
Procedural Generation of Landscapes with
Water Bodies Using Artificial Drainage Basins

Roland Fischer1, Judith Boeckers1, and Gabriel Zachmann1

University of Bremen, Bremen, Germany,
r.fischer@uni-bremen.de,

https://cgvr.informatik.uni-bremen.de/

Abstract. We propose a method for procedural terrain generation that
focuses on creating huge landscapes with realistically-looking river net-
works and lakes. A natural-looking integration into the landscape is
achieved by an approach inverse to the usual way: After authoring the
initial landmass, we first generate rivers and lakes and then create the
actual terrain by “growing” it, starting at the water bodies. The river
networks are formed based on computed artificial drainage basins. Our
pipeline approach not only enables quick iterations and direct visual-
ization of intermediate results but also balances user control and au-
tomation. The first stages provide great control over the layout of the
landscape while the later stages take care of the details with a high de-
gree of automation. Our evaluation shows that vast landscapes can be
created in under half a minute. Also, with our system, it is quite easy
to create landscapes closely resembling real-world examples, highlighting
its capability to create realistic-looking landscapes. Moreover, our imple-
mentation is easy to extend and can be integrated smoothly into existing
workflows.

Keywords: Procedural Generation, Water Bodies, Procedural Rivers,
Terrain Generation, Drainage Basins

1 Introduction

Procedural generation of 3D landscapes is a research topic of great relevance,
as the interest in large, realistic digital landscapes is steadily rising throughout
many fields and industries. An old but still relevant challenge, however, is to
produce realistic and detailed terrains while keeping the workload in check. Nat-
urally, there has always to be a trade-off between control and automation: fully
procedural generated landscapes usually do not meet specific requirements but
designing everything by hand is not viable either. Numerous works with widely
different focuses and approaches have been presented. Some put the focus on
highly realistic terrains and take a computationally expensive simulation-based
approach mimicking natural processes such as plate tectonics and erosion. Oth-
ers employ simpler and faster methods to generate still plausible and more varied
results. For instance, noise methods were always very popular.

https://cgvr.informatik.uni-bremen.de/

2 Roland Fischer et al.

A sub-topic that got little attention despite being highly relevant for large
landscapes is the procedural generation and plausible integration of water bod-
ies. Mostly, these water bodies are simply added to the already computed ter-
rain, which tends to not look realistic on a global scale. Rivers, their natural
processes, and interaction with the surrounding terrain have been extensively
studied in related fields such as geology, ecology, and hydrology [3,4,19]. How-
ever, relatively few works focused on procedural generation of 3D representations
of them in near real-time speed. Existing scientific models and simulations usu-
ally employ only 2D representations, are more focused on analyzing existing
landscapes than creating novel ones, or are very time-consuming to perform. For
instance, one popular model to create river networks is optimal channel networks
(OCNs) [1,18]. For a more detailed overview of digital rivers creation throughout
the various related research fields, we refer to Brown et al. [2].

We propose a method and pipeline for quick and easy procedural generation
of large, plausible-looking landscapes which include and integrate believable wa-
ter bodies. In our approach, we mimic the mutual influence between terrain and
water bodies by first generating the rivers and lakes based on artificial drainage
basins, and then computing the final terrain. This way, we get more natural-
looking landscapes, than by retroactively adding rivers to a terrain. In order to
demonstrate our proposed approach, we have developed a prototype application
in Unity. In this prototype, we have applied a pipeline approach that makes
it easy to evaluate intermediate results and emphasizes a workflow with quick
iterations. Finally, we have conducted an extensive evaluation of our proposed
system.

2 Related Work

One of the oldest approaches for procedural terrain generation is to use subdivi-
sion techniques such as the midpoint displacement and the diamond square al-
gorithms, and noise functions, as they are able to produce fractal-like structures,
which are also often found in nature. Moreover, such techniques are, generally,
relatively easy to use, highly scalable, and computed quickly. A comprehensive
overview of various noise functions is given by Lagae et al. [15]. The drawbacks
of those techniques are the intrinsic lack of control over global features, and
the un-intuitive parameters, which make it hard to create geologically plausible
landscapes.

