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Abstract

This paper presents a novel calibration method for data-
gloves with many degrees of freedom 1. The goal of our
method is to establish a mapping from the sensor values
of the glove to the joint angles of an articulated hand that
is of “high visual” fidelity. This is in contrast to previous
methods that aim at determining the absolute values of the
real joint angles with high accuracy. The advantage of our
method is that it can be simply carried through without the
need for auxiliary calibration hardware (such as cameras),
while still producing visually correct mappings. To achieve
this, we developed a method that explicitly models the cross-
couplings of the abduction sensors with the neighboring flex
sensors. The results show that our method performs supe-
rior to linear calibration in most cases.

1. Introduction
A quintessential service of immersive VR/AR systems

should be to let users grab and manipulate virtual objects
in a way which closely resembles natural interaction with
3D objects in the real world. The most widespread input
devices for this kind of task are various instrumented data-
gloves. These gloves measure directly or indirectly joint
angles of the human hand and these measurements drive a
virtual hand in a virtual environment. Simulating interac-
tions between the virtual hand and a virtual object, such as
grasping, manipulation could be imitated in the virtual en-
vironment.

Note that the quality of any simulation is inherently
dependent on this measurement. Unfortunately, on many
gloves that collect enough information, the sensors are
cross-coupled,because of their placement, usually in a non-
linear way, which should be taken into account during glove
calibration. A tempting solution to overcome this issue
would be to use external sensors (e.g. vision systems or
hand masters) to provide the ground-truth of the should be
measurements to handle the cross-coupling. The drawback

1Gloves that measure at least 2 flexes per finger plus abduc-
tion/adduction, eg. Immersion’s Cyberglove R�.

of this approach is that any extra hardware required for cali-
bration will prevent the method from achieving wide-spread
usage. Tedious calibration procedures are also among the
reasons why most gesture recognition subsytems in VR can
accept only a few distinct gestures. This, in turn, enables
only clumsy and unnatural interaction with the virtual envi-
ronment. Therefore, there is a demand for calibration meth-
ods, which:

• are simple and easy to carry out,
• possibly work without complex external sensory hard-

ware,
• make for robust tracking of fine hand movements.

The work described in this paper addresses the problem of
providing a calibration method for high-degree of freedom
datagloves, which handles the cross-coupling of the sensors
and does not require any external hardware elements (only
an edge of a table and similarly simple devices are needed).
Our goal is to create a calibration, which is visually appeal-
ing — this means that the virtual hand driven by the data-
glove should closely resemble the posture taken by the user
(eg. if the user’s pinky finger and thumb touch each other,
the virtual hand should do the same), however we do not re-
quire that fingertip positions should be measured precisely.

We believe that this kind of calibration has high poten-
tial for application in VR interactions, since the perception-
action control loop is closed through a virtual hand, which
behaves like the hand of the user. This will make 3D inter-
action more intuitive and efficient.

The paper is organized as follows. First, we review pre-
vious work. Then describe the chosen kinematics of the
hand and develop a model of cross-coupling of the index,
middle, ring and pinky finger sensors based on their statis-
tical behaviour. Finally we present experimental results and
conclude the paper.

1.1. About datagloves
At the time of this writing there are two datagloves

on the market that have the capability of measuring high-
degree of freedom hand movements, namely Immersion’s
Cyberglove R� and the 5DT Dataglove 16. Both gloves
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have similar sensor layout and officially supported inde-
pendent linear sensor calibration. Therefore, they share the
same cross-coupling problems. To evaluate our calibration
method, we used a Cyberglove, which is actually the de
facto industrial standard for complex finger movement mea-
surement.

Of course, the described method can be applied to any
dataglove, where similar cross-coulings arise.

2. Previous work
The official VirtualHand R�User’s Guide[9] and Immer-

sion’s FAQ document[1] describe a tedious non-automatic
process if one is interested in “exact” calibration of the sen-
sors of the glove. Moreover it’s also noted in the FAQ
that “It is usually difficult to get the ring and especially the
pinkie finger tip to touch the thumb tip.”. According to the
FAQ this is caused by not utilizing the palm arch sensor in
the calibration.

Chou et al.[2] developed a method for Cyberglove cali-
bration, which used linear regression to establish the map-
pings between joint angle values and raw sensor readings
of the dataglove. While most of the mappings are one-to-
one mappings (the measured joint angle depends exactly on
one sensor reading), they also allowed for one-to-two map-
pings (a joint angle depends on two sensor readings). The
one-to-two mappings are used to simulate an absolute ab-
duction sensor for the Cyberglove, making it possible to
measure four abduction values. The general applicability
of this method is limited by the need for a calibrated vision
system to measure the ground-truth joint angle values.

