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Figure 1: The first four columns show renderings of the lunar eclipse on 2015-09-28 taken at about 30-minute intervals starting at 1:00

AM UTC. The upper row shows how Earth would look like for an observer on the lunar north pole. Our technique is not limited to the

Earth-Moon system, but can also simulate light scattering and refraction in other atmospheres. The last images show a similar scenario for

the Martian moon Phobos in the penumbra (last but one column) and in the umbra (last column).

Abstract

We present a novel approach for simulating eclipses, incorporating effects of light scattering and refraction in the occluder’s

atmosphere. Our approach not only simulates the eclipse shadow, but also allows for watching the Sun being eclipsed by the

occluder. The latter is a spectacular sight which has never been seen by human eyes: For an observer on the lunar surface,

the atmosphere around Earth turns into a glowing red ring as sunlight is refracted around the planet. To simulate this, we add

three key contributions: First, we extend the Bruneton atmosphere model to simulate refraction. This allows light rays to be bent

into the shadow cone. Refraction also adds realism to the atmosphere as it deforms and displaces the Sun during sunrise and

sunset. Second, we show how to precompute the eclipse shadow using this extended atmosphere model. Third, we show how to

efficiently visualize the glowing atmosphere ring around the occluder. Our approach produces visually accurate results suited

for scientific visualizations, science communication, and video games. It is not limited to the Earth-Moon system, but can also

be used to simulate the shadow of Mars and potentially other bodies. We demonstrate the physical soundness of our approach

by comparing the results to reference data. Because no data is available for eclipses beyond the Earth-Moon system, we predict

how an eclipse on a Martian moon will look like. Our implementation is available under the terms of the MIT license.

CCS Concepts

• Computing methodologies → Real-time simulation;

1. Introduction

Lunar eclipses have been awe-inspiring events since the dawn of
humankind. There have been attempts to predict the occurrence and
appearance of lunar eclipses for thousands of years. Today, we can

predict them with high accuracy using computer programs. There
are even approximate approaches working in a matter of millisec-
onds which can be used in real-time applications like scientific vi-
sualizations or video games. However, existing real-time rendering
approaches are limited to the Earth-Moon system, and the shadow
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Figure 2: This figure shows the lengths and angles used in this

paper. It extends the nomenclature introduced in Figure 2 of

[SGAG22] with the radius ratmo, the angular radius ϕatmo, and the

average distance between Sun and occluder d. The small glyphs

provide an approximate visualization of how Sun and occluder may

look from the respective position in the shadow cone. For a more

detailed visualization, refer to Figure 4. The thick dark line en-

closes the area for which we will precompute the eclipse shadow.

can only be cast onto the lunar surface and thus does not allow vi-
sualizing the light conditions on a spacecraft entering the shadow
of Earth. Also, existing real-time approaches ignore the contribu-
tion of scattered light. As we will see, this can be important on
Earth in times of high aerosol loads (e.g. after a volcanic eruption)
and is crucial for simulating eclipses on other celestial bodies, such
as Mars. Last but not least, we are not aware of any implementa-
tion which considers the appearance of the atmosphere around the
planet during an eclipse when observed from within the shadow
cone. Only very few images of this exist, but it promises to be a
spectacular sight (see Figure 3). By making such a complex phe-
nomenon visually accessible, our approach offers significant edu-
cational value. As it produces visually accurate results, it could for
instance be used in teaching celestial mechanics, in scientific vi-
sualization, or for public outreach and science communication. It
could be used in planetarium software, in space mission planning,
and even for astronaut training. Lastly, some aspects (like the spec-
tacular appearance of the atmosphere when the Sun is eclipsed)
could be used in video games.

In this paper, we present a unified approach for rendering
eclipses which is not limited to the Earth-Moon system, incorpo-
rates scattered light, supports views of the eclipsed Sun from within
the shadow cone, and runs in real-time.

Figure 3: Only very few photographs of Earth during a lunar

eclipse exist. The left image is a composite of three monochrome im-

ages taken by the Surveyor III lander on the Moon in 1967 [The67].

The right image has been taken by Apollo 12 astronauts on their

way back home in 1969 (image credit: NASA/JSC).
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Figure 4: Due to scattering and refraction, light can travel into the

otherwise dark umbra region. In Earth’s atmosphere, blue light is

scattered more than red light. Hence, the atmosphere around Earth

appears bluish, while the refracted image of the Sun turns orange

or red when it sets behind the planet. The images on the right show

how the Sun may appear from the positions marked in the left im-

age. At some point, a second image of the Sun appears at the bottom

(c), and finally it becomes a ring around the planet (d).

2. Physical Background and Related Work

First, we introduce the physical background and discuss related
work in the field of atmosphere and eclipse rendering.

2.1. Geometry of an Eclipse

An eclipse happens if the Sun and at least two other celestial bodies
are almost aligned in a straight line. The first body is the occluder
which blocks sunlight from reaching the second body, the eclipsed
object. The shadow volume of the occluder can be divided into
three regions: umbra, penumbra, and antumbra (Figure 2). Only
if the occluder has an atmosphere, sunlight can reach the otherwise
completely dark umbra due to refraction and scattering (Figure 4).

