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Abstract With the continuing trend towards larger

and more detailed 3D worlds in various fields and indus-

tries, procedural generation is becoming increasingly

important. An aspect that is still lacking research, how-

ever, is the procedural creation of landscapes that re-

alistically integrate water bodies. Most previous work

either encompasses extensive manual authoring, em-

ploys costly simulation-based approaches that offer lit-

tle control, or produces artificially looking results. We

propose a method for procedural generation of huge

landscapes that focuses on creating realistically-looking

river networks and lakes as well as a natural-looking

integration. We achieve this by an approach inverse

to the usual way: We first generate rivers and lakes

based on artificial drainage basins and then create the

actual terrain by “growing” it, starting at the water

bodies. Our pipeline approach not only enables quick
iterations and direct visualization of intermediate re-

sults but also balances user control and automation.

That means, the first stages provide great control over

the layout of the landscape while the later stages take

care of the details with a high degree of automation.

Our evaluation shows that vast landscapes can be cre-

ated in under half a minute. Also, with our system,

it is quite easy to create landscapes closely resembling

real-world examples, highlighting its capability to cre-

ate realistic-looking landscapes. Our implementation is

easy to extend, highly compatible with external appli-
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cations thanks to using heightmaps as underlying data

structures, and thus, can be integrated smoothly into

existing workflows.

This technical report is a much extended version

of our paper at CGI [8], which is available online at

https://doi.org/.
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1 Introduction

Procedural generation of 3D landscapes is a research

topic of great relevance, as the interest in large, realis-

tic digital landscapes is steadily rising throughout many

fields and industries. Prominent examples where such

digital landscapes are employed are computer games,

especially with the growing trend of so-called open-

world games, but also movies, simulators, and virtual

testbeds. An old but still relevant challenge, however,

is to produce realistic and detailed terrains while keep-

ing the workload in check. With greater and denser

worlds the challenge is only getting more exacerbated.

Numerous works have been presented on the automatic

generation of landscapes and terrains using procedu-

ral generation techniques. The goals and approaches of

the proposed works vary widely, some put the focus

on highly realistic terrains and take a computationally

expensive simulation-based approach mimicking natu-

ral processes such as plate tectonics and erosion, while

others employ simpler and faster methods to generate

plausible and more varied results. For instance, noise

methods were popular, especially in earlier works, but

today too. Naturally, there has always to be a trade-

off between control and automation as fully procedu-
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ral generated landscapes usually do not meet specific

requirements but designing everything by hand is not

viable either.

A sub-topic that got much less attention despite be-

ing highly relevant for large landscapes is the procedu-

ral generation and plausible integration of water bodies,

i.e., mainly rivers and lakes but also other features such

as smaller streams and ponds. While rivers/river net-

works, their natural processes, and interaction with the

surrounding terrain have been – and still are – exten-

sively studied in related fields such as geology, ecology,

and hydrology [3,4,20], relatively few works focused on

procedural generation of 3D representations of them

in near real-time speed. Existing scientific models and

simulations usually employ only 2D representations, are

more focused on analyzing existing landscapes than cre-

ating novel ones, or are very time-consuming to per-

form. For instance, one popular model to create river

networks is optimal channel networks (OCNs) [1,19].

Brown et al. [2] give a good overview of the different

works and approaches to create digital rivers through-

out the various research fields.

We propose a method and pipeline for quick and

easy procedural generation of large, plausible-looking

landscapes which include and integrate believable water

bodies, i.e. river networks. In our approach, we mimic

the mutual influence between terrain and water bodies

by first generating the rivers and lakes based on artifi-

cial drainage basins, and then computing the final ter-

rain. This way, we get more natural-looking landscapes,

than by retroactively adding rivers to a terrain. In order

to demonstrate our proposed approach, we have devel-

oped a prototype application in Unity. In this proto-

type, we have applied a pipeline approach that makes

it easy to evaluate intermediate results and emphasizes

a workflow with quick iterations. Finally, we have con-

ducted an extensive evaluation of our proposed system.

2 Related Work

One of the oldest approaches for procedural terrain gen-

eration is to use subdivision techniques such as the mid-

point displacement and the diamond square algorithms,

and noise functions (e.g., simplex and ridge noise), as

they are able to produce fractal-like structures, which

are also often found in nature. Moreover, such tech-

niques are, generally, relatively easy to use, highly scal-

able, and computed quickly. A comprehensive overview

of various noise functions is given by Lagae et al. [16].