A popular approach to providing intuitive control to the user is to add an
authoring phase at the beginning, most often in form of a user sketch that acts
as a high-level constraint for the subsequent terrain generation [9,21].

An approach to create more realistic terrains is to mimic or simulate natural
processes. For instance, Michel et al. [17] and Cortial et al. [6] create large-scale
landforms such as mountain ranges by using simplified plate tectonics, and Fis-
cher et al. [8] developed a simplified climate simulation to create large landscapes
with plausible biome distributions. Most often, simulation-based techniques fo-
cus on thermal or hydraulic erosion, the latter normally encompassing some form

Procedural Landscapes with Water Bodies 3

of fluid simulation. Some examples being the works by Mei et al. [16], Stava et
al. [20], and Cordonnier et al. [5] who combined hydraulic/fluvial erosion with
tectonic uplift. However, despite efforts to speed up the computations, most
simulation-based approaches are very time-consuming, especially if applied on
large-scale terrain. Another disadvantage is the lack of intuitive control over the
generated terrains.

Realistic-looking large-scale terrains also can be created using example-based
procedural generation techniques such as texture synthesis. These methods, as
proposed by Zhou et al. [24], Guerin et al. [13] or Gain et al. [10], typically
rely on user sketches and DEMs which serve as constraints and example input.
Naturally, example-based methods are limited by the available example data
and can only replicate terrain features and landforms that are represented in
the input DEM. Also, high-level geological constraints and the correct relations
between large-scale features such as drainage basins are usually not taken into
account.

Relatively few works explicitly focus on procedural rivers and water bodies
as initial terrain-defining elements, although river networks play an important
role in the natural formation of the terrain. Kelly et al. [14] were the first to
propose the idea of procedurally generating terrain based on river networks and
corresponding drainage basins. Here, the river networks were generated based on
constrained midpoint displacement, and then the terrain was computed accord-
ingly. Derzapf et al. [7] employed a similar approach but applied it on a planetary
scale. In the work by Teoh [22], the terrain generation starts, too, by first pro-
cedurally creating river networks. In this case, rivers are grown from randomly
placed outlets around the land region. In contrast to these works, Genevaux et
al. [12] explicitly take hydrological knowledge into account, additionally, initial
user sketches provide more control. Based on the sketch, a river-network graph
is created, river segments get classified into different types of watercourses, and
the surrounding terrain gets computed using a hierarchical terrain construction
tree. Zhang et al. [23] present a similar approach but generate the rivers based on
Tokunaga river networks and calculate the surrounding terrain using a diffusion
process.

For a more comprehensive overview and discussion of procedural terrain gen-
eration techniques, we refer to the recently presented work by Galin et al. [11].

3 Overview of our Approach

In this section, we will present an overview of our proposed methods and pipeline.
First of all, we will briefly discuss different approaches to procedural terrain
generation that include and emphasize river systems, and explain the reasoning
behind our approach.

The first group to consider are purely simulation-based approaches. These
are able to produce realistically-looking terrains with river networks, e.g., using
erosion simulation. As we prioritize a quick and easy generation over absolute
realism, though, we have decided against these simulation-based approaches.

4 Roland Fischer et al.

Another approach that follows the classical order of first generating the terrain
and then adding rivers to it is to use pathfinding algorithms. However, in our
experience, the river networks and their integration into the terrain were not
convincing, as they did not respect geomorphological constraints. In this paper,
we instead propose to follow the more natural “rivers first” approach, specifically,
first generating river networks based on artificial drainage basins and then mod-
eling the final terrain after them. Accordingly, we will present several methods
and an integrated pipeline to allow for that.