2.2. Modelling the Sun

We follow the related work and model the Sun as spherical light
source with a radius r⊙ = 696342km [SGAG22]. The Sun does
not emit light evenly into all directions, the luminance rather de-
creases towards the edge. This effect is called limb darkening. We
have shown that this effect has a significant impact on the shadow
gradient in the penumbra region [SGAG22]. Hence, we also incor-
porate limb darkening using the same formula as in [SGAG22]:

L(ϕ) = L(0)

[

1−u

(

1−

√

ϕ2
⊙
−ϕ2

ϕ2
⊙

)]

. (1)

Here, L(0) refers to the luminance at the centre of the solar disc, ϕ⊙

to the angular radius of the solar disc, and ϕ to the radial distance
to the centre. We follow the authors above and use u = 0.6 as a
constant limb darkening coefficient.

2.3. Scattering and Refraction in an Atmosphere

If the occluder has an atmosphere, light will be scattered and re-
fracted before it reaches the eclipsed object.

Scattering: In Earth’s atmosphere, light is scattered by small par-
ticles and molecules. Under normal weather conditions, molecular
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Figure 5: On Earth, refraction has a significant impact on the tim-

ing and appearance of sunsets and sunrises. The left image shows

a sunset on Earth without refraction, the second image shows the

same scene at the same simulation time but with refraction. The

horizon appears a bit higher, the Sun seems to be significantly

higher in the sky, and appears flattened. On Mars (right images),

the effect is also present in theory, but the atmosphere is so thin that

the effect is close to be invisible.

scattering is the dominant factor [HM66]. Here, blue light is scat-
tered more than red light, hence some blue light will reach the um-
bra due to scattering. Overall, the amount of light scattered into the
umbra is very small compared to the light refracted into the um-
bra. However, it has been shown that scattering at larger aerosols
can be significant for instance after volcanic eruptions [MP11]. On
other planets, such as Mars, light scattering at aerosols is in fact the
dominant factor for the appearance of the atmosphere [SMG∗24].

Refraction: The refractive index of an atmosphere decreases with
increasing altitude. This causes light rays to be bent towards the
planet, allowing them to enter the umbra. As blue light is out-
scattered in Earth’s atmosphere, a significant amount of red light
will reach the umbra this way.

For an observer on Earth’s surface, refraction results in two other
effects, which are usually ignored in real-time rendering: first, the
apparent position of the Sun is higher above the horizon than it
actually is. This effect is most pronounced when the Sun is close
to the horizon where it appears approximately 0.5◦ higher (which
corresponds approximately to the apparent size of the Sun itself).
Second, the Sun looks more like a vertically flattened ellipse than a
circle when it is close to the horizon (Figure 5). However, due to at-
mospheric variability, the actual refraction varies a lot for different
locations and times [SL90]. Even for a single location, the refrac-
tion has been reported to vary between 0.402◦ and 2.081◦ just due
to seasonal and weather changes [SLPH03].

On Mars, where the atmosphere is much thinner, the effect of re-
fraction is smaller by several magnitudes. We assumed the refrac-
tive index of the Martian atmosphere to be 1+3.38×10−6. This is
based on a mixture of 95.1 % carbon dioxide, 2.8 % nitrogen, and
2.1 % argon at a pressure of 610 Pa and a temperature of 215 K.

Ready-to-use algorithms for computing refracted rays due to a
continuously changing refractive index have been presented in the
literature [SGGC04, vdW08].

2.4. Simulating Eclipse Shadows

In a previous work, we have published an approach for simulating
eclipse shadows in real-time without considering atmospheric ef-

fects [SGAG22]. We build upon this work and extend it to include
the effects of refraction and scattering in the atmosphere of the
occluder. Other authors have presented approaches for simulating
eclipse shadows involving atmospheric effects, but they are either
limited to the Earth-Moon system or are not suitable for real-time
rendering. No real-time rendering algorithm has been presented for
simulating the intricate appearance of the atmosphere around the
occluder from the perspective of the eclipsed object.

Müller et al. use a one-dimensional lookup table for the shadow
intensity [MED∗12]. The lookup table is generated by matching a
model to a series of photographs. A single dimension is sufficient
because it is only valid for the Earth-Moon distance and due to the
rotational symmetry of the eclipse shadow.

A more versatile approach has been proposed by Yapo et al.
[YC09]. They trace light rays from the Sun to the Moon through
Earth’s atmosphere. Rays exiting the atmosphere are used to ac-
cumulate an illumination map for the Moon which is then used
for real-time rendering. If the simulation time changes, the illu-
mination map has to be recomputed. They do not incorporate out-
scattering by large particles in lower altitudes, however they in-
troduce a wavelength-independent, optional "dust layer" between
15 km and 20 km to simulate different kinds of eclipses. Also, no
in-scattered light is included in their approach. Figure 4 can be used
as an illustration of this limitation: Only light from the Sun is con-
sidered, not light coming from the atmosphere around the planet.
The authors base this decision on the assumption that the effect of
scattered light has a negligible effect on the appearance of lunar
eclipses, which does not hold for other celestial bodies.

The prediction of lunar eclipse brightness and the derivation of
atmospheric properties (such as for instance ozone content) from
eclipse observations is a well-studied field called Lunar Eclipse

Theory [HSV08,VG08,MP11]. We use results from this field to val-
idate our approach. One important property of Earth’s atmosphere
is indeed the ozone layer which absorbs predominantly orange light
in the visible spectrum [Gio18]. As such, the ozone layer has a sig-
nificant impact on the appearance of lunar eclipses and has to be
considered by the atmosphere model.

2.5. Real-Time Atmospheric Scattering

We do not only want to compute the illuminance at each point in
the shadow cone, but also the luminance of the atmosphere around
the occluder when observed from within the shadow. Hence, we
need a real-time rendering model for atmospheres which simulates
refraction and multiple scattering. The latter is especially important
for the dusty atmosphere of Mars.

