

AutoBiomes

Procedural Generation of Multi-Biome Landscapes

CGI, 20-23 October 2020, Geneva

- Roland Fischer, Philipp Dittmann, René Weller, Gabriel Zachmann
 - University of Bremen, Germany
 - rfischer@cs.uni-bremen.de

The Good Dinosaur [Disney/Pixar]

Introduction

Previous Work

Overview

Details

Results

Conclusion

The Good Dinosaur [Disney/Pixar]

Introduction

Previous Work

Overview

Ghost Recon: Wildlands [Ubisoft]

Results

The Good Dinosaur [Disney/Pixar]

VaMEx-VTB [University of Bremen]

Introduction

Previous Work

Overview

Ghost Recon: Wildlands [Ubisoft]

Details

Results

Conclusion

Huge landscapes as combination of different biomes

Minecraft

Details

Results

- Huge landscapes as combination of different biomes
- Populating the terrain with objects

Minecraft

Results

- Huge landscapes as combination of different biomes
- Populating the terrain with objects
- Manual creation is not an option

Minecraft

Details

Results

- Huge landscapes as combination of different biomes
- Populating the terrain with objects
- Manual creation is not an option
- Procedural terrain generation (PTG)

Minecraft

Results

- Huge landscapes as combination of different biomes
- Populating the terrain with objects
- Manual creation is not an option
- Procedural terrain generation (PTG)
 - Much researched, still open challenges

Minecraft

Results

- Main PTG approaches:
 - Synthetic, e.g. noise
 - Fast, unintuitive, hard to get realistic results [Thorimbert18]

[Thorimbert18]

Details

Results

- Main PTG approaches:
 - Synthetic, e.g. noise
 - Fast, unintuitive, hard to get realistic results [Thorimbert18]
 - Physics-based, e.g. erosion, fluid simulation
 - Complex, realistic results, slow [Stam03, Jákó11, Ihmsen14]

[Thorimbert18]

[Jákó11]

Results

- Main PTG approaches:
 - Synthetic, e.g. noise
 - Fast, unintuitive, hard to get realistic results [Thorimbert18]
 - Physics-based, e.g. erosion, fluid simulation
 - Complex, realistic results, slow [Stam03, Jákó11, Ihmsen14]
 - Example-based, e.g. image synthesis, DEMs, neural networks
 - Realistic, good usability, inflexible [Zhou07, Beckham17, Wulff-Jensen18]

[Thorimbert18]

[Jákó11]

[Zhou07]

Results

- Main PTG approaches:
 - Synthetic, e.g. noise
 - Fast, unintuitive, hard to get realistic results [Thorimbert18]
 - Physics-based, e.g. erosion, fluid simulation
 - Complex, realistic results, slow [Stam03, Jákó11, Ihmsen14]
 - Example-based, e.g. image synthesis, DEMs, neural networks
 - Realistic, good usability, inflexible [Zhou07, Beckham17, Wulff-Jensen18]
- Also valid for commercial tools (e.g. World Creator, World Machine, Terragen)

[Jákó11]

[Zhou07]

Results

Novel PTG system combining advantages of 3 approaches

Details

Results

Conclusion

- Novel PTG system combining advantages of 3 approaches
- Effective generation of vast, plausible-looking terrains

vantages of 3 approaches Jsible-looking terrains

Details

Results

Conclusion

- Novel PTG system combining advantages of 3 approaches
- Effective generation of vast, plausible-looking terrains
- Multi-biome landscapes

vantages of 3 approaches Jsible-looking terrains

Details

Results

Conclusion

- Novel PTG system combining advantages of 3 approaches
- Effective generation of vast, plausible-looking terrains
- Multi-biome landscapes
- Dense, complex asset distribution

Details

Results

Conclusion

- Novel PTG system combining advantages of 3 approaches
- Effective generation of vast, plausible-looking terrains
- Multi-biome landscapes
- Dense, complex asset distribution
- Easy-to-use, iterative workflow

Details

Results

Conclusion

- Novel PTG system combining advantages of 3 approaches
- Effective generation of vast, plausible-looking terrains
- Multi-biome landscapes
- Dense, complex asset distribution
- Easy-to-use, iterative workflow
- Unreal Engine 4 integration

