

Robustness of Eye Movement Biometrics against Varying Stimuli and Varying Trajectory Length

Christoph Schröder¹ Sahar Mahdie Klim Al Zaidawi² Martin H.U. Prinzler² Sebastian Maneth² Gabriel Zachmann¹

¹University of Bremen, Germany, Institute for Computer Graphics and Virtual Reality ²University of Bremen, Germany, AG Datenbanken

Contact: schroeder.c@uni-bremen.de

CHI, May 2020

Eye Movement Biometrics

- Identify people
- Liveness
- Seamless and Continuous
- Applicable in HMDs

Details

Previous Work

- Bio-eye competition [Rigas et al. 2017]
 - 82%-84%, 153 Users [George et al. 2016]
- Task independent person authentication

 - Random Forest, 37% with 17 users [Darwish et al. 2013]
- Multi-modal biometrics

Gaussian Mixture Models, 29%-47% with 17 users [Kimmunen et al. 2010]

• Support Vector Machine, 24% (only view based features) with 18 users [Pfeuffer et al. 2019]

Our Contributions

- 1. Two extensions to the state-of-the-art classifier [George et al. 2016]
 - More features
 - Different classifier (Random Forest)
- 2. Analysis of stimulus (in-)dependence
 - Different stimuli for training and testing
 - Comparison of 4 configurations
- 3. Influence of tracking duration on identification accuracy • Varying training and testing sample size
- - Evaluation on less artificial dataset

Introduction

Previous Work

Overview

Details

Classifiers

- Radial Basis Function Networks (RBFN)
 - Reimplementation of George et al. 2016
 - $C \cdot K$ neurons; C = number of users, K = 32

•
$$\varphi(x) = e^{-\beta \|x-\mu\|^2}$$
 with $\beta =$

- μ : K-Means clustering for each user
- σ : Mean euclidian distance to cluster
- Random Decision Forest (RDF)
 - 400 trees, no depth limit, min. 2 samples for split, \sqrt{F} features

 $2\sigma^2$

Details

Features

- George et al. 2016
 - Iterative feature selection
 - Fixation 9 Text / 9 Random
 - Saccade 43 Text / 40 Random
- Ours: all combined
 - 52 unique features
 - Stimulus independent

Fixation duration Standard deviation (X) Standard deviation (Y) Path length Angle with previous fixation Distance from the last fixation Skewness (X) Skewness (Y) Kurtosis (X) Kurtosis (Y) Dispersion

Stimulus Dependent Results

- Training and evaluation on same stimulus
- RBFN always better than RDF
- Increased accuracy without feature selection

Stimulus In-Dependent Results

- Training on one and testing on another stimulus
- Maximum accuracy drops from 94.1% to 23.5%
- RDF generalises better

Introduction

Previous Work

Overview

Optimal Trajectory Length

- Research question
 - Influence of train/test size
 - Weakly task independent performance
- MIT dataset [Judd et al. 2009]
 - 39 users
 - 3 seconds per image (sample)
 - 50 minutes per user
 - Task-agnostic

Details

Influence of Number of Training Samples

Introduction

Bremen

ŰŰ

Previous Work

Overview

Influence of Number of Test Samples

Introduction

Bremen

ŰŰ

Previous Work

Overview

Conclusion

- 92.5%)
- 2. Task-independent identification still a challenge
 - Asymmetrical performance
 - Text \Rightarrow Ran 3x better than the other way around
- trajectory data
 - 86.7% accuracy with 90 seconds training data
 - 94.7% with 900 seconds training data

1. Identification accuracy improved by 5.2pp over the state-of-the-art (86.0% to

3. Applicable for weakly task-independent identification with only 90s of

• Our code is available here: <u>https://cgvr.cs.uni-bremen.de/research/smida_ml/</u>

Details

Results

Limitations and Future Work

- Reduce trajectory length for identification
- Weighting of saccades and fixations
- Recurrent Neural Networks

Thank You.

https://cgvr.cs.uni-bremen.de/research/smida_ml