The drawbacks of those techniques are the intrinsic

lack of control over global features, and the un-intuitive

parameters, which make it hard to create geologically

plausible landscapes.

A popular approach to providing intuitive control

to the user is to add an authoring phase at the begin-

ning, most often in form of a user sketch that acts as a

high-level constraint for the subsequent terrain genera-

tion [10,22].

An approach to create more realistic terrains is to

mimic or simulate natural processes. For instance, Michel

et al. [18] create folded terrains with mountain ranges

by using simplified plate tectonics that is based on user

sketches and Cortial et al. [6] approximate the move-

ment and collision of user-authored tectonic plates on a

planetary scale. Fischer et al. [9] combined noise-based

methods, a simplified climate simulation, and digital

elevation model (DEM) examples to create large land-

scapes with plausible biome distributions. Simulation-

based techniques most often focus on thermal or hy-

draulic erosion, the latter normally encompassing some

form of fluid simulation. One example is Mei et al. [17],

who used an adapted shallow-water model to calculate

the erosion and deposition process as well as the sed-

iment transport. The proposed work was implemented

on the GPU. Stava et al. [21] further improved the

method and combined two hydraulic erosion algorithms.

Cordonnier et al. [5] combined tectonic uplift from user-

provided input maps and simulation of hydraulic/fluvial

erosion based on the stream power equation to generate

plausible large landscapes. However, despite efforts to

speed up the computations, most simulation-based ap-

proaches are very time-consuming, especially if applied

on large-scale terrain. Another disadvantage is the lack

of intuitive control over the generated terrains.

Realistic-looking large-scale terrains also can be cre-
ated using example-based procedural generation tech-

niques such as texture synthesis. For instance, Zhou et

al. [25] employ patch-based texture synthesis to gener-

ate terrains based on user sketches and example DEMs.

Gain et al. [11] instead switched to parallel pixel-based

terrain synthesis for higher efficiency; user control is

provided by several modifiable, local constraints. Guerin

et al. [14] presented an example-based authoring pipeline

in which the user provides a quick sketch of the main

terrain features, and then a set of neural-network-based

terrain synthesizers creates the corresponding terrain.

The synthesizers – which are Conditional Generative

Adversarial Networks – get trained on real-world exam-

ple data. Naturally, example-based methods are limited

by the available example data and can only replicate

terrain features and landforms that are represented in

the input DEM. Also, high-level geological constraints

and the correct relations between large-scale features

such as drainage basins are usually not taken into ac-

count.
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Relatively few works explicitly focus on procedural

rivers and water bodies as initial terrain-defining ele-

ments, although river networks play an important role

in the natural formation of the terrain. Kelly et al. [15]

were the first to propose the idea of procedurally gener-

ating terrain based on river networks and corresponding

drainage basins. Here, the river networks were gener-

ated based on constrained midpoint displacement, and

then the terrain was computed accordingly. Derzapf et

al. [7] employed a similar approach but applied it on

a planetary scale. In the work by Teoh [23], the ter-

rain generation starts, too, by first procedurally creat-

ing river networks. In this case, rivers are grown from

randomly placed outlets around the land region. In con-

trast to these works, Genevaux et al. [13] explicitly take

hydrological knowledge into account, additionally, ini-

tial user sketches provide more control. Based on the

sketch, a river-network graph is created, river segments

get classified into different types of watercourses, and

the surrounding terrain gets computed using a hierar-

chical terrain construction tree. Zhang et al. [24] present

a similar approach but generate the rivers based on

Tokunaga river networks and calculate the surround-

ing terrain using a diffusion process.

For a more comprehensive overview and discussion

of procedural terrain generation techniques, we refer to

the recently presented work by Galin et al. [12].

3 Overview of our Approach

In this section, we will present an overview of our pro-

posed methods and pipeline. First of all, we will briefly

discuss different approaches to procedural terrain gen-

eration that include and emphasize river systems, and

explain the reasoning behind our approach.

