efficient approximation of the objective functions as a set of B-spline surfaces

which can be used in various SBO scenarios, such as complex MOPs. This efficient approximation is com-

putationally very inexpensive compared to usually very costly simulation evaluations (see Figure .). It

can be further effectively utilized in optimization toolsets, e.g. by my hierarchical MAS based optimization

approach (see Chapter ).

. Related Work

Research in combining KDD and simulation methodology has attracted increasing interest in the last

decade. There are numerous applications, with the main aim of assisting the simulation analyst and en-

gineer, e.g. by visualizing simulation data with annotations, analyzing existing Pareto solutions or by

clustering simulation output.

However, the main interest is to approximate objective functions in order to interpolate or extrapolate

simulation model behavior. Mostly, such approximations are implemented as a sophisticated data mining

approach within a complex KDP.

The research can be classified into two groups: KDP approaches aiming at SOO or MOO. All presented

KDP approaches have in common, that they only support deterministic simulations. Current KDP ap-

proaches for SOO problems reduce the optimization problem, for instance [] explored the landscape

characterization problem with a support vector machine by analyzing the complete input parameter space.

The approach assumed a non-objective oriented simulation, in which the simulation model can be re-

duced to a single function f which updates the simulation state x with parameter set θ via xk+1 = f(xk, θ).

They defined the landscape characterization problem by determining the set of points θ in which a pre-

defined simulation state is achieved. This approach can neither be applied to SOO nor MOO based simula-

tions in which the simulation model is governed by a set of (possible) contradicting functions fi, ..., fn as the

approach does not concern such structures within the simulation. [] determined dynamic adaptation

strategies for agent-based traffic simulations via supervised learning. They extracted parameter patterns in

the from of decision trees in stochastic simulation by simulating the simulation model several times. These

generated decision trees are valid for linear relationships between input parameters and model ”what if”

studies. The approach is further restricted to a small number of simulation input parameters because it

involves a runtime which is quadratic in the number of input parameters.

Likewise, [] neglected MOO properties. They investigated the application of KDD in simulation of

aircraft engine fleet management. They applied a linear regression to all input parameters xi, ..., xn for

one simulation objective state y resulting in a model of the form y = C + α1x1, ..., αnxn. This model was

used to determine the cost drivers in aircraft fleet management. These cost drivers were then classified

by a clustering algorithm into low or high cost classes, describing the main cost drivers for the given fleet

management simulation.



[] proposed an approach for uncovering unknown relationships in model behavior. They conducted

large scale experiments by replicating pre-defined experiment definitions. The resulting simulation data

output was clustered and presented in various plots and charts in order to reveal unknown relationships for

the simulation experts and is consequently highly depending on the simulation expert. KDP approaches

based on MOO (respectively Pareto) based optimizations for simulations (such as [, , , ])

focussed on extracting additional information from pre-determined Pareto sets or analzying these sets

within the simulation. Consequently, they can be used to neither approximate the FDS nor to compute a

Pareto solution itself. Other approaches concerning SBO in virtual testbeds such as [, ] work within

the field of deterministic simulations for eRobotics use cases []. Other KDP approaches based on MOO

in simulations [, , , ] focussed on extracting additional information from pre-determined

concave Pareto sets or by analyzing these sets within the simulation. Consequently, they can not be used

to approximate the FDS nor to compute a Pareto solution itself.

In summary, all above mentioned studies focused on building passive models between simulation input

and objective-related simulation output while minimizing the simulation parameter scope or by focusing

on single-objective linear simulation models in deterministic simulations. These passive models describe

the simulation without enabling interpolation or extrapolation of the simulated model behavior for SBO

purposes. Instead they aim is to describe the output of the simulation in a human-understandable format.

They deliver coarse granularity parameter relationship information which can not be used to approximate

the FDS nor to compute a Pareto gradient information (e.g. gradient information of the analyzed data with

respect to the Pareto front), especially for stochastic simulations. Consequently, they can not be used as

input for MOO algorithms in order to compute suitable configurations. Concluding, all above studies are

restricted to deterministic simulations which leads to several disadvantages as stated before.

Engineers
Simulation objectives

Association

Rules

Raw

Simulation

DataSimulation

Forest

reoresentation

Feasible design space

Phase 1: Discover unknown model behavior via level-1-itemset generation and forest analysis

Phase 2: Efficient simulation data farming via B-spine surfaces and feasible design

space approximation

Simulation
B-Spline surface

objective representation

Correlation

analysis
𝑟 =

 (𝑋 − 𝑋)(𝑌 − 𝑌)

 𝑋 − 𝑋 2 𝑌 − 𝑌 2

O
b
je

c
ti
v
e

2

Objective 1

Dominated

solutions

Pareto solutions

Figure 5.4: My automatic KDP: first, causal relations between simulation input parameters and simulation
objectives are revealed via my association rule mining approach with forest based dataflow analysis. The used
simulation objectives are defined by the engineers. Second, simulation data farming is efficiently conducted (by
structuring the dataflow with my forest approach) in order to approximate the unknown objective functions and
the FDS. This approximation is checked for correlation and used to compute Pareto gradient information and
multiobjective solutions.



. Process Overview

Originally, KDD is defined as making sense of data collections that are too big to manually review each

and every single record. Input sources for such kinds of data are complex simulations, graphs, or data

warehouses []. [] describe the KDD process as multiple steps to ultimately transform low level data

into useful knowledge. In detail, the KDD process is a highly interactive five-step-process that requires

many decisions made by the user. Some of these steps (e.g. target data selection or interpretation of

patterns) have to be iteratively repeated by the user for convincing results. Hence, KDD is a semi-automatic

process because the user is ultimately responsible for interpretation and evaluation of mining results. This

particularly applies for the evaluation of the usefulness of the generated knowledge [] (see Section .).

Today, simulation models are dominated by a MOP because many real world problems involve decisions

based on multiple and conflicting criteria []. I already outlined the concept and challenges MOP (see

Section ..). In summary, the optimal decisions have to consider the best trade-off among these criteria.

These best trade-offs are called Pareto solutions. Computing the Pareto front (set of Pareto solutions) or

a single Pareto solution is actually the goal of MOO. Such MOPs can be found in many situations, for

example, in product design where several criteria must be simultaneously satisfied [, , ].

My motivation is to adapt the original KDD process as a novel generic KDP for SBO applications in

virtual testbeds. Therefore, I present the application of an completely automatic KDP to reveal causal re-

lationships between simulation input parameters and pre-defined simulation objectives with respect to

blackbox simulations with an underlying multiobjective model behavior. The result of my KDP is an ap-

proximation of the FDS as well as Pareto information which can be directly used for solving the MOP of

the simulation model.

Three main challenges arise when applying KDD techniques to these problems. First, engineers who

specify the simulation model as well as simulation experts have limited and hence incomplete knowledge

about the simulation model behavior with respect to the complete parameter input space. Consequently,

the assumed relations between pre-defined simulation objectives and parameter space input are incom-

plete or wrong []. Unfortunately, efficiently computing viable solutions for MOP requires at least a

correct approximation of the relationship between the parameter input space and the objective functions.

This means, all relations between a simulation input parameter and a pre-defined simulation objective

within the simulated model behavior have to be determined. Second, KDD usually requires extensive sim-

ulation data farming in order to yield useful results. This simulation data farming can lead to a compu-

tationally very expensive KDD process because this complexity usually grows at least quadratically with

the amount of input parameters []. In addition, objective function are usually costly to evaluate (see

Section .). Hence, the simulation data farming constraints (selection and sampling of convenient input

parameters) have to be minimized. Third, diverse algorithms exist for computing a solution to MOP, such

as gradient descent [, ], simulated annealing [, ] or evolutionary algorithms [, ]. The pro-

posed KDP should yield Pareto information in such a way that this information can be directly used in such

different optimization approaches.

In order to overcome these challenges, my KDP differs in many ways from the above described standard

KDD process (see Figure .). Basically, my process is split into two main phases: First, association rule

mining (ARM) based dataflow and forest based workflow analysis. Second, simulation data farming with

relationship analysis.



Unknown objective

function

Simulation time T

Parameter C

Objective O

Figure 5.5: Example of a three-dimensional space that indicates how a simulation input parameter C relates
to a given simulation objective over time. This unknown model behavior is represented as a three-dimensional
surface.

The first phase reveals unknown model behavior and constructs a simulation objective based forest data

structure which enables fast simulation data farming. The second phase utilizes this forest in order to

analyze the unknown model behavior. This analysis is used to approximate the FDS and consequently to

compute the needed Pareto information for MOP optimization.

. Unveiling Hidden Relationships:
Forest based Association Rule Mining

My KDP starts with the determination of possible causal relations between simulation input parameters

and simulation objectives. The overall idea is to decompose the large high-dimensional input space into

sub-parts and to prove correlation for these parts. Correlating parts are then aggregated back into the

higher dimensional input space. These aggregated information are then used for optimization (see Figure

.).

I assume that every relationship between a parameter C = c0, ..., cm with size k and objective value

O = o0, ..., om with size m can be formally represented as a continuous function f : C,T 7→ O = f(c, t) 7→
oO which maps the parameter space to a given simulation objective O with its objective function space

at a given time step t ∈ T of the simulation. It would be possible to perfectly determine the behavior of

f with respect to C by brute-force sampling the whole parameter with s ≥ k samples. However, in real

world applications k can be arbitrary large or continuous and the simulation evaluation computationally

very expensive. Therefore, a brute-force sampling of the parameter space is infeasible. Consequently, it is

necessary to reduce the amount of needed samples: s ≪ k. Overall, the relationship constitutes a large

three-dimensional cartesian space R3, spanned by C, O and T (see Figure .).

I define a possible causal relation with an existing dataflow inside the simulation denoted as dj{xi, ..., xn}
7→ Oj whereOj is a pre-defined simulation objective which maps the parameters {xi, ..., xn}with a dataflow

dj to a satisfaction value or objective state.

My approach concerns blackbox simulations, thus, no mapping between parameters {x0, ..., xn} and

simulation objectives {Oo...,Oj} as well as explicit forms of {fo, ..., fj} is known in advance. The simplest,

and computationally most expensive, approach would be to brute-force analyze all given parameters for

every simulation objective in order to reveal unknown model behavior.



This would result in a simulation data farming computational complexity of:

O((n2 − n) · s · g) (.)

where

g : number of simulation objectives

s : sampling size of the parameter

n : number of simulation model input parameters

Sophisticated simulations easily inherit hundreds or thousands of input parameters with large parame-

ter spaces. This would result in computationally very expensive brute-force analysis of the complete KDP.

In order to overcome this limitation, I present several ideas to accelerate the computation. I start with

a fast ARM which uncovers the complete dataflow {do, ..., dj} of the simulation by analyzing all dataflow

transactions. Within the simulation, a dataflow transaction di has to exist for making fi possible. If there is

no dataflow, no function could be defined which models this relationship. Consequently, these transactions

can be used to determine the parameter mapping {xi, ..., xn} as well as for identifying fj of fj{xi, ..., xn} 7→
Oj.

The main idea is to use the traditional ARM Apriori [] algorithm with low support and high con-

fidence settings. In order to enable data farming parallelization and pruning of the analyzed workflow,

I transform the original list output of the Apriori algorithm into a disjoint union of tree data structures

called forest.

Following the original definition by [], the problem of ARM is defined as: Let I = ii, i2, ..., in be a set

of n binary attributes called items. Let D = t1, t2, ..., tn be a set of transactions called the database. Each

transaction in D has a unique transaction ID and contains a subset of the items in I. An association rule is

an implication expression of the form X ⇒ Y , where X and Y are disjoint itemsets, i.e., X∩Y = 0. Further,

X, Y ⊆ I.

To illustrate these concepts, I use a small example from the supermarket domain: {butter, bread} ⇒
{milk} meaning that if butter and bread are bought, customers also buy milk.

The strength of an association rule can be measured in terms of its support and confidence. The support

value of X with respect to T is defined as the proportion of transactions in the database which contains the

item-set X given as σ(X) =| {ti | X ⊆ ti, ti ∈ T} |. Confidence, on the other hand, measures the reliability

of the inference made by a rule. Both are mathematically defined as:

Support, s(X ⇒ Y) =
σ(X ∪ Y)

N
(.)

Confidence, c(X ⇒ Y) =
σ(X ∪ Y)
σ(X)

(.)

Apriori [] is an algorithm for frequent item set mining and ARM over transactional databases or

sets. It proceeds by identifying the frequent individual items in the database and extending them to larger

and larger item sets as long as those item sets appear sufficiently often in the database. The output of the

Apriori algorithm is a list of level-k-itemsets: {{X0, ...,Xk} ⇒ Y}s,c.



Algorithm  GenerateForestStructure

: O = list of objective references {X0, ...,Xg}
: L = list of level--itemsets rules: {X} ⇒ Y}
: F = forest root node
: forOi ∈ O do
: M = tree root node with Oi
: Mchilds = GenerateTree(M, L, Oi)
: Ftrees += M
: end for

Algorithm  GenerateTree

: R: read relations of Oi
: R:

∪
X⇒Y∈L

:= {X | ∀Y = Oi}

: forRi ∈R do
: C = child node of M with Ri
: Cchilds = GenerateTreeStructure(C, L, Ri)
: end for
: return M

In this scenario, Iam only interested in direct relations represented as consistent association rules. More

precisely, in level--itemset rules which have high confidence c and low support s as they describe direct

parameter relations [].

Due to the inherent structure of a simulation dataflow, which is constituted by the simulation workflow,

repeating patterns of data access emerge. For instance, a physically-based simulation of Newton’s law will

always modify the position and velocity of certain simulated objects. This physically-based simulation will

update the corresponding objects every time step in the simulation, generating such repeating patterns.

These patterns especially appear when different simulation objectives are related to the same parameters,

namely in MOPs. Consequently, the list-based output of the Apriori algorithm is not suitable for efficiently

analyzing the simulation dataflow as it can not represent these repeating patterns for quick algorithmic

access. These patterns lead to additional effort in the simulation data farming process because they would

be analyzed multiple times.

I present a novel idea based on forest data structures in order to overcome these repeating patterns.

The main idea is to generate for every simulation objective O a tree which denotes the level--itemset

dataflow result of the ARM process for this particular simulation objective. Within these trees, repeating

transactions will manifest as duplicated sub-trees which I effectively prune (see Figure .).

My utilization of the simulation transaction data and forest data structure reduces original computa-

tional complexity from O((n2 − n) · s · g) to O(k · s · g) (where n is the total number of simulation input

parameters and k is the number of related simulation input parameters for g objectives) because it enables

the upcoming data mining step to analyze only a subset of the parameter space with k ≤ n. Each simulation

input parameter of this subset has a confirmed dataflow within the simulation for a simulation objective.

In the next step of my KDP, each of these dataflows is used to analyze whether or not a causal relation is

given.



C

D

E F

A

B

ASSOCIATION
RULE LIST OF

LEVEL-1-ITEMSETS

FOREST GENERATION

A

B

D

E F

𝛼 𝛽 𝛾

𝐴, 𝐵 ⇒ α
𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ⇒ 𝛽

𝐸,𝐷, 𝐹 ⇒ 𝛾
𝐵 ⇒ 𝐴

𝐸, 𝐹 ⇒ 𝐷
𝐷, 𝐴 ⇒ 𝐶

Figure 5.6: Level-1-itemsets are generated by the Apriori algorithm for each simulation objective (example
given in the upper right). The list based Apriori output is transformed into a forest structure which facilitates
efficient simulation data farming. Repeating data access patterns from the simulation workflow result in prun-
able (green & orange) sub-trees of my forest.

High-dimensional input space

(all configuration parameters

and simulation time)

Three-dimensional input spaces

(per configuration parameter,

objective state and simuation time)

Three-dimensional objective function approximation

(per configuration parameter, objective state

and simuation time)
Feasible design space approximation

of simulation model configuration

𝑎𝑖 , … , 𝑎𝑗

𝑏𝑘 , … , 𝑏𝑛

𝑥𝑝, … , 𝑥𝑞

𝑡0, … , 𝑡𝑚

…

𝑎𝑖 , … , 𝑎𝑗

𝑡0, … , 𝑡𝑚

Two-dimensional input space

(per configuration parameter

and objective state)

Simulation

Figure 5.7: The goal of my approach is to accurately approximate the unknown objective functions in order to
formulate a FDS. My approach conducts a dimensionality reduction of the high dimensional input space down
to three-dimensional and two-dimensional representations of the unknown objective functions for precise ap-
proximation. The gained knowledge about the unknown objective functions is then aggregated back to the high
dimensional input space via my B-spline surfaces and FDS approximation.



. Approximating Unknown Objective Functions

In order to determine causal relations between simulation input, simulation model and simulation objec-

tives, my KDP needs to farm simulation data after the data- flow determination of the blackbox simulation.

As stated before, a brute-force analysis would lead to computationally very expensive behavior of the com-

plete KDP.

