'Visual-fidelity' dataglove calibration

Ferenc Kahlesz, Gabriel Zachmann and Reinhard Klein

University of Bonn, Germany

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn – CGI2004 – p.1/5

- fine manipulation/precision grasps
 - ubiquitous
 - most important for object interaction

- fine manipulation/precision grasps
 - ubiquitous
 - most important for object interaction
- VR wants to be "real"
 - \implies should provide such facility
 - ⇔ still...
 - "crude gestures" for
 - limited and unnatural manipulation

- fine manipulation/precision grasps
 - ubiquitous
 - most important for object interaction
- VR wants to be "real"
 - \implies should provide such facility
 - \iff still...
 - "crude gestures" for
 - limited and unnatural manipulation

WHY?

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.5/5

visual feedback

force feedback

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.5/5

- hand-state capture
 - hand-master (exoskeleton)
 - high-DOF datagloves
 - work (more or less) ③
 - de facto standard ☺
 - expensive ③
 - intrusive 🙁
 - vision-based methods
 - promising (non-intrusive, inexpensive) ③
 - do not work SSS

high-DOF datagloves

flex sensors (up-down, fist)

abduction sensors (left-right)

- measure: sensor readings
- need: joint-angle values
- define a function f_i and determine its parameters ω_i : $\theta_i = f_{\omega_i}(\mathbf{s}_i)$, where
 - θ_i : *i*-th joint angle
 - f_{w_i} : mapping from sensor space to θ_i with parameters ω_i
 - s_i: set of sensor readings used for the mapping

⇒datagloves need to be calibrated

- ⇒datagloves need to be calibrated
- demand for calibration methods
 - simple and easy
 - without expensive extrenal sensory
 - robust tracking

- ⇒datagloves need to be calibrated
- ⇒demand for calibration methods
 - simple and easy
 - without expensive extrenal sensory
 - robust tracking
- great(er) absolute accuracy = the only way?
 no, because...

Somebody...

• ... fine-manipulates...

• ...a real object...

the most important feedback is visual

perception action loop

• Now if she...

• ... gets a dataglove to manipulate...

• ... a virtual object...

... head mounted display...

• ... same feedback!!!

- better relative accuracy
 - will improve purely virtual interaction
 - more similar
 - virtual postures to real
 - object-hand relative pose

- better relative accuracy
 - will improve purely virtual interaction
 - more similar
 - virtual postures to real
 - object-hand relative pose
- sacrifice
 - absolute accuracy
- gain
 - better iteraction
 - easier calibration

Overview

- previous work
- linear calibration
- cross-coupled sensors
- calibration of cross-coupled sensors
- results
- conclusions & future work

Previous work

absolute accuracy, gesture-based

- official VirtualHand®User's Guide and Immersion's FAQ document
- Chou et al., 2000: Hand-Eye: A Vision Based Approach to Data Glove Calibration

Previous work

- high absolute accuracy, trajectory-based
 - Fisher et al., 1998: Learning Techniques in a Dataglove Based Telemanipulation System for the DLR Hand
 - Weston et al., 2000: Calibration and Mapping of a Human Hand for Dexterous Telemanipulation

Previous work

- relative accuracy, gesture-based
 - Menon et al., 2003: Using Registration, Calibration, and Robotics to Build a More Accurate Virtual Reality Simulation for Astronaut Training and Telemedicine
- relative accuracy, trajectory-based
 - our method

Linear calibration

• "straight", angle = 0°

Linear calibration

• "fist", angle = 90°

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.16/5

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.17/5

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.17/5

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.17/5

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn – CGI2004 – p.17/5

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn – CGI2004 – p.17/5

• ground-truth: abduction = 0°

fingers are paralell

but the abduction sensor

stretches...

- stretch ⇒ change of measured value
- \implies computed joint angle value varies
- bending finger moves sidewards!

- stretch ⇒ change of measured value
- \implies computed joint angle value varies
- bending finger moves sidewards!
- \implies this joint angle depends on more sensors
- what are the interdependencies?

sensor tests

- not or neglibly coupled sensor?
 - \implies independent linear calibration

sensor tests

- not or neglibly coupled sensor?
 - \implies independent linear calibration
- change correlated with other sensor changes
 - with which ones?
 - \implies (somehow) calibrate them together

sensor tests

- not or neglibly coupled sensor?
 - $\bullet \implies$ independent linear calibration
- change correlated with other sensor changes
 - with which ones?
 - \implies (somehow) calibrate them together
- only glove couplings, not human "error"

abduction/adduction

'Visual-fidelity' dataglove calibration - F. Kahlesz, G. Zachmann and R. Klein - University of Bonn - CGI2004 - p.21/5

neglible (see paper)

free movement of fingers

If the movement of fingers ← one p. flex?

neglible (see paper)

neighbouring flex(es)

■ neighbouring flex(es) ↔ one abduction?

should be compensated! (see paper)

no tests, linear independent calibration

decisions

 middle & distal flexes => independent linear

decisions

- middle & distal flexes => independent linear
- proximal flexes \implies independent linear

decisions

- middle & distal flexes => independent linear
- proximal flexes \implies independent linear
- abduction \implies cross-coupled

decisions

- middle & distal flexes => independent linear
- proximal flexes \implies independent linear
- abduction => cross-coupled
- what function to take?
- which sensors should be taken into account?

- decided about the variables
- sensible definition of f?

- decided about the variables
- sensible definition of f?
- $f: R^3 \to R^1$

- decided about the variables
- sensible definition of f?
- $f: R^3 \to R^1$
- ⇒ points, whose corresponding joint angle is the same should define an isosurface

- decided about the variables
- sensible definition of f?
- $f: R^3 \to R^1$
- ⇒ points, whose corresponding joint angle is the same should define an isosurface
- estimate abduction based on
 - sensor readings
 - one or more predetermined isosurfaces

we know points on the 0-isosurface

A

abduction

A

left flex

A

right flex

positions corresponding to gestures

A

A

B

C

A

D

A

expected trajectories

creation of the 0-isosurface

expectations

real trajectories

fitted projection planes

fitted curves

generated points

generated surface

idea: record another isosurface...

... and interpolate between the surfaces

but...

index flex

• compromise: $\theta = Ad_{vertical}(\cdot) + B$

Results

Results

Results

Conclusions & future work

- 'visual fidelity'calibration
- relative accuracy, trajectory based
- explicit cross-coupling model: abduction and neighbouring flex sensors
- more visually convincing hand postures
- incorportate thumb into the scheme
 - connecting fingers should connect!