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Abstract

Virtual assembly simulation is one of the most
challenging applications of virtual reality. Robust and
natural interaction techniques to perform the assem-
bly tasks under investigation are essential as well as
efficient methods for choosing from a large number
of functionalities from inside the virtual environment.
In this paper we present such techniques and meth-
ods, in particular multimodal input techniques includ-
ing speech input and gesture recognition for controlling
the system. We address precise positioning by novel
approaches for constraining interactive motion of parts
and tools, while a new natural grasping algorithm pro-
vides intuitive interaction. Finally, sliding contact
simulation allows the user to create collision-free as-
sembly paths efficiently. Preliminary results show that
the array of functionality and techniques described in
this paper is sufficiently mature so that virtual assem-
bly simulation can be applied in the field.

Keywords: Virtual prototyping, virtual real-
ity, constraint-based interaction, physically-based
interaction.

1 Introduction

Virtual reality1 is gradually being accepted as a
tool for digital prototyping in manufacturing indus-
tries, because it offers many advantages: rapid de-

1 By virtual reality we understand the use of immersive displays
and novel, intuitive input devices, together with system provid-
ing real-time rendering and simulation. This is in contrast to
a broader application of the term in the manufacturing realm,
where somtimes even a desktop VRML browser is called“virtual
reality”.

sign/test cycles, low prototyping costs, efficient learn-
ing (especially when compared to blueprints), a conve-
nient platform for simultaneous and even distributed
engineering teams.

Assembly simulation, however, is one of the most
challenging applications of virtual reality (VR). This
is mostly due to the very high interactivity: it is not
only the high amount of functionality needed, but also
because some of the interaction must be as natural as
possible. After all, it is the interaction itself which is
to be simulated; and that interaction mostly involves
the human hand. This is in contrast to other VR ap-
plications like styling review, design review, or light-
ing simulation: there, interaction is just a means for
studying an object (the car body, car interior, tools,
etc.), so it does not need to be natural. And in some
applications, like styling review, the amount of immer-
sive functionality is much less than in virtual assembly
simulation.2

By natural interaction, we understand interaction
which imitates that same interaction in the real world
as close as possible. Actually, in the early days of vir-
tual reality, this was one of its driving goals. However,
it has become obvious, that there are many applica-
tions (like design review) where natural interaction is
not possible or not efficient. Today, virtual reality
focuses on creating intuitive interaction, instead. A
special case, of course, is natural interaction.

In the real world, a worker utilizes natural con-
straints to obtain precise and efficient manipulation
of parts and tools. The same effect can be achieved
within a virtual environment (VE) by making the
system constrain the user’s motions. Force-feedback
could be used to achieve that, but it is not available
in some work environments and it is not appropriate
for certain types of constraints.

2 Of course, virtual styling review presents other challenges.



During a VR session the user not only interacts
with the virtual environment but also with the system
itself. This interaction must be as robust and efficient
as possible, otherwise the system will not be accepted
as a tool in the design process. On the 2D desktop,
most users are familiar with WIMP3. Therefore, these
concepts should be adopted for VR, although there
is a different pointing device (dataglove or flying joy-
stick, for instance) and no keyboard. Because precise
handling of the pointing device in VR is more diffi-
cult than on the desktop, voice input as an additional
input channel can be very helpful and efficient.4

In the following, we will describe some related work
(see Section 2), then we will discuss various issues re-
lated to interaction with the system (Section 3). In
Section 5, we will describe an algorithm for prevent-
ing collisions between parts, and in Section 6 we will
describe an algorithm for natural grasping. Finally,
we will draw some conclusions (Section 7) and discuss
directions for further work.

2 Related Work

A number of systems for virtual assembly simu-
lation have been reported, among them are [JCL97,
JJWT99, LD97, Zac99]. The latter is a commercial
system actually being deployed in industries, while the
former are research systems.

Planning assembly sequences is generally most effi-
cient in a virtual environment, compared to blueprints
or a desktop environment [BBYD99]. Similar findings
are reported by [CDG97] for VR-based CAD.

In general, by applying virtual prototyping tech-
niques to the product development process, consid-
erable time and cost savings can be achieved — as
[LMO96] report: “80% of development costs and 70%
of life cycle costs of a product are determined during
its conceptual phase.” Similar numbers are reported
by [Pra95, Ull92].