In this section, I present the next step of my KDP which involves my efficient farming of simulation

data for the given parameter and simulation objective relations (see Figure .). This process is based on

the previously introduced forest based data structure and allows a top-down analysis (see Algorithm ).

In the following, I present the required algorithms and concepts to discover these causal relations as

well as to minimize the sampling rate of the parameter space without losing objective value information.

First, I introduce a B-spline surface based approximation of the unknown objective function and second, I

describe my recursive correlation analysis (RCA) in section ...

Algorithm  Approximation the unknown objective functions based on the forest data structure
forestBasedAnalysis(T association rule tree, ϵ minium correlation coefficient)

: for each tree T ∈ F do
: for each node N ∈ T do
: Sobjective = basisSplineSurfaceApprox(N , Tobjective)
: Sparent = basisSplineSurfaceApprox(N , Nparent)
: Cobjective = recursiveCorrelationAnalysis(Sobjective)
: Cparent = recursiveCorrelationAnalysis(Sparent)
: if Cparent < ϵ or Cobjective < ϵ then
: Remove all subgraphs of N in F
: end if

: end for
: end for

.. Relationship Definition

As stated previously, I assume that every relationship between a parameter C = c0, ..., ck with size k

and objective value O = o0, ..., om with size m can be formally represented as a continuous function

f : C,T 7→ O = f(c, t) 7→ oO which maps the parameter space to a given simulation objective O with

its objective function space at a given time step t ∈ T of the simulation. It would be possible to perfectly

determine the behavior of f with respect to C by brute-force sampling the whole parameter with s ≥ k

samples. However, in real world applications k can be arbitrary large or continuous and the simulation

evaluation computationally very expensive. Therefore, a brute-force sampling of the parameter space is

infeasible. Consequently, it is necessary to reduce the amount of needed samples: s ≪ k. Overall, the

relationship constitutes a large three-dimensional cartesian space R3 (spanned by C, O and T), which I de-

note as relationship space (see Figure .). In order to overcome the challenge of minimizing the number

of required samples while precisely approximating the objective function, I propose an approach based on

splines.



A spline is a function that is piecewise defined by low-degree polynomials. Splines are often preferred

in interpolation problems over higher-degree polynomial interpolation approaches because spline inter-

polation avoids the problem of Runge’s phenomenon, i.e. oscillations that occur in interpolations between

points when using high degree polynomials. Furthermore, even splines based on cubic polynomials can ac-

curately approximate a given non-linear function. In addition, only a few samples are required to precisely

define a spline [].

The general idea of cubic splines is to represent a function by a different cubic function on each interval

between data points. For n data points, the spline S(x) is the function

S(x) =


F1(x), x0 ≤ x ≤ x1
Fi(x), xi−1 ≤ x ≤ xi
Fn(x), xn−1 ≤ x ≤ xn

(.)

where each Fi is a cubic function.
The most general cubic function has the form

Fi(x) = ai + bix+ cix2 + dix3 (.)

In sophisticated simulations, the same simulation model (parameter) configuration will contribute

to different objective values at different time steps in the simulation (e.g. a fuel state/configuration

in a car simulation which changes over time). Because of configurations like this, I prefer to define a

spline of the objective function for each simulation time step individually. This results in a list of splines:

Sto(C), ..., Stn(C) = Ot0 , ...,Otn for n simulation time steps with:

Sti(C) = Oti (.)

where

ti : simulation time

C : complete parameter space based on the dataflow analysis

O : objective values of the corresponding objective function

I use these splines to formulate a cubic B-spline surface:

C(u) =
n∑

i=0

piNi,3(u), 0 ≤ u ≤ 1 (.)

s(u, v) =
m∑
i=0

n∑
j=0

PijNi,3(u)Nj,3(v), 0 ≤ u, v ≤ 1 (.)

where Pij(i = 0, 1, ...,m; j = 0, 1, ..., n) are the control points of the surface which are determined by
Sto(C), ..., Stn(C)=Ot0 , ...,Otn via a uniform coverage of the splines. u, v are the knot vectors in the direction

of u or v and Ni,3(u),Nj,3(v) is the B-spline basis (see Figure .).

This B-spline approximation (see Figure .) replaces the unknown objective function f : C,T 7→ O =

f(c, t) 7→ oO = s(c, t) 7→ oO and is efficiently used to define the required gradient information for opti-

mization purposes (see Section . and Chapter ).



Control points B-Spline surface approximation

of objective function

Unknown objective

function

Parameter 𝑪𝟐

Parameter 𝑪𝟏

Objective O

𝑠 𝑢, 𝑣 =

𝑖=0

𝑚

𝑗=0

𝑛

𝑃𝑖𝑗𝑁𝑖,3 𝑢 𝑁𝑗,3 𝑣 0 ≤ 𝑢, 𝑣 ≤ 1

Figure 5.8: B-Spline surface representation of the three-dimensional space constructed by two simulation input
parameters C1,C2 and objective O. One of the main goals of my approach is to compute the required control
points as close as possible to the unknown (in most cases stochastic) objective functions. Usually, a cubic B-
Spline surface is used because my evaluations for virtual testbeds have shown that from this surface representa-
tion smooth gradients for optimization purposes can be efficiently derived.

.. Density Splines

In order to enable a precise B-spline surface approximation of the relationship space, the splines which

define s(u, v) must be very close to the unknown objective function. However, as stated above, stochastic

simulations are governed by diverse noise behavior which makes it hard to approximate these unknown

objective functions. Therefore, I define every spline sampling point (c, o) via a density clustering from

n simulation samples. This density clustering detects noise outliers and therefore enables my splines to

approximate the unknown objective function more precisely.

In order to incorporate this density clustering for the unknown noise distribution of the objective func-

tion, I extend the general spline definition (see Equation .). Every spline is defined with a triple, consist-

ing of the cubic function Fi, variance of the computed density cluster θ and certainty of measurement p. In

detail, every Fi is constructed with the centre point of the most dense cluster of every simulation sample

set per sampling configuration of the simulation. In order to incorporate the simulation noise behavior,

every centre point is associated with the variance θ of the corresponding cluster.

My spline definition will interpolate some of the objective values due to the gradient-based sampling of

the parameter space (see Section ..) because I sample only a small subset of the parameter space. This

means that, by definition, some approximated objective values are more likely precise (based on simulation

samples) than others (based on the spline interpolation). Therefore, p indicates whether or not the result-

ing approximated objective value is interpolated resp. close (in parameter space) to a drawn simulation

sample.

The sampled objective values are clustered with the density based spatial clustering of applications with

noise (DBScan) data clustering algorithm [] (see Figure .). DBScan has several advantages with re-

spect to other clustering approaches (such as [, , ]) because

• it does not require a specification on the expected cluster amount,

• it can find arbitarily shaped clusters,

• it has a notion of noise which makes it robust to outliers.



This density clustering is important because it enables a more accurate approximation of the unknown

objective function via its detection of noise outliers. Therefore, just averagingψ is insufficient. Even more,

the computed DBScan clusters can be used to retrieve the standard deviation and variance of the measure-

ment. I further utilize this information in my optimization process in order to investigate arbitrary MOPs

from different optimization perspectives (see Section .).

Therefore, for n sampling points, the spline Sti(c) is the function:

Sti(c) =


(F1(c),Θ(ψ), p(c, θ)), c0 ≤ c ≤ c1
(Fi(c),Θ(ψ), p(c, θ)), ci−1 ≤ c ≤ ci
(Fn(c),Θ(ψ), p(c, θ)), cn−1 ≤ c ≤ cn

(.)

where

Θ(ψ) : variance 1
k−1 ·

k∑
i=0

(oi − ō)2

p(c, θ) : certainty of measurement:  if c ∈ θ,  otherwise

Ω : DBScan core cluster of ψ

ψ : n samples of c {(c, oi), ..., (c, on)} with c ∈ θ
θ : sampling configurations

Fi(x) : cubic function based on θ: ai + bix+ cix2 + dix3

cj : closest previous sample point ∈ θ to c

When using my proposed density clustering, two scenarios can occur which I cover with a heuristic (see

Figure .). In the first case, DBScan determines one core cluster and, clearly distinguished, two noise

groups. Here, I use the one core cluster for computing Sti(c). In the other case, DBScan determines three

core clusters because the noise distributes very densely around the unknown objective function. In this

case, I use the middle cluster for computing Sti(c).

x
y

z

Figure 5.9: Illustration of the DBScan algorithm: a data point is inside a dense region (core point, x), on the
edge of the region (boundary point, y) or in a spare region (noise point, z). The example is given for at least
six neighbours. Adopted from [118].

.. Gradient Sampling

The main idea of my gradient-based simulation data sampling is to minimize the amount of samples s (see

Section ..) which are required approximate the original behavior of f. In order to do so, I iteratively

approximate the unknown objective function f with my spline definition for a certain simulation time t.

This spline is iteratively updated with more sampled data until the spline approximates f within a specified

error degree.



O
b
je

c
ti
v
e

Parameter

Unknown objective function

Sample from simulation

O
b

je
c
ti
v
e

Parameter

a)

O
b
je

c
ti
v
e

Parameter

O
b
je

c
ti
v
e

Parameter

b)

Detected cluster

Detected noise

Detected centroid

Figure 5.10: Two scenarios occur when applying DBScan for approximating an unknown objective function
(dotted line): either it directly determines a close core cluster (a) or it determines several clusters (b). In both
cases, I apply a heuristic for finding the appropriate DBScan core cluster. This heuristic either chooses the mid-
dle cluster if three clusters are formed or the mean value if only one cluster is found.

Parameter C

O
b

je
ct

iv
e

O

Unknown objective function

Noise behavior

Approximated noise behavior

Noise outliers

Core points

Centre point

Figure 5.11: Approximating an unknown objective function with my density spline: Noise outliers are detected
and the cluster centre point is used to construct the spline. Subsequently, the variance Θ of the clustering is
propagated through the spline. This variance approximates the noise behavior of the unknown objective func-
tion.

In order to implement above concept, I utilize a property of spline-based interpolation. When interpo-

lating with splines, the spline can change drastically when updated with new sample points at interpolated

gradient minima and maxima. This is due to the fact that splines ensure that the first and second deriva-

tive of the spline will match at the knot points. Therefore, it is desirable to determine the spline gradient

while approximating the unknown objective function in order to find large spline gradient changes. These

gradient changes are used to draw a new sample from the parameter space which will more likely change

the adjacent spline knots and therefore reduce the amount of required samples due to the aforementioned

inherent behavior of spline interpolation (see Algorithms , and Figure .).



Algorithm  Objective function approximation
via density splines splineApprox(amount of sam-
ples N , parameter C with space K, spline error
threshold ϵ, simulation time T)

: D = c0, c k
2
, ck ∈ C, sampling configurations

: F = simulation results of D with N samples
: K = Dbscan clusters of F
: S = spline based on D,K
: R = amount of remaining samples: k− 3
: E = empty list of rejections
: while R >  and E < ϵrejections do
: C = gradientConfiguration(S ,D)
: D += C

: O = empty list of simulation results
: for N samples do
: O += simulation result of C at T
: end for
: Pspline = S(C)
: A = largest Dbscan cluster of O
: Psim = centre of A
: PΘ = variance of A
: Pp = 
: if | Psim - Pspline |< ϵdeviation then
: E += ⌈
: end if
: S = rebuild spline based on D,O
: R = R - 
: end while
: return S

Algorithm  Sampling of the parameter space
based on gradient information: gradientConfigu-
ration(current spline definitionS , sampled config-
uration D)

: C = return configuration
: T = maximum threshold: 
: for D1,D2,∈ D do
: ∇D1 = K̇(D1)
: ∇D2 = K̇(D2)
: if |∇D1 −∇D2| > T then
: C = d1+d2

2
: T = |∇D1 −∇D2 |
: end if

: end for
: return C

After successfully approximating the unknown objective function, I combine the variances of all clusters

for each spline in order to gain an accurate approximation for the noise distribution of the relationships.

Given two clusters, C1 and C2, with their respective mean and variance of their largest cluster, X̄1, X̄2 and

S12, S12 with n1, n2 observations, I compute the combined variance (see Equation .). I iteratively apply

this formula on all clusters of each spline and retrieve the overall variance of the spline approximation.

Sc2 =
n1S12 + n2S22 + n1(X̄1 − X̄c)

2 + n2(X̄2 − X̄c)
2

n1 + n2

=
n1[S12 + (X̄1 − X̄c)

2] + n2[S22 + (X̄2 − X̄c)
2]

n1 + n2

(.)

where
Xc

2 =
n1X̄1 + n2X̄2

n1 + n2
(.)



Parameter C

O
b

je
c
ti

v
e

O
Unknown objective function

Intermediate spline approximation

Spline uncertainty

Current sampling points

Next sampling point choices

Figure 5.12: Spline approximation of an unknown objective function f: The spline is iteratively updated until
it approximates the unknown objective function within a certain error degree. The spline uncertainty p is prop-
agated through the spline. This uncertainty (with respect to unseen simulation behavior for the configurations)
defines those spline segments which have been inter- or extrapolated.

Control points B-Spline surface approximation

of objective function

Unknown objective

function

Parameter 𝑪𝟐

Parameter 𝑪𝟏

Objective O 2D spline with correlation

Correlation segments

O
b
je

c
ti
v
e

s
p

a
c
e

Parameter space

Approximation

Unknown objective function in 2D

Figure 5.13: Checking the B-Spline surface as a whole for (partial) correlations is computationally complex.
Therefore, I divide the surface into individual splines (blue line) and check for correlation for each spline. This
check is performed efficiently in parallel across splines and the results are merged.



.. Recursive Correlation Analysis

After constructing the B-spline surface approximation of the objective function f output o = {oo, ..., on}
for a given parameter space c = {co, ..., cn}, the next step is to determine whether or not a causal relation

is present between c and o. This correlation analysis is required because the B-spline surface itself does not

contain any correlation or causality information and can therefore approximate any given signal.

Due to the fundamental property of self-containment of a simulation, confounding variables can be

neglect at this step because they would also be part of the workflow which would be uncovered by my

ARM approach (see Section .). Therefore, correlation alone can be used to determine the causal relation

between c and o. In order to do so, I split the B-spline surface into several cubic spline representations si
for each simulation time step ti. I approximate every si with segments which prove correlation, based on

my RCA: if the complete cubic spline si can be represented with such segments, I assume correlation and

therefore causality between c and o. This approach has the major advantage that I can check for correlation

in parallel for every simulation step (see Figure .).

Correlations between variables can be measured with the use of different indices (coefficients), such as

the Pearson product correlation coefficient r []. It measures the linear correlation between two vari-

ables X and Y, giving a value between + and -. + describes total positive correlation, zero no correlation

and - total negative correlation.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ·

√∑n
i=1(yi − ȳ)2

(.)

where

n : number of elements in X resp. Y

x,y : elements of X and Y

x̄, ȳ : sample mean x̄ = 1
n

∑n
i=1 xi (analogously for ȳ)

However, non-linear objective functions (e.g. polynomials with degree ≥ ) can not be correctly mod-

elled with r. I therefore propose to recursively compute the Pearson coefficient with my RCA approach: if

the signal can not be described with r, I recursively split the signal in the middle and analyze the remaining

signals. The causal relation is proven when the complete signal can be described with {rk}, where k is the

number of coefficients. Algorithm  and Figure . illustrate this concept:

Algorithm  RecursiveCorrelationAnalysis(S spline)

: C empty correlation segments
: rxy = pearson coefficient of S[,n]
: if |rxy|>= rthreshold then
: C += S[,n]
: else
: C += recursiveCorrelationAnalysis(S[,n2])
: C += recursiveCorrelationAnalysis(S[n2 ,n])
: end if
: return C



Parameter configurat ionS
am
p
li
n
g
va
lu
e
vi
a
si
m
u
la
ti
on

x0

xk
2

xk

xk

sample points

cubic spl ine approximat ion

init ial spl ine

correlat ion segments

Figure 5.14: Result of the RCA: Segments which prove correlation are computed for the spline representation
of the objective function.

Figures . and . illustrate the intermediate results from our KDP for a simple MOP based on four

variables x0, x1, x2, x3 and noise N:

o0 = x0 ∗ sin(x0)− 5 ∗ x1 + N

o1 = x23 +−x22 − 10 ∗ cos(x0) + N
(.)

In this example, three out of the four parameters have a direct influence on o0 and/or o1 The goal of my

KDP in these scenarios is to approximate the relationships of x0, x1, x2, x3 and o0, o1, as described in the

previous sections. The figures show the individual relationships of x0, x1, x2, x3, the combined relationships

of x0, x1, x2, x3 and the resulting B-spline surfaces with the approximated feasible solutions per parameter

xi. These B-spline surfaces are then used for MOO (see Section ).