For the implementation of our pipeline, we have used heightmaps as data
structures, as they have a smaller memory footprint and, most importantly, pro-
vide much greater compatibility with external applications than voxels. It is
very important to facilitate a quick workflow for the users, therefore, we em-
ploy a pipeline approach in which each step should be computed in a matter
of seconds, be repeatable if modifications are desired, and the results directly
be applied on a proxy mesh for inspection. Fig. 1 depicts a high-level overview
of our approach. We start with the general landscape layout by letting the user
author the landmasses using marker-based curves. Then, different regions can be
marked (e.g. flatland, or mountains). Following this, the river networks, includ-
ing lakes, are computed based on artificial drainage basins. Finally, the terrain
height gets computed based on the previous steps. In the earlier stages, we em-
phasize providing the user with more control over the algorithm, while the later
stages have a higher degree of automation. The reasoning for this is that the
user should have a great influence over the general layout and shape of the land-
scape and its landmasses, which are defined in the earlier stages of the pipeline,
but not be overwhelmed with a host of detail decisions all over the landscape.
Smaller modifications at the places where it is deemed necessary could be better
done afterward via a polishing pass with a sculpting tool.

Control Automation

Ocean
Borders

Regions
Rivers &

Lakes
Terrain
Height

1. Marker-based
Curves

2. Voronoi
Refinement

1. Drainage Basins
via Flow map

2. River calculation

3. Lake Growing

1. Marker-based
Placement

2. Border
Refinement

1. Terrain Growing

2. Texture
Generation

Fig. 1. Overview of our procedural generation pipeline. The first stages feature more
user control, the latter ones provide more automation.

Procedural Landscapes with Water Bodies 5

Fig. 2. Authoring of the general shape of the landmass borders using marker objects
which act as spline control points (red points with arrows). The white curve represents
the generated spline and the green area depicts the final refined landmass. First 3
images: increasing strength values (reducing the curvature of the tangent).

4 Our Terrain Generation Pipeline in Detail

4.1 Ocean Borders

Our pipeline begins with the coastlines that separate the landmasses from the
ocean. As the user should have great flexibility to shape the general terrain
to his needs, we prioritized providing great manual control instead of excessive
levels of automation for this part of the pipeline. To define the overall shape
of a landmass, the user can place marker objects throughout the scene, which
we then compute a closed curve from by interpreting them as control points of
a cubic spline, see Fig. 2. Multiple landmasses can be built by repeating the
process. The markers contain location information, a rotation, and a strength
parameter affecting the marker’s influence (curvature of the tangent). The final
segmentation into land and ocean is stored in a regular grid whose granularity
can be set by the user.

In order to improve the outlines and get a more natural look, we have de-
veloped multiple refinement options for constrained randomization based on
Voronoi diagrams. In the first refinement variant, each Voronoi region gets clas-
sified to represent landmass or ocean, depending on if the corresponding Voronoi
site is inside or outside the spline, see the top-left image in Fig. 3. The gran-
ularity of the Voronoi diagram can be set by the user. To efficiently produce
finer, more detailed borders, this refinement step can be followed up by a sec-
ond iteration in which additional Voronoi sites are placed around the previously
computed border, see the top-right image in Fig. 3. Alternatively, this second
iteration can be applied using a priority queue based on (fractal Perlin) noise for
the growth of the regions.Although computationally more expensive, it produces
more varied results through more inhomogeneous region growth and can lead to
the formation of small islands. Fig. 3 (bottom row) shows an island with the
different refinement variants applied.

6 Roland Fischer et al.

Fig. 3. Border refinement based on Voronoi diagrams. Top row: the two iterations of
border refinement. The left image shows the result after the first iteration (the black
ellipse depicts the initial spline, and the white outline the ocean border). The right
image shows the second refinement iteration with the final border (yellow outline).
Bottom row: The left image shows the land after one iteration, the middle image after
two iterations, and the right image after two iterations with noise-based sampling.

4.2 Regions

After the landmasses are defined, the next step is to partition them into regions
of different terrain types such as flatland (default), mountain, or desert. We
again focused on giving the user great control over the layout of the regions by
allowing the manual distribution of regions over the terrain. A region is defined
similarly to the coastlines in the previous step by placing region markers. This
time they contain parameters regarding the terrain type, the extent, and its
border, which is randomized using noise. Region overlaps are solved according
to the placement order. After the regions are placed, we iterate through all cells
that represent land and store the id of the region they lie in.