An overview of 3D interaction techniques is pre-
sented by [Han97]. A software architecture which fa-
cilities run-time constraint detection and the main-
tenance of constraint consistencies in order to sup-
port real-time constraint-based modeling has been
presented by [FMTW99]. We use the term “con-
straint” in a broader sense, however, and propose sev-
eral paradigms for constraining the user’s interaction

3 Windows, Icons, Menus, Pointers
4 In fact, even on the desktop voice input is becoming more and

more widespread as a third input channel.

rather than algorithms for solving constraint-based
modeling.

3 Multi-modal input

Virtual reality systems try to use many input chan-
nels in order to increase intuitivity of the interaction.
These are usually head and hand tracking, a dataglove
(i.e., finger tracking), and we also suggest the use of
voice input.

Finger tracking (through a dataglove) is neces-
sary, because the hand is the user’s most important
tool for assembly. Since flex data are available, one
usually also does some gesture recognition. While
there are many algorithms for gesture recognition
[ZLB+87, SZ94], we have found that a relatively sim-
ple algorithm based on adaptive scaling and classifi-
cation within the {−1, 0, +1}d cube is very effective,
robust and user-independent [Zac00]. Besides, in our
experience, only a minimum of about 3 gestures should
be used at all.

We have experimented with many different ways
how to implement menus in virtual environments. Vir-
tual menu can be realized as an array of virtual 3D
buttons. From an implementation point of view, this is
very appealing, but two main problems arise with that
approach: (1) where to place them, and (2) how to se-
lect an entry. There are applications where the num-
ber of entries in virtual menus and the frequency of
their utilization is small (games, for instance). Then,
virtual 3D menus can and should be used.

When the number of entries in menus becomes
large, positioning and selecting virtual 3D menus can
become very difficult. This is due to the problem that
unconstrained 6D pointing is much less accurate and
the HMD’s resolution and sharpness is much less than
on a desktop screen. We have tried stationary, head-
centered, and body-centered positioning, with various
ways of selecting entries, namely actual touching, ordi-
nary ray casting, and eye-to-finger ray casting. If both
hands of the user are tracked, then hand-centered posi-
tioning can be utilized [PNW98, PBBW95, WMB98].

Because of all these problems, we believe that for
virtual assembly simulation, menus should be realized
as some kind of 2D overlay on the 3D scene, which
we have done for all our automotive VR applications.
Such 2D menus can be implemented in the familiar
way of hierarchical lists, or as “mark menus” [Kur93].

Voice input is one of the most natural ways of hu-
man communication. Since speech recognition has be-
come quite robust and almost real-time, it is a matter



of course to use this input channel for interacting with
virtual environments.

In order to be easily configurable and to facilitate
a consistent command language, we have developed a
simple grammar for specifying speech commands (sen-
tences). This grammar is used in specifications of VEs
in order to trigger actions. The general syntax is

w11|w12| . . . n1 w21|w22| . . . n2 . . .

This sentence will trigger when the word w11, or w12,
etc., is received, followed by at most n1 “noise words”,
followed by the word w21, or w22, etc. The concept of
noise words allows to discard unimportant utterances
of users (e.g., “path [go to] [the] next position”), and
it is another way to allow variants.

Some commands include a parameter which must
be conveyed to the action. For instance, the command
“rotate by n degrees about axis x” contains two pa-
rameters. Therefore, instead of specifying a word (or
several alternative words), the grammar also allows to
specify a (formal) parameter. When the sentence has
been matched, the corresponding actual parameters
are delivered to the action. The sentence matching
engine does not perform any“type checking” (it would
require that words have a type); this is done by the
action.

In our experience, it is important that the structure
of voice commands is similar to the structure of the
menu. That way, the user can use the menu and learn
the corresponding voice command as she goes through
the tree of sub-menus.

4 Constraining interactive object mo-
tion

Constraining the motion of virtual objects which
are interactively manipulated by the user facilitates
precise positioning in immersive VEs, which other-
wise would almost be impossible. This is because the
user’s real hand always moves in free space, there are
no mechanical points of reference other than his body,
and there are no rests or supports for the user’s hand.
Constraints can also be used to enhance abstract in-
teraction, or to simulate mechanical constraints of the
real world (see below). Especially for the latter, force-
feedback would enhance the realism of the simulation
significantly, but often force-feedback is not applica-
ble: in CAVE-like environments, a force-feedback de-
vice disturbs the immersion because it occludes parts
of the screen. Besides, the concept of constraints is
valid and useful even when force-feedback is available.

4.1 Abstract constraints for precise posi-
tioning

In virtual assembly simulation, like in other CAD
systems, objects must often be positioned or moved
precisely. This is a situation, where preciseness and
robustness takes precedence over natural interaction.