0 5 10 15 20
x0

35

30

25

20

15

10

5

0

5

10

o
0

x0 : o0

0 5 10 15 20
x0

10

15

20

25

30

35

40

o
1

x0 : o1

2 4 6 8 10 12 14 16
x1

80

70

60

50

40

30

20

10

0

o
0

x1 : o0

0 1 2 3 4 5 6 7 8 9
x2

5

0

5

10

15

20

25

30

35

o
1

x2 : o1

5 6 7 8 9 10 11 12 13
x3

20

40

60

80

100

120

140

160

180

o
1

x3 : o1

Figure 5.15: Two-dimensional approximation (straight blue line) of one parameter and one objective, the con-
fidence interval is given by the red dotted lines.



x1

246810121416x0

0 5 10 15 20

100

80

60

40

20

0

20

x1-x0 : o0

x1

10

0

10

20

30
x0

10

0

10

20

30

40

80

60

40

20

0

x1-x0 : o0 analysis

x2

012345678x0

0
5

10
15

20

10

5

0

5

10

15

20

25

30

35

x2-x0 : o1

x2

5

0

5

10

15

x0
010203040 5051015202530

x2-x0 : o1 analysis

x3
5 6 7 8 9 10 11

x0 05101520
0

20

40

60

80

100

120

140

x3-x0 : o1

x3

5
0

5
10

15
20

25
x0

10

0

10

20

30

40

20
40
60
80
100

120

x3-x0 : o1 analysis

Figure 5.16: (Left) Combining the two-dimensional intermediate results from 5.15 for every parameter config-
uration lead to three-dimensional approximations. The computed variance of the approximation from my GDS
approach is colored coded. (Right) The B-spline surfaces of the rough approximations from the left smooth the
approximation and are used to compute feasible solutions (projected red area).



Objective 1

O
b

je
c
ti
v
e

2

0 0 0

a) b) c)

Objective 1

O
b

je
c
ti
v
e

2

Objective 1

O
b

je
c
ti
v
e

2

Figure 5.17: Illustration of Pareto optimal solutions: concave (a), convex (b) or interrupted Pareto fronts (c)
can occur. My approach efficiently approximates all possible frontiers.

. Multiobjective Optimization

As previously outlined simulation models are dominated today by a MOP. Within simulation based MOPs,

engineers are interested in several different optimal solutions, e.g. which are reliable in many scenarios

or which maximize the objective function for certain aspects. Therefore, my approach enables a Pareto so-

lution of a MOP with three different optimization strategies which determine different FDSs while main-

taining Pareto efficiency:

• Compliance strategy: Determination of the parameter space which maximizes or minimizes the ob-

jective function.

• Reliability strategy: Determination of the parameter space which maximizes the sampling probabil-

ity.

• Closeness strategy: Determination of the parameter space which minimizes the clustering variance.

Due to my relationship definition, I can substitute the unknown objective functions fj(x), j = 1, ..., p

from Equation . with my B-spline surface approximation:
(MOP)max

x∈X
F(x) = (f1(x), f2(x), ..., fp(x))

⇔

(MOP) max
c,t∈C,T

F(c, t) = (s1(c, t), s2(c, t), ..., sp(c, t))

(.)

My strategies determines a different FDS within above definition, namely a sub-set

{{ci, ..., cj}, ..., {cn, ..., cm}} = CStrategy ⊆ {co, ..., ck} = Ck with 0 ≤ i, i < j, n < m, j < n,m ≤ k. In

detail, the compliance strategy (see Equation .) maximizes objective function above a given minimum

threshold, m, ∀t ∈ T where T are all objective thresholds. In contrast to this, the reliability strategy (see

Equation .) and closeness strategy (see Equation .) either maximize the probability p or minimize

the variance Θ of each measurement. Depending on the strategy, different sub-sets are determined. Each

sub-set is transformed into a FDS approximation ω, depending on the MOO constraints of the specific

configuration parameter, namely the set of objective functions which are influenced by the parameter.



Ccompliance = {ci|∀sq(ci,T).F ≥ m} (.)

(ci, pi) = (ci,

q=k∑
q=0

t∑
n=0

sq(ci, tn).pi

k
)

Creliability = maxp{(o0, p0), ..., (ok, pk)}

(.)

(ci,Θi) = (ci,

q=k∑
q=0

t∑
n=0

sq(ci, tn).Θi

k
)

Ccloseness = minΘ{(o0,Θ0), ..., (ok,Θk}

(.)

ωi(c, t) =
p=k∑
p=0

Θp · |
o
n
− sp(c, t) ·

o∑q=k
q=0 |tq − sq(c, t)|

| (.)

where

0 ≤ o ≤ 1 : weighting factor

k : the number of related objective functions of i

t : the objective threshold

Θ : the Pareto weighting factor

c : configuration from corresponding strategy

Based on ωi(c, t) I can substitute every si(c, t). Finally, I aggregated every information from my KDP

into my FDS approximation:

(MOP)max
x∈X

F(x) = (f1(x), f2(x), ..., fp(x))

⇔

(MOP) max
c,t∈C,T

F(c, t) = (s1(c, t), s2(c, t), ..., sp(c, t))

⇔

(MOP) max
c,t∈C,T

F(c, t) = (ω1(c, t), ω2(c, t), ..., ωk(c, t))

(.)

Consequently, my approach is able to find either a qualitative solution (see Equation .), a reliable

solution (see Equation .) or the most dense solution (see Equation .) that can be directly used in

order to investigate the MOP from different perspectives.

The Pareto gradient ∇ω is defined with unit vectors i, j, k which span the FDS:

∇ωpareto =
∂ω

∂c
i+

∂ω

∂t
j+

∂ω

∂o
k (.)

Figure . illustrates this concept for the compliance strategy in a simple two-dimensional example.

This approach works for convex, concave and non-continuous Pareto fronts (see Figure .).



ca cb cc cd
Parameter C

O
bj

ec
ti

ve
O

α

β

Figure 5.18: Approximation of the FDS for a parameter space, simulation objectives (α, β) and given min-
imum objective value (dotted line): (ca, cb), (cc, cd) determines the feasible parameter configurations with
Θα = Θβ = 1.

. Use Case Studies

I present two diverse use case studies from the fields of engineering and biology to illustrate the broad

range of applications of my presented approach. First, I optimize a interplanetary cruise flight trajectory

of a spacecraft based on Kepler’s orbital mechanics Second, I optimize a prey-predator system using the

non-linear differential Lotka-Volterra equations []. These equations are frequently used to describe the

dynamics of biological systems in which to species interact, one as a predator and the other as prey. In both

use cases, the model behavior is unknown to my KDP. Known to my approach are only the available input

parameters as well as simulation objective measurements. The goal in both use cases is to approximate the

unknown objective functions in order to compute a optimal simulation model input configuration.

.. Spaceflight Orbit Optimization

Scenario

Spaceflight navigation solutions, especially autonomous interplanetary cruise flights, usually use optical

measurements of reference bodies (e.g. Sun, Earth, Mars, Jupiter) to estimate their position []. On-

board optical systems take pictures of these reference bodies with respect to stars with known celestial

locations. These images are used to compute the angular position of a spacecraft with respect to the ref-

erence bodies. These measurements are essential as spacecraft self-localization is required throughout the

complete mission []. Consequently, spacecraft trajectory calculation to target destinations has to con-

sider possible reference bodies.

The main idea of this use case is to compute a cruise orbit for a interplanetary cruise flight to a target

body in such a way that optical measurements to two reference bodies are guaranteed in order to ensure

that spacecraft self-localization is possible.

Methodology

In celestial mechanics, Kepler’s orbital elements can be used to uniquely identify a specific orbit in space.

A Keplerian orbit is an idealized, mathematical approximation of an orbit for a particular time span.



Each Kepler orbit is defined with six elements (see Figure .), namely eccentricity e, inclination i,

semimajor axis a, longitude of ascending node Ω, argument of periapsis ω and mean anomaly at epoch M.

Solving Keplers equation for a given orbit defines the cartesian position r⃗ of the orbiting body (see

Equation .).

M = E− e · sin(E) (.)

where

M : mean anomaly

E : eccentric anomaly

e : eccentricity

Solving Keplers equation can be done with an appropriate method numerically, e.g. with Newton-

Raphson:

En = En−1 −
En−1 − e · sin(En−1)−M

1 − e · cos(En−1)
(.)

Using mean and eccentric anomaly, the orbiting body position, r⃗, is defined by the support vectors P⃗, Q⃗:

P⃗ =


cos(ω) · cos(Ω)− sin(ω) · sin(Ω) · cos(i)
cos(ω) · cos(Ω) + sin(ω) · cos(Ω) · cos(i)
sin(ω) · sin(i)

(.)

Q⃗ =


−sin(ω) · cos(Ω)− cos(ω) · sin(Ω) · cos(i)
−sin(ω) · sin(Ω) + cos(ω) · cos(Ω) · cos(i)
cos(ω) · sin(i)

(.)

r⃗ = a · (P⃗ · (cos(E)− e) +
√

1 − e2 · Q⃗ · sin(E)) (.)

The two target celestial bodies for navigation purposes and the spacecraft are represented by their Kep-

lerian orbits around the Sun

k1 = {ek1, ak1, ik1, ωk1,Ωk1,Mk1}, k2 = {ek2, ak2, ik2, ωk2,Ωk2,Mk2},

ksc = {eksc, aksc, iksc, ωksc,Ωksc,Mksc}.

The required field of view of the sensor measurements are represented by

cosα =
(⃗rtarget − r⃗sc) · p⃗

| (⃗rtarget − r⃗sc) | · | p⃗ |
≤ t (.)

where

p⃗ : the aligned payload vector

t : the allowed angle of the payload field of view

r⃗sc : the spacecraft position

⃗rtarget : the target position

The aim of my KDP is to approximate the impact of different Keplerian orbit configurations for p⃗, r⃗sc and

⃗rtarget with the aim of maximizing the cruise flight period in which cosα ≥ t.



Reference plane

Satellite

Perihelion

Reference direction

Ascending node

𝑖

Ω

𝜔

Reference body

Orbit

Figure 5.19: Illustration of the six Keplerian orbital elements. that uniquely describe a orbit of an celestial
object based on Keplerian movement.

.. Lotka-Volterra Optimization

Scenario

The prey-predator system is a widely used simulation model of biological systems in which two species

interact with each other. It consists of a dynamical non-linear system modeled by two differential equa-

tions, known as the Lotka-Volterra equations []. The equations model the evolution of two populations

evolving in a common environment: prey and predators. Predators need to consume prey to survive, and

prey spontaneously reproduce.

Due to the non-linear behavior of the Lotka-Volterra equations and further constraints (e.g. environ-

mental conditions as the seasons which affect birth and death rate of the species) which can be added to

the model, determining suitable input for observed real world ecosystem data is a challenging problem

[]. Therefore, the main idea of this use case is to determine a suitable input parameter set for the

Lotka-Volterra equations in order to achieve a steady state between prey and predators for a given time

span.

Methodology

The Lotka-Volterra model involves fmy parameters:

α : prey reproduction rate

β : prey death rate due to predators

δ : predators death rate in absence of prey

γ : predators reproduction rate according to consumed prey

The population evolution is given by these two differential equations:

dx(t)
dt

= x(t)(α− βy(t)) (.)

dy(t)
dt

= −y(t)(δ − γx(t)) (.)

where x(t) is the prey population at time t and y(t) is the predator population at time t (see Figure .).

The aim of my KDP is to approximate the impact of different α, β, δ, γ configurations for stabilizing the

population of prey and predators at a static level.



P
o

p
u

la
t
io

n
Time

Lotka Volterra prey predator oscillation

Prey Predator

Figure 5.20: Illustration of the Lotka-Volterra equations: periodic oscillation between prey and predators oc-
cur.

. Results

I implemented my KDP approach in C++. I performed experiments on a machine with an Intel Core i -

core processor (. GHz) with enabled Hyperthreading, using the Microsoft Visual C++  compiler with

all optimizations, operated by Windows   bit and GB of RAM

I applied different experiments to measure the performance as well as the quality of my approach. For

the quality measurement, I used the use case scenarios described above. Both use case simulations were

used to evaluate whether the computed Pareto gradient information are suitable or not for converging

towards the Pareto front.

However, both scenarios are relatively small and can be hardly used to evaluate the performance of my

approach. Hence, I additionally implemented a synthetic benchmark for performance measurements. I

included three standard optimization algorithms: gradient descent, simulated annealing and evolution-

ary algorithms. The synthetic benchmark is based on blackbox simulations. I generated random objective

functions for arbitrary simulation input parameters with mixed polynomials up to degree ten. These ob-

jective functions are further linked arbitrary times together with various simulation input parameters in

order to generate multiobjective constraints.

Such MOPs do not have a single, accepted measure for solution quality [], in contrast to single objec-

tive optimizations that have single global optimum, it is more complicated to measure the quality of any

solution produced by a optimization algorithm.

I use the GD (Generational Distance) measurement [] that provides an estimation of the distance of

the current solution to the Pareto front. In other words, GD = 0 indicates that all solutions are placed on

the Pareto front. I first compute the minimum Euclidean distance δi, i = 1, 2, ..., np of each solution where

np is the number of solutions found. The Generational Distance is then defined as:

GD =

√∑np
i=1 δi

2

np
(.)

Figure .a shows the mean average computation time for the implemented ARM approach in my

synthetic benchmark. My approach generates level--itemsets for more than . simulation input

parameters in less than a second (see Figure .a). Moreover, my approach is able to generate my forest

data structure of up to  simulation objectives for these . parameters in less than  milliseconds

(see Figure .b). Consequently, my approach is able to analyze large scale simulations very effectively.



0

100

200

300

400

500

600

700

800

900

1000 2000 3000 400 5000 6000 7000 8000 9000 10000

C
o

m
p

u
t
a

t
io

n
gt

im
e

g[
m

s
]

Amountgofgparameters

AssociatationgRulegMininggprocess

5.21a: My customized Association Rule Mining ap-
proach is able to analyze several thousands of pa-
rameters for generating level-1-itemsets in less than a
second.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
t
a

t
i
o

n

t
i
m

e

[
m

s
]

Amount of goals

Forest generation

5.21b: My forest generation algorithm is able to
generate the corresponding tree structures for each
objective in less than 100 milliseconds for more than
100 objectives.

All three optimization algorithms I tested directly benefit from my Pareto information. Here, I compared

how close the algorithms optimize towards the Pareto front when using my provided Pareto gradient infor-

mation or not. When using the provided Pareto gradient information from my approach, the algorithms

find solutions closer to the Pareto front by up to  for gradient descent,  for simulated annealing

and  for a evolutionary approach (see Figure .).

1

10

100

1000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

D
ist

an
ce

hto
hP

ar
et

oh
Fr

on
th[

G
D

]

Amounthofhconflictinghgoals

Performancehcomparisonhofhoptimizationhalgorithms

GradienthDescent
SimulatedhAnnealing
EvolutionaryhAlgorithm
GradienthDescenthwithhKDDhinformation
SimulatedhAnnlealinghwithhKDDhinformation

Figure 5.22: My Pareto information directly benefit gradient descent, simulated annealing and evolutionary
approaches and deliver results closer to the Pareto front.



P
o

p
u

la
ti

o
n

Time

Lotka Volterra steady state optimiation

Prey Predator Predator solution Prey solution

5.23a: Evaluation of the Lotka-Volterra use case
study: my approach is able to compute a Pareto so-
lution in order to achieve a steady state in the popu-
lation.

O
b

s
e

r
v
a

t
io

n
 [

°
]

Time

Spaceflight orbit optimization

K1 inital setup K2 initial setup Min threshold

K1 solution K2 solution

5.23b: Evaluation of the spacecraft flight use case
study: my approach is able to compute a Pareto so-
lution in order to achieve the desired observation
orbit.

Surprisingly, evolutionary algorithms benefit most from my Pareto information. I believe, that with

an increasing number of conflicting objectives, even my Pareto space inherits many local minima, which

adversely affect gradient descent and simulated annealing.

I used my use case scenarios to measure the quality of my approach. In the prey predator system, my

approach was successfully able to compute a suitable input parameter set in order to achieve a steady sim-

ulation state. Figure .a shows initial and the optimized model behavior. In my space flight scenario,

my approach obtained an optimized flight orbit of the spacecraft with respect to the needed sensor mea-

surements (see Figure .b). In both use case studies, my approach computed suitable solutions based

on my Pareto space and it achieved the desired simulation objective state.

I applied different experiments to measure the performance and quality of my B-spline approach within

several synthetic benchmark scenarios. These synthetic benchmarks are based on generated blackbox sim-

ulations. Consequently, the objective functions of the simulation are unknown to all evaluated algorithms.

The synthetic benchmarks compared the performance of my GDS algorithm to the approximation approach

from [] and different clustering (DBScan, k-means) and sampling approaches (uniform, random, gra-

dient). In order to perform this evaluation, I generated two different types of random objective functions

based on polynomials (fp) and Gaussian functions (fg).