The widely used Hillaire model [Hil20] could potentially be ex-
tended to include refraction. However, it is not optimized for van-
tage points in outer space which are very important for our appli-
cation. Instead, we extend the older Bruneton model [BN08] for
which we recently published and extension which makes it work
for Mars and potentially other celestial bodies [SMG∗24].

The extended Bruneton model requires several precomputation
steps. First, Mie Theory is used to compute tabulated phase func-
tions and scattering coefficients of the individual atmospheric com-
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ponents for several wavelengths. Next, multiple-scattering in the at-
mosphere is precomputed iteratively. This produces several lookup
textures which are used at run-time to retrieve the atmosphere
colour with just a few texture lookups. The lookup textures con-
tain the transmittance to the end of the atmosphere for every pos-
sible ray direction and origin (a 2D texture), the amount of light
scattered towards any observer (a 4D texture), and the total indirect
illuminance at ground level (a 2D texture).

Conceptually, our approach for rendering the eclipse shadow is
not limited to the Bruneton model. The same acceleration struc-
tures and algorithms could be used with other models, such as the
Hillaire model, if they were extended to include refraction.

3. Our Approach

Here, we want to give a high-level overview before we dive deeper
into the details in the following sections.

1. Real-time Atmospheric Refraction: We extend the Bruneton
atmosphere model to include the effect of refraction. For this, we
apply Snell’s law to the light rays and store the deviation of the
rays in an additional lookup texture (Figure 6). At run time, this
deviation can be used for computing the refracted position of astro-
nomical objects such as the Sun or stars.

2. Eclipse-Shadow Lookup-Texture (LuT): We use a two-
dimensional texture which contains shadow values for the entire
shadow cone as introduced in [SGAG22]. We render a view of the
atmosphere for each pixel of the shadow LuT and store how much
light reaches the corresponding position by accumulating the pixel
values (Figure 7). At run-time, we can use this LuT to compute the
illuminance at any point in the shadow with a single texture lookup.

3. Limb-Luminance LuT: When seen from outer space, the atmo-
sphere becomes a very thin ring of pixels and the refracted image of
the Sun may cover only a small fraction of each pixel. To avoid se-
vere flickering, we precompute this ring for every possible position
in the shadow and store it in a four-dimensional lookup texture.

3.1. Limitations

In reality, planets and moons are not perfectly spherical and are
usually flattened towards the poles. For Earth, the polar flattening is
about 0.3 %. This effectively means that the shadow of the Earth is
not a perfect cone but a bit flattened as well. We argue that this error
is very small when compared to the brightness difference an eclipse
can have only due to changes in the atmospheric composition. As
we will see in Figure 12, there can be about two magnitudes of
brightness difference only due to weather conditions.

Also, it has been shown that regional variations in the atmo-
sphere can lead to a non-symmetric shadow [GV08]. In Figure 3,
Earth’s limb seen from within the shadow appears rather patchy,
probably due to high altitude clouds [WS14, p. 66]. However, for
our purposes, the spherical symmetry seems acceptable.

Furthermore, our lookup textures are precomputed for a fixed
Sun-occluder distance which in reality changes over time. How-
ever, our lookup-texture space parametrization is based on angular
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Figure 6: Our extended atmospheric model precomputes two val-

ues which are stored in an additional lookup texture. ∆θ is the an-

gular deviation a ray encounters when travelling from its origin all

the way to the end of the atmosphere (left). The contact radius is

the minimum distance the ray had to the planet’s surface (right).

The texture space [xµ,xr] encodes all possible ray origins and di-

rections inside the atmosphere (see Equation 2).

radii which implicitly encodes the distance to Sun and to the oc-
cluder. Hence, the errors introduced by this simplification are very
small. For very eccentric orbits, multiple lookup textures could be
precomputed and blended based on the current distance to the Sun.

We only compute astronomical refraction and no terrestrial re-
fraction. The former describes the apparent displacement of objects
in the sky, the latter of objects on the ground. The effect of terres-
trial refraction is much more subtle since the rays are much shorter.
At the same time, it is much more complex to compute as it can lead
to unocclusions where rays are bent behind objects on the ground.
Also, for simulating eclipses, terrestrial refraction is not relevant.

Lastly, we chose a constant index of refraction for air. In reality,
the index of refraction is wavelength-dependent, but the effect in
the visible spectrum is very small. We used our implementation to
compute the difference between the maximum refraction for red
(750 nm, n = 1.000275) and blue light (400 nm, n = 1.000283) on
Earth. We found it to be less than 0.02◦ for an observer at sea level.

4. Simulating Atmospheric Refraction

As a first step, we extended an existing atmospheric model to in-
clude the effect of refraction. Later, we will use this model to com-
pute the luminance of the sky and the refracted image of the Sun
for positions within the shadow cone of the occluder.

4.1. Extending the Bruneton Atmospheric Model

As a basis, we chose the generalized the Bruneton model which is
applicable to extraterrestrial atmospheres [SMG∗24]. In this model,
atmospheric density, scattering, and absorption are integrated by
sampling at regular intervals along straight rays. We replaced this
with a more general integration scheme using the path length as the
integration variable. Using the path length as integration variable
does not suffer from numerical instabilities for rays which are ei-
ther vertical or close to the horizon [vdW08]. For the actual refrac-
tion computation, we use ray marching with a fixed step length and
the Runge-Kutta integration scheme. For the individual integration
steps, we implemented the methods described in the last column of
Table 1 of [vdW08] and Equation 7 of [SGGC04]. Both produce
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Figure 7: The left image shows a true-to-scale view of Earth from

a distance of about 150000 km. The atmosphere appears as a very

thin line around the planet. To compute the total illuminance at

this point, we propose to render a rectangular view of half of this

limb. The Y-axis extends from the lower end to the upper end of the

atmosphere, while the X-axis is mapped to the circumference of the

planet. The resulting limb view is shown on the right. The bright

elongated spot on the left side is the refracted image of the Sun.