The first group to consider are purely simulation-

based approaches. These are able to produce realistically-

looking terrains with river networks, e.g., using erosion

simulation. As we prioritize a quick and easy generation

over absolute realism, though, we have decided against

these simulation-based approaches. Another approach

that follows the classical order of first generating the

terrain and then adding rivers to it is to use pathfind-

ing algorithms. For instance, an adapted A* pathfinding

algorithm can be used to follow the terrain downwards

from randomly placed sources. This not only has the

advantage of being computed rather quickly but also

that lakes can be easily computed by just defining the

searched area as a lake, which tends to be in local min-

ima. However, in our experience, the river networks and

their integration into the terrain were not convincing,

as they did not respect geomorphological constraints.

In this paper, we instead propose to follow the more
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Fig. 1 Overview of our procedural generation pipeline. The
first stages feature more user control, the latter ones provide
more automation.

natural “rivers first” approach, specifically, first gener-

ating river networks based on artificial drainage basins

and then modeling the final terrain after them. Accord-

ingly, we will present several methods and an integrated

pipeline to allow for that.

For the implementation of our pipeline, we have

used heightmaps as data structures for data and terrain

representation, as they have a smaller memory foot-

print and, most importantly, provide much greater com-

patibility with external applications than voxels. Even

though we do not aim for real-time generation (i.e.,

an online algorithm), it is very important to facilitate

a quick workflow for the users, which means having

fast computation times as well as direct visualization

of intermediate results that can be made modifications

upon. These considerations lead us to employ a pipeline

approach in which each step should be computed in a

matter of seconds, be repeatable if modifications are

desired, and the results directly be applied on a proxy

mesh for inspection. Fig. 1 depicts a high-level overview

of our approach. We start with the general landscape

layout by letting the user author the landmasses us-

ing marker-based curves. Then, different regions can

be marked (e.g. flatland, or mountains). Following this,

the river networks, including lakes, are computed based

on artificial drainage basins. Finally, the terrain height

gets computed based on the previous steps. In the ear-

lier stages, we emphasize providing the user with more

control over the algorithm, while the later stages have

a higher degree of automation. The reasoning for this

is that the user should have a great influence over the

general layout and shape of the landscape and its land-

masses, which are defined in the earlier stages of the

pipeline, but not be overwhelmed with a host of detail

decisions all over the landscape. Smaller modifications

at the places where it is deemed necessary could be bet-

ter done afterward via a polishing pass with a sculpting

tool.
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Fig. 2 Authoring of the general shape of the landmass bor-
ders using marker objects which act as spline control points
(red points with arrows). The white curve represents the gen-
erated spline and the green area depicts the final refined land-
mass. First 3 images: increasing strength values (reducing the
curvature of the tangent).

4 Our Terrain Generation Pipeline in Detail

4.1 Ocean Borders

Our pipeline begins with the coastlines that separate

the landmasses from the ocean. As the user should

have great flexibility to shape the general terrain to his

needs, we prioritized providing great manual control in-

stead of excessive levels of automation for this part of

the pipeline. To define the overall shape of a landmass,

the user can place marker objects throughout the scene,

which we then compute a closed curve from. This curve

defines the coastline: the area within forms the land-

mass, and the rest represents the ocean (or the other

way round, depending on a user setting), see Fig. 2.

Multiple landmasses can be built by repeating the pro-

cess. If no markers are placed, the whole scene forms

a single landmass without an ocean. The markers con-

tain location information, a rotation, and a strength

parameter affecting the marker’s influence, specifically,

the curvature of the tangent (higher strength values re-

sulting in less curvature). The curve is then computed

by interpreting the markers as knots/control points of

a cubic spline, the evaluation is done in the order the

markers were placed. The final segmentation into land

and ocean is stored in a regular grid whose granularity

can be set by the user.