Furthermore, I added noise terms (N) for ten different noise distributions in order to obtain a stochastic

simulation behavior. a, b, c, p, q are the known scalar values for each corresponding function:

fp(c, t) =
n∑

i=0

ai(c− p)i +
m∑
j=0

bj(t− q)j + N (.)

fg(c, t) =
n∑

i=0

aie
− (c−bi)

2

2c2i +
m∑
j=0

bje
(t−bj)

2

2c2j + N (.)



0

5

10

15

20

25

30

35

U
n

i
f
o

r
m

/

N

o
c
l
u

s
t
e

r
i
n

g

U
n

i
f
o

r
m

/

D

b
S
c
a

n

U
n

i
f
o

r
m

/

K

-
M

e
a

n
s

R
a

n
d

o
m

/

N

o
c
l
u

s
t
e

r
i
n

g

R
a

n
d

o
m

/

D

b
S

c
a

n

R
a

n
d

o
m

/

K

-
M

e
a

n
s

G
r
a

d
i
e

n
t

/

N

o
c
l
u

s
t
e

r
i
n

g

G
r
a

d
i
e

n
t

/

D

b
s
c
a

n

G
r
a

d
i
e

n
t

/

K

-
M

e
a

n
s

%

Approximation error

5.24a: My approach (Gradient/Dbscan) approxi-
mates unknown objective functions with less error
and smaller error variance than its’ competitors.

0

5

10

15

20

25

30

5 10 15 20 25 30 35

A
p

p
r
o

x
im

a
t
io

n
he

r
r
o

r
h[

%
]

Noisehvariancehofhobjectivehfunction[%]

Noisehvariancehinfluence

Non-clusteringhapproach

Clusteringhapproach

5.24b: Clustering based approaches do not suffer as
much as non-clustering approach from the objective
function noise behavior.

Based on above equations, I have evaluated my approach with more than  different versions of fp
and fg in order to obtain a profound evaluation. These synthetic benchmarks have been supplemented by a

qualitative evaluation in order to evaluate whether or not my B-spline surfaces can be used for optimization

purposes.

I compared the mean approximation error for approximating an unknown polynomial objective function

with a  noise variance (see Figure .a) and a relationship space of .. My GDS approach is able to

outperform all its competitors up to a factor of four. This performance boost also increases with the noise

variance of the unknown object function (see Figure .b). This evaluation shows that the non-clustering

approaches perform worse than any clustering-based approach.

Even more, the error variance of my GDS approach is the smallest, especially when comparing to the

uniform sampling approach without clustering [] as well as for the random sampling. Therefore, it

can be observed that a clustering is inevitable in order to approximate the unknown objective function

accurately. In addition to the mean error evaluation, Figure .b shows the mean average approximation

error for an increasing noise behavior of the unknown objective function. It can be clearly observed that

the clustering approaches adapt very well to an increased noise behavior of the unknown objective function

while all other approaches clearly decrease in their performance.

Furthermore, all non-clustering based approaches need more samples than the clustering based com-

petitors, when comparing their performance for the same required approximation error threshold (see

Figure .a). In this context, Figure .b shows the impact of the sampling amount with respect to the

clustering analysis. It can be observed that only a few samples (≤ ) per simulation configuration are

required in order to precisely (≤ ) approximate the given unknown polynomial objective function.

Overall, these evaluations strongly emphasize the quality improvement of my GDS approach with re-

spect to its competitors. Furthermore, Figure . depicts the relationship between polynomial degree of

the objective function and the GDS mean error of the objective function approximation. Surprisingly, my

GDS approach is almost not affected by the polynomial degree of the objective function.



0
10
20
30
40
50
60
70
80

U
n

i
f
o

r
m

/

N

o
c
l
u

s
t
e

r
i
n

g

U
n

i
f
o

r
m

/

D

b
S

c
a

n

U
n

i
f
o

r
m

/

K

-
M

e
a

n
s

R
a

n
d

o
m

/

N

o
c
l
u

s
t
e

r
i
n

g

R
a

n
d

o
m

/

D

b
S

c
a

n

R
a

n
d

o
m

/

K

-
M

e
a

n
s

G
r
a

d
i
e

n
t

/

N

o
c
l
u

s
t
e

r
i
n

g

G
r
a

d
i
e

n
t

/

D

b
s
c
a

n

G
r
a

d
i
e

n
t

/

K

-
M

e
a

n
s

%

Sampling rate

5.25a: My approach (gradient/Dbscan) requires less
samples than its non-clustering based competitors. It
further delivers both, best sampling variance and best
approximation error.

0

2

4

6

8

10

12

14

16

18

5 10 15 20 25 30

A
p

p
r
o

x
im

a
t
io

n
qe

r
r
o

r
q[

%
]

AmountqofqsamplesqforqDbscan

RequiredqDbscanqsamples

5.25b: Only a few samples (≤ 12) are required in
order to efficiently (≤ 10 % error) approximate the
noise distribution of the synthetic unknown objective
functions.

Therefore, even complex objective functions can be precisely approximated by my GDS approach. For

deterministic simulations, all presented approaches perform very similar and obtain approximation errors

less than  for arbitrary polynomial objective functions.

In summary, the following tables show a detailed overview of my synthetic benchmarks for both test

functions fp and fg. It can be seen that my GDS algorithm outperforms its competitors for all given noise

distributions in mean error.

0

2

4

6

8

10

2 3 4 5 6 7 8 9 10

A
p

p
ro

x
im

a
ti

o
n

fe
rr

o
rf

[%
]

Polynominalfdegree

Effectfoffthefpolynominalfdegree

Figure 5.26: Effect of the polynomial degree of the unknown objective function on the mean error of my ap-
proach: the degree has almost no influence as the mean error varies around 6%.



Sampling: Uniform

Clustering: Det. Dbscan K-Means
ēp ēg ēp ēg ēp ēg

Probability mass functions

Binominal, t = 9.0, p = 0.5
P(i|t, p) =

(t
i

)
· pi · (1 − p)t−i . . . . . .

Geometric, k = 0.3
p(i|k) = k · (1 − k)i . . . . . .

Pascal, k = 3.0, p = 0.5
p(i|k, p) =

(k+i−1
i

)
· pk · (1 − p)i . . . . . .

Uniform, a = 0.1, b = 9.0
p(x|a, b) = 1

b−a . . . . . .

Poisson, µ = 0.1
p(x|µ) = µi

i! e
−µ . . . . . .

Probability density functions

Cauchy, a = 5.0, b = 1.0
p(x|a, b) = 1

π·b·[1+(x−a
b)2]

. . . . . .

Chi-squared, n = 3.0
p(x|n) = 1

Γ(n
2)·2

n
2
· x n

2−1 · e− x
2 . . . . . .

Fisher-F, m = 2.0, n = 2.0

p(x|m, n) = Γ(m+n
2)

Γ(m
2)·Γ(

n
2)

·
mx
n

m
2

x·(1+ mx
n)

m+n
2

. . . . . .

Normal, µ = 5.0, σ = 2.0

p(x|µ, σ) = 1
σ
√
2π · e−

(x−µ)2

2σ2 . . . . . .

Exponential, λ = 3.5
p(x|λ) = λe−λx . . . . . .

Table 5.1: Synthetic performance comparison overview: my approach outperforms its competitors for all noise
distributions (mean error ē in %). (Part I)



Sampling: Random

Clustering: Det. Dbscan Dbscan
ēp ēg ēp ēg ēp ēg

Probability mass functions

Binominal, t = 9.0, p = 0.5
P(i|t, p) =

(t
i

)
· pi · (1 − p)t−i . . . . . .

Geometric, k = 0.3
p(i|k) = k · (1 − k)i . . . . . .

Pascal, k = 3.0, p = 0.5
p(i|k, p) =

(k+i−1
i

)
· pk · (1 − p)i . . . . . .

Uniform, a = 0.1, b = 9.0
p(x|a, b) = 1

b−a . . . . . .

Poisson, µ = 0.1
p(x|µ) = µi

i! e
−µ . . . . . .

Probability density functions

Cauchy, a = 5.0, b = 1.0
p(x|a, b) = 1

π·b·[1+(x−a
b)2]

. . . . . .

Chi-squared, n = 3.0
p(x|n) = 1

Γ(n
2)·2

n
2
· x n

2−1 · e− x
2 . . . . . .

Fisher-F, m = 2.0, n = 2.0

p(x|m, n) = Γ(m+n
2)

Γ(m
2)·Γ(

n
2)

·
mx
n

m
2

x·(1+ mx
n)

m+n
2

. . . . . .

Normal, µ = 5.0, σ = 2.0

p(x|µ, σ) = 1
σ
√
2π · e−

(x−µ)2

2σ2 . . . . . .

Exponential, λ = 3.5
p(x|λ) = λe−λx . . . . . .

Table 5.2: Synthetic performance comparison overview: my approach outperforms its competitors for all noise
distributions (mean error ē in %). (Part II)



Sampling: Gradient

Clustering: Det. Dbscan K-Means
ēp ēg ēp ēg ēp ēg

Probability mass functions

Binominal, t = 9.0, p = 0.5
P(i|t, p) =

(t
i

)
· pi · (1 − p)t−i . . . . . .

Geometric, k = 0.3
p(i|k) = k · (1 − k)i . . . . . .

Pascal, k = 3.0, p = 0.5
p(i|k, p) =

(k+i−1
i

)
· pk · (1 − p)i . . . . . .

Uniform, a = 0.1, b = 9.0
p(x|a, b) = 1

b−a . . . . . .

Poisson, µ = 0.1
p(x|µ) = µi

i! e
−µ . . . . . .

Probability density functions

Cauchy, a = 5.0, b = 1.0
p(x|a, b) = 1

π·b·[1+(x−a
b)2]

. . . . . .

Chi-squared, n = 3.0
p(x|n) = 1

Γ(n
2)·2

n
2
· x n

2−1 · e− x
2 . . . . . .

Fisher-F, m = 2.0, n = 2.0

p(x|m, n) = Γ(m+n
2)

Γ(m
2)·Γ(

n
2)

·
mx
n

m
2

x·(1+ mx
n)

m+n
2

. . . . . .

Normal, µ = 5.0, σ = 2.0

p(x|µ, σ) = 1
σ
√
2π · e−

(x−µ)2

2σ2 . . . . . .

Exponential, λ = 3.5
p(x|λ) = λe−λx . . . . . .

Table 5.3: Synthetic performance comparison overview: my approach outperforms its competitors for all noise
distributions (mean error ē in %). (Part III)



Science is not only a discipline of reason but, also, one of ro-

mance and passion.

Stephen Hawking

6
Multi-Agent System based

Multiobjective Optimization

I present in this chapter how my FDS approximation and optimization strategies can be incorporated into

a powerful optimization toolset for computing a Pareto solution for the simulation model input parameter

space. The optimization system proposed here is based on a hierarchical MAS which aims at dynamically

tuning all given input configuration parameters with respect to the approximated FDS. I recall some of the

most relevant research articles that have appeared in the international literature related to this topic and

emphasize my contributions.

The main task of virtual testbeds is to support engineers with simulation results, based on simulation

scenario and simulation model configuration. Engineers are mainly interested in finding an optimal simu-

lation model configuration. This means a configuration which is able to satisfy all given simulation objec-

tives and requirements for given tresholds.

These simulation objectives and requirements are often contradictory and define only a subset of an

overall system expectation. These system expectations are in general non-manageable non-technical sys-

tem aspects which can not be easily formalized in a simulation. This leads to the aforementioned workflow

problem (see Section ..) which drastically restrict engineers within their work.

MAS can effectively deal with such problems which are composed of a large number of interacting and

contradictory sub-problems. Additionally, MAS allow a simpler modelling of the domain []. This is

especially useful for solving the workflow problem because it conceptualizes the MOP which can not be

formalized. Thus, using a MAS for a bottom-up modelling of the problem, based on my approximations

of the unknown objective functions problem, is convincing. Furthermore, interactions between agents

can give birth to emergent phenomena (e.g., patterns, organizations, behaviours) []. I consider the

simulation model configuration optimization as a complex problem for which no specific solution exists

beforehand. This makes MAS interesting for dealing with such problems for which no algorithmic solutions

can be given in advance and therefore have to be designed in a bottom-up way.



Completely autonomous agent group

Job and Task Agents

Manufacturing Entities

Mediator Agent

Figure 6.1: Classic MAS architectures: the autonomous agent-based architecture (left) and the mediator
agent-based architecture (right). In the autonomous architecture the agents are not supervised by any hierar-
chy while the mediator framework introduces a hierarchical information exchange and operations.

Consequently, I propose my optimization system based on a modular hierarchical MAS in which self-

organization principles are used to make the collective behavior emerge from local ones. I introduce with

my optimization system (and corresponding FDS approximation) a novel type of virtual testbed which

overcomes the aforementioned workflow challenge.

. Related Work

Solving optimization problems with MASs emerged as a research field in the late ’s within the simulation

of social behavior, e.g. based on particle swarm optimization [] and is still a very active research field.

There are numerous successful applications for these MASs, ranging from SOO to MOO for arbitrary use

cases, e.g. scheduling problems, energy systems, autonomous architectures, transportation and logistics,

and supply chain planning []. The main interest is to formulate the MOP more easily while main-

taining an efficient process of converging. Various MAS approaches have been proposed in order to solve

optimization problems, e.g. based on game theory [] or on meta-heuristics for ant colony optimization

[]. Other approaches, e.g. [] focussed only on convex objective functions. In addition, evolutionary

aspects have been integrated into MASs for solving MOPs since  years []. [] introduced exten-

sions for evolutionary MASs for constrained MOO. Basically, they encoded constraints of an MOO into

the evolutionary structure of MASs. In contrast, [, ] focussed on better agent population diversity

by introducing the prey-predator model.

Approaches for basic system configuration adaptation (without the requirement of computing a solu-

tion to a MOP) can be found in other simulation related fields, e.g. []. Simulation and serious gaming is

a strongly related field [] in which system parameter adaptation is well-founded. Current adaptation

concerns automated scenario generation, e.g. for military training purposes []. Such adaptive appli-

cations can be effectively modelled with MAS []. Furthermore, [, ] showed in general how agents

can be used to define serious game applications. These approaches have in common that they rely on the

classical approach of MAS based modelling or optimization purposes in which no information about the

problem is available.



Agent organization

Simulation objective

Negotiation agent

𝑜𝑐 𝑢𝑐𝑟𝑐

A
c
t
u

a
t
o

r
s

S
e

n
s
o

r
s

Simulation Model

Configuration Space
Approximations

Objective agent Performance assessment

and configuration adaptation

Figure 6.2: The proposed mediator-based MAS architecture operates in the approximated simulation model
parameter space by changing the simulation model configurations based on gradient information from the GDS
responses.

In general, above mentioned MAS approaches can be grouped into two classical architectures (see Fig-

ure .). In completely autonomous MAS architectures, agents react locally to local changes, and interact

directly with each other to generate global optimal and robust solution, e.g. for scheduling problems [].

Despite the good performance of autonomous architectures, they usually face problems in providing glob-

ally optimized solutions in presence of a large number of agents (as highlighted by []), leading to above

mentioned mediator based architecture in which mediator or negotiation agents influence the behavior

and communication of other agents []. Therefore, I adopted above well-known techniques into a new

MAS which directly operates within my FDS approximation based on a mediator agent-based scheduling

architecture (see Figure .).

. Overview of Approach

Hierarchical MAS have already proven their feasibility for solving MOPs as previously described. My main

idea is to show how my FDS can be incorporated in these approaches and that my wait-free data manage-

ment further improves their performance due to wait-free communication between the agents. Based on

the vision of my thesis, to conceptualize and implement an integrative approach, the MAS is implemented

as a blackboard [] with mediator agents (see Figure .) in order to utilize the KeyValuePool or Graph-

Pool. In order to accomplish SOO and MOO, every agent introduces a part-wise modelling (single and

multiobjective constraints per input parameter) of the problem and its behavior and communication to

other agents is used to solve the global (MOO) problem.

In the following, I describe at first the required MAS infrastructure with its modular agent organiza-

tions and their relationships to the FDS. Following this, I explain the input and output data as well as

communication structure of the agents. At last, I outline the adaptation solving process with its negotia-

tion mechanisms and how MOPs can be solved.



Agent organization

Simulation objective 𝛼

Negotiation agent

Agent organization

Negotiation agent

Objective agent c

Multi Agent System

Parameter space: B-Spline surface approximations

a:

𝑜𝑎 𝑢𝑎𝑟𝑎

Negotiation agent

𝑜𝑏 𝑢𝑏𝑟𝑏

Agent organization

𝑜𝑐 𝑢𝑐𝑟𝑐

b: c:

Simulation objective 𝛽 Simulation objective 𝛾

Objective agent a Objective agent b

Figure 6.3: My MAS based optimization approach for a mixed objective problem statement (one multi-
objective objective (β) and two single-objective problems (α, γ) with three input parameters): each agent
organization optimizes the parameter set for one objective. Negotiation agents handle requests between the
objective-agents in order to effectively find the optimal parameter configuration.