Due to refraction, the image of the Sun does not touch the horizon

even if half of the Sun is geometrically behind the horizon.

about the same results, however, the method by Seron et al. is bet-
ter suited for a double-precision GPU implementation as it requires
no trigonometric functions. As suggested by other authors, a step
size of 10 km produces good results [SGGC04, MP11]. We use a
refractive index of n = 1.000277 at sea level which decreases ver-
tically in the same way as the density of the atmosphere. Overall,
refraction computation adds a significant computational overhead
to the original model. Yet all this is done during preprocessing, and
so it does not add to the runtime cost of the model.

With the above modifications, the precomputed transmittance,
sky-luminance, and illuminance textures contain values for re-
fracted light paths. This means, without much modifications to the
runtime code, the atmosphere model now supports refraction for the
sky colour. The only change required is to offset the color lookup
position in the frame buffer according to the deviation of the ray.
This is described in more detail in Section 4.2.

Yet, some simplifications are made by this approach. As we
ignore terrestrial refraction, rays are not bent before they hit the
ground. The transmittance and inscattering between the camera and
the ground is computed by the difference of the precomputed val-
ues for both points. As the ground point would be a bit different
for the refracted ray, this introduces a small error. Another simpli-
fication is that we use the angle between the ray direction and the
geometric direction towards the Sun as input for the phase function.
Due to refraction, both the direction of the ray and the direction to-
wards the Sun change slightly along the ray. Yet also this effect is
very small as rays are only bent by a small amount.

Most importantly, for the purpose of this paper, the key proper-
ties are the transmittance to the end of the atmosphere and the maxi-
mum ray deviation for refracted but unscattered rays. The transmit-
tance gives us the color of the refracted image of the Sun, and the
ray deviation describes the apparent position of the Sun in the sky.
These properties are not affected by the simplifications made.

Precomputing a Ray’s Deviation

To compute astronomical refraction, we store information about the
angular deviation a ray encounters when passing through the atmo-
sphere during the precomputation phase. Theoretically, we would
need to precompute for every possible ray the position and direc-
tion where the refracted ray exits the atmosphere. However, in a
spherically symmetric atmosphere, every ray start position and di-
rection can be described by two parameters only: the origin’s alti-
tude docc − rocc and the ray-zenith angle θ. Furthermore, rays are
always bent towards the planet’s surface. This means, that one an-
gle ∆θ is sufficient to describe the ray’s deviation. Lastly, we do
not store the exit position of the ray, as we assume that any celes-
tial body visible in the sky is extremely far away. Hence, the exit
position does not matter, only the direction of the ray is important.
Consequently, a single one-channel two-dimensional texture is suf-
ficient to store the angular deviation ∆θ of all possible rays.

It is convenient to store ∆θ as a by-product of the transmittance
computation. Computing the transmittance to the end of the atmo-
sphere is the first preprocessing step in the Bruneton model. In this
step, a ray is traced for each possible observer altitude / view-zenith
angle. Once the ray leaves the atmosphere, we compute ∆θ as the
angular difference between the initial ray direction and the final
ray direction. We store this as a 32 bit floating point value using
the same texture space as the transmittance. The implementation
by Schneegans et al. stores the transmittance in a two-dimensional
texture using a parametrization which has been used by Eric Brune-
ton for his 2016 paper [Bru16]. The texture coordinates xµ and xr

are based on the observer’s distance to the planet’s centre docc and
the distance dexit to the atmosphere exit point in ray direction. Fig-

ure 6 shows the resulting textures for Earth’s atmosphere.

xµ =
dexit −dmin

dmax −dmin
, xr =

ρ

H
with

ρ=

√

d2
occ − r2

occ , H =

√

r2
atmo − r2

occ , and

dmin = ratmo −docc , dmax = ρ+H

(2)

Figure 6 suggests that the mapping of xµ could be improved for
this use case. The "interesting" part of the texture is on the right-
hand side, for values of xµ close to 1. However, we rather chose
to keep the parametrization as it is to avoid an additional precom-
putation step. The maximum computed deviation of about 0.6◦ for
an observer at sea level on Earth is stored at xµ = 1 and xr = 0.
This value is in good agreement with the measured values in the
literature [SL90,SLPH03]. We found a resolution of 512x256 to be
sufficient for the ray-deviation texture.

Precomputing the Impact Radius

Due to refraction, some rays are bent downwards and hit the planet.
To avoid any discontinuities in the data, we continue tracing them
assuming a constant index of refraction in the underground. How-
ever, we need to know which rays are blocked by the planet at run-
time in order to not render astronomical objects which are below
the horizon. For this, we store the minimum distance a ray had
to the planet’s surface in a second channel of the lookup texture.
We call this quantity the contact radius of the ray. It is shown in
the right graph of Figure 6. Rays which are blocked by the planet
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are indicated by a negative distance. We will use this information
not only for rendering the sky, but also for computing the eclipse
shadow LuT where we can compare a ray’s contact radius to the
planet’s average terrain height in order to attenuate rays passing
very close to the surface.