4.3 River Networks and Lakes

The next step in the pipeline is the generation of the river network. This is
one of the most important steps in the whole pipeline, as it directly impacts
the eventual terrain/heightmap generation. When analyzing naturally generated
terrain, the landscape can be divided into catchment areas – also called drainage
basins. These are the areas where water is collected by surface runoff (e.g. from
precipitation). They are often divided by mountains or hills. This means that by
artificially generating those catchment areas, we know afterward where we can
place hills and mountains. To generate the catchment areas, we have developed a
method inspired by optimal channel networks [18,1]. Similarly to them, we define
a finite graph G(V,E) over a regular grid spanning the landscape. The nodes
v ∈ V correspond to the cells of the grid, and the edges e ∈ E link neighboring
nodes and enable the flow of water between them. We then construct a spanning
forest F over G that acts as a flow graph/flow network, i.e., G gets partitioned
into a number of spanning trees T – acyclic, directed, rooted sub-graphs. Each

Procedural Landscapes with Water Bodies 7

outlet acts as a root of one of these trees, which each represent one river network
or its catchment area.

Our procedure is shown in the top image sequence of Fig. 4 and starts by
placing down several potential outlets around the coasts (left image) and also
around mountain regions. The separation between those outlets happens so that
the rivers can be generated differently based on terrain type. The number of out-
lets can be set by the user separately for each region type. Placing outlets around
desert regions is excluded from this process. Then, we compute the catchment
areas by construction of the spanning forest that indicates the flow directions.
This is done by calculating random flow directions for all cells in the uniform
grid and storing them in a flow map (middle image) that procedurally connects
all cells from mountain and flatland regions. This process starts at the river out-
lets by adding all outlet cells into a fringe set. Then, consecutively, random cells
from this set get selected and their unsearched, valid neighbor cells get processed
by assigning the flow direction (pointing to the current cell) and, in turn, adding
them to the fringe set. By using a random selection order, we guarantee a ho-
mogeneous growth of the spanning trees/propagation of the flow map and, thus,
the drainage basins. This process also avoids desert regions to ensure that they
stay dry when placing the rivers. The number of outlets influences the shape of
the river networks. The fewer outlets are generated compared to the number of
river sources, the higher the branching factor in the final river networks will be.
This is because the individual rivers, starting at their sources, are more often
routed to the same outlet and, thus, join somewhere along the way. Important
to note is, however, that not all outlets will necessarily have rivers run into
them. In Fig. ?? (left), an example landscape is shown with arrows depicting
the corresponding flow map (due to the perspective there are slight offsets).

1 2 3

Fig. 4. The process of computing rivers and lakes. First (1), random outlets are se-
lected at the ocean borders (red dots). Then (2), we compute the flow directions across
the land (see arrows), starting at the outlets and then consecutively and randomly se-
lecting previously evaluated cells (green arrow in the highlighted area) to process their
unprocessed neighbors (grey arrows). Eventually (3), we randomly place river sources
(blue dots) and create the actual rivers by following the flow map (blue lines). Lakes
are grown from random points on the river.

8 Roland Fischer et al.

Following these preparations, we can proceed to generate the actual rivers.
A possible approach for this would be to calculate the amount of water that
would flow through each cell. This could be done by placing water evenly on
the grid and following along each water unit with the previously generated flow
directions while adding up how many water units traverse each cell. Rivers could
then be placed in every cell that has an amount of water higher than a specified
threshold. This method would work but lead to a relatively even distribution of
river sources. Instead, we place the river sources randomly on the map and then
follow the flow directions until the ocean is reached (right image of the image
sequence of Fig. 4). This yields the advantage of a more random distribution of
sources. The amount of river sources placed is again controlled by the user and
can be set separately for mountain and flatland regions. An example terrain with
multiple rivers is illustrated in Fig. 5 (left). Users also can set the chance for a
river being a dried-out riverbed instead of a normal river. In our implementation,
each river adds a certain amount of strength to a cell when flowing through it,
thus, when two rivers join, their respective strength is combined from thereon.
Based on this strength, we calculate the width of the river and accordingly assign
more cells to it. Fig. ?? (right) depicts a color-coded example of the various
rivers and their respective strength (red: strong, green: weak). The calculation
of the width can be skipped by a user setting, though. It is also possible to set
a maximum width for rivers. This can be useful when using a calculation grid
with a lower resolution where one cell already covers a larger area of the final
map.