My MAS is composed of several agent organizations. Each of these organizations aims at optimizing a

subset of configuration parameters to one or more simulation objectives, each one represented by my FDS

approximation (see Figure .).

These agent organizations are defined per specified simulation objective and consist of a hierarchy of two

agent types: objective- and negotiation-agents. For each identified input parameter, one objective-agent is

defined. Therefore, one objective-agent can belong to several agent organizations. The goal of every defined

objective-agent is to maximize or minimize every attached simulation objective under Pareto constraints.

Several optimization constraints arise because of the underlying MOP. Therefore, a negotiation-agent is

defined for every specified objective. The goal of every negotiation agent is to manage requests between the

objective-agents in order to satisfy the existing multi-objective constraints between the objective-agents.

Figure . illustrates this agent organization concept with respect to the overall proposed approach. The

input and output data as well as communication structure of these agents is described in the next section.

The idea is to use the emergence of the MAS in order to directly optimize towards the Pareto front (see

Figure .).

. Parameters, Objectives and Utilities

Given a MOP, as defined in Equation ., I can uniquely identify every adjustable input configuration

parameter C with its valid range. These configuration parameters and the corresponding B-spline surface

based FDS approximation constitute the input of my MAS. Additionally, I define the objectives and utilities

of my MAS based optimization system.



Objective 1

O
b

je
c
ti
v
e

2
x

x

x

x

x

xx

x

x

x
x

x

x
x

x
x

xx

x
o

o

o
o o

x

x
x

x
x

x

x xx

x

x

o

o

o

o Pareto optimal
x Dominated solution

x

x

xx

x

x

x xx

x

x

x

x

x

x

x

Approximation

from KD process *Agents

*
*

*
x

x

x

x

Figure 6.4: Visualization of my MAS approach. The agents are directly initialized close to the Pareto front
because of the FDS approximation from my GDS approach. Further, the agents are forced to operate towards
the Pareto front by using pre-computed Pareto gradient information from the response surfaces.

Each objective-agent strives for maximizing or minimizing each single-objective optimization problem

of its attached input parameter under multi-objective constraints. Therefore, each objective-agents com-

putes several objective values, one for each attached objective.

The set of all agent objectives OBJ is defined as follows:

OBJ = {o1...on} → {0, 1}

oi = ω(c, t) (.)

where

ω : corresponding approximated FDS

In addition to the objectives to be satisfied, my MAS also considers the possible utility when changing

the given parameter with respect to the current negotiation state among the agents. Consequently, I in-

troduce a utility function. It is used to calculate the difference between current Pareto solution and highest

achievable single-objective solution. This utility value is then later used by the negotiation-agent to select

the most appropriate action.

The set of all utility values UTL is defined as follows:

UTL = {u1...un} → {0, 1}

ui = si(c, t)− ω(c, t) (.)

where

si : corresponding approximated objective function

ωi : corresponding approximated FDS

Therefore, the aim of my MAS based optimization system is to minimize UTL while maximizing OBJ.

In other words, it is to tune all the parameters so all the constraints and objectives are satisfied.



In order to implement this efficiently in an agent-based organization, I define requests which are shared

between the agents. These requests are used to lower or higher the Pareto weight or objective value thresh-

old from Equation . if any agent has partially solved one objective:

REQ = {(Θo, to), ...(Θn, tn)}

Θi → {0, 1}

ti → {0, 1}

(.)

where

Θi : corresponding Pareto weight for the associated objective

mi : corresponding objective value threshold for the associated objective

. Solving Process Principle

When designing a MAS based optimization process, the focus is set on agent behaviors and communi-

cations in order to cover the isolated parts of the global problem which each agent models. Each of my

objective-agent tackles an isolated sub-problem (finding a solution to its attached single or multiobjective

constraints) and emergence is used to solve the overall (MOO) problem. Therefore, the solving process is

distributed among all objective-agents via negotiation-agents. Consequently, the definition of objective-

and negotiation-agent behaviours is also one of the key aspects of my MAS and is described hereafter.

• Negotiation-agents monitor the objectives and utilities of all corresponding objective-agents of their

agent organization and distribute requests between objective-agents: In the first step, they update

(see below) the attached objective-agents if they have open requests. In this step, each objective-

agent may achieve a new Pareto solution. In the second step, they collect new requests from each

objective-agent and group them according to the multi-objective Pareto satisfaction:

– a) if the objective is completely satisfied, it requests a change for the Pareto weight Θ =  for

every other attached objective-agent.

– b) if the objective is partially satisfied, it requests a change for the objective threshold t in order

of magnitude of current objective satisfaction for every other attached objective-agent.

At last, the negotiation-agent will forward the requests (change in objective threshold t or Pareto

weight Θ) of those objective-agents with the highest utility value.

• An objective-agent has a rather simple behaviour: it computes the objective and utility value for

every attached objective for the current Pareto configuration (objective thresholds, Pareto weights

and parameter configuration) based on my FDS approximation. It updates these values every time a

request for change in Pareto weighting or objective threshold is received from an negotiation-agent.

. Use Case Study: Spacecraft Landing Scenario

A spacecraft landing procedure is a very complex sequence of autonomous vehicle decisions, actuator com-

mands and sensor data acquisition summarized as guidance, navigation and control. Such a landing proce-

dure is an interesting testbed for my proposed approach as it consists of several environmental influences

and vehicle internal control loops.



I modelled a simplified landing procedure within the previously introduced end-to-end spaceflight mis-

sion simulator (see Section .). The aim of the procedure is to ensure a safely landing on an asteroid

surface. The spacecraft is under the influence of several environmental forces which introduce trajectory

perturbances: solar radiation pressure (Sun distance based tangential perturbance) and asteroid gravity

(assuming a homogeneous gravity field).

The spacecraft itself is modelled with an internal control loop which acquires sensor data: acceleration

(accelerometer), orientation (simplified Star Tracker) and distance to surface (range finder). The overall

algorithmic internal spacecraft position estimation is simplified in such a way that ground truth data is

used under application of Gaussian noise.

The spacecraft has three configurable parameters: main engine thrust level in Newton, fuel capacity in kg

and control thrust ignition timings. Within the spacecraft control loop, the spacecraft autonomously fires

its main engine, if the acceleration exceeds a given threshold, so that the landing velocity will be regulated.

Additionally, the spacecraft continuously determines its orientation and fires its attitude thrusters, if the

spacecraft orientation to the asteroid surface also exceeds a given threshold. Every time the main thrust

or control thrust is fired, fuel is consumed and consequently the mass of the spacecraft is lowered.

The aim of my optimization is to dynamically tune this spacecraft configuration in order to avoid a crash

at the asteroids surface as well as to ensure that enough fuel is left when the landing procedure is finished,

to leave the asteroid again. Additionally, the orientation of the spacecraft has to be aligned to the asteroid

surface so that the main thruster and landing gear should be perpendicular to the asteroids’ surface.

In detail, the simulation objectives are defined as follows:

• The spacecraft velocity at touchdown should be less than  m
s2 . The thrust level must be between  -

 Newton.

• The spacecraft pose should be aligned with the landing terrain with less than  degree error. The

maximum control thrust ignitions are  times within  milliseconds.

• The spacecraft should have more than   fuel left, when the landing procedure has ended. The fuel

capacity must be between  -  kg.

. Results

I have implemented my MAS based optimization approach in C++ and CUDA . I performed experiments

on a machine with an Intel Core i -core processor (. GHz) with enabled Hyperthreading, using the

Microsoft Visual C++  compiler with all optimizations, operated by Windows   bit and GB of RAM

.. Spacecraft Landing Scenario

I modelled, based on the previously introduced spacecraft application, my MAS based optimization and

virtual testbed (see Chapter ). This test scenario was used to evaluate whether or not the proposed MAS

based optimization solves for correct adaptations of the spacecraft configuration.

My evaluation shows that the MAS is able to maximize the given simulation objectives until the simula-

tion successfully ends (see Figure .). The optimization required seven simulation runs (each containing

 -  simulation steps) in order to maximize all three simulation objectives.



40

50

60

70

80

90

100

1 2 3 4 5 6 7

Sa
ti

sf
a

ct
io

n
 o

f
o

b
je

ct
iv

e
 [

%
]

Simulation run

Mean objective satisfaction

Fuel Capacity Objective

Touchdown Velocity Objective

Touchdown Pose Objective

Figure 6.5: Objective satisfaction progress for all three optimized parameters: my approach successfully
changes the vehicle configuration in order to increase the simulation goal satisfaction.

150

250

350

450

550

650

750

850

950

1050

1 2 3 4 5 6 7

T
h

r
u

s
t

[N
]

Simulation run

Main thrust configuration

6.6a: Main thrust level parameter optimization over
time. My MAS gradually increases the thrust level
until the velocity can be adequately regulated for
landing.

0

2

4

6

8

10

12

1 2 3 4 5 6 7

C
o

n
tr

o
l

th
ru

s
t

ig
n

it
io

n
s

Simulation run

Control thrust configuration

6.6b: Attitude thrust ignition optimization over time.
My MAS gradually decreases the amount of ignitions
as the overall thrust level is increased by another
agent.

This study concerns the adaptation capabilities of the proposed MAS architecture in general. The second

study in the next section is investigating the performance of my MAS based on a provided FDS approxi-

mation.

Figures .a, .b and . show how the main thrust level, fuel capacity and control thrust ignition

configuration change over time. My approach successfully optimizes these parameters until the spacecraft

safely lands after seven completed simulation loops with overall  simulation steps.



400

600

800

1000

1200

1 2 3 4 5 6 7

F
u

e
l

[k
g

]

Simulation run

Fuel configuration

Figure 6.7: Fuel capacity parameter optimization over time. My MAS gradually increases the fuel capacity in
order to maintain thrust while the landing procedure is conducted.

.. Multiobjective Optimization

In this section, I present the results of my MAS based optimization when using the provided FDS approxi-

mation from my KDP. For this evaluation, I considered the following standardized test function for MOPs

from Binh and Korn [] as a use case study. I further added noise terms to the functions in order to

obtain a stochastic behavior:
f1(x, y) = 4x2 + 4y2 + N

f2(x, y) = (x− 5)2 + (y− 5)2 + N

s.t.

g1(x, y) = (x− 5)2 + y2 ≤ 25

g2(x, y) = (x− 8)2 + (y+ 3)2 ≥ 7.7

(.)

In this use case study, I approximate f1, f2 with my KDP approach and deliver the B-splines as input to

my MAS. Two advantages from my approach can be observed in this use case study (see Figure .):

First, the initial guess from the agents is directly the single objective solution of the problem, indicating

that the approximated FDS is close to the Pareto front. This enables a much faster optimization process

because my MAS requires less negotiations for converging to the correct solution. In addition, this reduces

the probability of converging to a local instead of a global minimum. Second, already after a few negotia-

tions (in this use case study: two negotiations) the objective-agents reached the Pareto front and returned

one optimal configuration. This evaluation shows that my MAS directly benefits from the FDS approxima-

tion because, atleast in these evaluations, my MAS computes more efficiently and effectively a solution to

the MOP



X

−1
0

1
2

3
4

5
6

Y

−0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

A
p

p
r
o
x
im

a
te

d
fe

a
s
ib

le
d

e
s
ig

n
s
p

a
c
e

fo
r

b
o
th

o
b

je
c
tiv

e
fu

n
c
tio

n
s

20

40

60

80

100

120

140

160

Initial configuration from agents

Optimal configuration from agents
after two negotiations

MAS-based Optimization

Figure 6.8: Evaluation of my use case study: My agents are directly initialized at the single-objective solution
and converge fast to the multi-objective solution. Based on my FDS approximation, very simple surfaces can
be generated which reduce complex optimization problems. On these surfaces even a simple gradient descent is
often sufficient to solve the unknown functions.



Part IV

Crossroads



There is nothing either good or bad but thinking makes it so.

William Shakespeare

7
Epilogue

. Summary

In this thesis, I made several contributions to the area of virtual testbeds. The proposed concepts overcome

the integration and workflow challenge of state-of-the-art virtual testbeds. My contributions have been

described in detail in the previous chapters. My concepts include my wait-free hash map that implements

a MVCC. It allows for low-latency massively parallel data exchange. Even more, it reduces the number of

required interfaces and does not need any standard locking mechanism. It is the baseline for my generative

virtual testbed concept. This concept involves the ECS pattern and my novel DSML. My DSML enables a

TBCG of arbitrary virtual testbeds and the integration of my wait-free hash maps into the ECS pattern

lead to C&C. My evaluations have shown superior performance of my CCM in many synthetic and real

benchmarks.

My concepts further include my novel data mining algorithms for an automatic KDP and a hierarchi-

cal MAS optimization toolset. Both constitute a novel concept for SBO and MOO in virtual testbeds for

deterministic and stochastic blackbox simulations which are governed by a MOP. My KDP unveils hidden

relationships between simulation input and simulation model behavior. It uses my novel GDS approach

for approximating simulation model behaviors for deterministic and stochastic simulations. My GDS ap-

proach can accurately approximate the FDS of arbitrary simulation models while using less samples than

its’ competitors. The resulting FDS approximation can be used to formulate gradients towards the Pareto

front for MOO purposes. My evaluations have shown that standard optimization solvers benefit from my

FDS approximation, e.g. my hierarchical MAS. Furthermore, they have shown that my data mining algo-

rithms are able to efficiently analyze large scale simulations with tens of thousands of parameters in less

than a second. Even more, the resulting FDS approximations are close to the Pareto front.



. Future Work

In the following, I present several ideas to further improve the approaches of my thesis, and some ideas

for additional methods that should be integrated in order to increase the overall performance. Generally,

it would beneficial if all presented approaches could be validated and verified in more use case studies and

evaluations. For instance, the presented KDP and the corresponding hierarchical MAS optimization could

be evaluated in known synthetic problems of the SimOpt library [] or in real world scenarios. Like-

wise, the proposed software infrastructure could be integrated in other existing RISs in order to evaluate

its’ performance, the memory allocation and de-allocation strategies. In the following, several additional

technical advancements are outlined for the presented ideas of this thesis.

.. Wait-Free Data and Concurrency Management for

Massively Parallel Realtime Interactive Systems

There are avenues for future work for the proposed software infrastructure approach based on wait-free

hash maps.

The synthetic benchmarks of my wait-free hash map concept were restricted to a single machine, but Iam

confident that my approach scales well for distributed applications like CVEs. In such a distributed CVE

application, my approach would serve as a central time synchronising host, which updates the timestamps

of the KVPairs. Typical distributed CVE problems such as network delays would not affect read or write

operations. Delayed write operations would be merged and delayed read operations would still retrieve

the newest data from the KVPool. In addition to that, a concurrent quality measure for data could define

the boundaries and constraints for my proposed wait-free concept. Furthermore, I would like to apply

current approaches based on ECS (e.g. [, , –]) that strongly strengthen the maintainability

and re-usability of the systems by applying semantics.

With respect to the GraphPool approach, I would like to extend the GraphCache technique. It would

be desirable to remove the initial setup phase of the GraphCache while maintaining its’ wait-free behav-

ior. Probably, this could be done by using unique prime numbers as identifiers for the Systems using the

GraphCache. These identifiers could be used for unique cache access determination, which would result in

”private” GraphCaches for every System accessing the GraphPool.

With respect to the presented application of the ECS pattern, I would like to extend the approach with

intelligent Component cloning. This would incorporate that the write operation only clones the Component
data when needed and not by default. This could be implemented with a System-based heuristic which

notifies when the next read operation may happen. Furthermore, I would like to apply my wait-free hash

maps in more RIS applications in order to enable a profound analysis of their capabilities.

Another interesting idea is based upon my DSML and TBCG approach. An important factor for RISs is

latency. It determines the performance of the complete system and also, in many cases, the interaction

quality. Especially the quality of interaction is for many RISs, e.g. VR systems, extremely important as high

latencies make immersive interaction impossible. In this context, it would be a significant improvement

of my system, if it could estimate the Systems' latency and their access to Entities already during the

modeling and generation of the system. In order to accomplish this, the latencies, based on empirical

values, are automatically specified during the modeling, based on estimations from the empirical data. This

approach is similarly to [] and would extend the presented ideas for my proposed wait-free concepts.



These experience-based latencies can be gained from existing RISs, which are based on my software

infrastructure. Even more, analyzing the (wait-free) parallelism (e.g. similarly to []) of the system

based on the modelled dataflow would also be a very interesting approach for efficiently modelling RISs.

Finally, I would also like to extend my approach with high-level concepts for adaptive memory manage-

ment of my wait-free hash maps. It would be beneficial if a RIS framework itself could determine which

memory management suits the current System and Component composition best. This would incorporate

that the RIS framework monitors the usage of all Components from every System and adapts the memory

management accordingly.