4.2. Real-time Rendering of the Refracted Atmosphere

We have integrated the extended atmosphere model into Cos-
moScout VR, a virtual reality application for the exploration of our
Solar System [SFGG25]. In this software, the atmosphere is drawn
as a post-processing effect. Before our changes, the luminance of
the atmosphere was combined with the frame-buffer colour via a
simple alpha blending operation.

To account for astronomical refraction, we now need to shift the
colour lookup position in the frame buffer according to ∆θ. For
this, we first retrieve the depth value from the frame buffer to de-
cide whether something is blocking the view. If so, we use the
frame-buffer colour at that position, since we do not compute ter-
restrial refraction. If a ray through the pixel potentially leaves the
atmosphere unblocked, we retrieve the ray’s contact radius from
the lookup texture (right chart of Figure 6). If the contact radius
is negative, the refracted ray hits the planet. As it is non-trivial to
compute the position where the ray hits the planet (it can also be
behind the geometric horizon) we assume a black surface colour.
This is usually not a problem, as this happens only for a few pixels
above the geometric horizon where the atmosphere is very dense
and the planet’s surface would not be visible anyway. If the con-
tact radius is positive, we retrieve the ray’s angular deviation ∆θ

from the lookup texture (left chart of Figure 6) and use it to com-
pute the exit ray by rotating the original ray towards the planet’s
centre by ∆θ. We sample depth and colour from the frame buffer
at the vanishing point of the exit ray. If there is something in the
depth buffer at that position, the ray was actually bent to a point
behind the planet. To draw the refracted image of the Sun in this
case, we compute the angle between the refracted ray and the di-
rection to the Sun. If this angle is less than the angular radius of the
Sun, we assume a background colour equal to the luminance of the
Sun (incorporating the effect of limb darkening), else we assume a
black background. For all other rays we can use the colour infor-
mation from the frame buffer as a background colour to draw the
atmosphere on top of it.

The first image of Figure 5 shows a scene without refraction.
The bottom part of the Sun is geometrically behind the horizon and
therefore not visible in the frame buffer. To compute the second
image (with refraction), the lower part of the Sun has been recon-
structed by the technique described above. We only reconstruct the
Sun for rays which are bent behind the horizon. Other celestial ob-
jects which potentially could become visible (like stars) will not be
visible in this small region above the horizon.

5. Precomputation of Eclipse Shadows

Using the atmospheric model described in Section 4, we can now
precompute the eclipse shadow by rendering the atmosphere from
each position in the shadow.

d
rocc

φ
occ

φ
δ

Initial Guess

docc
dr

1. Iteration

2. Iteration

[u        , v       ]shadow shadow

Figure 8: This shows a schematic overview of the iterative search

required to reconstruct ϕ⊙, δ, and ϕocc (red) for some given

ushadow, vshadow, d, r⊙, and rocc (green). docc and d⊙ are iteratively

updated to find the correct position in space. The law of cosines is

used in the hatched triangle to compute d⊙ based on the other two

sides and δ (see Equation 6).

5.1. Parametrization of the Shadow LuT

We use the shadow LuT parametrization from [SGAG22]: Based
on the apparent radii of Sun and occluder,

ϕ⊙ = arcsin(r⊙/d⊙) and ϕocc = arcsin(rocc/docc) (3)

and the angular distance between the Sun and the occluder, δ, we
compute the LuT coordinates ushadow and vshadow as follows:

ushadow =
1

ϕocc/ϕ⊙+1
vshadow =

δ

ϕocc +ϕ⊙

. (4)

See Figure 8 for an illustration of the involved angles and distances.
A LuT using this parametrization is shown in Figure 9.

To compute the shadow intensity for each [ushadow,vshadow] posi-
tion, we also need the reverse mapping of Equation 4. This means,
for a given ushadow and vshadow, we need to find the corresponding
ϕ⊙, ϕocc, and δ in order to be able to render the planet and the at-
mosphere from the corresponding position in space. Interestingly,
this is a non-trivial problem which cannot be solved analytically
but requires an iterative approach. Ultimately, we are looking for a
ϕ⊙, ϕocc, and δ for which Equation 3 and Equation 4 hold under
the given ushadow, vshadow, d, r⊙, and rocc. To do this, we use the
following reformulation of Equation 4:

ϕocc =
ϕ⊙

ushadow

−ϕ⊙ δ = vshadow · (ϕocc +ϕ⊙) (5)

As an initial guess for the searched position in space, we use the ori-
gin of the occluder (docc = 0, d⊙ = d, see Figure 8). We compute
the apparent angular size of the Sun ϕ⊙ for this position accord-
ing to Equation 3. Together with ushadow and vshadow, we can now
use Equation 5 to compute a ϕocc and a δ for this ϕ⊙. With some
trigonometry and the law of cosines, we can then update the values
for docc and d⊙:

docc =
rocc

sin(ϕocc)

d⊙ = docc · cos(δ)+
√

d2
occ · cos2(δ)−d2

occ +d2

(6)

This improves our guess for the distances. Each iteration brings us
closer to the actual values for docc and d⊙. We can stop, if the val-
ues converge to enough precision. In practice, all relevant positions
can be found with at most four iterations to a sufficient precision.

© 2025 The Author(s).
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Figure 9: The left graph shows an eclipse-shadow LuT. The u-axis corresponds to the ratio of the angular radii of Sun and occluder which

correlates with the distance to the observer. The occluder is at the left edge of the LuT, the end of the umbra is in the middle, and the right

edge is infinitely far away from the occluder. The v-axis is mapped to the relative angular distance between Sun and occluder: The umbra

core is at the bottom, the outer edge of the penumbra at the top. The extends of this LuT are marked with a thick black line in Figure 2.