Although the attainable level of precision seemed to be
satisfactory for simple VR systems driven by a few gestures,
the robotics telemanipulation research community needed a
much better recovery of the fingertip positions. Fischer et
al.[3] used a stereo vision system to measure the real 3D
positions of the fingertips, while also storing the joint sen-
sor readings of the dataglove. A neural network was trained
with the gathered data to achieve an average tip position er-
ror of 0.2mm, with a worst case error of 1.8mm. As the
driven robotic hand has only four fingers, only four fingers
of the hand (TIMR - Thumb,Index,Middle,Ring) are cali-
brated. Like method [2], the wide-spread applicability is
constrained by the need for a vision system.

Griffin et al.[4] and Turner[7] presented a calibration al-
gorithm, which eliminated the need for a vision system, al-
beit with a greater RMS error (an average of 12mm in case
of their four finger (TIMR) calibration and an average of
5.26mm for their two finger (TI) one). The basic idea of
their method is to move the index and thumb (and the MT
and RT, respectively) with the fingertips connected, record
this trajectory, then carry out a closed kinematic chain cali-
bration using least squares regression iteration. They model
cross-coupling between the thumb abduction, flexion and
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Figure 1. The kinematics of our hand model. For

the sake of simplicity only the thumb and the index

finger are shown.

twist (see section 3) linearly. However, no discussion is
given about the adequacy of the linear model. A user can
be calibrated in a matter of minutes.

A recently reported calibration method[5], which was
developed for non-teleoperational purposes, abandons the
idea of handling cross-couplings. It collects data from sev-
eral different hand-postures and uses linear regression to re-
late the sensor values with the hand-postures. This calibra-
tion has the same purpose as ours, as the authors want to
calibrate the CyberGlove R� for “believable performance”.
However, [5] takes no cross-couplings into account, as the
sensors are treated individually. The only distinction be-
tween [5] and the simple linear calibration is that in [5] the
linear model is fitted to more than two sample points.

3. Hand model

We have chosen to base our hand model (see Figure 1)
on the one in [4], as the correctness of the model of the in-
dex finger (the middle, ring and pinky fingers have the same
kinematic structure) is exhaustively proven in [6] and the
degrees of freedom of the thumb closely resemble the sen-
sor layout of the Cyberglove. There is also a non-measured
joint (✓THUMB

TWIST ), which makes for the anatomical correct-
ness [4, 7].

The proximal link (PRX) of every finger has two de-
grees of fredom: flexion and abduction, while the middle

2



(MDL) and distal (DST ) link have only flexion. The mid-
dle, ring and pinky fingers have the same layout as the in-
dex, the only difference is that the middle finger has no ab-
duction, as the Cyberglove R� does not have an absolute ab-
duction sensor, so one abduction had to be removed. We
do not have the thumb abduction axis offset reported in
[4]. This way, we have a simpler analytic inverse geom-
etry solution for the thumb, which we plan to use in the
calibration of the thumb sensors. The fingerbase transfor-
mations (T INDEX

PALMBASE(t),...) and the fingerlink lengths
(lINDEX

PRX ,...) are fixed parameters of the model. The fin-
gerlink lengths could be manually set to correspond to the
user’s length values, but our calibration method does not
make it necessary.

The hand model also involves constraints on the angular
values of the joints. These restrictions represent the min-
imal and maximal abductions and flexions. We call these
“static hand constraints”, as they are independent of the ac-
tual hand posture (see also Section 5).

4. Cross-coupled sensors
In this section we present the results of our experiments

regarding the cross-coupling of the glove sensors. Please
note that the sensors corresponding to the thumb are not
covered by these experiments, as we do not handle the
cross-couplings of the thumb at the moment.
The purpose of the tests we carried out were twofold,
namely to verify that:

• A sensor is not or neglibly coupled with others. If such
a test is successful, then the given sensor can be cali-
brated independently.

• The change of a sensor value is correlated with other(s).
If this is the case, then the sensors in question should
be calibrated together.