.. Knowledge Discovery Processes for Blackbox Simulations

In the future, I would like to further evaluate my KDP (and the corresponding MAS based optimization)

with standard SBO problems using the SimOpt library []. Additionally, I would like to extend my KDP

with several interpolation approaches: instead of using only my B-spline surface, I could analyze the un-

known objective function with several approximations (linear, polynomial, spline) in parallel. After suc-

cessfully analyzing the unknown objective function, the best (in terms of accuracy) approximation is used.

This would lead to specific approximation types per simulation objective which could further minimize the

approximation error. The motivation of this approach is the variability of the unknown objective functions.

I believe that several approximations at once (partially or completely covering the objective function) could

also be used for dealing with chaotic objective functions which I did not consider yet. Another interesting

idea would be to replace my B-spline surface concept with a high dimensional input space. Here, I would

need to extend my B-spline surface concept to B-spline volumes. These B-spline volumes could be directly

used for high-dimensional optimization. Additionally, I would like to incorporate general-purpose com-

puting on graphics processing units (GPGPU) programming into my data mining approach. I believe that

such massively parallel implementation can be efficiently used to analyze large-scale simulations. Another

interesting approach are deep neural networks which can be used to conduct a multi-class regression of the

simulation model behavior. Usually, deep neural networks are not feasible in the previously described use

cases of virtual testbeds due to the large configuration space. However, these neural networks would use

my FDS approximations in order to generate adequate training data. My FDS approximations are really

useful here because they already approximate the relations very well. I believe that such a multi-class re-

gression can be used to approximate the complete Pareto front and not just a single solution, e.g. based on

[]. This approach would have the advantage that my proposed dimensionality reduction would not be

required in the optimization; the input of the neural network (after training) could be the whole dependent

simulation input space. The output would be an approximation of the whole simulation model behavior.

Such deep neural networks can then be used by standard optimization toolsets to compute Pareto optimal

solutions.

.. Application to Robotics and Evaluating the Reality Gap

Another interesting avenue for future work is the application of my work in reality. My KDP approach

can be transfered into the real world, namely in robotics, in two different approaches: ) as a valuable

information for autonomous decision-making algorithms and ) to determine and minimize the reality

gap [].



In detail, my FDS approximation can be incorporated into the knowledge base of real robots. The au-

tonomous decision-making algorithm that controls the robot could thus decide also on my approximated

model behavior. Here, the decision-making algorithm could make simple queries based on my FDS approx-

imation. For instance, how often the robot was able, in its current configuration, to successfully solve the

upcoming task in the simulation.

My FDS approximation can predict here the probability and standard deviation of the success for such

queries based on simulation data. This could greatly benefit current autonomous decision-making algo-

rithms because they would incorporate the complete knowledge of previously conducted simulations.

My second idea is based on above concept and aims at determining the simulation-to-reality gap and, if

possible, to minimize it. The simulation-to-reality gap [] describes the discrepancy between a simulation

and its results to the actual model behavior in reality. No matter how sophisticated a simulation is, there

will always be a difference to reality because simulations can never completely depict reality. However, in

the scenario above, a robot with the knowledge of my FDS approximation could evaluate to what extent

the predictions of the approximation are correct by testing and comparing the corresponding actions and

their results. Deep-learning approaches, such as neural networks, can efficiently used for this task. Here,

neural networks would learn the unknown differences in the simulation model configuration, which are

necessary to correct the FDS approximations to the real world. This would result in a inverse sensitivity

analysis of my results. This analysis can be used to evaluate the validity of my FDS approximation and the

corresponding simulation results with respect to reality.

Furthermore, it is also possible to adapt simulations based on an inverse approach of my FDS approx-

imation. Usually, the simulation-to-reality gap makes it hard to transfer learnt behaviors of robots in

simulations to reality []. Most often, the simulation is tediously tuned to match real-world data more

closer so that learnt behaviors can be directly transferred to real robots. In this scenario, the machine

learning engineer has to know which parameters to tune, in order to adapt the simulation correctly. Here,

my approach can be used to determine the parameters to be tuned - again as a inverse implementation.

This would greatly improve the workflow of machine learning engineers to quickly adapt their simulation

(results) to their desired transferred use cases.



Part V

Appendix



Publications and Awards

Some parts of this work have appeared previously in the following publications:

Patrick Lange, René Weller, Gabriel Zachmann. GDS: Gradient basedDensity Spline Surfaces forMul-

tiobjectiveOptimization inArbitrary Simulations. ACM SIGSIM PADS. Sinapore, Republic of Singapore,

.

Patrick Lange, René Weller, Gabriel Zachmann. Intelligent Realtime D Simulations. ACM SIGSIM

PADS Ph.D. Colloqium. Banff, Canada, .

Patrick Lange, René Weller, Gabriel Zachmann. KnowledgeDiscovery for Pareto basedMultiobjective

Optimization in Simulation. ACM SIGSIM PADS. Banff, Canada, .

Patrick Lange, René Weller, Gabriel Zachmann. GraphPool: A High Performance Data Management

for D Simulations. ACM SIGSIM PADS. Banff, Canada, .

Patrick Lange, René Weller, Gabriel Zachmann. Wait-Free Hash Maps in the Entity-Component-

System Pattern for Realtime Interactive Systems. IEEE VR: th Workshop on Software Engineering

and Architectures for Realtime Interactive Systems SEARIS. Greenville, United States of America, .

Alena Probst, Graciela Gonzales Peytavi, David Nakath, Anne Schattel, Carsten Rachuy, Patrick Lange,

Joachimg Clemens, Mitja Echim, Verena Schwarting, Abhishek Srinivas, Konrad Gadzicki, Roger Förster,

Bernd Eissfeller, Kerstin Schill, Christof Büskens, Gabriel Zachmann. Kanaria: Identifying the Chal-

lenges for Cognitive Autonomous Navigation and Guidance for Missions to Small Planetary Bodies.

International Astronautical Congress (IAC). Jerusalem, Israel,  .



Patrick Lange, René Weller, Gabriel Zachmann. Multi Agent System Optimization in Virtual Vehicle

Testbeds. EAI SIMUtools . Athens, Greece, .

Patrick Lange, René Weller, Gabriel Zachmann. Scalable Concurrency Control for Massively Collab-

orative Virtual Environments. ACM Multimedia Systems, Massively Multiuser Virtual Environments

(MMVE) . Portland, United States of America, .

Patrick Lange, Alena Probst, Abhishek Srinivas, Graciela González Peytavi, Carsten Rachuy, Anne Schat-

tel, Verena Schwarting, Joachim Clemens, David Nakath, Mitja Echim, and Gabriel Zachmann. Virtual Re-

ality for Simulating Autonomous Deep-Space Navigation and Mining. th International Conference

on Artificial Reality and Telexistence (ICAT-EGVE ). Bremen, Germany, .

Patrick Lange, René Weller, Gabriel Zachmann. A Framework for Wait-Free Data Exchange in Mas-

sivelyThreaded VR Systems. International Conference in Central Europe on Computer Graphics, Visual-

ization and Computer Vision (WSCG)). Plzen, Czech Republic, .

I was awarded with the Ph.D. Colloquium Award at ACM SIGSIM PADS  for my Ph.D. research.



Glossary

3DST D simulation technology. , , , , –, , 

ACID atomicity, consistency, isolation, durability. , , , 

ARM association rule mining. , , , , 

C&C increased cohesion and decreased coupling. , , , , , 

CAS compare and swap. , , 

CCM concurrency control management. , –, –, , , , , , , , , , 

COW copy on write. , , , 

CVE collaborative virtual environment. , , –, , , 

DBMS database management system. –, , , 

DBScan density based spatial clustering of applications with noise. –, 

DES discrete event simulation. , 

DSML domain specific modelling language. , , , –, –, , , , 

ECS entity component system pattern. , –, , , , , –, , , , –, ,



FDS feasible design space. –, , , , , , –, , –, –, –, ,

, 

GAM global atomic marker. , , –, , –, 

GDS gradient based density spline surface. , , , –, , , 

GOPRR graphs, objects, properties, relationships, roles. , 

GPGPU general-purpose computing on graphics processing units. 

GraphCache graph based key value pool cache. , –

GraphNode graph based key value pool node. –, , , 



GraphPool graph based key value pool. –, –, , –, , , –, , , , ,



GSS global simulation state. , , , , 

KDD knowledge discovery in databases. , , , , 

KDP knowledge discovery process. , , , , –, , , , –, , , –,

, –

KeyValuePair key value pair. , , , –, –, 

KeyValuePool key value pool. –, –, , –, , , , , –, , , , 

LAM local atomic marker. , –, , , , , 

LSS local simulation state. , , 

MAS multi agent system. , , , , , , , , –, –

MDE model driven engineering. , , 

MOO multiobjective optimization. , , , , , , , –, , , , , , 

MOP multiobjective optimization problem. –, , , , , , , –, , , , ,

, , , , –, , 

MSO modeling, simulation and optimization. , 

MVCC multi version concurrency control. , , , , , , –, , 

NoSQL not only SQL. , , 

PGM property graph model. , , 

PIM platform independent model. , , –, 

PSM platform specific model. , , –, 

RCA recursive correlation analysis. , , 

RIS realtime interactive system. , –, , , , , –, , , –, , , , , ,



RLHE real life hardware environment. –

SBO simulation based optimization. –, –, , , –, , , –, , , , –,

, 

SOO singleobjective optimization. , , , 



TBCG template based code generation. , , , 

VE virtual environment. , , –, 

VR virtual reality. , , , , , –, , , , 



Bibliography

[] . Pitkaenen, T. Mikkonen. Lightweight domain-specific modeling and model-driven development.

th OOPSLAWorkshop on Domain-Specific Modeling, pages –, .

[] A. Abraham, L. C. Jain, R. Goldberg. Evolutionary Multiobjective Optimization: Theoretical Ad-

vances and Applications. Springer Verlag, .

[] A. Albers, L. Nowicki. Integration der Simulation in die Produktentwicklung. Symposium Simula-

tion in der Produkt- und Prozessentwicklung, .

[] A. Boukerche, N. J. McGraw, R.B. Araujo. A Grid-Filtered Region-Based Approach to Support Syn-

chronization in Large-Scale Distributed Interactive Virtual Environments. International Conference

on Parallel Processing Workshops, pages –, .

[] A. Braginsky, A. Kogan, E. Petrank. Drop the Anchor: Lightweight Memory Management for Non-

Blocking Data Structures. In Proceedings of the th Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures, pages –, .

[] A. Byrski, M. Kisiel-Dorohinicki. Decentralized Multi-Agent Optimization via Dual Decomposition.

International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), .

[] A. G. Kleppe, J. Warmer, W. Bast. MDA Explained: The Model Driven Architecture: Practice and

Promise. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, .

[] A. Gidenstam, M. Papatriantafilou, H. Sundell, P. Tsigas. Efficient and Reliable Lock-Free Memory

Reclamation Based on Reference Counting. IEEETransactions on Parallel andDistributed Systems, ,

.

[] A, H. Ng, C. Dudas, L. Pehrsson, K. Deb. Knowledge Discovery in Production Simulation By In-

terleaving Multi-Objective Optimization and Data Mining. The th International Swedish Production

Symposium, pages –, .

[] A. Hasan, M. Vuolle, K. Siren. Minimisation of Life Cycle Cost of a Detached House using Combined

Simulation and Optimisation. Building and Environment, :–, .

[] A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, .

[] A. Lattner, J. Dallmeyer, I. Timm. Learning Dynamic Adaptation Strategies in Agent-Based Traffic

Simulation Experiments. Ninth German Conference on Multi-Agent System Technologies (MATES),

pages –, .



[] A. P. Dempster, N.M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM

algorithm. Journal of the Royal Statistical Society, :–, .

[] A. Probst, G. Gonzales Peytavi, D. Nakath, A. Schattel, C. Rachuy, P. Lange, A. Srinivas, K. Gadz-

icki, K. Schill, C. Büskens, G. Zachmann. Kanaria: Identifying the Challenges for Cognitive Au-

tonomous Navigation and Guidance for Missions to Small Planetary Bodies. International Astronau-

tical Congress (IAC), .

[] A. T. Nguyen. Sustainable Housing in Vietnam: Climate Responsive Design Strategies to Optimize

Thermal Comfort. Ph.D. thesis, .

[] A.-T. Nguyen, S. Reiter, P. Rigo. A Review on Simulation-based Optimization Methods Applied to

Building Performance Analysis. Applied Energy, :–, .

[] A. Tolk. Simulation and Modelling as the Essence of Computational Science. Summer Computer

Simulation Conference, .

[] A. Vakaloudis, B. Theodoulidis. Spatiotemporal Database Connection to VRML. Proceedings th UL

Electronic Imaging & Visual Arts Conference, .

[] A. Valadares, T. Debeauvais, C. V. Lopes. Evolution of Scalability with Synchronized State in Virtual

Environments. International Workshop on Haptic Audio Visual Environments and Games, pages –

, .

[] A. Zook, S. Lee-Urabn, M. O. Riedl, H. K. Holden, R. A. Sottilare, K. W. Brawner. Automated Scenario

Generation: Toward Tailored and Optimized Military Training in Virtual Environments. Conference

on the Foundations of Digital Games, .

[] ArangoDB. ArangoDB’s design objectives. . URL https://www.arangodb.com/2012/03/
avocadodbs-design-objectives/.

[] AUDI MediaCenter. Audi tests gesture control for virtual assembly.

. URL https://www.audi-mediacenter.com/en/press-releases/
audi-tests-gesture-control-for-virtual-assembly-4904.

[] B. Damer, S. Gold, D. Rasmussen, et al. Data-Driven Virtual Environment Assembly and Operation.

NASA Ames Research Center: VIB Workshop Report, .

[] B. Eisenhower, Z. O’Neill, S. Narayanan, V. A. Fonoberov, I. Mezic. A Methodology for Meta-Model

based Optimization in Building Energy Models. Energy and Buildings, :–, .

[] B. Wilson, D. Cappelleri, T. W. Simpson, M. Frecker. Efficient Pareto frontier exploration using

surrogate approximations. Optimization and Engineering, pages –, .

[] Berkeley DB. Transactional Data Store Applications: Degrees of isolation. . URL https:
//docs.oracle.com/cd/E17275_01/html/programmer_reference/transapp_read.html.

[] C. Apte, S. J. Hong. Predicting Equity Returns from Securities Data with Minimal Rule Generation.

Advances in Knowledge Discovery and Data Mining, –, .



https://www.arangodb.com/2012/03/avocadodbs-design-objectives/
https://www.arangodb.com/2012/03/avocadodbs-design-objectives/
https://www.audi-mediacenter.com/en/press-releases/audi-tests-gesture-control-for-virtual-assembly-4904
https://www.audi-mediacenter.com/en/press-releases/audi-tests-gesture-control-for-virtual-assembly-4904
https://docs.oracle.com/cd/E17275_01/html/programmer_reference/transapp_read.html
https://docs.oracle.com/cd/E17275_01/html/programmer_reference/transapp_read.html

[] C. Carlsson, O. Hagsand. DIVE - A Multi-User Virtual Reality System. Virtual Reality Annual Inter-

national Symposium, pages –, .

[] C. de Negueruela, M. Scagliola, D. Giudici, J. Moreno, J. Vicent, A. Camps, H. Park, P. Flamant, R.

Franco. ARCHEO-EE: A Reference Architecture for Earth Observation end-to-end Mission Perfor-

mance Simulators. Simulation and EGSE facilities for Space Programmes, ESA ESTEC, .

[] C. Dudas, A. H. C. Ng, H. Bostroem. Post-Analysis of Multi-Objective Optimization Solutions Using

Decision Trees. Intelligent Data Analysis, :–, .

[] C. Fleury, T. Duval, V. Gouranton, B. Arnaldi. Architectures and Mechanisms to Maintain efficiently

Consistency in Collaborative Virtual Environments. Software Engineering and Architectures for Real-

time Interactive Systems (SEARIS), .

[] C. H. Papadimitriou, P. C. Kanellakis. On Concurrency Control by Multiple Versions. ACM Transac-

tions on Database Systems (TODS), ():–, .

[] C. Henthorne, E. Tilevich. Code Generation on Steroids: Enhancing COTS Code Generators via

Generative Aspects. Proceedings of the Second InternationalWorkshop on Incorporating COTS Software

into Software Systems: Tools and Techniques, pages –, .

[] C. Park, S. Park, S. H. Son. Multiversion Locking Protocol with Freezing for Secure Real-time

Database Systems. IEEE Transactions on Knowledge and Data Engineering, ():–, .

[] C++ Standards Committee Library Working Group. Boost Library. URL http://www.boost.org/.

[] C. Watanabe, Y. Masunaga. Design and Implementation of a Multi-modal User Itnerface of the Vir-

tual World Database System (VWDB). th International conference on Database Systems for Advanced

Applications (DASFAA), pages  – , .

[] C. Watanabe, Y. Masunaga. VWDB: A Network Virtual Reality System with a Database Function

for a Shared Work Environment. ISDB, Acta Press: – , .

[] Couchbase. Why NoSQL? Whitepaper, . URL https://www.couchbase.com/binaries/
content/assets/website/docs/whitepapers/why-nosql.pdf.