Next to the LuT, several limb views of the atmosphere around Earth and Mars are shown. The limb views have been captured from positions

corresponding to the blue positions marked in the left graph. The orange position is the view from Figure 7.

5.2. Computing the Shadow LuT

For each [ushadow,vshadow] position in the LuT, we reconstruct ϕ⊙,
ϕocc, and δ as outlined above. We use CUDA to render an image
of the atmosphere from the corresponding position in space. By
rendering the atmosphere from the position corresponding to the
shadow-map pixel, we achieve the same sampling quality every-
where in the shadow. This is an advantage over the approach by
Yapo et al. where rays are traced starting from the Sun [YC09].
With their approach, a lot of rays have to be traced to achieve a
sufficient amount of samples in the dark parts of the shadow.

We use the same atmosphere-rendering implementation as for
the real-time rendering, but ported to CUDA for improved double
precision support. As only a thin limb of the atmosphere is visible,
most of the image would be black. To improve this situation, we
use a rendering technique based on spherical coordinates: We map
the thin limb to the texture coordinates [ulimb,vlimb] according to
this parametrization:

ulimb =
β

π
vlimb =

γ

ϕatmo −ϕocc
. (7)

See Figure 7 for an illustration and Figure 10 for an explanation
of the involved angles. We call this type of images limb views. Fig-

ure 9 shows several limb views for our and the Martian atmosphere.

φatmo

γ

β

[u     , v     ]

φocc

limb limb

[u        , v       ]shadow shadow

Figure 10: To compute the total illuminance at a position

[ushadow,vshadow] in the shadow LuT, an atmosphere-limb view is

rendered. This contains half of the visible atmosphere ring around

the planet (darker blue area). The texture coordinates ulimb and

vlimb of the limb view are based on the angles γ, ϕocc, and ϕatmo as

depicted above (see Equation 7).

We use a simple model to account for rough terrain on Earth.
During rendering of the intermediate atmosphere images, we re-
trieve the impact radius for each ray from the texture generated
during the precomputation (see Section 4). We assume a mean land
elevation of 240 m for Earth and attenuate the illuminance of rays
linearly between 0 m and 480 m above sea level. A more precise
approach would be to use a hypsometric curve which models the
altitude distribution of a planet. Yet we found that the terrain only
has an impact if the atmosphere is unrealistically clear.

We used a resolution of 2562 both for the intermediate limb
views and for the shadow LuT. Once a limb view is rendered
for a position in the shadow LuT, we accumulate the luminance
of all pixels to get the total illuminance Iindirect at this posi-
tion. For this, we compute the contribution of each pixel of the
atmosphere-limb view separately. Based on the solid angle sub-
tended by each individual pixel, we compute the illuminance a
planar surface would receive with the normal pointing towards the
Sun. We add the illuminance of the direct sunlight Idirect which
passed above the upper atmosphere boundary to get the total illu-
minance I = Iindirect + Idirect . The direct illuminance contribution is
computed assuming an opaque occluder with radius ratmo accord-
ing to circle-intersection method described in [SGAG22]. In the
shadow LuT, we store I/I⊙, with I⊙ being the illuminance at the
position in space if the Sun was not eclipsed. In total, 2562 limb
views with a resolution of 2562 are rendered for a single LuT. The
LuT is stored as a 32 bit floating point RGB texture and requires
less than 1 MB of memory. The shadow LuT for Earth is shown in
the left chart of Figure 9. Note that no red light is visible in the
umbra as it is several times darker than the penumbra or antumbra.

5.3. Computing the Limb Luminance LuT

A naive attempt in real-time rendering the atmosphere limb around
the occluder when observed from within the shadow would result
in severe graphical artefacts. These are both visible in the image in
Table 2 and in the auxiliary material provided with this paper. This
is because the atmosphere is only a few pixels wide, and only in
a small fraction of some pixels light rays are bent exactly towards

© 2025 The Author(s).
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Figure 11: The upper row shows photographs of the lunar eclipse on 2015-09-28 taken at about 30-minute intervals starting at 1:00 AM

UTC. All images use the same white balance and relative exposure values of 0 EV, +4 EV, +9 EV, +13 EV, +13 EV, and +9 EV respectively.

The centre row shows renderings using our system. If there was no atmosphere, the third and sixth image would be almost completely black

(except for the bright rim). The fourth and fifth image would be completely black. The bottom row shows how Earth would look like for an

observer on the lunar north pole. If there was no atmosphere, the Sun would only be visible in the first image.

the observer. We experimented with multi-sampling and jittering
the rays, but found that an unreasonable amount of samples would
be needed to get a smooth image. Also, precision issues arise when
trying to vary the ray direction slightly.

Hence, we precompute limb views for all positions in
the shadow. This is a four-dimensional problem: For each
[ushadow,vshadow] position in the shadow, a two-dimensional limb
image as shown in Figure 7 is required. This seems to be infeasible
to store in a reasonable amount of memory at first. However, one
can observe that we only need this information if the atmosphere is
very thin. This means, we can drastically reduce the vertical reso-
lution of the limb view. In our implementation, this is a parameter
which can be chosen for the precomputation. All images in this
paper and the auxiliary material were generated with a vertical res-
olution of just a single pixel. For close-up shots of the limb with a
very narrow field of view, a higher resolution might be necessary.
However, we found that even two pixels can reproduce the atmo-
spheric gradient along the planet’s normal quite well.

