
Robustness of Eye Movement Biometrics
Against Varying Stimuli and Varying Trajectory Length

Christoph Schröder ∗
University of Bremen

Bremen, Germany
schroeder.c@cs.uni-bremen.de

Sahar Mahdie Klim Al
Zaidawi ∗

University of Bremen
Bremen, Germany

saharmah@cs.uni-bremen.de

Martin H.U. Prinzler
University of Bremen

Bremen, Germany
martin.prinzler@cs.uni-

bremen.de

Sebastian Maneth
University of Bremen

Bremen, Germany
maneth@cs.uni-bremen.de

Gabriel Zachmann
University of Bremen

Bremen, Germany
zach@cs.uni-bremen.de

ABSTRACT
Recent results suggest that biometric identification based on
human’s eye movement characteristics can be used for authen-
tication. In this paper, we present three new methods and
benchmark them against the state-of-the-art. The best of our
new methods improves the state-of-the-art performance by
5.2percentage points. Furthermore, we investigate some of
the factors that affect the robustness of the recognition rate of
different classifiers on gaze trajectories, such as the type of
stimulus and the tracking trajectory length. We find that the
state-of-the-art method only works well when using the same
stimulus for testing that was used for training. By contrast,
our novel method more than doubles the identification accu-
racy for these transfer cases. Furthermore, we find that with
only 90 seconds of eye tracking data, 86.7% accuracy can be
achieved.

Author Keywords
eye tracking; gaze detection; eye movement biometrics

CCS Concepts
•Security and privacy → Biometrics; •Human-centered
computing→ User models; •Computing methodologies→
Classification and regression trees;

INTRODUCTION
It has been observed that eye movements can be used as bio-
metrics, i.e., as a way to identify a person within a larger
pool of persons. This identification enables not only access
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control to secret information but also to tailor the user expe-
rience for each user. Especially in scenarios where the user
wears an HMD, and therefore only the user’s eyes are visible
to cameras, gaze tracking biometrics can deliver a continu-
ous identification. Principled research on this topic started
about 15 years ago with the seminal paper by Kasprowski and
Ober [17]. Since then, vast improvements on the accuracy
of eye movement biometrics have been achieved, which have
been facilitated by the continuous creation of high-quality
datasets (many of which are publicly available), and by the
application of current methods from statistics and machine
learning.

In order to better compare the various existing methods for
eye movement biometrics, a competition series has been
set up in 2012 [16]. The most recent competition is Bio-
Eye 2015 [23], which evaluated competitors using two differ-
ent datasets: in the TEX dataset, participants read a complex
poem presented on a monitor; in the RAN dataset, participants
observed a randomly moving dot on the screen, see Fig. 1 for
two examples. Competitors could train their models on subsets
of the datasets; then, during the actual competition, their mod-
els/methods were evaluated on hitherto unseen samples (but
the same stimulus). We feel it is important to note that, during
the evaluation, they also knew the dataset to which each given
test sample belonged to (TEX or RAN). Thus, predictions are,
strictly speaking, stimulus-dependent (aka. task-dependent [19,
5]).

It should be noted that the two types of stimuli used in the con-
test, TEX, and RAN, are very different in nature. TEX relies
on reading a poem, i.e., on a highly cognitive activity, while
RAN relies more on a “hunter’s task” of following a target (see
also Friedman et al. [7] for this and related aspects). In our
experience, classifiers that are trained on eye tracking trajecto-
ries obtained with one specific task (e.g., reading text) perform
much worse when classifying trajectories obtained with a very
different task (e.g., following a random dot). This kind of ap-
plication of classifiers is called stimulus-independent. We will
call such scenarios strongly task-independent classification.



By contrast, when training is performed on eye tracking data
obtained from participants watching several images, and the
evaluation is done using similar, but different images, we call
this weakly task-independent classification.

While some applications of eye tracking biometrics will be in
weakly task-independent settings, we believe that many appli-
cations will present strongly task-independent settings, yet the
identification has to be as frictionless as possible. Therefore,
stimulus independence is an important property.