One method is to position objects by abstract com-
mands given via voice input, immersive menu, desktop
GUI, or keyboard. That way, an object can be trans-
lated, rotated, or scaled about one coordinate axis.
The user can choose between car coordinate system
and object coordinate system. In our experience, voice
commands containing parameters are the most flexible
and most efficient way to control abstract positioning
in a fully immersive VE, but also menus have been
proven to work well.

The second method provides a more intuitive but
still quite precise way to position parts. The user first
selects a point, axis, or plane in the car coordinate sys-
tem or object coordinate system. This will constrain
the object’s degrees of freedom. Then, the object is
linked to the user’s hand so that it tries to follow the
hand’s motion but only within the constraint. Simi-
larly, rotational constraints limit an object’s rotation
to an arbitrary axis and angular range in space. All of
these constraints can be implemented such that they
work with parts and compounds, and such that they
work regardless of the source of the motion of parts.

These constraints are not only useful for moving
parts, but also for auxiliary geometry like interactive
clipping planes or grids. Usually, both need to be
aligned to the car reference frame in order to match
those in the CAD system. Furthermore these con-
straints provide an easy way to define simple interac-
tive kinematics, hinges, or slide joints.

4.2 Aligning tool axes

One of the goals of assembly simulation is to verify
that there is enough space to perform a certain opera-
tion with a certain tool. Very often, this is some kind
of screwing operation (with a screw driver or wrench,
for instance). Two problems arise when investigating
this in VR: it is difficult for the user to hit a screw
exactly with the wrench, for instance, and it is almost
impossible to maintain the correct contact during the
screwing operation.

A solution for both problems is to constrain the
tool’s motion in the following way: the tool center
point (TCP), usually at the tip of the tool, is kept
coincident with the contact point of the screw (SCP),



usually at its head, and the tool axis is kept aligned
with the screw axis.5

When applying such a constraint to the tool, the
virtual hand may behave in two different ways:

1. follow the user’s hand motion
2. stay attached to the tool

Whereas the first alternative often seems to be less
confusing for the user, the second is important for a
correct verification of the space requirements.

Usually, the user’s hand motion directly changes the
transformation of the virtual hand relative to the vir-
tual body’s reference frame.6 For a tool being grabbed
the relative transformation Trel between hand and
tool must stay invariant (see Figure 1). Trel is there-
fore given by

Trel = Wtool W−1

hand

where Wobj denotes the transformation in world co-
ordinates of obj at the moment obj is being grabbed.
When the user moves the hand, Ttool is updated such
that the invariant Trel is maintained.

The proposed constraint requires some manipula-
tions in the transformation chain to map the user’s
motion to the tool in an intuitive way. For the first
variant, only the tool transformation has to be modi-
fied. The second variant requires to modify the hand
transformation coming from the tracking device. A
good way to do this is to insert new transformation
nodes Stool and Shand into the scene graph before the
tool or the hand transformation, respectively. Thus,
the snapping transformation can be specified conve-
niently with these nodes.

The algorithm conceptually works as follows: in
each frame, it starts with the unconstrained position
of the tool (which is being grabbed by the user). Then
an offset transformation is computed which rotates the
tool around the TCP such that the tool axis becomes
parallel to the screw axis and the TCP coincides with
the SCP. Setting this transformation for Stool will
snap the tool to the screw without changing the po-
sition of the hand. In order to keep the virtual hand
attached to the tool, the same transformation has to
be set for Shand (in the body’s reference frame).

In our implementation, a tool does not immediately
snap to a screw when it is moved close to it, but only
after it has collided with it. This has proved to be an
intuitive solution to simulate the problem to hit the

5 Such axes and contact points must be part of the tools’ descrip-
tion.

6 Following the “flying carpet”paradigm as introduced in [Zac00].

screw in tight compartments and dense environments.
Furthermore, we implemented a thresholding mecha-
nism to switch off the snapping constraint when the
user moves the tool too far away from the screw lo-
cation. Like in reality, each tool matches only certain
screws. This is modelled in our system by defining sets
of assoications between screws and their proper tools.

5 Sliding contact for interactive part
movement

In recent years, packaging of parts has become so
tight, that there are many parts for which there is
no assembly path such that the part never touches
other parts. In fact, the part usually touches other
parts over a relatively long interval along the path.
And even if there would be a collision-free path —
a human worker will always “create” assembly paths
with touching collisions in the real world.