[] D. A. van Veldhuizen, G. B. Lamont. Evolutionary Computation and Convergence to a Pareto Front.

Late Breaking Papers at the Genetic Programming Conference, .

[] D. Agrawahl, S. Sengupta. Modular Synchronization in Distributed, Multiversion Databases: Ver-

sion Control and Concurrency Control. IEEE Transactions on Knowledge and Data Engineering, ():

–, .

[] D. Arthur, S. Vassilvitskii. k-means++: The Advantages of Careful Seeding. SODA ’ at th ACM-

SIAM Symposium on Discrete algorithms, -, .

[] D. Corkill. Collaborating Software: Blackboard and Multi-Agent Systems and the Future. Interna-

tional Lisp Conference, .

[] D. Izzo. PYGMO and PYKEP: Open Source Tools for Massively Parallel Optimization in Astrody-

namics. International Conference on Astrodynamics Tools and Techniques (ICATT), .



http://www.boost.org/
https://www.couchbase.com/binaries/content/assets/website/docs/whitepapers/why-nosql.pdf
https://www.couchbase.com/binaries/content/assets/website/docs/whitepapers/why-nosql.pdf

[] D. L. Detlefs, P. A. Martin, G. L. Steele. Lock-Free Reference Counting. ACMSymposium on Principles

of Distributed Computing, pages –, .

[] D. Lee, M. Lim, S. Han. ATLAS - A Scalable Network Framework for Distributed Virtual Environ-

ments. Presence, :–, .

[] D. Lomet, A. Fekete, R. Wang, P. Ward. Multi-Version Concurrency via Timestamp Range Conflict

Management. IEEE th International Conference on Data Engineering (ICDE), pages –, .

[] D. Losch, J. Rossmann. Simulation-Based Analysis of Mechanized Wood Harvest Operations. In-

ternational Conference on Industrial Engineering and Applications (ICIEA), .

[] D. Nakath, C. Rachuy, J. Clemens, K. Schill. Optimal rotation sequencies for active perception.

In Proc. SPIE Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications

. SPIE Press, .

[] D. Nam, C. Hoon Park. Multiobjective Simulated Annealing: A Comparative Study to Evolutionary

Algorithms. International Journal of Fuzzy Systems, , .

[] D. Quelhadj, S. Petrovic. A Survey of Dynamic Scheduling in Manufacturing Systems. Journal of

Scheduling, :–, .

[] D. Roberts, R. Wolff. Controlling Consistency within Collaborative Virtual Environments. Interna-

tional Symposium on Distributed Simulation and Real-Time Applications, pages –, .

[] D. Schmalstieg, G. Schall, d. Wagner, I. Barakonyi, G. Reitmayr, J. Newman, F. Ledermann. Managing

Complex Augmented Reality Models. IEEE Computer Graphics and Applications, :–, .

[] D. T. Davis. D. Brutzman. The Autonomous Unmanned Vehicle Workbench: Mission Planning, Mis-

sion Rehearsal, and Mission Replay Tool for Physics-Based XD Visualization. Symposium on Un-

manned Untethered Submersible Technology, .

[] D. Tuhus-Dubrow, M. Krati. Genetic Algorithm based Approach to Optimize Building Envelope

Design for Residential Buildings. Building and Environment, :–, .

[] D. Wiebusch, C. Zimmerer, M. E. Latoschik. Cherry-Picking RIS Functionality: Integration of Game

and VR Engine Sub-Systems based on Entities and Events. In th Workshop on Software Engi-

neering and Architectures for Realtime Interactive Systems (SEARIS), .

[] D. Wiebusch, M. E. Latoschik. Decoupling the Entity-Component-System Pattern using Semantic

Traits for Reusable Realtime Interactive Systems. IEEE VR Workshop on Software Engineering and

Architectures for Realtime Interactive Systems, .

[] E. von Schweber. SQLD - Escape from VRML Island. SIGGRAPH VRML Consortium, .

[] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.

Ph.D. thesis, Swiss Federal Institute of Technology Zurich, .

[] E. Zitzler, L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the

Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, :–, .



[] F. Boithias, M. E. Mankibi, P. Michel. Genetic Algorithms based Optimization of Artificial Neural

Network Architecture or Buildings’ Indoor Discomfort and Energy Consumption Prediction. Build-

ing Simulations, :–, .

[] F. Doin, J.-S. Chun, R. Robinson. Virtual Testbed for Assessing Probe Vehicle Data in IntelliDrive

Systems. IEEE Transactions on Intelligent Transportation Systems, .

[] F. Steinicke, T. Ropinski, K. Hinrichs. A Generic Virtual Reality Software System’s Architecture and

Application. ICAT Proceedings International Conference on Augmented Tele-Existence, pages –,

.

[] F. W. Li, R. W. Lau, F. F. Ng. VSculpt: A Distributed Virtual Sculpting Environment for Collaborative

Design. IEEE Transaction on Multimedia, :–, .

[] G. Burd. NoSQL. Whitepaper, pages –, . URL https://www.usenix.org/legacy/
publications/login/2011-10/openpdfs/Burd.pdf.

[] G. E. Horne, T. E. Meyer. Data Farming: Discovering Surprise. Winter Simulation Conference, pages

–, .

[] G. Lausen. Formal Aspects of Optimistic Concurrency Control in a Multiple Version Database Sys-

tem. Information Systems, ():–, .

[] G. N. Buckley, A. Silberschatz. Obtaining Progressive Protocols for a Simple Multiversion Database

Model. VLDB, pages –, .

[] G. van Mare, R. Germs, F. Jansen. Integrating D-GIS and Virtual Reality. Design and Implemen-

tation of the Karma VI System. th Colloquium of the Spatial Information Research Center, .

[] H. Terelius, U. Topcu, R. M Murray. Decentralized Multi-Agent Optimization via Dual Decomposi-

tion. IFACWorld Congress, .

[] IBM. DB Knowledge Center Parallel Interaction. . URL https://www.ibm.com/support/
knowledgecenter/SS9RXT_9.5.0/.

[] InnoDB. Multi-Versioning. . URL https://dev.mysql.com/doc/refman/5.7/en/
innodb-multi-versioning.html.

[] J.-A. Desideri. Multi-Gradient Descent Algorithm (MGDA) for Multiobjective Optimization.

Comptes Rendus Mathematique, :–, .

[] J. Balaram, J. Cameron, A. Jain, H. Kline, C. Lim, H. Mazhar, S. Myint, H. Nayar, R. Patton, M.

Pomerantz, M. Quadrelli, P. Shakkotai, K. Tso. Physics-Based Simulator for NEO Exploration Ana-

ysis and Modeling. AIAA Space Conference and Exposition, .

[] J. Balaram, R. Austin, P. Banarjee, T. Bentley, D. Henriquez, B. Martin, E. McMahon, G. Sohl.

DSENDS - A High Fidelity Dynamics and Spacecraft Simulator for Entry, Descent and Surface Land-

ing. IEEE Aerospace Conference, Big Sky, .

[] J. Clemens, T. Reineking, T. Kluth. An Evidential Approach to SLAM, Path Planning, and Active

Exploration. International Journal of Approximate Reasoning, .



https://www.usenix.org/legacy/publications/login/2011-10/openpdfs/Burd.pdf
https://www.usenix.org/legacy/publications/login/2011-10/openpdfs/Burd.pdf
https://www.ibm.com/support/knowledgecenter/SS9RXT_9.5.0/
https://www.ibm.com/support/knowledgecenter/SS9RXT_9.5.0/
https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html

[] J. D. Siirola, S. Hauan, A. W. Westerberg. Computing Pareto Front Using Distributed Agents. Com-

puters and Chemical Engineering, :–, .

[] J. Fliege, B. Fux Svaiter. Steepest Descent Methods for Multicriteria Optimization. Mathematical

Methods of Operations Research, :–, .

[] J. Gray. The Transaction Concept: Virtues and Limitations. th International Conference on Very

Large Data Bases (VLDB), :–, .

[] J.-H. Ryu, S. Kim, H. Wan. Pareto Front Approximation With Adaptive Weighted Sum Method in

Multiobjective Simulation Optimization. Winter Simulation Conference, pages –, .

[] J. Haist, V. Coors. The WDS-Interface of CityserverD. European Spatial Data Research: Next Gen-

eration D City Models, pages –, .

[] J. Kennedy, R. Eberhart. Particle Swarm Optimization. IEEE International Conference on Neural

Networks, pages –, .

[] J. Nocedal, S. J. Wright. Numerical Optimization. Springer Verlag, .

[] J. P. C. Kleijnen, S. M. Sanchez, T. M. Cioppa. A User’s Guide to the Brave New World of Designing

Simulation Experiments. INFORMS Journal on Computing (Summer ), :–, .

[] S. Kelly J.-P. Tolvanen, R. Pohjonen. Advanced Tooling for Domain-Specific Modeling: MetaEdit+.

Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P. (eds.)The thOOPSLAWorkshop onDomain-SpecificMod-

eling, .

[] J. Paul, A. Detmann, J. Hilljegerdes, F. Kirchner, I. Ahrns, J. Sommer. INVERITAS: A Facility for

Hardware-in-the-Loop Long Distance Movement Simulation for Rendezvous and Capture of Satel-

lites and Other Autonomous Objects. Acta Astronautica, :–, .

[] J. Rohlf, J. Helman. IRIS Performer: A High Performance Multiprocessing Toolkit for Real-Time D

Graphics. ACM SIGGRAPH, .

[] J. Rossmann, B. Sommer. The Virtual Testbed: Latest Virtual Reality Technologies for Space Robotic

Applications. International Symposium on Artificial Intelligence, Robotics and Automation in Space,

pages –, .

[] J. Rossmann, B. Sondermann, M. Emde. Virtual Testbeds for Planetary Exploration: The Self-

Localization Aspect. Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA,

pages –, .

[] J. Rossmann, M. Schluse, C. Schlette. The Virtual Forest: Robotics and Simulation Technology as the

Basis for New Approaches to the Biological and the Technical Production in the Forest. International

Journal of Systemics, Cybernetics, and Informatics (JSCI), , .

[] J. Rossmann, M. Schluse, M. Rast, L. Atorf. eRobotics: Combining Electronic Media and Simulation

Technology to Develop (Not Only) Robotics Applications. hapter in E-Systems for the st Century:

Concept, Developments, and Applications, .



[] J. Rossmann, M. Schluse, R. Waspe, M. Hoppen. Real-Time Capable Data Management Architecture

for Database-Driven D Simulation Systems. Database and Expert Systems Applications, pages  –

, .

[] J. Westra, F. Dignum, V. Dignum. Guiding User Adaptation in Serious Games. Agents for Games and

Simulations II, pages –, .

[] J. Westra, H. van Hasselt, F. Dignum. On-line Adapting Games using Agent Organizations. IEEE

Symposium on Computational Intelligence and Games, .

[] J. Westra, H. van Hasselt, V. Dignum. Adaptive Serious Games Using Agent Organizations. Theth

International Conference on Autonomous Agents and Multiagent Systems, :–, .

[] J. Yang, D. Lee. Scalable Prediction Based Concurrency Control for Distributed Virtual Environ-

ments. Virtual Reality, pages –, .

[] J. Zimmermann, C. Stark, J. Rieck. Projektplanung - Modelle, Methoden, Management. Springer

Verlag, .

[] J.B. Mouret, S. Koos, S. Doncieux. Crossing the reality gap: a short introduction to the transferabil-

ity approach. ALIFE Workshop Evolution in Physical Systems, .

[] JPL Robotics. Virtual Mars Testbed. . URL https://www-robotics.jpl.nasa.gov/tasks/
showTask.cfm?FuseAction=ShowTask&TaskID=265&tdaID=700069.

[] JPL Robotics. Mobility Testbed. . URL https://www-robotics.jpl.nasa.gov/tasks/
showTask.cfm?FuseAction=showTask&TaskID=270&tdaID=700074.

[] K. Kaku, H. Minami, T. Tomii, H. Nasu. Proposal of Virtual Space Browser Enables Retrieval and

Action with Semantics which is Shared by Multi Users. st International Conference on Data Engi-

neering Workshops (ICDEW), pages –, .

[] K. Pearson. Mathematical Contributions to the Theory of Evolution. Philosophical Transactions of

the Royal Society, :–, .

[] K. Socha, M. Kisiel-Dorohinicki. Agent-based Evolutionary Multiobjective Optimisation. IEEE Evo-

lutionary Computation, .

[] K. Socha, M. Kisiel-Dorohinicki. Agent-based Evolutionary Multiobjective Optimisation. Evolution-

ary Computation, .

[] K. Sugimura, S. Obayashi, S. Jeong. Multi-Objective Design Exploration of a Centrifugal Impeller

Accompanied With a Vaned Diffuser. ASME/JSME Joint Fluids Engineering Conference, .

[] L. Atorf, C. Schorn, C. Schlette, J. Rossmann. A Framework for Simulation-based Optimization

Demonstrated on Reconfigurable Robot Workcells. IEEE International Systems Engineering Sym-

posium (ISSE), .

[] L. Atorf, M. Schluse, J. Rossmann. Simulation-based Optimization, Reasoning and Control: The

eRobotics Approach Towards Intelligent Robots. th International Symposium on Artificial Intel-

ligence, Robotics and Automation in Space (i-SAIRAS), .



https://www-robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=ShowTask&TaskID=265&tdaID=700069
https://www-robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=ShowTask&TaskID=265&tdaID=700069
https://www-robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=showTask&TaskID=270&tdaID=700074
https://www-robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=showTask&TaskID=270&tdaID=700074

[] L. Jeff Hong, Barry L. Nelson. A Brief Introduction to Optimization via Simulation. Winter Simula-

tion Conference, .

[] C. Bernon L. Pons. A Multi-Agent System for Autonomous Control of Game Parameters. IEEE

International Conference on Systems, Man and Cybernetics (SMC), .

[] L. Siwik, M. Kisiel-Dorohinicki. Semi-elitist Evolutionary Multi-agent System for Multiobjective

Optimization. Computational Science - Lecture Notes in Computer Science, , .

[] L. Siwik, P. Sikorski. Efficient Constrained Evolutionary Multi-Agent System for Multi-objective

Optimization. IEEE Evolutionary Computation, .

[] L. Xu, J. Neufeld, B. Larson, D. Schuurmans. Maximum Margin Clustering. Advances in Neural

Information Processing Systems, :–, .

[] M. Barbatum G. Bruno, A. Genovese. Applications of Agent-based Models for Optimization Prob-

lems: A Literature Review. Expert Systems with Applications, :–, .

[] M. C. Burl, D. DeCoste, B. L. Enke, D. Mazzoni, W. J. Merline, L. Scharenbroich. Automated Knowl-

edge Discovery from Simulators. th SIAM International International Conference on Data Mining,

pages –, .

[] M. C. Fu. Optimization via Simulation: A Review. Annals of Operations Research, :–, .

[] M. Caramaia, P. Dell’Olmo. Multi-objective Management in Freight Logistics. Springer Verlag, .

[] M. Cohrs, S. Klimke, G. Zachmann. Streamlining Function-oriented Development by Consistent

Integration of Automotive Function Architectures with CAD Models. Computer-Aided Design and

Applications, :, .

[] M. E. Latoschik, H. Tramberend. Simulator X: A Scalable and Concurrent Software Platform for

Intelligent Realtime Interactive Systems. Proceedings of the IEEE VR, .

[] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. AAAI Press, pages –, .

[] M. Fischbach. Enhancing Software Quality of Multimodal Interactive Systems. PhDThesis, .

[] M. Fischbach, D. Wiebusch, M. E. Latoschik. Semantics-based Software Techniques for Maintain-

able Multimodal Input Processing in Real-time Interactive Systems. In th Workshop on Software

Engineering and Architectures for Realtime Interactive Systems (SEARIS), .

[] M. Fischbach, D. Wiebusch, M. E. Latoschik. Semantic Entity-Component State Management Tech-

niques to Enhance Software Quality for Multimodal VR-Systems. IEEE Transactions on Visualiza-

tion and Computer Graphics, Vol.  (), .

[] M. Herlihy. Wait-free Synchronization. ACM Transactions on Programming Languages and Systems,

pages –, .

[] M. Herlihy, V. Luchangco, M. Moir. Nonblocking memory management support for dynamic-sized

data structures. ACM Transactions on Computer Systems, , .



[] M. Hoppen, J. Rossmann. A Database Synchronization Approach for D Simulation Systems. th

International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA

), .

[] M. Hoppen, J. Rossmann. A Novel Distributed Database Synchronization Approach with an Appli-

cation to D Simulation. IARIA International Journal on Advances in Software, .

[] M. Hoppen, M. Schluse, J. Rossmann, B. Weitzig. Database-Driven Distributed D Simulation. Pro-

ceedings of the Winter Simulation Conference, .