In order to improve the outlines and get a more nat-

ural look, we have developed multiple refinement op-

tions for constrained randomization based on Voronoi

diagrams. Generally, we randomly place Voronoi sites

on the map and define the regions using the Manhat-

Fig. 3 Border refinement based on Voronoi diagrams. Top
row: the two iterations of border refinement. The left image
shows the result after the first iteration (the black ellipse de-
picts the initial spline, and the white outline the ocean bor-
der). The right image shows the second refinement iteration
with the final border (yellow outline). Bottom row: The left
image shows the land after one iteration, the middle image
after two iterations, and the right image after two iterations
with noise-based sampling.

tan distance. We use this metric, as the computations

are done on a regular grid; other metrics can be ap-

plied, too, though. In the first refinement variant, each

Voronoi region gets classified to represent landmass or

ocean, depending on if the corresponding Voronoi site

is inside or outside the spline, see the top-left image in

Fig. 3. This ensures that the general layout defined by

the spline is retained, but the actual border is random-

ized. The granularity of the Voronoi diagram can be set

by the user. To efficiently produce finer, more detailed

borders, this refinement step can be followed up by a

second iteration in which additional Voronoi sites are

placed around the previously computed border, see the

top-right image in Fig. 3. Alternatively, this second it-

eration can be applied using a priority queue based on

(fractal Perlin) noise for the growth of the regions, see

Algorithm 1 for details of this process. Although com-

putationally more expensive, it produces more varied

results through more inhomogeneous region growth and

can lead to the formation of small islands. The noise pa-

rameters influence the output, e.g., a higher frequency

produces finer structures, and more octaves enable fea-

tures of different scales. Fig. 3 (bottom row) shows an

island with the different refinement variants applied.
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Algorithm 1 Border refinement (2. iteration, Voronoi

+ noise)

Require: 1. refinement iteration done, RegionMap set
B ← BorderCells . From 1. iteration
Q← [] . Empty priority queue
for all V oronoiSites do

P ← random(B) + randomXY (MaxRadius)
Q.Enqueue(P,Noise(P ))

B ← []
while Q not empty do

C ← Q.Dequeue()
for all N do . Valid, unsearched neighbor cells

RegionMap[N ]← RegionMap[C]
Searched[N ]← true
Q.Enqueue(N,Noise(N))

if CheckIfBorder(C) then
B.Add(C)

4.2 Regions

After the landmasses are defined, the next step is to

partition them into regions of different terrain types.

Terrain types we have implemented are flatland (de-

fault), mountain, and desert. Others can be added eas-

ily, though. One option to divide the landmass into

different regions could have been to use cellular noise.

However, in this pipeline step, we again focused on giv-

ing the user great control over the layout of the regions

by allowing the manual distribution of regions over the

terrain. Alternatively, a random distribution is available

too. A region is defined similarly to the coastlines in the

previous step by placing region markers. This time they

contain parameters regarding the terrain type, the ex-

tent, and its border, which is randomized using noise.

Fig. 4 illustrated an example terrain with three regions

and different border characteristics. Region overlaps are

solved according to the placement order. After the re-

gions are placed, we iterate through all cells that rep-

resent land and store the id of the region they lie in.

4.3 River Networks and Lakes

The next step in the pipeline is the generation of the

river network. This is one of the most important steps in

the whole pipeline, as it directly impacts the eventual

terrain/heightmap generation. When analyzing natu-

rally generated terrain, the landscape can be divided

into catchment areas – also called drainage basins. These

are the areas where water is collected by surface runoff

(e.g. from precipitation). They are often divided by

mountains or hills. This means that by artificially gen-

erating those catchment areas, we know afterward where

we can place hills and mountains. To generate the catch-

ment areas, we have developed a method inspired by

Fig. 4 Segmentation of the land into different regions (green:
flatland, yellow: desert, brown: mountains). Region borders
can be customized using noise (note the different character-
istics of the borders).

optimal channel networks [19,1]. Similarly to them, we

define a finite graph G(V,E) over a regular grid span-

ning the landscape. The nodes v ∈ V correspond to the

cells of the grid, and the edges e ∈ E link neighboring

nodes and enable the flow of water between them. We

then construct a spanning forest F over G that acts

as a flow graph/flow network, i.e., G gets partitioned

into a number of spanning trees T – acyclic, directed,

rooted sub-graphs. Each outlet acts as a root of one

of these trees, which each represent one river network

or its catchment area. Our procedure is shown in the

image sequence of Fig. 5 and starts by placing down

several potential outlets around the coasts (left image)