All the tests consist of moving the fingers according to some
fixed pattern. These test patterns are constructed in such a
way that the examined sensor value should theoretically re-
main unchanged and the other sensors are bent to the largest
possible extent. The readings of the sensor in question are
recorded and then the total-variaton and standard deviation
relative to the full workspace of the sensor are computed.
Should these be “small enough” (in pratice, they are never
exactly zero), it indicates that the value of the given sensor
is not dependent on other moving sensors, whereas if this
value is “relatively high”, it means that the sensor is cross-
coupled with some other.

4.1. Independent sensors
In this section, we will investigate the correctness of our

first hypothesis that all of the flexion sensors can be han-
dled with an independent linear calibration (see Section 5
for details on the linear calibration).

Table 1. Proximal flex changes vs. abduction.

(ws=full workspace, tv=total variation, %=100 tv
ws ,

sd=std. dev, %=100 sd
ws )

flex ws tv % sd %
index 135 19 14.0 5.3 3.8

middle 129 12 9.3 2.7 2.2
ring 118 16 13.6 5.0 4.2

pinky 123 22 17.9 6.5 5.3

b)a)

c)

Figure 2. a) The abduction experiment. b) Exam-

inig the proximal flex and abduction changes on

the index proximal flex sensor. c) Index-middle ab-

duction test.

For the distal and middle flex sensors we did not carry
out any experiments as it seemed reasonable enough that
the other sensors do not influence their value. To check the
independence of the proximal flexion sensors, we made two
tests.

In the first test, we examined whether abduc-
tion/adduction forces the proximal flex sensors to signifi-
cantly change their value. The person who executed the
experiment abducted/adducted her fingers on a table, while
taking care to keep the flexions at zero (see Figure 2a). The
results are presented in Table 1.

In the second test, the effect of the free movements of
other fingers on one selected flexion was checked. The per-
son who carried out the experiment kept one of her fingers
at zero flex, while freely moving the other fingers. To help
keeping the flex at zero, a CD jewel case has been put un-
der the examined finger (see Figure 2b). See Table 2 for the
results.

Obviously, there is some cross-coupling between the ab-
duction and proximal flexion sensors (when one abducts
one’s index finger, the index flex sensor will be a little bit
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Table 2. Proximal flex changes vs. free movement

of the other fingers. (The notations are the same

as in Table 1.)

flex ws tv % sd %
index 135 8 5.9 2.0 1.5

middle 129 13 10.0 2.4 1.9
ring 118 12 10.1 1.8 1.5

pinky 123 10 8.1 1.7 1.4

streched). This explains that the worst case absolute devia-
tions almost reach 20% of the workspace range in the first
experiment. Nonetheless, the standard deviation values are
small (< 5.5%). Moreover, we definitely overestimate the
sensor variations, as even if one carries out the experiments
with utmost care, one tends to unwillingly change the flex-
ion of the examined finger to a small extent.

Our findings presented in Tables 1 and 2 confirm our
choice to neglect the cross-coupling effects of the proximal
flexion sensors.

4.2. Cross-coupling of the abduction sensors
In this section, we investigate our second hypothesis that

the abduction sensor readings depend on the proximal flex-
ions of the IMRP2 fingers. Let us consider the following
hand movement (see Fig. 2c): an index finger is flexed
along the edge of a table. During the movement, the abduc-
tion of the index-middle finger is zero. However, as the in-
dex finger flexes, the abduction sensor will stretch, thereby
changing its value. To measure the extent of this change,
we recorded the following three trajectories to examine the
behaviour of the index-middle abduction sensor:

1. flexion/extension of the index finger, while the middle
finger has zero flexion;

2. common flexion/extension of the index and middle fin-
ger by clenching and releasing a fist, keeping the ab-
duction zero;

3. flexion/extension of the middle finger, while the index
finger has zero flexion.

We also made such recordings for the other two abduction
sensors. From the results in Table 3, it is clear that the value
of an abduction sensor is highly dependent on its neighbor-
ing flex sensors.

5. Calibration
As we concluded in the previous section, independent

linear calibration suffices for all flex sensors. However, the

2index,middle,ring,pinky

Table 3. Abduction sensor changes vs. neighbor-

ing flexion changes. (The notations are the same

as in Table 1.)

abd. ws tv % sd %
IM 170 106 62.4 21.7 12.8
MR 156 194 124.4 51.6 33.1
RP 145 215 148.3 51.5 35.5

angular value
nominal values

sensor reading  
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Figure 3. Linear calibration of a sensor.

abduction angles should be computed based on the value
of the given abduction sensor and the neighboring flexion
sensors:

✓ABD = f(sABD, s

left
FLEX , s

right
FLEX). (1)

For example, the function of the middle-ring abduction on
a right-handed glove depends on the sensor readings from
the middle-ring abduction sensor (sABD in Eq. 1, called
“ring-middle abduction sensor” in [8]), the middle finger
flexion sensor (sleft

FLEX , “middle MPJ”) and the ring flexion
(sright

FLEX , “ring MPJ”).