Stimulus-independence in general machine learning is diffi-
cult to achieve and active reasearch [15]. In gaze biometrics,
though, both training and testing stimuli are not fed directly
into the classifier. Instead, the user observes the stimulus,
and the algorithm works on the gaze trajectory as a common
modality. One question we address in this work is how much
this abstraction of the stimulus helps overcome the mentioned
difficulties.

To our knowledge, the degree to which classification perfor-
mance depends on the degree of task-independence (weak or
strong) has not been investigated yet. Also, other effects im-
portant for real-world applications, such as trajectory length,
have not been investigated much.

Our main contributions in this paper are:

• We present two extensions of the method by George and
Routray [10], which is, to our knowledge, the best classi-
fier, at least for weakly task-independent scenarios. One
extension uses more features; the other one uses a different
classifier. In total, we evaluate and compare four different
methods in this paper.

• To the best of our knowledge, we are the first to compare the
stimulus-agnostic performance of gaze biometrics methods
(i.e., different training/testing stimulus types), which is im-
portant for potential real-world application of eye tracking
biometrics.

• As a third major contribution, we analyze the effect of
different tracking lengths on classification performance.

• We make an exact re-implementation of the method by
George and Routray and all our methods publicly avail-
able as python module (https://cgvr.cs.uni-bremen.de/
research/smida_ml/).

RELATED WORK
There is a large body of literature on eye movement biometrics,
see, e.g., recent surveys [8, 6, 23, 9], which give a good
overview. Here, we restrict our attention to work that is directly
related or comparable to our approach.

Each of the seven participants of the BioEye 2015 competition
computes a set of features from the eye tracking trajectories
and then use some statistical or machine learning technique
to carry out the classification (see Table 5 in [23]). Indeed,
the winners of the competition, George and Routray, use the
largest number of features when compared to the other par-
ticipants. Kinnunen et al. [19] study task-independent person
authentication using eye movement signals. Their approach

Figure 1: Participants 80 (left column) and 307 (right) reading
a text from the TEX dataset (top row) and looking at random
dots from the RAN dataset (bottom row).

is inspired by their earlier work on text-independent speaker
recognition [18]. They first train a Gaussian mixture model
(GMM), called the “universal background model,” from a
very large set of samples. Each person is then modeled by
a GMM that is an interpolation between the universal back-
ground model and the observed user data. Their experimental
results are rather preliminary with error rates between 29%
and 47% (for a dataset with 17 users). Darwish [5] also in-
vestigates task-independent biometric identification based on
eye movements (see also [4]). They present two different im-
ages to 17 participants (with no specific task), each image for
20 seconds. Using random forests over a small set of features
they obtain a precision of 37%. Combining the eye movement
data with iris features, they obtain a precision of 79%.

Pfeuffer et al. [22] compare different behavioral features to
identify users in VR. For eye tracking they differentiate be-
tween 18 users. They use 8 angular features with a Support
Vector Machine and a Random Forests classifier. Their view
based features that include eye tracking achieve an accuracy
of 24%.

APPLIED METHODS
We use the Velocity Threshold (I-VT) algorithm [24] to seg-
ment each eye movement recording into a sequence of fixa-
tions and saccades, which is used in many works, for instance,
in [12, 13, 20]. In order to replicate the results of George and
Routray [10], we use the version of I-VT from their paper, and
the same parameters as mentioned in their paper.