Details

Results

Conclusion

Previous Work

Biome-based Terrain Refinement

Asset Placement

Terrain + Asset Distribution

Details

Results

Conclusion

Biome-based Terrain Refinement

Asset Placement

Terrain + Asset Distribution

Details

Results

Conclusion

Details

Results

Results

Results

Results

Results

Results

Results

Results

• Each step is customizable and repeatable

Previous Work

Details

Results

• Each step is customizable and repeatable

Previous Work

Details

Results

- Each step is customizable and repeatable
- Direct proxy visualization for quick workflow

Details

Results

Details

Results

Base Terrain Generation

Multiple octaves of simplex noise

Details

Results

Conclusion

Base Terrain Generation

- Multiple octaves of simplex noise
 - Lots of parameters for flexibility, fast to compute, scalable
 - Other noise combinations possible

Details

Results

Base Terrain Generation

- Multiple octaves of simplex noise
 - Lots of parameters for flexibility, fast to compute, scalable
 - Other noise combinations possible
- Only serves as rough starting terrain, refined later
 - No tedious fine-tuning needed

Base terrain, water bodies in blue

Details

Results

Base Terrain Generation

- Multiple octaves of simplex noise
 - Lots of parameters for flexibility, fast to compute, scalable
 - Other noise combinations possible
- Only serves as rough starting terrain, refined later
 - No tedious fine-tuning needed
- Easily extendable with sketch-based editing techniques

Base terrain, water bodies in blue

Details

Results

Climate Simulation - Temperature

- Two adjustable interpolation modes:
 - Bi-linear interpolation

Temperature, blue = cold, red = hot

Climate Simulation - Temperature

- Two adjustable interpolation modes:
 - Bi-linear interpolation
 - Sine-based interpolation

Temperature, blue = cold, red = hot

Climate Simulation - Temperature

- Two adjustable interpolation modes:
 - Bi-linear interpolation
 - Sine-based interpolation
- Adjustable altitude-based decline

Temperature, blue = cold, red = hot

Details

Results

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach
 - Only self advection and external forces

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach
 - Only self advection and external forces
 - User specified, persistent external forces on corners

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach
 - Only self advection and external forces
 - User specified, persistent external forces on corners
 - Iteratively averaging wind vectors with adjacent ones in forward direction

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach
 - Only self advection and external forces
 - User specified, persistent external forces on corners
 - Iteratively averaging wind vectors with adjacent ones in forward direction

- Prevailing wind for moisture distribution
- Iterative, simplified semi-Lagrangian approach
 - Only self advection and external forces
 - User specified, persistent external forces on corners
 - Iteratively averaging wind vectors with adjacent ones in forward direction
 - Enables creation of smooth, believable prevailing wind currents

2		1	
		1	-

Wind vector field

Details

Results

Iterative computation

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization

Grey indicates receiving moisture amount

Details

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization

Diffusion based on current moisture

Details

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization

Diffusion based on current moisture

Details

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization

Moisture, low = red, high = blue

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization
- Temperature and moisture-dependent precipitation

Moisture, low = red, high = blue

Precipitation, low = red, high = blue

Details

Results

- Iterative computation
- Water bodies/world borders as moisture sources
- Temperature-dependent evaporation
- Wind distributes moisture
 - Dispersion and equalization
- Temperature and moisture-dependent precipitation
- Enables phenomena like rain shadows

Moisture, low = red, high = blue

Precipitation, low = red, high = blue

Details

Results

Climate Simulation - Biomes

• Biomes classified by temperature and precipitation

Details

Results

Conclusion

10

Climate Simulation - Biomes

- Biomes classified by temperature and precipitation
- Discretized Whittaker diagram as lookup table
 - Fully customizable or replaceable

Climate Simulation - Biomes

- Biomes classified by temperature and precipitation
- Discretized Whittaker diagram as lookup table
 - Fully customizable or replaceable

Biome map

Details

Results

- Adds biome-specific structures
- DEMs as examples, inherently realistic

DEMs

Biome map

Details

Results

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b

Results

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b
- Natural biome transitions essential

$h(p) = w_b \cdot h_b(p) + w_d \cdot h_d(p)$

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b
- Natural biome transitions essential
 - Further noise-based border distortion

$h(p) = w_b \cdot h_b(p) + w_d \cdot h_d(p)$

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b
- Natural biome transitions essential
 - Further noise-based border distortion
 - Weighted blending of adjacent DEMs, *i*, via 2D kernel