and also around mountain regions. The separation be-

tween those outlets happens so that the rivers can be

generated differently based on terrain type. The num-

ber of outlets can be set by the user separately for each

region type. Placing outlets around desert regions is ex-

cluded from this process. Then, we compute the catch-

ment areas by construction of the spanning forest that

indicates the flow directions. This is done by calculating

random flow directions for all cells in the uniform grid

and storing them in a flow map (middle image) that

procedurally connects all cells from mountain and flat-

land regions. This process starts at the river outlets by

adding all outlet cells into a fringe set. Then, consecu-

tively, random cells from this set get selected and their

unsearched, valid neighbor cells get processed by as-

signing the flow direction (pointing to the current cell)

and, in turn, adding them to the fringe set. By using

a random selection order, we guarantee a homogeneous

growth of the spanning trees/propagation of the flow

map and, thus, the drainage basins. This process also

avoids desert regions to ensure that they stay dry when

placing the rivers. The number of outlets influences the

shape of the river networks. The fewer outlets are gen-
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1 2 3

Fig. 5 The process of computing rivers and lakes. First (1), random outlets are selected at the ocean borders (red dots). Then
(2), we compute the flow directions across the land (see arrows), starting at the outlets and then consecutively and randomly
selecting previously evaluated cells (green arrow in the highlighted area) to process their unprocessed neighbors (grey arrows).
Eventually (3), we randomly place river sources (blue dots) and create the actual rivers by following the flow map (blue lines).
Lakes are grown from random points on the river.

Fig. 6 Left: An example map with arrows roughly indicating
the corresponding flow map. Right: A map highlighting the
river strength/width with different colors (green indicating
weak rivers and red strong ones).

erated compared to the number of river sources, the

higher the branching factor in the final river networks

will be. This is because the individual rivers, starting

at their sources, are more often routed to the same out-

let and, thus, join somewhere along the way. Important

to note is, however, that not all outlets will necessarily

have rivers run into them. In Fig. 6 (left), an exam-

ple landscape is shown with arrows depicting the cor-

responding flow map (due to the perspective there are

slight offsets).

Following these preparations, we can proceed to gen-

erate the actual rivers. A possible approach for this

would be to calculate the amount of water that would

flow through each cell. This could be done by placing

water evenly on the grid and following along each wa-

ter unit with the previously generated flow directions

while adding up how many water units traverse each

cell. Rivers could then be placed in every cell that has

an amount of water higher than a specified threshold.

This method would work but lead to a relatively even

distribution of river sources. Instead, we place the river

sources randomly on the map and then follow the flow

Fig. 7 Left: A terrain with rivers generated in flatland
(green). Right: The same terrain as in the left picture but
with rivers of varying width and the addition of lakes.

directions until the ocean is reached (right image of the

image sequence of Fig. 5). This yields the advantage of

a more random distribution of sources. The amount of

river sources placed is again controlled by the user and

can be set separately for mountain and flatland regions.

An example terrain with multiple rivers is illustrated in

Fig. 7 (left). Users also can set the chance for a river

being a dried-out riverbed instead of a normal river. In

our implementation, each river adds a certain amount of

strength to a cell when flowing through it, thus, when

two rivers join, their respective strength is combined

from thereon. Based on this strength, we calculate the

width of the river and accordingly assign more cells

to it. Fig. 6 (right) depicts a color-coded example of

the various rivers and their respective strength (red:

strong, green: weak). The calculation of the width can

be skipped by a user setting, though. It is also possible

to set a maximum width for rivers. This can be useful

when using a calculation grid with a lower resolution

where one cell already covers a larger area of the final

map.
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Fig. 8 Two example landscapes in which river deltas were
computed (using different visualization modes). The red dot
in the left image depicts the position from which the river
delta computation was started, the circle shows the radius
of the local flow map, and the yellow dots mark the stream
outlets.

For each cell a river travels through, there is a chance

to generate a lake. The size of the lake depends on the

strength of the river cell it is generated from: the higher

the strength, the more likely it becomes for the lake to

be bigger. In addition, the size is limited by user-set

maxima and minima. To produce lakes that vary in

shape, a noise function is applied to the lake borders.

The user can set the frequency, the strength, and the

number of octaves of the noise function. All the cells in-

side the border are classified as lake. In order to avoid

overfilling the map with too many lakes and to give con-

trol to the user, it is possible to set a maximum amount

of lakes generated for mountain and flatland regions. In

addition, the lake generation is limited to one lake per

river source. After generating a lake, the river genera-

tion continues. Fig. 7 (right) shows an example terrain

with lakes and river networks in which the rivers have

different strengths.