Fig. 5. Left: A terrain with rivers generated in flatland (green). Right: The same terrain
as in the left picture but with rivers of varying width and the addition of lakes.

Procedural Landscapes with Water Bodies 9

For each cell a river travels through, there is a chance to generate a lake. The
size of the lake depends on the strength of the river cell it is generated from:
the higher the strength, the more likely it becomes for the lake to be bigger.
In addition, the size is limited by user-set maxima and minima. To produce
lakes that vary in shape, a noise function is applied to the lake borders. The
user can set the frequency, the strength, and the number of octaves of the noise
function. All the cells inside the border are classified as lake. In order to avoid
overfilling the map with too many lakes and to give control to the user, it is
possible to set a maximum amount of lakes generated for mountain and flatland
regions. In addition, the lake generation is limited to one lake per river source.
After generating a lake, the river generation continues. Fig. 5 (right) shows an
example terrain with lakes and a river networks in which the rivers have different
strengths.

With our approach to create river networks, we are also able to generate
distinct river deltas. For this, we perform a second, locally-bound iteration of
generating drainage basins and then rivers. However, here we reverse the process:
If a river delta should be generated, we select a river cell instead of a coastline
cell as the starting point from which we compute the flow map; in this case only
a regional one. Then, we select multiple coastline cells to be outlets from where
rivers – the eventual distributaries of the delta – are created by following the
computed regional flow directions back to the original river cell. We allow this
process to randomly occur in the general vicinity of the ocean, see Fig. ?? for
examples of this process.

4.4 Terrain

After generating the rivers and lakes, we calculate the terrain’s height based on
all the previous information. The terrain will be “grown” starting at the oceans,
rivers, and lakes and continuously rise while departing from them. To do this,
all starting cells are added to a priority queue with the priority being the initial
height of the cells. The initial height of water cells was computed during the
river generation in the previous stage: cells marked as river directly get assigned
a height which steadily increases from the outlet onwards based on a region-
based steepness, although a distance-based curve is possible too. When a cell
is removed from the queue, all the neighbors that have not been traversed yet
will receive a new height by the addition of a growth value. The growth value is
calculated by taking into account the terrain growth factor of the region the cell
is in, and a random value obtained from noise functions that also depend on the
region. The height value is also interpolated between the different region types
to allow for a smoother transition between them. The exact height calculation
for a cell x′ which is the neighbor of an already computed cell x is described by
the following equation:

h(x′) = hx + st · bd + sr · (1− bd) + |nt · at| (1)

In this, hx is the height of cell x, st is the terrain/region-dependent growth
factor which itself is computed using a distance-based interpolation between all

10 Roland Fischer et al.

regions in the area, bd is a distance-based blending factor, sr a growth factor for
rivers, nt the noise output whose frequency is again terrain-dependent, and at is
a terrain-dependent amplitude. The latter is calculated as at = st · kt in which
kt is a terrain-dependent noise strength. Fig. 6 (left) shows an example terrain
with computed height. The growth value itself does not change the final height
of the terrain, though, as the heightmap is scaled to fit the global user-controlled
world width and height parameters.

4.5 Visualization

The last step of the pipeline is the visual representation of the generated terrain.
We generate a mesh by first assigning a vertex to each cell of the heightmap and
then calculating the corresponding triangles and UV coordinates. The user can
choose from multiple rendering modes using different textures, which are illus-
trated in Fig. ??: The normal-texture mode displays a gradient that is dependent
on the height, the region mode visualizes each region with a separate color, and
the height mode displays a normalized heightmap as texture. Additionally, the
mesh can be flattened to a plane for easier evaluation of earlier stages.

5 Evaluation

In order to evaluate our proposed procedural system, we present a brief complex-
ity analysis, extensive practical performance measurements, and a qualitative
evaluation.