The precomputation is done similarly as for the shadow LuT.
For each [ushadow,vshadow] position, we render a limb image from
the corresponding position in space with a user-defined resolution
(64x256 in our case). These images are then vertically subsampled
to the given amount of pixels. The data for each image is stored
in a 3D texture: the first two dimensions are [ushadow,vshadow] and
the individual pixel rows of the image are stored consecutively in
the third dimension. We found that a resolution of 64×64× (64×
verical resolution) is sufficient. Using 32 bit floating point values,
this texture requires about (3×vertical resolution) MB of memory.

5.4. Real-Time Eclipse Rendering

Computing ϕ⊙, ϕocc, and δ for a given position in space is triv-
ial. Equation 4 can then be used to compute the [u,v] position in
the shadow LuT. This allows for a straight-forward integration into
an existing rendering engine as the incoming light can simply be
multiplied by the value retrieved from the shadow LuT. Figure 11

shows images of the Moon during an eclipse rendered this way.

For the limb luminance, the atmosphere shader first checks the
width of the atmosphere ring around the planet. If it is less than
a threshold (we used 5 pixels), no atmosphere is rendered but the
precomputed value from the limb luminance texture is used. The u

and v lookup coordinates are the same as for the shadow LuT. The
third dimension is ulimb as illustrated in Figure 7 and Equation 7.

If limb views with more than one pixel vertical resolution were
precomputed, the pixel rows are stored consecutively in the third
dimension of the texture. In this case, the lookup position has to
be adjusted according to the angle γ in Figure 10. If γ = 0, the first
pixel row is used, if γ = ϕatmo −ϕocc, the last pixel row is used.
For all values in between, linear interpolation has to done manually
between neighbouring pixel rows. The bottom row of Figure 11

shows images generated using the limb luminance texture.

It is important to note that we use the glare effect from Cos-
moScout VR for the renderings in Figure 11. This is a luminance-
preserving filter which only redistributes the luminance of the
frame buffer between neighbouring pixels. It is necessary to add
this filter to the images because else the high dynamic range and
the luminance of overexposed areas would not be perceivable. For

© 2025 The Author(s).
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Figure 12: The left graph shows a cross-section of Earth’s shadow at the average distance to the Moon for red light. In the penumbra, our

implementation agrees well with models from the domain of lunar Eclipse Theory. The umbra region illustrates the variability in brightness of

lunar eclipses. However, our approach produces similar results here as well. The glyphs show measured data for past eclipses. The data for

the graphs were extracted from figures from [VG08,MP11,Gio18]. The right graph shows the brightness of an eclipse on the Martian moons

Phobos and Deimos as predicted by our system. The RGB colour channels show that in most parts of the shadow, red light is dominant. Only

close to the penumbral boundary, the shadow gets grey. An example of how Phobos could look like during an eclipse is given in Figure 1.

instance, the bottom figures of Figure 11 would only show a white
one-pixel ring. If the exposure was reduced, the part of the ring
where the Sun is visible would turn red indeed, but the rest of the
ring would become invisible.

6. Evaluation

We evaluated our system in terms of visual quality and perfor-
mance. The quality evaluation was done by comparing the results
of our system to photographs of a past lunar eclipse, to measured
data, and to models from the domain of Lunar Eclipse Theory. For
the performance evaluation, we measured the precomputation time
and the real-time rendering speed.

6.1. Quality

Depending on the atmospheric properties, the brightness of lunar
eclipses can vary by several magnitudes [Gio18]. This makes a di-
rect comparison to photographs of past eclipses difficult. Neverthe-
less, we attempted to simulate the eclipse of 2015-09-28 which was
exceptionally dark due to the eruption of the Calbuco volcano in

Chile a few months prior. To simulate this, we doubled the amount
of aerosols in the atmosphere and increased their scale height from
1200 m to 3000 m. A more sophisticated modelling of the atmo-
spheric conditions would be possible, but the results are already
close to photographs of the event (see Figure 11).

A more robust way to evaluate the physical soundness of our
technique is to compare it to models from the domain of Lunar
Eclipse Theory. The thick upper lines in Figure 12 show the hy-
pothetical brightness of the shadow if no light was scattered or
absorbed in the atmosphere. Here, our simulation is close to the
corresponding model by Muñoz et al. [MP11]. If molecular scat-
tering is simulated, the shadow gets darker (thin solid lines). This
can be assumed to be a theoretical upper brightness limit for a lunar
eclipse. Here, our system produces similar results as the model by
Muñoz et al., the corresponding model by Vollmer et al. produces
slightly darker shadows [VG08].

If components like ozone, clouds, and other aerosols are added
to the atmosphere, the shadow can get darker by several magni-
tudes (dashed lines). Vollmer et al. modelled a wide variety of at-
mospheric conditions. Their most complex model includes compo-

No Ozone Reference Photographs4⋅10¹⁸ molecules / m³ 10¹⁹ molecules / m³6⋅10¹⁸ molecules / m³

Figure 13: Our system allows for a fine-grained control of the atmospheric properties. For the left images, we simulated an atmosphere

without ozone. The centre images have been generated using a tent-shaped ozone distribution with a peak altitude at 25 km, a width of

15 km, and the peak molecular density number shown in the caption. The right image shows two reference photographs of the 2015 lunar

eclipse. The upper images show the Moon in the umbra, the lower images at the edge of the penumbra.
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Figure 14: This graph shows the time it takes to precompute ev-

erything needed for an eclipse. First, the atmospheric scattering

properties are precomputed. Thereafter, multiple scattering is pre-

computed iteratively. Finally, the eclipse-shadow LuT and the limb-

luminance LuT are generated. The multiple-scattering computation

is about two times slower if refraction is enabled.

nents like ozone, clouds, dust, other aerosols, and topology. De-
spite being much simpler, our atmosphere parameterization for the
2015 eclipse produces a similar shadow. If we fine-tuned the ver-
tical distribution of the aerosols to historic weather conditions, we
could probably match their results even better. With high-density
low-altitude aerosols, we could even mimic the effect of clouds.