With our approach to create river networks, we are

also able to generate distinct river deltas. For this, we

perform a second, locally-bound iteration of generating

drainage basins and then rivers. However, here we re-

verse the process: If a river delta should be generated,

we select a river cell instead of a coastline cell as the

starting point from which we compute the flow map;

in this case only a regional one. Then, we select mul-

tiple coastline cells to be outlets from where rivers –

the eventual distributaries of the delta – are created by

following the computed regional flow directions back to

the original river cell. We allow this process to randomly

occur in the general vicinity of the ocean, see Fig. 8 for

examples of this process.

Fig. 9 Final terrains with computed height. Note that in-
creasing the slope parameter for the flatland (green) leads to
higher, more pronounced hills (right image).

4.4 Terrain

After generating the rivers and lakes, we calculate the

terrain’s height based on them and all the informa-

tion that was produced in the previous steps of the

pipeline. The terrain will be “grown” starting at the

oceans, rivers, and lakes and continuously rise while

departing from them. To do this, all starting cells are

added to a priority queue with the priority being the

initial height of the cells. The initial height of water

cells was computed during the river generation in the

previous stage: cells marked as river directly get as-

signed a height which steadily increases from the outlet

onwards based on a region-based steepness, although

a distance-based curve is possible too. When a cell is

removed from the queue, all the neighbors that have

not been traversed yet will receive a new height by the

addition of a growth value. The growth value is calcu-

lated by taking into account the terrain growth factor of

the region the cell is in, and a random value obtained

from noise functions that also depend on the region.

The height value is also interpolated between the dif-

ferent region types to allow for a smoother transition

between them. The exact height calculation for a cell

x′ which is the neighbor of an already computed cell x

is described by the following equation:

h(x′) = hx + st · bd + sr · (1− bd) + |nt · at| (1)

In this, hx is the height of cell x, st is the terrain/region-

dependent growth factor which itself is computed using

a distance-based interpolation between all regions in the

area, bd is a distance-based blending factor, sr a growth

factor for rivers, nt the noise output whose frequency is

again terrain-dependent, and at is a terrain-dependent

amplitude. The latter is calculated as at = st · kt in

which kt is a terrain-dependent noise strength. Fig. 9

shows example terrains with computed height; note the

more pronounced hills in the right image. The growth

value itself does not change the final height of the ter-

rain, though, as it is difficult to know exactly what the

result would be. To guarantee the final height is con-

trollable, the heightmap is scaled to fit the global world

width and height parameters that can be set by the

user.
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Fig. 10 Different rendering modes highlight different aspects
of the terrain. On the top left is the normal-texture mode with
water bodies depicted in blue and a height-based color gradi-
ent for land. In the top right is the region mode, in which each
region gets a different color, and rivers and lakes get colored
in light blue. The bottom image shows the height mode with
a black and white normalized-height-based gradient.

4.5 Visualization

The last step of the pipeline is the visual representation

of the generated terrain. This is not part of the actual

terrain generation but serves an important role in giving

the user information about the results of the previous

steps which allows for quick changes if desired. To visu-

alize the terrain, we generate a mesh by first assigning a

vertex to each cell of the heightmap and then calculat-

ing the corresponding triangles and UV coordinates. In

default mode, the vertices’ height is directly taken from

the heightmap, but we also support a mode in which

the mesh omits the height and stays completely flat.

This mode can be useful for earlier pipeline steps, e.g.,

the border generation, where the height information is

not relevant yet, and a flat map is easier to evaluate.

Finally, we generate textures for the terrain mesh. The

user can choose from multiple rendering modes using

different textures, which are illustrated in Fig. 10: The

normal-texture mode displays a gradient that is depen-

dent on the height, the region mode visualizes each re-

gion with a separate color, and the height mode displays

a normalized heightmap as texture.

5 Evaluation

In order to evaluate our proposed procedural system, we

present a brief complexity analysis, extensive practical

performance measurements, and a qualitative evalua-

tion.