So, in the virtual world, we need a way to prevent
parts from penetrating each other, while still allowing
touching collisions such that the user can move parts
in a sliding fashion along the surface of other parts.

If the VR system has no control over the user’s real
hand (via force feedback), then the commonly used
rigid grasping metaphor has to be changed slightly to-
wards a less rigid one. This is a variant of grasping
where the transformation from hand coordinate sys-
tem to object coordinate system is no longer invariant.
For the sake of clarity, let us assume that the object
is collision-free at the time when it is being attached
to the hand. Let us assume further that at that mo-
ment we make a copy of the object which is allowed to
penetrate all other objects and which is being grasped
rigidly by the hand. We will call this copy the “ghost”
of the object. It marks the position where the object
would really be if there was no collision. There are, at
least, three non-rigid grasping metaphors:

� The rubber band metaphor: the object is con-
nected to the ghost by a rubber band. This tries
to pull the object as close to the ghost as possible
without penetrating.

� Rubber band and spiral spring: like the plain rub-
ber band metaphor, but the object is also con-
nected by a spiral spring to the ghost (this is a
little bit difficult to picture). In the plain rub-
ber band metaphor, the user has no control over
the orientation of the object — it is completely
determined by the simulation.
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Figure 1: Grabbing parts should be implemented by
maintaining the relative transformation Trel invariant.

Figure 2: Snapping of tools can be implemented easily
by inserting nodes to hold the snapping transformations
Stool and Shand.

� Incremental motion: when the ghost has moved
by a certain delta the object will try to move
about the same delta (starting from its current
position). If there is a collision during that delta,
then the simulation will determine a new direc-
tion. So, alternatingly the object is under the
control of the user and under simulation control.

The algorithm we describe in the following allows for
implementation of any of these metaphors.

If the VR system does have control over the user’s
real hand via force feedback, then the rigid (and more
natural) grasping metaphor can be retained. Still, a
simulation algorithm is needed to create forces appro-
priate to keep the user’s hand from generating inter-
penetrations. The algorithm we will present below can
be used to render such forces.

In the remainder of this section, we will explain
that algorithm in more detail. The reader should
keep in mind, that the goal was not to make the slid-
ing behavior of objects as physically correct as pos-
sible. Readers interested in physically correct sim-
ulations should refer to the wealth of literature, for
instance [Bar94, GVP91, Hah88, SS98, BS98].

Instead, the goal was to develop an efficient algo-
rithm which helps the user to move the object ex-
actly where he wants it, in minimal time, and even in
closely packed environments (such as the interior of a
car door).

However, we believe that our approach is more gen-
eral than the one presented by [KYK98]. There, the
approach is to constrain the motion of objects by cer-
tain faces identified through collision detection; then,
the number of faces determines the number of re-
maining degrees of freedom (for instance, with two

faces only one translational degree remains). In addi-
tion, constraining faces exhibit a certain “stickiness”.
The overall approach is not physically-based, but just
meant as an aid for assembling simple “block-shaped”
objects.

5.1 The main loop

For several reasons, the collision detection module
runs concurrently in our VR system. Therefore, the
sliding simulation is implemented as a finite state ma-
chine, so that it can handle that. This has the ad-
ditional advantage, that the simulation module itself
runs concurrently in our VR system. The three mod-
ules communicate with each other as depicted in Fig-
ure 3.

In the simulation, there is a so-called collision ob-
ject (short collobj) which is invisible.7 It is used to
check intermediate position for collisions. The visible
object is the one users are really seeing. It is never
placed at invalid (i.e., colliding) positions. So the user
only sees a valid, i.e., collision-free path of the object.

The algorithm works, simply put, as follows:

loop:
while no collision
move visible and coll. object
according to hand motion

{now the coll.-object is penetrating}
approximate exact contact point
classify contact
calculate new direction

7 The geometry of the collision object is, usually, exactly the
same as that of the visible object. If the scene graph API allows
for it, they can share their geometry.
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Figure 3: The physically-based simulation module for sliding runs concurrently to the other two main loops of the
collision detection module and the interaction manager. Dashed arrows mark rendezvous points.

As mentioned before, this is implemented as a finite
state machine. A more detailed picture and descrip-
tion of that can be found in [Zac00]. There, you can
also find several algorithms for fast collision detection.

In our algorithm, the contact approximation is done
by interval bisection and a number of static collision
checks. [ES99] propose a dynamic collision detection
algorithm. However, it is not clear that this would
really speed up the simulation in this case, since the
dynamic algorithm takes about 3–5 times longer and
an exact contact point is usually not needed here.