Radial Basis Function Networks
Here, we give a short recap of the Radial Basis Function
Networks [3], which is used by George and Routray [10].
The proposed network consists of a fully connected, hidden
layer (after the input layer) with C ·K neurons, where C is
the number of classes and K is a hyperparameter. A so-called
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radial basis function activates each neuron in the hidden layer:

ϕ(x) = e−β‖x−µ‖2 with β =
1

2σ2

where µ and σ are found for all neurons with a training proce-
dure as follows. Their class labels partition all training data
X . For each subset Xc, c = class ID, we generate K seed vec-
tors µc,i, i = 1, . . . ,K, using k-means clustering. These cluster
centers are the mean of all elements from Xc that belong to
the corresponding cluster. Then, σc,i is computed as the mean
Euclidean distance of all elements in each cluster i to µc,i.
We weigh the output vector from the hidden layer ϕ(x) with
length K ·C in a fully connected way to produce a prediction
vector y of length of C. The weights matrix W has a dimension
of K ·C×C. During the training, W can be learned either by
gradient descent or using the Moore-Penrose pseudoinverse
to minimize the least squares error between the output vector
and the one-hot encoding of the training labels. Before the
actual training, we perform normalization on all the features:
for each feature, we compute the mean and standard deviation
over the training dataset; then, we subtract the mean from that
feature and divide by the stddev in the whole dataset. This
ensures that each feature’s values are in the same range and,
therefore, contributed equally to the classification.

Random Decision Forests
Random Decision Forests are a powerful and universal classifi-
cation method [2], combining multiple decision trees as weak
classifiers and use bagging [1] and random subspaces [11] for
training. The randomness avoids the training to get stuck at a
local minimum, which improves the predictive accuracy and
controls over-fitting.

State-of-the-Art Eye Movement Biometrics
To the best of our knowledge, the method proposed by George
and Routray [10] is currently the best performing method for
eye movement biometrics. Their method (“RBFN”) works as
follows: Gaze trajectories are encoded as a list of x and y gaze
angles. They use the I-VT algorithm to split each trajectory
into sequences of saccades and fixations. For saccades and fix-
ations, they extract different features respectively and train two
independent classifiers. For these classifiers, each saccade or
fixation is one training sample with the trajectory’s participant
as the label. After training, for the class prediction of a tra-
jectory, they split the trajectory and obtain the corresponding
features as it was done during the training. The classifiers pro-
duce two lists of class probabilities, which they average into
one vector with one prediction probability per class. From this
vector, they choose the class with the maximum probability as
the prediction for the trajectory.

As classifiers they use radial base function networks. They set
K = 32 and estimate the weight matrix W by calculating the
Moore-Penrose pseudoinverse as in the original paper.

NEW METHODS
In our work, we propose a new method (“RDF”) that is sim-
ilar to RBFN. Instead of radial base function networks we
use Random Decision Forest. From the randomness, we ex-
pect RDF to generalize better than RBFN. Further, Random

Decision Forests are inherently parallel and therefore fast to
train, they have an excellent baseline performance without
hyperparameter tuning, and their successful use in all kinds
of application domains attests a powerful performance. We
use precisely the same features as for RBFN and the same
protocol for evaluation. While Random Decision Forests de-
pend on several parameters, such as the number of trees, the
number of features considered at each split, the maximum tree
depth, and others, we found by preliminary experiments that
most of the default parameters from the scikit-learn software
package [21] work very well (no limit to the maximum tree
depth, at least two samples per split, consider

√
F features at

each split, where F is the length of the feature vector). The
only parameter we choose ourselves is the number of trees,
which we set to 400 for all our experiments.

Additionally, we propose two further methods (“RBFN-all”
and “RDF-all”). These work, as described above, with the
only difference that more features are added. Those features
are mentioned by George and Routray [10], but not used (they
are certain statistical features indicated with an “N” in Table 2
of that paper). We question the reason for this omission and
thus evaluate both classifiers with all features as well. We
suspect that the individual features do not add much to the
classification accuracy, whereas the combination of all features
can increase the performance.

EXPERIMENTS
In this section, we describe our two experiments. First, we
replicate the results by George and Routray [10], where they
identify individuals from the BioEye 2015 dataset. Here, we
extend their results by changing their feature selection and
their classifier. We show how the variants perform when stim-
uli are varied, i.e., we train on TEX and test on RAN, and
vice versa. Second, on the MIT dataset, we analyze how the
classification accuracy depends on the number of training data
as well as the amount of testing data used.