 $h(p) = w_b \cdot h_b(p) + w_d \cdot h_d(p)$

- Adds biome-specific structures
- DEMs as examples, inherently realistic
- DEMs, h_d , blended with base terrain, h_b
- Natural biome transitions essential
 - Further noise-based border distortion
 - Weighted blending of adjacent DEMs, *i*, via 2D kernel

Procedural Asset Placement

Iterative, rule-based local-to-global model

Procedural Asset Placement

- Iterative, rule-based local-to-global model
 - Assets with bilateral placement rules

Procedural Asset Placement

- Iterative, rule-based local-to-global model
 - Assets with bilateral placement rules
 - Asset hierarchy, assigned to biomes

Procedural Asset Placement

- Iterative, rule-based local-to-global model
 - Assets with bilateral placement rules
 - Asset hierarchy, assigned to biomes
 - Constrained-based placement via dart throwing

Procedural Asset Placement

- Iterative, rule-based local-to-global model
 - Assets with bilateral placement rules
 - Asset hierarchy, assigned to biomes
 - Constrained-based placement via dart throwing
- Enables emergent multi-object distributions

Procedural Asset Placement

- Iterative, rule-based local-to-global model
 - Assets with bilateral placement rules
 - Asset hierarchy, assigned to biomes
 - Constrained-based placement via dart throwing
- Enables emergent multi-object distributions
- All seasons with one placement
 - Switching asset variants

Result: Proxy View of Final Terrains

Represents $1600 \ km^2$

Introduction

Previous Work

Overview

Details

Results

Result: Proxy View of Final Terrains

Represents $1600 \ km^2$

Introduction

Previous Work

Overview

Details

Results

Result: Proxy View of Final Terrains

Introduction

Previous Work

Overview

Represents $1600 \ km^2$

Bremen Result: Asset Placement

~ 200,000 instances on final terrain

Introduction

Previous Work

Overview

Details

Results

Result: Asset Placement

Shrubs exclusively in shadow of dense tree clusters

Tight clusters of shrubs in open spaces between trees

Previous Work

Dense, clumped shrubs around loosely grouped trees

Introduction

Previous Work

Overview

Details

Results

Conclusion

15

Bremen

Result: Performance

Complexity: $O(N \cdot k) - N$: # cells k: # iterations

Pipeline Step	Res. 1	Res. 2	Res. 3
Terrain Gen.	1024	2048	4096
Asset Placing	30	60	120
Rest	128	256	512

Result: Terrain Refinement Performance

Previous Work

Overview

Details

Results

 Successful combination of synthetic, physics-based and example-based PTG

Details

- Successful combination of synthetic, physics-based and example-based PTG
- Effective generation of vast, plausible-looking landscapes

Details

Results

- Successful combination of synthetic, physics-based and example-based PTG
- Effective generation of vast, plausible-looking landscapes
- Varied landscapes as combination of biomes

Results

- Successful combination of synthetic, physics-based and example-based PTG
- Effective generation of vast, plausible-looking landscapes
- Varied landscapes as combination of biomes
- Procedural, complex rule-based asset placement

- Successful combination of synthetic, physics-based and example-based PTG
- Effective generation of vast, plausible-looking landscapes
- Varied landscapes as combination of biomes
- Procedural, complex rule-based asset placement
- Quick, easy-to-use iterative workflow

Results

- Successful combination of synthetic, physics-based and example-based PTG
- Effective generation of vast, plausible-looking landscapes
- Varied landscapes as combination of biomes
- Procedural, complex rule-based asset placement
- Quick, easy-to-use iterative workflow
- Unreal Engine 4 integration

Results

Consider geological properties and soil types

- Consider geological properties and soil types
- Add rivers/water bodies and erosion

Details

Results

- Consider geological properties and soil types
- Add rivers/water bodies and erosion
- Generate and combine DEMs using neural networks

- Consider geological properties and soil types
- Add rivers/water bodies and erosion
- Generate and combine DEMs using neural networks
- Add sketch-based user control

- Consider geological properties and soil types
- Add rivers/water bodies and erosion
- Generate and combine DEMs using neural networks
- Add sketch-based user control
- Improve efficiency, e.g. multi-threading

Thank you! Questions?

rfischer@cs.uni-bremen.de