5.2 New directions

Let us assume that we have the exact contact po-
sition. Let us further assume that we need to handle
only practically relevant contact situations. Then we
will need to deal only with the following cases: 1 con-
tact point, 2 contact points, and ≥ 3 contact points,
which we will discuss in the following.

In each case, we must be able to deal with “wrong”
surface normals. In general, polygonal geometry im-
ported from CAD programs has“random”surface nor-
mals in the sense that the vertex order is not consis-
tent across adjacent polygons. But even if it were, we
would have to be able to deal with such a situation,
because unclosed objects (like sheet metal) does not
have “inside” and “outside”. With such “sheet objects”
we might be colliding from either side.

Our implementation of the sliding algorithm pre-
sented here allows for arbitrarily pointing normals.
They can even be “inconsistent” in the sense that ad-
jacent polygons’ normals can point on different side.

In order to be able to compute new forces, each
contact point must be classified. In theory, we need
to handle only two contact situations: vertex/face and
edge/edge. Given one pair of touching polygons (p, q),
we can determine the contact situation by the follow-
ing simple procedure: let np be the number of poly-
gons adjacent to p and touching q; define nq analo-
gously. If np = nq = 1, then we have the edge/edge

Figure 4: Contact classification can be done by looking at
adjacent polygons and counting edge/face intersections.

case. Otherwise, either np or nq must be > 1 (but not
both), and we have the vertex/face (or face/vertex)
case.

In practice, a few more cases can happen. Partly,
this is due to the mere approximation of the contact
position, partly, it is due to non-closed geometry.8

If np = 0, for instance, then this polygon might
be at the rim of the object. In order to decide that,
we need to check if any edge of p intersects q (see
Figure 4). If so, we have got the edge/edge situation.
If not, then it is the vertex/face situation. Note that
both np = nq = 0 is possible. It is not sufficient to just
check edge/face intersections of the two intersecting
polygons (counter-example: two intersecting wedges).

When all contact points have been classified, we
can compute new forces and velocities. See [Zac00]
for the mathematical details. Depending on the kind
of metaphor we have chosen (see above), we must then
evaluate a stopping criterion before iterating the next
sliding cycle. Actually, the kind of grasping metaphor
is determined by the stopping criterion. Our crite-
rion is a combination of several sub-criteria involving
the number of iterations so far and different distance
measures. See [Zac00] for more details.

8 Non-closed geometry is fairly frequent in virtual prototyping:
all sheet metal is non-closed. Now imagine the possible contact
situations when a pipe is to be fitted into a hole of sheet metal.



6 Natural grasping

Grasping objects is one of the most fundamental
interaction techniques in VEs, in particular in virtual
assembly simulation, which comes as no surprise since
it is also one of the most frequent activities in the real
world.

In order to be able to make true verifications of
assemblability and serviceability, it is important, that
the virtual hand grasps virtual parts just like the real
hand would grasp their real counterparts. So, the VR
system must make sure that the virtual fingers never
penetrate parts, but still allows them to close tight
around them (see Figure 5). In addition, in order to
make virtual grasping natural, the VR system has to
determine when an object is grabbed firmly. So, the
user would not need to remember a command, and
objects cannot be grabbed by the back of the hand.

Like with force-feedback devices, we need to distin-
guish between (at least) four types of grasping:

1. Precision grasping with three sub-types [Jon97]:
tip pinch, three-jaw chuck, and key grasp,

2. cigarette grasping,
3. 3-point pinch grasping,
4. Power grasping (or just grasping),
5. Gravity grasping (or cradling).

Precision grasping involves 2 fingers, usually the
thumb and one of the other fingers; it is used for
instance to grasp a screw. Cigarette grasping involves
two neighboring fingers; it is usually used to “park”
long thin objects, such as a cigarette or pencil. 3-point
grasping involves three fingers (one of them being
the thumb), giving the user a fairly firm grip, and
allowing him to rotate the object without rotating
the hand. Power grasping involves the whole hand,
in particular the palm. With this type of grasp the
object is stationary relative to the hand. Gravity
grasping is actually a way of carrying an object.

For power grasping, the algorithm consists of two
simple parts: clasping the fingers around the object,
and analyzing the contact. The former will be done
by an iteration, while the latter is implemented by a
simple heuristic.