5.1. Flex sensors
These sensors can be calibrated linearly, which means

that the input data for the linear calibration of the flex sen-
sors consist only of the minimal/maximal sensor readings
(the two endpoints of the sensor workspace) along with the
corresponding nominal angle values (the limits of the joint
movements in angles, i.e. the static hand constraints for the
flex joints). For details about the linear calibration see Fig-
ure 3.

5.2. Abduction sensors
To calibrate the abduction sensors, one has to find a

sensible definition of the function of Eq. 1, which is a
R

3 ! R

1 mapping. Therefore we consider it as 3D density
function, so the points in {sABD, s

left
FLEX , s

right
FLEX} space

that correspond to the same abduction value define an iso-
surface. Our task now is to estimate the real abductin angle
based on the sensor values and one or more isosurfaces.

4



a)

Figure 4. a) Using a wedge to record the points

corresponding to the 25

�
isosurface. b) The tra-

jectories of different isosurfaces may intersect.

5.2.1. Analysis of the isosurfaces.. As mentioned above,
the points of an isosurface correspond to an abduction an-
gle. So using a wedge (see Fig 4a), we can easily acquire
three pointclouds, analogously to the ones measured in sec-
tion 4.2. They should lie on the isosurface corresponding
to the angle of the wedge. To gather points for the isosur-
face corresponding to zero abduction, one simply records
the trajectories from the experiment in Section 4.2.

What we expect for all trajectories is that the value of
the abduction sensor decreases as the neighboring fingers
flex, because the sensor stretches (the abduction sensors of
the dataglove report smaller values for greater abduction an-
gles). We also expect (based on the experiments described
in Section 4.1) that when only one finger flexes (left or
right trajectory), the readings of the flex sensor of the non-
moving finger should just slightly vary (see Fig. 5a,b). An
example of sensor values measured for the zero isosurface
can be seen in Fig. 5c.

An obvious approach to define function f in Eq. 1 would
be to interpolate between isosurfaces of different abduc-
tions. Unfortunately, it turns out that trajectories belonging
to the same flex sensor, but with different abductions may
intersect, see Fig. 4b. In fact, the abduction is a function
not only of sABD, s

left
FLEX , s

right
FLEX , but also of the values

of some other sensors. However, one cannot easily increase
the dimensions of the density space by taking other sen-
sor(s) into account, because a) it is not clear, which sen-
sor(s) should be added to the variables of the abduction
function and — this is the more serious problem —, b) by
measuring only a few trajectories one cannot fill that higher
dimensional space with enough samples to carry out effec-
tive approximations.

To overcome this problem, we decided to approximate
only the zero abduction isosurface and define the abduc-
tion as a function of the distance from this surface. This is
clearly just an approximation. However, we found that it
works surprisingly well (please remember, that we are not
interested in absolute precision, we only want visually cor-
rect calibration of the virtual hand). To measure the ab-
duction the proposed way, we define an isosurface function,
S0(·), which will be fitted to the measured data and a dis-

a)

A B

C D

A

B

C

D

c)b)

1

3

2

1 3

2

Figure 5. Structure of the grabbed trajectories for

the zero isosurface of the right hand index-middle

abduction. a) endpositions of the trajectories b)

a sketch of the expectations about the behaviour

of an abduction sensor (see text) with the endpo-

sitions shown c) real grabbed data (1 - only the

index finger flexed, 2 - both index and middle fin-

gers flexed, 3 - only the middle finger flexed)

tance function, D0(·).
We create S0(·) through the following steps:

1. Project the points of the three trajectories to three ap-
propriate vertical planes (the sABD axis points up), see
Fig. 6, top left (for more detail about the selection of
the planes, see the following subsection).

2. Fit cubic functions to each of the projected trajecto-
ries. The coordinate systems of the planes should be
aligned so that the origins are common (the origin plays
the role of point “A” from Fig. 5a), the y axis has
the same direction as sABD and the x axes point into
the planes, away from sABD. Sample the computed
cubic functions equidistantly along the arc length in
N points to get three pointsets in the density space:
{pi

left}, {pi
common} and {pi

right}, i = 1..N . The first
point of the pointsets is the common origin, the last
point is the intersection of the functions with the bound-
ing box of the dataset, in positive x direction, see Fig.
6,top right.
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Figure 6. Steps of the zero abduction isosurface

definition (see text).

