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Abstract
Advances in computer technology and increasing usage of computer graphics in a broad field of applications lead to rapidly
rising demands regarding size and detail of virtual landscapes.Manually creating huge, realistic looking terrains and populating
them densely with assets is an expensive and laborious task. In consequence, (semi-)automatic procedural terrain generation
is a popular method to reduce the amount of manual work. However, such methods are usually highly specialized for certain
terrain types and especially the procedural generation of landscapes composed of different biomes is a scarcely explored topic.
We present a novel system, called AutoBiomes, which is capable of efficiently creating vast terrains with plausible biome
distributions and therefore different spatial characteristics. The main idea is to combine several synthetic procedural terrain
generation techniques with digital elevation models (DEMs) and a simplified climate simulation. Moreover, we include an
easy-to-use asset placement component which creates complex multi-object distributions. Our system relies on a pipeline
approach with a major focus on usability. Our results show that our system allows the fast creation of realistic looking terrains.

Keywords Procedural content generation · Terrain generation · Virtual worlds · Biomes · Climate simulation · Digital
elevation models

1 Introduction

The ever-rising demand for bigger and more complex vir-
tual 3D worlds poses a challenge for designers to create
and fill them with life. There is a broad range of applica-
tions for huge and realistic 3D landscapes, e.g., computer
games, movies and simulations. With the rising accessibility
of head-mounted displays (HMDs), there is also an increas-
ing opportunity to explore these worlds in virtual reality
in a more immersive environment. Generating these worlds
manually is a laborious and expensive task [1]; therefore,
extensive research was done in the field of procedural ter-
rain generation (PTG). Yet it remains an important topic,
as there is still much potential for improvement. Numerous
algorithms forPTGhavebeenproposedwhich canbe roughly
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categorized into three types: synthetic, physics-based and
example-based approaches [7,9]. Each of these approaches
comes with its own strengths and weaknesses. Most of the
currently used methods and terrain generators follow one of
the mentioned approaches and emphasize only on a single,
very specific use case. Hence, they are hardly capable of sat-
isfying a broader set of requirements [20]. In consequence, it
remains a challenge to create a systemwith a reasonable com-
promise of the four most essential but mutually contradictory
requirements: realism, performance, usability and flexibility.

Twoother significant factors of creating plausible, detailed
3D worlds received not much attention in the past: the dis-
tribution of assets and the generation of landscapes as a
combination of different biomes. However, with the rising
dimensions of 3D worlds the interest in landscapes with var-
ious characteristics is growing. The procedural distribution
of assets faces similar challenges in balancing the require-
ments as the terrain generation itself and is equally important
to create a convincing environment with an organic feel.

Our main contribution is the design and implementation
of a PTG systemwhich combines the three main approaches,
synthetic, physics-based as well as example-based PTG, and
unites the respective advantages to an effective and well-
balanced terrain generator. The goal is to generate realistic
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terrains while keeping simultaneously computation times
low and still considering usability and flexibility.

Our focus is not restricted to the generation of huge ter-
rains but covers specifically terrains composed of different
biomes, which is a relatively sparsely explored topic with
additional challenges. As part of our PTG architecture, we
propose an effective biome- and rule-based local-to-global
model to populate the terrain with assets. This component is
a vital step to produce a comprehensive solution for creating
convincing 3D landscapes.

Finally, our system is implemented in the Unreal Engine
and designed to be used completely from within the editor.
Optionally, the exported heightmaps can be used in external
applications.

2 Related work

Procedural generation is used since the 1980s and numer-
ous different methods were developed. Noise-basedmethods
belong to the synthetic approachof PTG, one of the oldest and
most widely used techniques. Examples of well-known noise
functions arePerlin noise byPerlin [17] andhis improvedver-
sion named Simplex noise [18]. More complex results can
be achieved by combining multiple instances of noise with
different frequencies, called fractal noise. Terrain generation
using noise is very popular, because it is easy compared to
other approaches and the computational effort low. Draw-
backs are the inherently unintuitive way to adjust noise
parameters and consequently, the difficulty to create gen-
uinely realistic looking terrain, as described in [10].