[] M. Hoppen, R. Waspe, M. Rast, J. Rossmann. Distributed Information Processing and Rendering for

D Simulation Applications. International Journal of Computer Theory and Engineering (IJCTE),

.

[] M. I. Pomerantz, A. Jain, S. Myint. Dspace: Real-time D Visualization System for Spacecraft Dy-

namics Simulation. rd IEEE International Conference on Space Mission Challenges for Information

Technology (SMC-IT), .

[] M. J. Carey, W. A. Muhanna. The Performance of Multiversion Concurrency Control Algorithms.

ACM Transactions on Computer Systems (TOCS), ():–, .

[] M. Liebscher, K. Witowski, T. Goel. Decision Making in Multi-Objective Optimization for Industrial

Applications - Data Mining and Visualization of Pareto Data. th World Congress on Structural and

Multidisciplinary Optimization, .

[] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEETransactions

on Parallel and Distributed Systems, , .

[] M. Painter, M. Erraguntla, G. Hogg, B. Beachkofski. Using Simulation, Data Mining, And Knowl-

edge Discovery Techniques For Optimized Aircraft Enginee Fleet Management. Winter Simulation

Conference, pages –, .

[] M. Rohde, J. Crawford, D. A. Horner. An Interactive Physics-based Unmanned Ground Vehicle Sim-

ulator leveraging Open Source Gaming Technology: Progress in the Development and Application

of the Virtual Autonomous Navigation Environment (VANE) Desktop. Unmanned Systems Technolgy

XI SPIE, .

[] M. Rohde, M. Toschlog. Toward the Fusion of Serious Simulation and Video Games. Proceedngs of

the  Spring Simulation Multiconference, .

[] Microsoft. SQL Server Features - Snapshot Isolation in SQL Server. . URL https://msdn.
microsoft.com/en-us/library/tcbchxcb.aspx.

[] MMI Aachen. iBoss. . URL https://www.mmi.rwth-aachen.de/projekt/iboss/.

[] MMI Aachen. SELOK. . URL https://www.mmi.rwth-aachen.de/projekt/selok/.

[] MongoDB. Wired Tiger - Snapshots and Checkpoints. . URL https://docs.mongodb.com/
manual/core/wiredtiger/.



https://msdn.microsoft.com/en-us/library/tcbchxcb.aspx
https://msdn.microsoft.com/en-us/library/tcbchxcb.aspx
https://www.mmi.rwth-aachen.de/projekt/iboss/
https://www.mmi.rwth-aachen.de/projekt/selok/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/

[] N. Batra, K. Kapil. Concurrency Control Algorithms and its Variants: A Survey. AIP Conference

Proceedings, .

[] N. F. Polys, S. S. Visamsetty, P. Bhattacharjee, E. Tilevich. The Value of Patterns in Deep Media

Scenegraphs. Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), .

[] N. Feldkamp, S. Bergmann, S. Strassburger. Knowledge Discovery in Manufacturing Simulations.

ACM SIGSIM PADS, pages –, .

[] O. Wongwirat, S. Ohara. Performance Evaluation of Compromised Synchronization Control Mech-

anism for Distributed Virtual Environment. Virtual Reality, :–, .

[] P. A. Bernstein, N. Goodman. Multiversion Concurrency Control - Theory and Algorithms. ACM

Transactions on Database Systems (TODS), pages –, .

[] P. Bernstein, E. Newcomer. Principles of Transaction Processing: For the Systems Professional.

Morgan Kaufmann Publishers, .

[] P. Buttolo, R. Oboe, B. Hannaford. Architectures For Shared Haptic Virtual Environments. Comput-

ers & Graphics: Haptic Displays in Virtual Environments and Computer Graphics in Korea, :–,

.

[] P. Cheeseman, J. Stutz. Bayesian Classification (AUTOCLASS): Theory and Results. Advances in

Knowledge Discovery and Data Mining, .

[] P. Davidsson, L. Henesy, L. Ramstedt, J. Törnquist, F. Wernstedt. On the Integration of Agent-based

and Mathematical Optimization Techniques. LectureNotes inArtificial Intelligence, :–, .

[] P. Durst, M. Rohde, J. Crawford. A Real-Time, Interactive Simulation Environment for Unmanned

Ground Vehicles: The Autonomous Navigation Virtual Environment Laboratory (ANVEL). Interna-

tional Conference on Information and Computing Science (ICIC), pages –, .

[] P. Lange, A. Probst, A. Srinivas, G. Gonzalez Peytavi, C. Rachuy, A. Schattel, V. Schwarting, J.

Clemens, D. Nakath, M. Echim, G. Zachmann. Virtual Reality for Simulating Autonomous Deep-

Space Navigation and Mining. th International Conference on Artificial Reality and Telexistence

(ICAT-EGVE ), .

[] P. Lange, R. Weller, G. Zachmann. A Framework for Wait-Free Data Exchange in Massively Threaded

VR Systems. Journal of WSCG , :–, .

[] P. Lange, R. Weller, G. Zachmann. Scalable Concurrency Control for Massively Collaborative Virtual

Environments. ACMMultimedia Systems, Massively Multiuser Virtual Environments (MMVE), .

[] P. Lange, R. Weller, G. Zachmann. Multi Agent System Optimization in Virtual Vehicle Testbeds.

EAI SIMUtools, .

[] P. Lange, R. Weller, G. Zachmann. Knowledge Discovery for Pareto based Multiobjective Optimiza-

tion in Simulation. ACM SIGSIM PADS, .

[] P. Lange, R. Weller, G. Zachmann. GraphPool: A High Performance Data Management for D Sim-

ulations. ACM SIGSIM Conference on Principles of Advanved Discrete Simulations (PADS), .



[] P. Lange, R. Weller, G. Zachmann. Wait-Free Hash Maps in the Entity-Component-System Pattern

for Realtime Interactive Systems. IEEE VR th Workshop on Software Engineering and Architectures

for Realtime Interactive Systems (SEARIS), .

[] P. Lange, R. Weller, G. Zachmann. GDS: Gradient Based Density Spline Surfaces for Multiobjective

Optimization in Arbitrary Simulations. ACM SIGSIM PADS, .

[] P. M. Bober, M. J. Carey. Multiversion Query Locking. University of Wisconsin-Madison, .

[] P. M. Bober, M. J. Carey. On Mixing Queries and Transactions via Multiversion Locking. IEEE th

International Conference on Data Engineering, .

[] P. M. Duvall, S. Matyas, A. Glover. Continuous Integration: Improving Software Quality and Reduc-

ing Risk. Pearson Education, Boston, .

[] P. Stellwag, A. Ditter, W. Schröder-Preikschat. A Wait-Free Queue for Multiple Enqueuers and Mul-

tiple Dequeuers Using Local Preferences and Pragmatic Extensions. In Proceedings IEEE Symposium

on Industrial Embedded Systems, pages –, .

[] PostgreSQL. Version ..: Multi-Version Concurrency Control. . URL https://www.
postgresql.org/docs/7.1/static/mvcc.html.

[] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, I. Verkamo. Fast Discovery of Association Rules.

Advances in Knowledge Discovery and Data Mining, –, .

[] R. Agrawal, T. Imielinski, A. Swami. Mining Association Rules between Sets of Items in Large

Databases. ACM SIGMOD Conference, .

[] R. Drezewski, L. Siwik. Multi-objective Optimization Using Co-evolutionary Multi-agent System

with Host-Parasite Mechanism. Computational Science - Lecture Notes in Computer Science, ,

.

[] R. Drezewski, L. Siwik. Multi-objective Optimization Technique Based on Co-evolutionary Interac-

tions in Multi-agent System. Workshops onApplications onEvolutionaryComputation, pages –,

.

[] R. Drezewski, L. Siwik. Agent-Based Co-Evolutionary Techniques for Solving Multi-Objective Opti-

mization Problems. Advances in Evolutionary Algorithms, .

[] R. Elvins, P. Pointer, R. Vaidyanathan, S. Burgess. A Case Study Exploring Regulated Energy Use in

Domestic Buildings using Design-of-Experiments and Multi-objective Optimisation. Building and

Environment, :–, .

[] R. Pasupathy. SimOpt: A Library of Simulation Optimization Problems. Winter Simulation Confer-

ence, pages –, .

[] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, J. Sabarinathan. Java runtime systems: Charac-

terization and architectural implications. IEEE Transactions on Computers, :–, .



https://www.postgresql.org/docs/7.1/static/mvcc.html
https://www.postgresql.org/docs/7.1/static/mvcc.html

[] R. V. Tappeta, J. E. Renaud. An Interactive Multiobjective Optimization Design Strategy for Decision

Based Multidisciplinary Design. th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference and Exhibit, pages –, .

[] R. Zembowicz, J. Zytkow. From Contingency Tables to Various Forms of Knowledge in Databases.

Advances in Knowledge Discovery and Data Mining, –, .

[] S. A. Kalogirou. Optimization of Solar Systems using Artificial Neural Networks and Genetic Algo-

rithms. Applied Energy, :–, .

[] S. Bandaru, K. Deb. Automated discovery of vital knowledge from Pareto-optimal solutions: First

results from engineering design. IEEE Congress on Evolutionary Computation (CEC), pages –, .

[] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb. A Simulated Annealing-Based Multiobjective Opti-

mization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, :–, .

[] S. Carcangiu, A. Fanni, A. Montisci. Multi-Objective Optimization Methods Based on Artificial

Neural Networks. Search Algorithms and Applications, .

[] S. Feldmann, P. LaBorde, D. Dechev. Concurrent Multi-level Arrays: Wait-free Extensible Hash

Maps. International Conference on Embedded ComputEntityr Systems: Architectures, Modelling, and

Simulation (SAMOS XIII), .

[] S. Julier, y. Baillot, M. Lanzagorta, D. Brown, L. Rosenblum. BARS: Battlefield Augmented Reality

System. NATO Symposium on Information Processing Techniques for Military Systems, pages  – ,

.

[] J.-P. Tolvanen S. Kelly. Domain-specific modelling: enabling full code generation. John Wiley and

Sons, .

[] S. Kumar, M. Baseer, S. S. Bhowmick. A Multi-Version Transaction Model to Improve Data Availabil-

ity in Mobile Computing. OTM Confederated International Conferences - On the Move to Meaningful

Internet Systems, pages –, .

[] S. M. Sanchez. Simulation Experiments: Better Data, Not Just Big Data. Winter Simulation Confer-

ence, pages –, .

[] S. Muro, T. Kameda, T. Minoura. Multi-version Concurrency Control Scheme for a Database System.

Journal of Computer and System Sciences, ():–, .

[] S. Nolfi, D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Technology. MIT Press

Cambridge, .

[] S. Rehfeld, H. Tramberend, M. E. Latoschik. An Actor-based Distribution Model for Realtime In-

teractive Systems. Software Engineering and Architectures for Realtime Interactive Systems (SEARIS),

.

[] S. Rehfeld, M. E. Latoschik. A Comparison of Parallelization Methods for Data Flow Networks.

Software Engineering andArchitectures for Realtime Interactive Systems SEARIS, proceedings of the IEEE

Virtual Reality  workshop, .



[] S. Rehfeld, M. E. Latoschik, H. Tramberend. Estimating latency and concurrency of Asynchronous

Real-Time Interactive Systems using Model Checking. IEEE Virtual Reality (IEEE VR), .

[] S. Robinson. Simulation: The Practice of Model Development and Use. JohnWiley and Sons, .

[] S. Shan, G. G. Wang. An Efficient Pareto Set Identification Approach for Multiobjective Optimization

on Black-box Functions. Journal of Mechanical Design , :–, .

[] S. T. Enns, P. Suwanruji. A Simulation Testbed for Production and Supply Chain Modeling. Winter

Simulation Conference, .

[] S. Timnat, A. Braginsky, E. Petrank. Wait-Free Linked-Lists. ACM SIGPLAN symposium on Principles

and Practice of Parallel Programming, pages –, .

[] T. Binh, U. Korn. An Evolution Strategy for the Multiobjective Optimization. nd International

Conference on Genetic Algorithms, pages –, .

[] T. E. Hart, P. E. McKenney, A. D. Brown, J. Walpole. Performance of memory reclamation for lockless

synchronization. Journal of Parallel and Distributed Computing, , .

[] T. Feldmann, M. Kavakli. VaiR: System Architecture of a Generic Virtual Reality Engine. Computa-

tional Intelligence forModelling, Control andAutomation - International Conference on IntelligentAgents,

Web Technologies and Internet Commerce, :–, .

[] T. Härder, A. Reuter. Principles of Transaction-Oriented Database Recovery. ACMComputingSurveys

(CSUR), ():–, .

[] T. Knott, B. Weyers, B. Hentschel, T. Kuhlen. Data-flow Oriented Software Framework for the Devel-

opment of Haptic-enabled Physics Simulations. Software Engineering and Architectures for Realtime

Interactive Systems (SEARIS), .

[] T. L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In Proceedings of the th

International Conference on Distributed Computing, pages –, .

[] T. Manoharan, H. Taylor, P. Gardiner. A Collaborative Analysis Tool for Visualisation And Interaction

With Spatial Data. Proceedings of the Seveneth International Conference on DWeb Technology, pages

 – , .

[] T. Merrifield, J. Eriksson. Conversion: Multi-Version Concurrency Control for Main Memory Seg-

ments. th ACM European Conference on Computer Systems, pages –, .

[] T. Neumann, T. Mühlbauer, A. Kemper. Fast Serializable Multi-Version Concurrency Control for

Main-Memory Database Systems. ACM International Conference on Management of Data (SIGMOD),

pages –, .

[] T. R. Brooks, J. R. R. Martins, G. J. Kennedy. High-fidelity Multipoint Aerostructural Optimiza-

tion of a High Aspect Ratio Tow-steered Composite Wing. th AIAA/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, .

[] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From Data Mining to Knowledge Discovery in Databases.

AI Magazine (Fall ), :–, .



	I Virtual Testbeds: Challenges and Thesis Contributions
	Introduction
	Motivation and Challenges
	The Integration Challenge
	The Workflow Challenge
	Requirements

	Thesis Goal
	Overview and Summary of Contributions
	Wait-Free Data and Concurrency Management for Massively Parallel Virtual Testbeds
	Generative Concepts for ECS based Virtual Testbeds
	Data Mining Algorithms for Simulation based Optimization in Virtual Testbeds
	Multi-Agent System for Massively Parallel Optimization

	Brief Overview of Techniques for Data Management and Analysis, and Simulation based Optimization
	Data Management: Concurrency Control in Realtime Interactive Systems
	Multiversion Concurrency Control

	Simulation based Multiobjective Optimization
	The Simulation based Optimization Process
	Multiobjective Optimization

	Knowledge Discovery Processes and Data Mining
	Data Mining

	II Wait-Free Data and Concurrency Management Enabling Massively Parallel Virtual Testbeds
	Wait-Free Data and Concurrency Management
	Related Work
	Data Management in Virtual Reality Systems
	Data Management in Virtual Testbeds

	Hash Map based Data Management
	Global Atomic Markers: Single Producer, Multiple Consumer
	Local Atomic Markers: Multiple Producer, Multiple Consumer
	Graph based Nested Hash Maps
	Property Graph Model for Nested Hash Maps
	Relational Core & Aggregate Queries
	Wait-Free Caching

	Applications
	Results
	Global Atomic Marker Concept
	Local Atomic Marker Concept
	Graph based Nested Hash Map

	Concepts for Generative Virtual Testbeds
	Related Work
	Wait-Free Hash Maps for the Entity-Component-System Pattern
	The Entity-Component-System Pattern
	Integration of Wait-Free Hash Maps
	Memory Management of Wait-Free Hash Maps

	Domain Specific Modelling for ECS based Virtual Testbeds
	Domain Framework and Dataflow
	Domain Specific Modelling Language
	Code Generation
	Model Validation

	Results
	Best Practices

	III Algorithms and Concepts for Blackbox Optimization in Virtual Testbed Simulations
	Data Mining Algorithms for Pareto based Multiobjective Optimization
	Related Work
	Process Overview
	Unveiling Hidden Relationships: Forest based Association Rule Mining
	Approximating Unknown Objective Functions
	Relationship Definition
	Density Splines
	Gradient Sampling
	Recursive Correlation Analysis

	Multiobjective Optimization
	Use Case Studies
	Spaceflight Orbit Optimization
	Lotka-Volterra Optimization

	Results

	Multi-Agent System based Multiobjective Optimization
	Related Work
	Overview of Approach
	Parameters, Objectives and Utilities
	Solving Process Principle
	Use Case Study: Spacecraft Landing Scenario
	Results
	Spacecraft Landing Scenario
	Multiobjective Optimization

	IV Crossroads
	Epilogue
	Summary
	Future Work
	Wait-Free Data and Concurrency Management for Massively Parallel Realtime Interactive Systems
	Knowledge Discovery Processes for Blackbox Simulations
	Application to Robotics and Evaluating the Reality Gap

	V Appendix
	Publications and Awards
	Glossary
	Bibliography