5.1 Complexity Analysis

The overall run-time complexity of our pipeline is

O(nc · ns · nl) (2)

with nc being the number of grid cells, ns being the number of river sources,
and nl being the number of lakes. This means that the time complexity depends
linearly on the number of river sources, the number of lakes, and the number of
cells in the grid. Similarly, the space complexity is O(nc).

Fig. 6. Final terrains with computed height. Note that increasing the slope parameter
for the flatland (green) leads to higher, more pronounced hills (right image).

Procedural Landscapes with Water Bodies 11

5.2 Performance Evaluation

After the theoretical considerations, we did extensive real-world performance
measurements of our system as a whole as well as of each pipeline step individu-
ally. All performance measurements were done using a PC with Windows 10, an
Intel i7 7800x processor, 16 GB of main memory, and an Nvidia GeForce 2070
graphics card. As the performance is mainly dependent on the number of grid
cells nc, we conducted all measurements with sizes of nc = 5122, 10242, 20482

and took the median of 20 runs.

In Fig. 7 we illustrate the computational time of the whole pipeline over
the different grid sizes, whereby the timings of the individual pipeline steps are
stacked on top each other. As we can see, the computation is very fast: with low
to medium-sized grids, the whole process is done in a couple of seconds, single
steps being computed nearly in an instant, and even with the biggest tested grid
resolution of 20482, the pipeline gets computed in under 25 seconds. Looking at
the timings for the individual pipeline steps, the calculation of the region and
rivers is the fastest and, compared to the other steps, negligible throughout all
resolutions. At lower resolutions of 5122, the calculation of the terrain’s height
and the visualization take the most time with 0.39 and 0.38 seconds, respectively.
At higher resolutions of 20482, however, the border computation takes the longest
with 7.6 seconds, followed by the terrain with 7.5 seconds. The reason for this is
that the computational time of most pipeline steps growths with factors closely
around the expected one of 4 that corresponds to the linear growth regarding the
number of grid cells (quadratic regarding grid side-length) which we established
in the theoretical complexity analysis. The time for the border calculation, in
practice, growth with factors around 5, though.

Investigating deeper what exactly causes the computational time in the indi-
vidual steps, we find that in the river step the calculation of the drainage basins
via the flow map takes up > 88% of the time while the following computation
of rivers and lakes takes nearly no time, see Table 1. Accordingly, the number of
rivers and lakes does not have a significant effect. The main factor regarding the
performance is therefore the overall grid resolution.

0 2 4 6 8 10 12 14 16 18 20 22 24

20482

10242

5122

Time in s

G
ri

d
S
iz

e

Borders Regions Rivers

Terrain Visual.

Fig. 7. The calculation times for the complete pipeline over multiple grid sizes. Even
with a grid size of 20482 the whole pipeline gets computed in under 25 seconds.

12 Roland Fischer et al.

Table 1. Detailed timings of some
pipeline steps for a grid resolution of
20482.

Step Substep Time in ms

Borders
Refine. (1i) 851
Refine. (2i) 1601
Refine. (2i+N) 7600

Rivers
Drainage B. 796
Rivers+Lakes 100

Visual.
Mesh 800
Textures 3426

Some other parameters, however, also
have a notable influence on the needed
time for computation. For instance, in the
first pipeline step – the border calculation
–, the second iteration of border refine-
ment takes considerably longer than the
first one, as a higher number of Voronoi
points is used. Also, if the second refine-
ment iteration is applied with additional
noise (default setting), it takes even more
time to compute, as in this case, we use a
priority queue. This is also the reason for
the higher practical growth factor of this
step. Regarding the visualization step, the
computation of the textures takes roughly
four-fifths of the time of the step while the
mesh generation itself only takes one-fifth.