On the other hand, physics-based procedural generation
methods have their focus on creating realistic results at the
expense of lower computation speed. Very common are ero-
sion algorithms which try to create the terrain by simulating
the natural erosion processes. In 1989, Musgrave et al. [15]
proposed models for thermal and hydraulic erosion simu-
lation which became the basis for a lot of the subsequent
research on this topic. Jákó [12] adapted and improved pre-
vious work and presented a faster implementation using the
GPU. Another approach is the simulation of fluid dynamics.
Most of its techniques either are grid-based, called Eulerian,
or particle-based, called Lagrangian. The leading concept for
the latter ones is smoothed particle hydrodynamics (SPH),
which was well summarized by Ihmsen et al. [11]. Well
known is also thework of Jos Stam,who eventually presented
a convincing real-time fluid solver [21] which combined both
approaches.

Another concept for PTG techniques is based on using
examples, e.g., images or user sketches, and synthesizing ter-
rain according to it. DEMs are digital representations of real
ground surfaces, commonly parts of the earth’s topography,
and can also serve as examples for PTG. Using these DEMs

and texture synthesis methods, Zhou et al. [24] presented
a system capable of generating realistic looking terrains if
provided with appropriate and detailed data. Not long ago,
generative neural networks could successfully be applied
in the field of PTG. Recently, Beckham and Pal [2] and
Wulff-Jensen et al. [23] trained deep convolutional genera-
tive adversarial networks (DCGANs), developed by Radford
et al. [19], on DEMs to create similar looking heightmaps
for terrain generation. Similarly, Guérin et al. [8] used con-
ditional generative adversarial networks (cGANs) to create a
set of task-specific synthesizers which generate terrain fea-
tures based on sketches. Gatys et al. [6] also proposed an
interesting technique called style transfer where convolu-
tional neural networks (CNNs) learn to combine the artistic
style of one image with the main features of arbitrary other
images.

A comprehensive overview of all kinds of procedural ter-
rain generation and modeling techniques is given by Galin et
al. [4].

In the domain of generating asset distributions, two dif-
ferent concepts can be found. Local-to-global models are
based on the individual object instances, and by constrained-
based placement and simulation of interactions, the resulting
distribution is determined. Global-to-local models, on the
other hand, infer the position of individuals by a beforehand
defined distribution. Both Deussen et al. [3] and Lane et al.
[14] presented convincing individual-based simulation mod-
els to generate plant distributions. A popular distribution
to sample objects from is the Poisson distribution, which
ensures a minimal distance between samples. Early tech-
niques for Poisson-disk sampling relied on the dart-throwing
principle. Jones [13] introduced the combination with a
spatial data structure later. Also using spatial subdivision,
Gamito and Maddock [5] proposed an accurate and consid-
erably faster algorithm.

3 Our approach

Wepresent aPTGsystemwhich combines synthetic, physics-
and example-based approaches to produce vast landscapes
composed of different biomes and populated with huge
amounts of assets. We chose an incremental pipeline design
with a focus on high performance to ensure providing the
user with quick results. The pipeline currently consists of
four individual main steps where each step is customizable.
Direct visualization of each step improves usability and pro-
vides a fast, iterative workflow. In case that a single step
does not meet the user’s desires, it can be easily repeated.
Additionally, intermediate results are cached to allow reuse
of finished pipeline steps. This system design guarantees the
best trade-off between the partly contradictory requirements
such as performance, usability, realism and flexibility.
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Fig. 1 The concept of our terrain-generation system as a pipelinemodel

Figure 1 illustrates the individual four steps of our sequen-
tial pipeline.The idea is to generate a coarse base terrain using
noise functions first, which gets refined with biome-specific
details later. To compute realistic biome distributions, we
implemented a multiple-step climate simulation, which is
carefully simplified to meet the performance requirements
whilemaintaining good results. To add biome-specific terrain
details, we chose an example-based approach where DEM
data are combinedwith the previously generated base terrain.
Finally, it is possible to generate asset distributions following
a rule-based local-to-global model.

The advantage of this approach is that we can use the
different PTG styles in the individual pipeline steps and
concatenate them in such a way that brings out the respec-
tive strength, which results in a better trade-off between
the requirements. The synthetic noise functions are able to
quickly generate a general terrain and are highly adaptable.
The biome distribution is then computed using our physi-
cally based climate simulation resulting in realistic looking
results while being easily adjustable by transparent param-
eters. Highly realistic biome-specific terrain features and
details finally are quickly added by overlaying DEM images,
which is an example-based approach. The individual steps of
our pipeline and the chosen methods are described in more
detail later.