5.1 Complexity Analysis

The overall run-time complexity of our pipeline is

O(nc · ns · nl) (2)

with nc being the number of grid cells, ns being the

number of river sources, and nl being the number of

lakes. This means that the time complexity depends

linearly on the number of river sources, the number of

lakes, and the number of cells in the grid. Similarly, the

space complexity is O(nc).

5.2 Performance Evaluation

After the theoretical considerations, we did extensive

real-world performance measurements of our system as

a whole as well as of each pipeline step individually. All

performance measurements were done using a PC with

Windows 10, an Intel i7 7800x processor, 16 GB of main

memory, and an Nvidia GeForce 2070 graphics card. As

the performance is mainly dependent on the number of

grid cells nc, we conducted all measurements with sizes

of nc = 5122, 10242, 20482 and took the median of 20

runs.

In Fig. 11 we illustrate the computational time of

the whole pipeline over the different grid sizes, whereby

the timings of the individual pipeline steps are stacked

on top of each other. As we can see, the computation

0 2 4 6 8 10 12 14 16 18 20 22 24
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10242

5122

Time in s

G
ri

d
S

iz
e

Borders Regions Rivers

Terrain Visual.

Fig. 11 The calculation times for the complete pipeline over
multiple grid sizes. Even with a grid size of 20482 the whole
pipeline gets computed in under 25 seconds.

is very fast: with low to medium-sized grids, the whole

process is done in a couple of seconds, single steps be-

ing computed nearly in an instant, and even with the

biggest tested grid resolution of 20482, the pipeline gets

computed in under 25 seconds. Looking at the timings

for the individual pipeline steps, the calculation of the

region and rivers is the fastest and, compared to the

other steps, negligible throughout all resolutions. At

lower resolutions of 5122, the calculation of the terrain’s

height and the visualization take the most time with

0.39 and 0.38 seconds, respectively. At higher resolu-

tions of 20482, however, the border computation takes
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the longest with 7.6 seconds, followed by the terrain

with 7.5 seconds. The reason for this is that the compu-

tational time of most pipeline steps growths with fac-

tors closely around the expected one of 4 that corre-

sponds to the linear growth regarding the number of

grid cells (quadratic regarding grid side-length) which

we established in the theoretical complexity analysis.

The time for the border calculation, in practice, growth

with factors around 5, though.

Investigating deeper what exactly causes the com-

putational time in the individual steps, we find that in

the river step the calculation of the drainage basins via

the flow map takes up > 88% of the time while the

following computation of rivers and lakes takes nearly

no time, see 1. Accordingly, the number of rivers and

lakes does not have a significant effect. The main fac-

tor regarding the performance is therefore the overall

grid resolution. Some other parameters, however, also

have a notable influence on the needed time for com-

putation. For instance, in the first pipeline step – the

border calculation –, the second iteration of border re-

finement takes considerably longer than the first one, as

a higher number of Voronoi points is used. Also, if the

second refinement iteration is applied with additional

noise (default setting), it takes even more time to com-

pute, as in this case, we use a priority queue. This is

also the reason for the higher practical growth factor

of this step. Regarding the visualization step, the com-

putation of the textures takes roughly four-fifths of the

time of the step while the mesh generation itself only

takes one-fifth.

Table 1 Detailed timings of some pipeline steps for a grid
resolution of 20482.

Step Substep Time in ms

Borders
Refine. (1i) 851
Refine. (2i) 1601
Refine. (2i+N) 7600

Rivers
Drainage B. 796
Rivers+Lakes 100

Visual.
Mesh 800
Textures 3426

5.3 Qualitative Evaluation

To our knowledge, there are no metrics to quantify the

quality and realism of procedural terrains and water

bodies. Thus, in order to evaluate the quality and plau-

sibility of the terrain generated with the proposed sys-

tem and to showcase its versatility, we did a qualitative

Fig. 12 Example landscapes generated with our system.
Note the high variability and plausibility.

evaluation. For this, we have created several landscapes

with different settings, which can be seen in Fig. 12,

and reviewed the production process as well as the

results regarding usability, flexibility, and plausibility.