5.3 Qualitative Evaluation

To our knowledge, there are no metrics to quantify the quality and realism of
procedural terrains and water bodies. Thus, in order to evaluate the quality and
plausibility of the terrain generated with the proposed system and to showcase
its versatility, we did a qualitative evaluation. For this, we have created several
landscapes with different settings, which can be seen in Fig. 8, and reviewed
the production process as well as the results regarding usability, flexibility, and
plausibility. With our system, it is possible to produce a vast variety of shapes
for the coastline. Single continents, as well as island groups, can be created
by varying the number and position of land markers. Generally, we found the
process very efficient and flexible; simpler shapes can be realized very quickly
with just a few markers, but by using a greater number, the user also can create
more complex worlds. Similarly, the whole process to create a terrain is very
easy and straightforward, as our pipeline design allows for quick iterations and
the saving of intermediate results. Also, although we provide many parameters
to fine-tune each step to the user’s liking, in most cases the majority of them
don’t necessarily have to be changed and our pre-configured default settings will
suffice.

Thanks to our focus on water bodies and the approach to create river net-
works before the final terrain, the procedural landscapes produced with our
system are quite natural looking and feature plausibly embedded river networks
that recreate the typical dendric structures from the real ones. In general, we
found that the generated results look very plausible and, presumably, the ma-
jority of different demands on the produced landscapes can be satisfied.

To further evaluate the plausibility of the generated terrains, we have com-
pared them with parts of the real world’s terrain based on publicly available
height data. For this comparison, we took digital elevation models (DEMs) –

Procedural Landscapes with Water Bodies 13

Fig. 8. Example landscapes generated with our system. Note the high variability and
plausibility.

which represent elevation data of the real world’s terrain –, constructed 3D
meshes of them, and attempted to replicate the real terrain as closely as possi-
ble with our system while only investing a reasonable amount of time (a couple
of minutes). As an example, we randomly took a section of the Severo-Evensky
District in Magadan Oblast in Russia (61.21703, 160.21836) as a real-world ref-
erence. Fig. 9 shows the comparison between the mesh representations of both
landscapes, the left image shows the real terrain, and the right one our systems
replication of it.

Fig. 9. Comparison of a real world’s terrain (left) and our recreation (right), both
visualized with meshes. Note that our recreation is quite similar.

14 Roland Fischer et al.

As can be seen, it is possible to recreate a similar general shape of the coast-
line. Also, the mountain ranges are distributed with a good approximation of the
reality. It is not possible to perfectly match the terrain near the world border,
as the real map is a part of a larger landscape. Our terrain generation algorithm
does not have information beyond the borders and thus cannot replicate this
behavior. However, the inland parts of the river networks were generated in a
believable way. Even though the pathways of the riverbeds differ from the origi-
nal directions, the individual parts of river networks have similar overall shapes.
This can be observed, for instance, in the northern parts of the mountains in
Fig. 9. In general, it was possible to create a good approximation of the real
terrain.

6 Conclusion and Future Work

With this work, we have presented a system for the procedural generation of
vast landscapes with a focus on the natural and realistically-looking integration
of water bodies. This is achieved by the approach of first generating river net-
works and lakes based on drainage basins and then the actual terrain. A quick
and agile workflow is facilitated thanks to our pipeline design in which each
stage is computed and visualized in a matter of seconds. According to our per-
formance measurements, a high-fidelity landscape (grid resolution of 20482) can
be computed in under 25 seconds. In order to balance the amount of control,
usability, and efficiency, we have designed the first pipeline stages to allow the
authoring of the general landscape and its layout, while the later stages are more
automation-heavy on the terrain details. Of course, our methods in the various
stages of our pipeline are easily modifiable to much more or even less control, so
it can be easily adapted to different needs in different workflows. Our qualitative
evaluation demonstrated the great variability of our approach and a dedicated
comparison with real-world terrain based on DEM data illustrated the capability
to quickly create terrains strongly resembling the real ones.

In the future, we plan to explore the option of performing a multi-iteration
cycle that gradually refines the landscape, and want to add more landscape
features such as oxbow lakes and wetlands.