For compatibility reasons with external applications, e.g.,
modeling tools or 3D rendering engines, we decided to repre-
sent our terrains by heightmaps instead of voxels. Moreover,
we use different resolutions for the individual steps of our
pipeline, for example, the climate-simulation requires a less
detailed grid (seeFig. 2). Thefinal heightmap canbe exported
as a set of tiles in a standard file format (grayscale images).
It can also be used directly in the Unreal Engine 4 (UE)
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Fig. 2 The used data structures as a stack of regular grids. The layers
can have different resolutions

which enables us to use build-in techniques like level of detail
(LOD), instancing and level streaming. In the following, we
will detail the steps of our pipeline.

3.1 Base terrain

To generate the base terrain, we decided to employ synthetic
PTG methods, specifically, noise functions. In this first step,
we only generate a rough terrain and such methods offer
the most flexibility and widest range of possible terrains
while also being very fast. Moreover, they are not limited
in size or resolution. Physically and example-based meth-
ods would be more restrictive, e.g., have more constraints
between parameters or need specific example images, and
the potential benefits of greater realism and more details are
not relevant as we refine the terrain in later steps. The draw-
back of noise functions, the need for tedious fine-tuning to
get realistic looking results, does not apply because only the
high-level terrain has to be generated.

We create the rough terrain by relying on common noise
functions, more precisely, multiple octaves of simplex noise
(using [16]) as this is well suited to generate a general frac-
tal terrain. This method is fast, scalable, not too complex
regarding usability and sufficient as a coherent, coarse basis.
The noise parameters, as well as the number of octaves, can
be set by the user. However, replacing or adding other noise
functions for more diverse base terrains would be an easy
modification. A user definable threshold marks the sea level
to distinguish between land and water bodies (see Fig. 3a).

3.2 Climate simulation

For the next pipeline step, the computation of the biome dis-
tribution, we use a physics-based approach in contrast to
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other fully synthetic methods that often rely on noise. We
have developed a climate simulation which allows the gen-
eration of realistic, or at least plausible, distributions with
a couple of easy-to-understand parameters. By comparison,
noise functions would, in our mind, entail more fine-tuning
or result in less realistic terrains and sketch-based methods
would require more manual work which we want to avoid.
However, sophisticated simulations are more computation-
ally expensive, which is why we disregard some effects to
simplify the system and focus on reasonable approximations.
The goal of our climate simulation is to add physically plau-
sible realism to the terrain while still being moderately fast
to compute.

Following our pipeline-based design, the climate simu-
lation is composed of multiple, sequential steps by itself,
namely temperature, wind and precipitation computation,
and lastly the biome classification. In detail, our climate sim-
ulation works as follows:

– The first step in our climate simulation is the tempera-
ture computation. We provide two different interpolation
methods: a bilinear interpolation and a sine-based alter-
native. The former provides more flexibility for the user,
while the latter is more suited to model one-dimensional
gradients resembling the behavior observable on the earth
between the equator and the poles. Both modes account
for a height-based temperature falloff to simulate the tem-
perature declinewhich occurswith increasing height, and
are easily adjustable with a few parameters.

– The next step is the simulation of the prevailing wind
to distribute the later generated moisture over the ter-
rain. In order to keep the performance reasonable high,
we use an iterative approach to calculate the wind direc-
tions instead of applying a computationally expensive
fluid dynamics solver. Our method is a simplified ver-
sion of the semi-Lagrangian scheme [21]. We dropped
the diffusion process and the pressure calculations as we
handle these separately in a later pipeline step. There-
fore, we only consider external forces and self-advection
to simulate the wind and compute its directions in a vec-
tor field. For these two components, we developed a less
computational expensive algorithm.
The basic idea is to specify initial values for the four
corners which act as the external forces. An iterative
approach distributes the wind directions on a vector field:
in each iteration, the new wind direction for each cell
is computed by combining it with its adjacent cell in
the wind direction and adding a little random deviation
to simulate micro disturbances. Finally, we additionally
consider the closest corner to model the persistence of
the external forces. This delivers a plausible smoothing
or cancellation behavior along the dynamically moving
fringes between the main wind currents.

– In the third step, we use the wind and temperature data
to compute a precipitation distribution for the terrain.
Again, we decided to use an iterative simulation-based
approach. Basically, cells marked as water represent
moisture sources. The evaporation is modeled as a
temperature-dependent function; in fact, it can be chosen
between an exponential and a linear version. The wind
currents are responsible for distributing the moisture.
Most of the moisture gets transported to the neighbor-
ing cell in the direction of the wind, but some shares
also are transferred to the two cells adjacent to the neigh-
bor and source. The actual distribution depends on the
wind’s direction and the previous moisture amount of
all affected cells. With this algorithm, it is possible to
model some form of dispersion and equalization. The
amount of precipitation occurring depends on the local
moisture and temperature and is modeled as a two-step
process. First, the precipitation arising during moisture
transport is computed. By using the previously com-
puted temperature values and calculating the difference
between the target and source, we can also simulate nat-
ural phenomenons like rain shadows. Finally, additional
precipitation is computed for moisture-holding cells to
simulate other, more local causes. Again, exponential or
linear formulas can be used. Although we provide rea-
sonable standard values, the system can be modified by a
set of user parameters steering the formulas and therefore
the results.

