

Fast and Robust Registration of Multiple Depth-Sensors and Virtual Worlds

Andre Mühlenbrock, Roland Fischer, René Weller, Gabriel Zachmann
University of Bremen, Germany

muehlenb@uni-bremen.de

Cyberworlds 2021 28-30 November, Caen, France

Motivation

- Capturing a point cloud of a scene might require multiple depth sensors
 - Due to occlusions, capture volume, etc.
- Results in unregistered point clouds
- To merge the point clouds, a registration (= extrinsic calibration) is required

Previous Work

- Usually color- or IR-images are used to detect a registration target.
- Not applicable, if:
 - Color or IR image not available.
 - Different projections are used.
 - E.g. Orbbec sensors [Reyes-Aviles 20]
 - Therefore, our approach only relies on the depth image.

Our Approach

- We designed:
 - 1. A lattice as registration target which is visible in the depth image.
 - 2. An algorithm which robustly detects this lattice and it's unique feature points in the depth image only.
 - > We use hole centers as feature points

- 1. Identify the region of the lattice
- Feature point recognition and lattice pose estimation
- 3. Unique hole center identification
- 4. Extrinsic calibration

1. Identify the region of the lattice

- 1. Identify the region of the lattice
- 2. Feature point recognition and lattice pose estimation
- 3. Unique hole center identification
- 4. Extrinsic calibration

8

2. Feature point recognition and lattice pose estimation

2. Feature point recognition and lattice pose estimation

13

Create proximity graph on hole centers

14

Edges sorted by their angle they subtend with the x-axis

Introduction Previous Work **Details** Conclusion Overview Results 16

18

19

Introduction Previous Work **Details** Conclusion Overview Results 22

Introduction Previous Work **Details** Conclusion Overview Results 23

25

26

27

2. Feature point recognition and lattice pose estimation

- 1. Identify the region of the lattice
- 2. Feature point recognition and lattice pose estimation
- 3. Unique hole center identification
- 4. Extrinsic calibration

30

3. Unique hole center identification

- 1. Identify the region of the lattice
- 2. Feature point recognition and lattice pose estimation
- 3. Unique hole center identification
- 4. Extrinsic calibration

32

4. Extrinsic estimation

Video

W Virtual World Registration

- Register point cloud into virtual world (for use with HMD)
 - Cast shadow by real geometry in VR.
 - Point cloud avatars.

W Virtual World Registration

- Requires correspondence points both between World Space and Camera Space:
 - Use Motion Controllers to estimate lattice pose in WS
 - Use lattice for CS

Results

36

- Method:
 - Azure Kinect as depth sensor.
 - Optitrack for ground truth measure.
 - High precision optical tracking (accuracy of ≈0.7mm in our case)
 - Details: See paper.

Optitrack markers

Results

- Registration into Ground Truth CS:
 - Mean registration deviation about
 3.8 mm to 4.4 mm
 - Below expected error: > 10 mm
- Rotational stability:
 - Lattice was detected in a range of approx [-55°, 55°]

Results

- Robustness:
 - Precision: > **0.99**
- Runtime:
 - AVG: ≈ 21 ms per sensor (Single core)
 - Depends on distance between lattice and sensor.
- See paper for more informations

Conclusion

- Registration procedure requiring only depth images
- Fast (avg. 21 ms per sensor)
- Very robust and precise (≈ 4 mm)
- Further work:
 - Registration between RGB- and Depth-Sensor
 - Integrate with time synchronization [Beck et al. 2017]

Thank you for your attention!