With our system, it is possible to produce a vast vari-

ety of shapes for the coastline. Single continents, as well

as island groups, can be created by varying the num-

ber and position of land markers. Generally, we found

the process very efficient and flexible; simpler shapes

can be realized very quickly with just a few markers,

but by using a greater number, the user also can cre-

ate more complex worlds. Similarly, the whole process

to create a terrain is very easy and straightforward,

as our pipeline design allows for quick iterations and

the saving of intermediate results. Also, although we

provide many parameters to fine-tune each step to the

user’s liking, in most cases the majority of them don’t

necessarily have to be changed and our pre-configured

default settings will suffice.

Furthermore, several different height profiles can be

generated. It is possible to generate large-scale maps,

such as the examples in Fig. 12 but also landscapes at

smaller scales, as shown in figure Fig. 13. Thanks to

our focus on water bodies and the approach to create

river networks before the final terrain, the procedural
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Fig. 13 Examples of small-scale landscapes.

landscapes produced with our system are quite natural

looking and feature plausibly embedded river networks

that recreate the typical dendric structures from the

real ones. In general, we found that the generated re-

sults look very plausible and, presumably, the majority

of different demands on the produced landscapes can

be satisfied.

To further evaluate the plausibility of the generated

terrains, we have compared them with parts of the real

world’s terrain based on publicly available height data.

For this comparison, we took digital elevation models

(DEMs) – which represent elevation data of the real

world’s terrain –, constructed 3D meshes of them, and

attempted to replicate the real terrain as closely as pos-

sible with our system while only investing a reasonable

amount of time (a couple of minutes). As an example,

we randomly took a section of the Severo-Evensky Dis-

trict in Magadan Oblast in Russia (61.21703, 160.21836)

as a real-world reference. Fig. 14 shows the comparison

between the mesh representations of both landscapes,

the left image shows the real terrain, and the right one

our systems replication of it.

As can be seen, it is possible to recreate a similar

general shape of the coastline. Because the generation

is heavily based on random components, it is impossi-

ble to generate a coastline that matches exactly. The

mountain ranges are distributed with a good approx-

imation of reality. We were not able to acquire real-

world references with satisfactory information about

river networks, therefore, the map was generated only

using dried riverbeds (no lakes, no explicitly visualized

rivers). It is not possible to perfectly match the behav-

ior where terrain touches the world border as the real

map is a part of a larger landscape and thus, rivers

flow through the border. Our terrain generation algo-

rithm does not have information about the terrain out-

side the grid borders and thus cannot replicate this be-

havior. However, the inland parts of the river networks

were generated in a believable way. Even though the

pathways of the riverbeds differ from the original direc-

tions, the individual parts of river networks have sim-

ilar overall shapes. This can be observed, for instance,

in the northern parts of the mountains in Fig. 14. The

heightmaps of both terrains are depicted in Fig. 15.

Again, the general shape, as well as the dendric struc-

tures caused by the rivers, resemble the original, al-

though they do not match perfectly. In general, it was

possible to create a good approximation of the real ter-

rain.

6 Conclusion and Future Work

With this work, we have presented a system for the

procedural generation of vast landscapes with a focus

on the natural and realistically-looking integration of

water bodies. This is achieved by the approach of first

generating river networks and lakes based on drainage

basins and then the actual terrain. A quick and ag-

ile workflow is facilitated thanks to our pipeline design

in which each stage is computed and visualized in a

matter of seconds. According to our performance mea-

surements, a high-fidelity landscape (grid resolution of

20482) can be computed in under 25 seconds. In or-

der to balance the amount of control, usability, and

efficiency, we have designed the first pipeline stages to

allow the authoring of the general landscape and its lay-

out, while the later stages are more automation-heavy

on the terrain details. Of course, our methods in the var-

ious stages of our pipeline are easily modifiable to much

more or even less control, so it can be easily adapted

to different needs in different workflows. Our qualita-

tive evaluation demonstrated the great variability of our

approach and a dedicated comparison with real-world

terrain based on DEM data illustrated the capability

to quickly create terrains strongly resembling the real

ones.

In the future, we plan to explore the option of per-

forming the two steps of river and terrain generation in

a multi-iteration cycle that gradually refines the land-

scape. This would resemble the real procedures of ter-

rain generation more closely, and thus, may produce

even more realistically looking and detailed results. An-

other option would be to increase the landscape’s vari-

ety by adding more landscape features and region types

such as oxbow lakes, wetlands, and cliffs. Lastly, paral-

lelization of some calculations could improve the com-

putational times further.
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