– The last step of the climate simulation is the classifica-
tion of the resulting biomes according to the computed
properties, in particular, the temperature and precipita-
tion. For this purpose, we use a slightly modified and
discretizedWhittaker diagram [22] as a lookup table. For
each pair of temperature and precipitation values, a spe-
cific biome ID is assigned according to the lookup table.
In principle, other classification systems are possible as
the lookup table can be freely changed or replaced by the
user.

Figure 3 shows the results of the temperature (b), wind (c),
moisture (d), precipitation (e) and terrain refinement (f) steps.

3.3 Terrain refinement

To complete the terrain generation, the rough base terrain is
enrichedwithmore realistic details based on the biome distri-
bution provided by the climate simulation.We decided to use
an example-based approach, in particular, DEMs, to obtain
realistic biome-specific terrain details because of the vast
pool of freely available DEM data which can be exploited.
The DEMs serve as examples which can be blended onto
the base terrain. The advantage is that the DEMs inherently
provide realistic biome-specific terrain features and details.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Intermediate results of the first five pipeline steps. a: Base terrain
with land in yellow and water in blue. b: Temperature; warmer colors
denoting higher values, e.g., cold regions are blue. c: Wind depicted by
the arrow orientations. d: Moisture; colder colors denoting higher val-
ues, e.g., high moisture values in blue regions. e: Precipitation; colder
colors again denoting higher values. f : Biomes; the colors denote dif-
ferent biomes, e.g., orange depicts a hot desert, and light green depicts
grassland

To get such realistic details, other methods would need a lot
more user tuning and manual work, e.g., crafting specific
multi-layered noise functions for each biome type, or com-
plex computations in case of physically based methods.

Another aspect which has to be considered for multi-
biome terrains is, that especially organic, natural looking
biome transitions are essential. Therefore, we further cus-
tomize the previously computed biome borders. The basic
idea is to initially use user-adjustable, simplex-based frac-
tal noise to distort the borders at a more granular level. For
this purpose, we allocate a higher-resolution biome grid.
Compared to more sophisticated techniques from the field of
texture synthesis, this is a simple and fast-to-computemethod
which guarantees a result with consistent quality. Depend-
ing on the input data, other methods may occasionally result
in technically correct but visually unsatisfactory results like
straight biome borders (e.g., graph cut).

In a second step,we compute a biome-basedDEMweight-
ing using a convolution kernel to blend the adjacent biomes

and their corresponding DEMs: each DEM weight equals
the area of the corresponding biome inside the kernel bound-
aries proportional to the whole kernel region. The strength
of the resulting blend and the required computation time
depend on the size of the kernel, which can be set by the user.
The final DEM value can be easily calculated as a weighted
sum over the occurring DEMs. For simplicity, we assume
a one-to-one relationship between the DEM texels and the
terrain heightmap. Finally, we combine the generated biome-
specific detail layer with the base terrain by using a weighted
sum of the two heightmaps.

3.4 Asset placement

In the final step of our pipeline, we populate the biomes by
placing assets. We have developed an iterative, rule-based
local-to-global model, that, in contrast to global-to-local
models, enables the creation of emergent distributions. Addi-
tional advantages are that the model can easily be modified
or extended by further constraints and the individual assets,
through the defined rules, inherently consider the biome tran-
sitions. We also considered using a global-to-local model in
combination with real plant distribution data, but such data
are hardly available for all kinds of biomes.