3. In the planes defined by the (pi
left, p

i
common, p

i
right),

i = 2..N triplets, fit parabolas to the triplets with the
minima of the parabolas being at p

i
common. Sample

these parabolas to generate additional points of the iso-
surface, see Fig. 6,bottom left.

4. Triangulate the isosurface using the points from step 2
and 3 to get a local linear interpolation of S0(·). See
Fig. 6, bottom right.

Carrying out the previous steps, we get a surface defini-
tion such that S0(sleft

FLEX , s

right
FLEX), the domain of S0 is the

bounding rectangle of the dataset in the (sleft
FLEX , s

right
FLEX)

plane. The values of S0 should be stored in a lookup-table
over its domain for fast evaluation of the function. We de-
fine D0(·) as the vertical distance to this surface, and the
✓ABD as the linear function of this distance:

✓ABD = gain · (S0(sleft
FLEX , s

right
FLEX)� sABD) (2)

Eq. 2 does not have an offset, as if S0(sleft
FLEX , s

right
FLEX) =

sABD the abduction should be zero. To determine gain an
additional point in density space is needed, where the ab-
duction has known nonzero value. We measure this point at
zero flex of the left and right fingers and maximum abduc-
tion.

5.2.2. Details of the isosurface creation.. In the previous
subsection we defined S0(sleft

FLEX , s

right
FLEX) through four

steps. We now give details about the important issues of
each step:

1. We want to project the recorded trajectories onto
three vertical planes. The plane of the left flexion
dataset should be parallel with the (sleft

FLEX , sABD)
plane and the plane of the right trajectory with the
(sright

FLEX , sABD) plane (based on our experiments, we
suppose that the flex readings of the sensor, which
keeps zero flex, does not change during the left and
right trajectories). The plane of the common pointcloud
should go through the intersection line of the left and
right planes (because the trajectories theoretically in-
tersect in the “A” posture of Fig. 5a). These planes are
completely determined by three parameters: XL, the
intersection of the left plane with the s

right
FLEX axis, XR,

a similar parameter of the right plane and XM the angle
of the common plane. Let PX

L

, PX
R

and PX
M

denote
the projection matrices into the appropriate planes, then
finding the optimal planes can be cast into the follow-
ing minimization problem:

min
X

L

,X
R

,X
M

(
X

y2LEFT

(PX
L

y � y)T (PX
L

y � y) +

X

y2COMMON

(PX
M

y � y)T (PX
M

y � y) +

X

y2RIGHT

(PX
R

y � y)T (PX
R

y � y)) (3)

As the Jacobian of the error function can be computed,
Eq. 3 could be solved with the Levenberg-Marquardt
method. Initital values for XL, XR can be chosen so
that the planes go through the centres of gravity of the
left and right trajectories, then XM is determined so
that the common plane lies on the c.o.g. of the common
dataset and the intersection of the initial left and right
planes.

2. The crucial part of this step is that the three cubic func-
tions should be fitted so that they are equal at x = 0.
To achieve this, first cubic functions without a constant
tag (Ax

3 + Bx

2 + Cx) are fitted individually to the
projected points via SVD. Using this fit as initializa-
tion, a nonlinear least squares fit can be carried out,
where the cubic functions have separate A,B, C coef-
ficients, but a common constant tag. The Jacobian of
the fit error function can be determined analytically, so
one can apply the Levenberg-Marquardt algorithm for
this problem as well. The equidistant sampling of the
curves can be done using a subdivision based on the arc
length, which could be computed with numeric integra-
tion.

3. When fitting parabolas to the corresponding three
points of the three approximated datasets, care should
be taken that the coordinate system in the fitting plane
is aligned in such a way that the extremum of the fit-
ted parabolas are as close as possible to the point orig-
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Figure 7. Comparison of our calibration algorithm

and the linear method (see text).

inating from the cubic fit of the common dataset, thus
ensuring that the common trajectory truly constitutes
the “spine” of the zero isosurface. As we did not find
an analytical solution to the problem of determining a
coordinate system, in which the extremum of the fitted
parabola is exactly lies in the desired point, we have
chosen our planar coordinate system to have its ori-
gin in the point of the common dataset and generated
a number of fits by rotating the coordinate system in
the plane. Then, the coordinate system aligment, which
provided the smallest absolute value of derivative of the
fitted parabola at x = 0 was selected. The equidistant
subdivision of the resulting parabola can be done based
on the arc length, similarly to step 2.