Datasets
The first dataset in our experiments is from the BioEye 2015
competition [23]1. The second dataset is the MIT dataset [14]2

The BioEye 2015 dataset contains data for two different stim-
uli, obtained from 153 participants, whose task was (1) to
read a poem, and (2) to observe a randomly moving dot. For
stimulus 1, there are two 60 second recordings per participant.
For stimulus 2, there are again two recordings, each of length
100 seconds. All sessions were recorded with an EyeLink-
1000 eye-tracker (1000 Hz) but provided with 250 Hz. The
participants comprise of males and females between the ages
of 18 and 46. During the recordings, each subject was posi-
tioned at a distance of 550 mm from a computer screen of size
474 x 297 mm and screen resolution of 1680 x 1050 pixels.
The head of the subjects was stabilized with the help of a chin
rest to mitigate the potential eye tracking artifacts caused by
significant head movements.

1The data was kindly provided to us by Oleg Komogortsev.
2As of this writing, it can be obtained from http://saliency.mit.
edu/datasets.html.
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The MIT dataset has 15 participants (male and female, aged
18 to 35). Each participant was recorded when looking at an
image for 3 seconds, for a total of 1003 images per participant
(with a 1-second gray screen between images). The images
where views on a 19-inch computer screen (with resolution
1280 x 1024) in a dark room and using a chin rest, situated at
a distance of approximately two feet from the screen. An ETL
400 ISCAN eye-tracker was used (240 Hz).

Metric
In our evaluation, we report classification accuracy (the num-
ber of correct classifications divided by test cases). Accuracy
allows easy comparison to the baseline of change. It is valid in
all our test cases, as in all our evaluations, we have balanced
class distributions. Further, it allows us to directly compare
our results to not only state of the art but all relevant methods
mentioned in related work. When we compare accuracies, we
report the absolute difference in percentage points (pp.). The
absolute difference is more intuitive and makes it easier to
compare gains in different ranges. For example, we report that
the accuracy between 5 % and 20 % has increased by 15 pp. in
contrast to 400 %.

Experiments on the BioEye 2015 Dataset
In our first experiment, we replicate the results from George
and Routray [10]. As the original code was not published and
is no longer available from the authors, we re-implement the
RBFN classifier.

From the BioEye dataset, we use one of the two provided
sessions from each participant for training and the other one
for evaluation. Thereby, we follow the procedure described by
George and Routray [10] and avoid biasing the evaluation with
data from the same sample. From our tests, we determined
that George and Routray must have used session 2 for training
and session 1 for testing.

Further, we repeat the same evaluation with our RDF method.
We hypothesize that RDF performs equally well or better than
RBFN. We base this assumption on the fact that Random
Decision Forests are generally scale-invariant and, due to their
randomness, generalize well.

The competition only evaluates the algorithm on one kind of
stimulus at a time. We add another evaluation where we train
both, RBFN and RDF classifiers on the poem and evaluate
them on the random dot test data and vice versa. Our question
is, whether the classifier learns task-specific or independent
features.

Experiments on the MIT Dataset
For real-world applications of gaze biometrics, it is relevant to
estimate the amount of trajectory data that is needed per user
for a reliable identification. With our second experiment, we
investigate how many segments of an eye tracking trajectory
is needed to identify individual participants. We consider both
the amount of training data and how much test data is required.
Since the BioEye dataset does not contain enough data to vary
the amount of training and test data in a meaningful way, we
use the much larger MIT dataset for this experiment. With
more than 50 minutes of gaze data per participant, we vary the

Ran Tex Tex⇒Ran Ran⇒Tex

RDF 84.3 81.7 14.4 5.2
RBFN 88.9 85.0 5.2 4.6
RDF-all 90.9 85.6 23.5 7.8
RBFN-all 94.1 90.8 11.8 14.4

Table 1: Accuracy of different classifiers and different cases
in percent. Columns with arrows (⇒) denote transfer cases;
columns without arrows use the same dataset for training and
testing.

amount of data used for training and testing as follows. We
will call the tracking data that was obtained while a participant
was looking at one image a sample. To vary the amount of
training data, we use segments from multiple samples of each
participant. In the evaluation, we average the class probability
predictions from multiple test samples.