References

1. Balister, P., Balogh, J., Bertuzzo, E., Bollobás, B., Caldarelli, G., Maritan, A.,
Mastrandrea, R., Morris, R., Rinaldo, A.: River landscapes and optimal channel
networks. Proceedings of the National Academy of Sciences 115(26), 6548–6553
(2018)

2. Brown, R., Pasternack, G.: How to build a digital river. Earth-Science Reviews
194 (05 2019)

3. Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., Rinaldo, A.: Dendritic connectiv-
ity controls biodiversity patterns in experimental metacommunities. Proceedings
of the National Academy of Sciences of the United States of America 109, 5761–6
(04 2012)

Procedural Landscapes with Water Bodies 15

4. Carraro, L., Bertuzzo, E., Fronhofer, E., Furrer, R., Gounand, I., Rinaldo, A.,
Altermatt, F.: Generation and application of river network analogues for use in
ecology and evolution. Ecology and Evolution 10 (06 2020)

5. Cordonnier, G., Braun, J., Cani, M.P., Benes, B., Galin, E., Peytavie, A., Guérin,
E.: Large scale terrain generation from tectonic uplift and fluvial erosion. Computer
Graphics Forum 35 (05 2016)

6. Cortial, Y., Peytavie, A., Galin, E., Guérin, E.: Procedural tectonic planets. Com-
puter Graphics Forum 38, 1–11 (05 2019)

7. Derzapf, E., Ganster, B., Guthe, M., Klein, R.: River networks for instant proce-
dural planets. Computer Graphics Forum 30, 2031 – 2040 (11 2011)

8. Fischer, R., Dittmann, P., Weller, R., Zachmann, G.: Autobiomes: procedural gen-
eration of multi-biome landscapes. The Visual Computer pp. 1 – 10 (2020)

9. Gain, J., Marais, P., Straßer, W.: Terrain sketching. pp. 31–38 (01 2009)
10. Gain, J., Merry, B., Marais, P.: Parallel, realistic and controllable terrain synthesis.

Computer Graphics Forum 34 (05 2015)
11. Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M.P., Benes, B., Gain,

J.: A review of digital terrain modeling. Computer Graphics Forum 38 (05 2019)
12. Génevaux, J.D., Galin, E., Guérin, E., Peytavie, A., Benes, B.: Terrain generation

using procedural models based on hydrology. ACM Transactions on Graphics 32,
13 (07 2013)

13. Guérin, E., Digne, J., Galin, E., Peytavie, A., Wolf, C., Benes, B., Martinez, B.: In-
teractive example-based terrain authoring with conditional generative adversarial
networks. ACM Transactions on Graphics 36 (11 2017)

14. Kelley, A., Malin, M., Nielson, G.: Terrain simulation using a model of stream
erosion. vol. 22, pp. 263–268 (08 1988)

15. Lagae, A., Lefebvre, S., Cook, R., Derose, T., Drettakis, G., Ebert, D., Lewis, J.,
Perlin, K., Zwicker, M.: A survey of procedural noise functions. Computer Graphics
Forum 29 (12 2010)

16. Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion simulation and visualization
on gpu. pp. 47 – 56 (10 2007)

17. Michel, É., Emilien, A., Cani, M.P.: Generation of folded terrains from simple
vector maps. In: Eurographics (2015)

18. Rigon, R., Rinaldo, A., Rodriguez-Iturbe, I., Bras, R., Ijjasz-Vasquez, E.: Optimal
channel networks - a framework for the study of river basin morphology. Water
Resources Research 29, 1635–1646 (06 1993)

19. Rosgen, D.L.: A classification of natural rivers. Catena 22, 169–199 (1994)
20. Stava, O., Benes, B., Brisbin, M., Krivanek, J.: Interactive terrain modeling using

hydraulic erosion. pp. 201–210 (07 2008)
21. Talgorn, F.X., Belhadj, F.: Real-time sketch-based terrain generation. pp. 13–18

(06 2018)
22. Teoh, S.: Riverland: An efficient procedural modeling system for creating realistic-

looking terrains. pp. 468–479 (11 2009)
23. Zhang, H., Qu, D., Hou, Y., Gao, F., Huang, F.: Synthetic modeling method for

large scale terrain based on hydrology. IEEE Access 4, 6238–6249 (2016)
24. Zhou, H., Sun, J., Turk, G., Rehg, J.: Terrain synthesis from digital elevation

models. IEEE transactions on visualization and computer graphics 13, 834–48 (08
2007)

	Procedural Generation of Landscapes with Water Bodies Using Artificial Drainage Basins