Our system is designed to use pre-modeledmeshes, which
allows for arbitrary generation methods to be used. However,
the mesh generation itself, in a modeling sense, is not part
of this work. We provide a basic database of pre-defined
assets that can be easily extended by the user. Each asset is
associated with a set of properties, e.g., clustering probabil-
ity, shadow tolerance or repelling distance. The placement
is done iteratively via the dart-throwing principle where
a random position is sampled and checked for the assets
constraints. Our sampling approach is generally based on
Poisson-disk sampling, where all the points are guaranteed
to maintain minimal distances between each other. However,
we extended this basic approach to cover also more com-
plex multi-object distributions with bilateral constraints. Yet
our approach is very flexible through the easy-to-understand
parameters which steer the placement. We divide the assets
into a fewmain classes, e.g. organic- and inorganic, with cor-
responding relevant parameters, which helps to improve the
usability. Additionally, assets are partitioned into size cate-
gorieswhich are processed iteratively such that smaller assets
consider the previously placed bigger ones. With this tech-
nique, we achieve more plausible mixed distributions and
environments. Generally, depending on the parameters, it is
possible to model clustered, random or uniform distribution
and anything in between.

As seasons have a significant influence on the terrain
cover’s visual appearance, each asset can be associated with
up to four different meshes representing its seasonal look.
The meshes then are swapped automatically according to the
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Fig. 4 Afinal terrain of our PTG system rendered in the Unreal Engine.
The different surface characteristics caused by the distribution of multi-
ple biomes can be seen easily. Each biome is also depicted by a different
color

current season, which can be changed in real-time. Addition-
ally, theUnreal Engine 4 provides instancingwhich improves
the rendering performance, and a LOD system for dynamic
switching between the placed assets’ detail levels.

4 Results

We have implemented our terrain generation system directly
in the Unreal Engine 4.20 using mainly C++ programming.
It is directly accessible via the Unreal Editor which makes it
very convenient for content creators.

We are not aware of quantitative measures to evaluate the
quality of automatically generated terrains or biome distri-
butions. Hence, we decided to provide mainly a qualitative
evaluation of our system. We, e.g., show the influence of
several of the most important parameters in the terrain gen-
eration pipeline. Additionally, we present measurements of
the performance of each pipeline step in various configura-
tions.Moreover, we are not aware of any directly comparable
scientific work with the same focus—fast procedural multi-
biome terrain.

First, we investigate the plausibility of the generated ter-
rains. Figure 4 shows an example of terrain generated with
our approach.

Different biomes can be easily distinguished by differ-
ent surface characteristics. The distribution of the biomes is
a result of correctly simulated natural phenomena like the
occurrences of rain shadows. The easy accessibility of the
adequate and meaningful parameters from the editor makes
it easy to generate a vast variety of different terrains and
asset distributions. For instance, Fig. 5a, b and c shows the
influence of the temperature, the wind direction and the used
base noise, while all other parameters remained constant: the
resulting terrains look very different; however, they are still

(a) (b)

(c) (d)

(e) (f)

Fig. 5 A set of different terrains generated by our system, visualized
on a proxy mesh with biomes depicted by different colors. In contrast
to Fig. 3f, we changed the temperature a, the wind directions b, the
base noise c, numerous parameters at once d, e, f. Especially the last
three examples show how a wide range of different terrains with wildly
varying surface characteristics and biome distributions can be gener-
ated. This is a result of the interaction of parameters like the base noise,
temperature, wind direction and chosen DEMs

plausible. Figure 5d, e and f shows a variety of terrains if we
change multiple parameters. The interaction of the different
parameters like base noise, temperature, wind direction and
chosen DEMs is responsible for the even more wide range
of generated terrains. These example terrains show not only
diverse occurring biomes and biome distributions but also
drastically varying surface characteristics and general pat-
terns.

Placing hundreds of thousands of assets with cross-class
dependencies to populate a huge terrain is easy with our sys-
tem (see Fig. 6, where the generated terrain is populated with
around 200,000 assets).

By changing the asset-placement parameters, the user can
directly influence the distribution and density of the assets
while maintaining high realism (see Fig. 7a, b and c).

The real-time-adjustable season of the year has a signifi-
cant impact on the landscape’s appearance, as can be seen in
Fig. 8 and enables the visualization of an even wider range
of environments and adds an additional layer of realism to
the user if switched dynamically.
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Fig. 6 The same final terrain as in Fig. 4 with procedurally distributed
assets using our asset placement component. Around 200,000 instances
were spawned in total

(a) (b)

(c)

Fig. 7 Three different asset distributions generated by our system. a:
Tight clusters of shrubs in open spaces between trees.b: Shrubs growing
exclusively in shadowed areas within dense tree clusters. c: Dense,
clumped distribution of shrubs around loosely grouped trees

(a) (b)

Fig. 8 A terrain with its cover at different seasons: summer on the left
a, winter on the right b. Seasons and the corresponding meshes can be
automatically switched by our system