We investigate the performance of all four different classifiers
with a varying number of samples used for training. In the first
scenario, we fix the number of testing samples per participant
to 30. This is equal to 90 seconds of continuous trajectory
and therefore is similar to the training data from the BioEye
dataset (60 and 100 seconds for RAN and TEX, respectively).
At the same time, we vary the number of training samples up
to 700.

In the second scenario, we fix the number of training samples
per participant. Again, we choose 30 samples for the same
reason as above. Here, we limit the maximum number of test
images to 300, as initial tests indicated not much difference
when using more.

To test the robustness of our evaluation, we repeat all experi-
ments 5 times on a random subset of the dataset and thereby
get a mean accuracy as well as standard deviation. In all exper-
iments, the hyperparameters of the classifiers were the same.
Only for the tests with less than 30 training samples, we had
to reduce parameter K for RBFN since the k-means clustering
can only return as many clusters as there are training samples.
We choose K equal to the number of training samples for less
than 20 samples and K = 32 for 20 samples and more.

RESULTS

Task-Independence
First, we verify our re-implementation of the RBFN algorithm
from George and Routray [10] with the same configuration
and on the same part of the BioEye dataset. We obtain exactly
the same results as the original paper (see Section 5.3):3 the
deviation between ours and their results is at most 1% for both
datasets; for the TEX stimulus, our implementation achieves
an accuracy of 84.97%, while the authors report 85.62%. On
the RAN stimulus, we achieve 88.89% accuracy while they re-
port 89.54%. We attribute the variation of less than 1% to the
different seeds used for the k-means clustering and numerical
instabilities in the calculation of the pseudo-inverse.
3We can only compare our results to Table 5 in [10] and not the
competition summary [23], as we do not have access to the evaluation
data.
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Figure 2: Accuracy of different methods, by number of training images (left) and by the number of testing images (right). The
number of testing or training images is fixed to 30, respectively. The lines mark the methods’ mean values.

We then replace the RBFN by an RDF, while using exactly the
same features in the BioEye dataset. This causes the accuracy
to drop by 4.6pp. for RAN, and by 3.3pp. for TEX.

In contrast to George and Routray [10], we find that the perfor-
mance of both RBFN and RDF with the complete feature set
(RBFN-all and RDF-all in Section 5.3) are better than with
the restricted feature set used in the original paper. On average,
the accuracy of RBFN increases by 5.6pp. and for RDF by
5.2pp.

For all previous experiments, the training and testing stimulus
were the same, either both text or both random dots. When we
train on the trajectories from the TEX stimulus and evaluate
the performance on RAN, the accuracy drops significantly.
The baseline method drops from 85% to 5.2%, and RDF from
81.7% to 14.4%. When we train on RAN and evaluate on
TEX, the accuracy drops even more, from 88.9% to 4.6% for
RBFN and from 84.3% to 5.2% for RDF. RDF has the highest
performance in this setting with 23.5% accuracy, where it is
trained on TEX and evaluated on RAN. Training on RAN and
evaluating on TEX works better with RBFN where it achieves
14.4% accuracy compared to 7.8% with RDF.

Relationship between trajectory length and robustness
When we vary the number of training samples but fix the
number of samples for testing to 30, we see that accuracy
increases in general (see Fig. 2, upper). With 30 training
images, RBFN with all features performs best with an average
accuracy and standard derivation of 86.67%(4.71) over the 5
runs with randomly selected sample subsets. With 300 training
samples, RDF, both with the full feature set as well as with
the smaller subset, starts to outperform both RBFN methods.
Here, RDF with all features has an accuracy of 94.67%(5.58)
in our experiments.

Similarly to the previous experiment, when we use an in-
creasing number of samples for testing, but fix the number
of training samples to 30, we see that the performance of all

methods increases (see Fig. 2, lower). For all methods except
RBFN with the limited features, the performance does not
increase with more than 40 test samples.