Visualizing the effect of ozone on the colour of the eclipse
shadow is an interesting additional approach for validating the
physical soundness of our technique. Figure 13 shows how our sys-
tem predicts the Moon to look like with varying ozone concentra-
tions in the atmosphere. The reference images fit well to measured
ozone concentrations which are typically between 4× 1018 1/m3

and 6×1018 1/m3 [MWR∗21].

6.2. Performance

We did a performance evaluation in terms of precomputation time
and real-time rendering speed. Both were measured on two differ-
ent hardware configurations: a laptop equipped with an NVIDIA
GTX 1650 Ti and a desktop PC with an NVIDIA RTX 4070 Super.

b)a)

lunar Surface GTX 1650 Ti RTX 4070 Super

a) without shadow 0.28 ms 0.048 ms

b) with shadow 0.33 ms 0.052 ms

Table 1: The scenes above were rendered at Full HD resolution on

two different hardware configurations. Using GPU timer queries,

we measured the time it took on average to render the lunar surface

with and without the shadow.

Preprocessing Time

Preprocessing time is not very important for our system, as it only
needs to be done once for each celestial object. However, it is still
interesting to see the overhead introduced by the refraction compu-
tation. Figure 14 shows the time it took to precompute everything
needed for a lunar eclipse on both hardware configurations.

First, we compute the scattering properties (phase functions,
scattering, and absorption coefficients) of the individual atmo-
spheric components for 15 different wavelengths using Mie Theory
according to [SMG∗24]. Next, we precompute multiple-scattering
in the atmosphere according to the original implementation by
Bruneton et al. and the extended version with refraction. Our imple-
mentation with refraction is about two times slower than the origi-
nal implementation without refraction. Finally, the eclipse-shadow
LuT and the limb-luminance LuT are generated. Due to the lower
resolution, the limb-luminance generation is much faster than the
shadow LuT generation. The entire process takes about two min-
utes on lower-end consumer hardware.

Real-Time Rendering

To evaluate the real-time performance, we rendered two different
scenes at full HD resolution on both hardware configurations.

The first scene shows the lunar surface with and without the
shadow. The Moon is drawn as a simple textured ellipsoid with a
few triangles only. Table 1 shows the average time it took to render
the scene. It can be seen that the shadow has a very small impact
on the rendering time.

Computationally more intense is the rendering of the atmosphere
including refraction around the planet. For this, we chose a view-
point inside the shadow of Earth looking towards the Sun. The re-
sults are shown in Table 2. If refraction is disabled (a), predom-
inantly blue light reaches the observer due to scattering and the
iconic red ring is missing. If refraction is enabled (b), the red ring
becomes visible and the scattered light becomes invisible because
of the decreased exposure time. Also, rendering the atmosphere be-
comes about 20 % slower due to the additional texture lookups and
computations. The apparent artefacts in (b) are mitigated by pre-
integrating the limb luminance (c), which also makes the rendering
a bit faster than the original implementation without refraction.

c)b)a)

Sun behind Earth GTX 1650 Ti RTX 4070 Super

a) without refraction 1.38 ms 0.72 ms

b) with refraction 1.74 ms 0.76 ms
c) with pre-integrated

limb luminance
1.25 ms 0.75 ms

Table 2: This table shows the average time it took to render the

atmospheres seen above at Full HD resolution.
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7. Summary and Future Work

We presented a novel approach for rendering eclipses in real-time.
To the best of our knowledge, it is the first which can simulate the
shadow intensity at any point in the shadow cone of a celestial body.
Also, it is the first not being limited to the Earth-Moon system. It
can simulate the shadow of other celestial bodies like, for instance,
the shadow of Mars. Last but not least, it is the first approach which
can simulate astronomical refraction in the atmosphere of the oc-
cluder in real-time, which allows for spectacular visualizations of
the Sun being eclipsed. All this is made possible by using three ad-
ditional lookup textures which are precomputed using an extended
version of the Bruneton atmosphere model.

We have validated our approach by comparing the results to ref-
erence data for lunar eclipses. As there seems to be no data avail-
able for eclipses beyond the Earth-Moon system, we have predicted
how an eclipse on a Martian moon would look like. In future, with
missions like MMX [CYT∗18], we will be able to validate our pre-
dictions. We could also use our approach to simulate the shadows
of other bodies, like for instance some Jovian moons for which data
is available [Mal91]. Also, it will be promising to use the informa-
tion from the limb-luminance texture for advanced lighting effects
such as specular highlights on satellites or for ambient lighting.
This could increase the realism of scenes close to the occluder as
for instance a spacecraft flying through the shadow. Last but not
least, one could explore the possibilities of incorporating clouds
when rendering the atmosphere limb to reproduce the patchy limb
seen in photographs (Figure 3).

We have integrated the atmospheric refraction and the eclipse
shadows into CosmoScout VR [SFGG25], an open-source virtual-
reality simulation of our solar system. We use this software fre-
quently for public outreach events, and the new features help in ex-
plaining celestial mechanics in general and the physics of eclipses
in particular. Especially the moment when the visitors land on the
lunar surface and watch the Sun being eclipsed by the Earth is al-
ways an inspiring experience.
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