Additionally, we have investigated the performance of our
terrain generator. All timingswere done on aWindows 10 PC
with Intel Core i7-7800X processor, NVIDIA GeForce RTX
2070 graphics card and 16 GB system memory. The running
time of the pipeline depends mainly on the resolution of the
particular grids. The expected running time is O(n3) with n
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Fig. 9 Computation times of the different pipeline steps: For the first
pipeline step, the cell resolutions (per axis) were set to 1024, 2048 and
4096, respectively. For the distribution of assets, the resolutionswere set
to 30, 60 and 120 assets per cell, while for all other steps, the resolutions
are 128, 256 and 512 cells per axis

denoting the number of cells per axis. This is dominated by
the simulation of wind and precipitation with an expected
running time of O(n3). The other steps are expected to have
a running time of O(n2). However, the biome classification
is actually bound by the constant DEM loading times and the
asset placement is nearly linear in the number of assets. The
theoretical memory consumption is O(n2). In practice, it is
dominated by the number of asset instances.

Figure 9 shows the time needed for calculating the indi-
vidual pipeline steps with respect to the grid resolutions. All
times were measured by performing several test runs using
the Unreal Engine profiling tool and taking the median time
over all test runs.

The computation time of the individual pipeline steps
differs significantly, from a few milliseconds for the tem-
perature calculation up to 36.6 seconds for the precipitation
calculation in the most expensive configuration. However,
the computations last in the majority of cases less than ten
seconds. The overall most time-consuming steps are the pre-
cipitation calculation and terrain refinement, as expected, but
also the asset placement. Themain factor affecting the needed
computation time is the respective grid resolution, but for
some pipeline steps, additional parameters also have a great
influence. For example, during the refinement of the terrain,
the blending part takes the most amount of time, and there-
fore, the adjustable blending kernel size has a significant
impact on the performance of this step. Figure 10 shows how
different kernel sizes affect the performance for the terrain
refinement.
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amount would have been 300k, where k stands for thousand

In the case of distributing the assets, it is noteworthy that
the computation time is highly dependent on the combina-
tion of the strictness of the placement rules and themaximum
number of iterations per individual placement.Our tests show
that roughly 100-300 assets can be placed in a couple of sec-
onds. The time to spawn the assets in Unreal is included in
the placement time and, in general, takes up a considerable
amount of it, which is a bit surprising. Figure 11 illustrates
the interaction between these parameters and the composition
between the time needed for the positioning and the instance
spawning. A higher number of positional tries lead to both,
more instances being actually placed and a higher compu-
tational time, as expected. However, with stricter placement
rules which are harder to fulfill, i.e. increasing the minimum
distance between instances, the overall time can actually
decrease even if the time needed for calculating the posi-
tions increases relatively. This is due to fewer valid positions
being found and therefore fewer instances being spawned
which is a fairly costly process.

However, even for large grid sizes, our terrain genera-
tion requires less than a minute in almost all cases. These
fairly low computation times meet our expectations and
enable quick iterations. Implementing multi-threading could
improve the performance even further as the most algorithms
are prone to parallelization.

5 Conclusion and future work

We have presented a pipeline-based system for procedurally
generating multi-biome landscapes. Our pipeline model is
easy to use and flexible on both, local and global scale. Our
system can help level designers and other users with generat-
ing and quickly iterating over vast and yet visually plausible
multi-biome terrains. This process includes the automatic
but still user adjustable population of the terrain with huge
amounts of pre-defined assets following complex distribu-
tions. Utilizing a carefully simplified climate simulation was
a central element in the success. It is not only crucial for
creating the biomes themselves and their realistic distribu-
tion but is also the basis for other landscape aspects, e.g., our
DEM-based terrain refinement and also the asset placement
rely on the specific biomes. Our results demonstrated that the
generation is reasonably fast, while the terrains are visually
plausible.

The modular pipeline approach is an excellent base for
future work. There are many possibilities to extend our
system or improve existing parts even further. The most
promising additions, in our opinion, would be to implement a
simulation step for river and erosion generation and the intro-
duction of different geological layers and soil types. Also
encasing the system in a meta-iteration to alternate between
biome distribution and terrain generation could be interesting
for producing results which are even more realistic. Regard-
ing improvements,multi-threading and amore complexwind
simulation would be themost important ones. Finally, we see
much potential in investigating the use of neural networks,
e.g., style transfer orDCGANs, for terrain generation, specif-
ically, generating DEMs and combining them with the base
terrain.
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