While we only show plots for 30 training and testing samples,
we also analyzed the other combinations. The general form of
the curves is the same – only the accuracy increase with more
training samples.

DISCUSSION
Our results show that none of the tested methods is strongly
task-independent. Learning on one type of stimulus does not
lead to a reasonable identification rate on a different type of
stimulus. Remarkably, the transfer (if any) is highly non-
symmetric for RDF: For instance, when training on TEX and
evaluating on RAN, the classification performance is three
times as high as vice versa. By contrast, the transfer perfor-
mance of RBFN is nearly symmetric, albeit pretty bad too.
This finding could suggest further avenues for research on the
transfer performance of classifiers.

Our findings also suggest that random stimuli lead to more
user-specific eye movements, which results in higher accuracy.
In all our tests, when training on RAN and evaluating on RAN
the classification performance is better than when training on
TEX and evaluating on TEX.

Regarding the transfer case, our initial assumption was
that the RAN⇒TEX performance would be better than the
TEX⇒RAN performance, because the simple RAN case per-
formed better than the simple TEX case. Surprisingly, when
training on TEX and evaluating on RAN, the performance is
better than the other way around, at least when using the RDF
classifiers.

In all our experiments, the models using all features clearly
win, both for weakly and strongly task-independent classi-
fications. This is surprising since George and Routray [10]
performed a special feature selection step. Also, using 100-



fold cross-validation on a subset of 50 participants, we find
that the standard deviation of all methods varies by 0.76pp. on
average. Thus, our findings suggest that while adding single
features does not contribute much to the performance of the
model, the combination of several weak features improves the
accuracy a lot.

Regarding the trajectory length needed for gaze based user
identification, our results suggest that only 120 seconds of
trajectory data for testing is necessary for the maximum iden-
tification rate. At the same time, more training data generally
increases the accuracy. Even though the RBFN methods work
well with fewer training samples, their performance is worse
than the RDF methods with more than 200 training samples.
Even with only 90 seconds of trajectory for training and evalu-
ation, the accuracy already is at 86.7%. This short application
time enables the use of gaze biometrics in continuous identifi-
cation scenarios.

In all non-transfer cases, the RBFN classifier performs slightly
better than RDF. For the transfer cases, there is no clear winner;
in two scenarios, RDF performs better than RDF and vice
versa in the other two scenarios. However, the mean accuracy
of RDF overall transfer cases is 3.8pp. higher than the mean
accuracy of RBFN. We found anecdotal evidence that small
perform gains could be achieved by more extensive hyper-
parameter tuning.

CONCLUSION
In this work, we have investigated the performance of three
new methods and compared their performance to the state-of-
the-art regarding their robustness against varying stimuli and
trajectory length.

The best of our new methods improves the state-of-the-art per-
formance by 5.2pp. for a common dataset with equal training
and evaluation tasks. Furthermore, we evaluate and compare
the four methods on a popular dataset that has never been used
for gaze biometrics before. We find that when training and
evaluation are done weakly task-independent on this dataset,
our method achieves 86.7% accuracy with only 30+30 sam-
ples (trainging+testing), each 3 seconds duration. With 300
training samples, our methods can achieve even 94.7%.

None of the tested methods is capable of strong task-
independent user identification. Especially, our results suggest
that transfer learning is highly non-symmetric. Training on
text and evaluating on random dots performs three times better
than the other way around.

Finally, we make all our source code, including our re-
implementation of the method by George and Routray [10],
publicly available: https://cgvr.cs.uni-bremen.de/research/
smida_ml/.

In the future, we believe more work is needed on methods
that perform well with strongly task-independent settings. Es-
pecially the difference in the performance of the different
classifiers we observed seems to be a promising start. Task-
independence could also be combined with multi task learning
similar to the approach from Kaiser et al. [15]. Further, for se-
curity and authentication applications, future methods should

investigate possibilities to reject participants that are unknown
to the classifier.
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