4. The realization of this step is straightforward.

6. Results
We tested our calibration and compared it to other meth-

ods ([9], [2],[5]). To judge the performance of our ap-
proach, we asked two questions:

1. To which extent is our algorithm able to compensate for
the learned incorrect abduction sensor readings?

2. How does it perform in other circumstances?

6.1. Comparison with the linear independent
method

To examine the compensation capabilities, we recorded
the abduction angles generated by our method and by the
independent calibration ([9]). The results of such a mea-
surement can be seen in Fig. 7a,b,c. The plots show the
abduction measurements of the zero abduction trajectory of
the index, middle, and ring finger. The x axes show the
sample count, the y axes the measured abduction value in
degrees as the finger is flexed and extended. The nominal
value of the abduction is zero everywhere. The results are
clearly satisfying: our method reports far closer values to

 0
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data
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Figure 8. Angle/sensor value pairs for linear re-

gression calibration and a fitted linear model.

zero than does the linear calibration. We also checked the
other zero trajectories and got similar results. This means
that our method is capable to compensate for the faulty ab-
duction sensor readings.

To answer the second question, we tested our method by
measuring trajectories with 25� abduction using a wedge. A
result for the index-middle abduction can be seen in Fig. 7d.
While not being able to perfectly compensate the incorrect
sensor values, our method maintains equal performance.

6.2. Comparison with the linear regression methods
Next, we compared our methods to the ones which utilize

linear regression to carry out the calibration ([2],[5]) 3.
These methods gather some corresponding angle/sensor

value pairs and then fit a linear model to the data (see
Fig. 8). The four points on the ‘x’ axis correspond to the
A,B,C,D points from section 5.2.1. It is clear that taking
these points into account as well, fitting of a linear model
is not justified, as these points should be rather treated as
outliers in this setting.

Similarly to section 6.1, we compared the methods on
two different trajectories. One is along the learned zero
abduction movement and the other is at the unlearned 25�
abduction. Results are presented in Fig. 9. It can be seen
that although the linear regression algorithm performs better
than the two-point linear calibration, our method produces
much more accurate results in the case of the learned tra-
jectory (Fig. 9a), while performs similarly to the regression
method at 25� (Fig. 9b).

6.3. Other methods
We did not compare our methods to [3] and [4], as the

goals of the these two calibration schemes and ours differ
fundamentally: both were developed for high absolute ac-
curacy needed in robotic telemanipulation, while ours tries

3[5] calibrates only the index and pinky finger finger abduction this
way. The ring and middle finger abduction is calibrated with multiple lin-
ear regression analysis and the input data for these sensor calibrations are
generated with a vision system, so we did not compare these two sensor
calibrations to ours.

7
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Figure 9. Comparison of our calibration and the

linear regression method.

Figure 10. Comparison of our calibration and the

linear regression method. The first two columns

depict the real hand posture, the third the virtual

hand configuration generated by our calibration

and the fourth by the linear regression method.

to achieve a visually plausible virtual hand (important is the
relative accuracy) that allows for fine manipulation of vir-
tual objects.

While these methods most probably would provide bet-
ter results than ours for the fingertip positions, [3] requires
a calibrated stereo vision system with an adorned dataglove
for the calibration, while we do not need any external hard-
ware device.
6.4. Visual fidelity

We illustrate the visual performance of our method
through some example real world hand gestures and their
corresponding virtual representation (see Fig. 10). For each
gesture, two virtual hand configurations are presented. One
refers to the joint angle values obtained by our calibration
of the abduction sensors and the other by the linear regres-
sion method. Obviously our method provides much more
visually plausible results.

7. Conclusions and future work
We developed a new method that explicitly models the

cross-couplings of the abduction sensors with the neighbor-
ing flex sensors of a high-degree of freedom dataglove. This
method provides a very simple calibration procedure that
can be performed without additional devices. It computes
each abduction as a function of three sensors (left/right
flex and the actual abduction). Despite its simplicity, our
method produces much more visually convincing hand pos-
tures than the linear regression method, although the cal-
ibration procedure is much simpler. The calibration of a
new user can be performed within a couple of minutes.

Our most important avenue for future work is to develop
a simialar thumb calibration scheme, which allow for high-
visual fidelty performance of the virtual thumb.
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