The position of the hand is completely specified by
(M,F ), where M is a matrix specifying the position
of the hand root, and F is the flex vector (usually
22-dimensional). Given a new target hand position
(Mn, Fn), the goal is to minimize (|MMn−1|, |F −
Fn|) such that (M,F ) is collision-free. Note that the
position of a finger-joint depends on its flex value and
all flex values higher up in the chain and the position

of the hand root. Therefore, we suspect that there are
several local minima, even if we only consider flex val-
ues during optimization (and keep the position fixed).
However, this should not be a problem if the min-
imization process is fast enough, so that consecutive
collision-free hand positions are not too “distant” from
each other.

Minimization must not be done using the visible
model of the hand; otherwise, the user would“witness”
the process (because the renderer runs concurrently).
So, a copy of the hand tree is used for collision de-
tection, and only after minimization has finished, the
new position/flex values are copied to the visible hand.
This minimization should be as fast as possible, so it
runs as a concurrent process in our VR system; oth-
erwise, the user might notice considerable latency.

In order to find an optimal flex vector, our al-
gorithm uses an iteration process interpolating non-
colliding (i.e., valid), and colliding (i.e., invalid), flex
values. Here, a flex value is colliding if its associated
finger-joint is colliding or any finger-joint depending
on it. A finger-joint J ′ is depending on a finger-joint
J , if it is further down the kinematic chain, i.e., if
J moves, then J ′ moves, too (see [Zac00] for a de-
tailed depiction of the finite state machine of this pro-
cess). Note that a finger-joint can have many depend-
ing finger-joints. (In this context, the palm is a“finger-
joint” like all the others.)

During the iteration process, the position M of the
hand is treated like any other flex value, i.e., it is inter-
polated. The only differences are that interpolation is
done on matrices instead of single real numbers. The
“joint” associated with it is usually the palm or the
forearm.

After a few iteration steps, some flex values will
be approximated “close enough” (when the range be-
tween valid and invalid flex value is small enough).
Then, they will be fixed. Depending flex values must
be considered for fixing, too: they may or may not be
close enough. So, several flex values in a row may be-
come fixed at the same time. As long as a flex value is
not fixed, it will be interpolated and all its depending
flex values.9

After all flex values have been fixed, the second
phase of the algorithm tries to analyze the type of
grasp. While the grasping algorithm is in general ap-
plicable to any hierarchical kinematic chain, the anal-
ysis algorithm needs to know more about its “seman-

9 An alternative would be not to interpolate depending flex val-
ues, but since depending finger-joints need to be checked for
collision anyway, we can as well interpolate them, too. Thus,
we probably achieve an optimum faster.



Figure 5: Natural grasping is basically a minimization problem for the flex vector under the constraint that finger-joints
(and palm) must not penetrate the object.

tics”, i.e., it has to know about a palm, it needs to
know which finger-joints belong to the same finger,
etc. The heuristic we have implemented is very sim-
ple:

1. only one finger-joint or palm is touching → push;

2. several finger-joints are touching, and none of
them is part of the thumb, and the palm is not
touching → push;

This part of the heuristic would need to be more
sophisticated if cigarette grasping should be rec-
ognized. However, this type of grasp is not needed
for virtual assembly simulation.

3. one or more finger-joints is touching, one or more
thumb-joints is touching, and the palm is not
touching → precision grasp;

4. one or more finger-joints (possibly a thumb joint)
and the palm are touching, and at least one of the
finger-joints is a middle or outer joint → power
grasp;

5. one or more finger-joints and the palm are touch-
ing, but all finger-joints are inner joints → push.

In our algorithm, motion of the cart is handled spe-
cially. A cart motion indicates that the user’s (virtual)
body is changing place. Since the hand is attached
below the cart, a cart motion always brings on a mo-
tion of the hand. In that case, the algorithm does
not try to clasp the hand tightly around an object,
because that might cause the hand to be left behind,
which is probably not what the user wanted. Unfor-
tunately, navigation might cause the hand to end up

in an invalid (i.e., colliding) place, so after navigation
has stopped, the clasping algorithm cannot begin un-
til the whole hand has been moved to a collision-free
place by the user.

7 Conclusion

In this paper, we have shown that interaction
metaphors for virtual assembly simulation must be
balanced between naturalness, robustness, precision
and efficiency. This is often a compromise which has
to be decided on a case-by-case basis.

Precise positioning of parts is made possible by con-
straining interactive object motions and by abstract
positioning via command interfaces. Robust and effi-
cient interaction with the system is achieved by utiliz-
ing all input channels available, namely gesture recog-
nition, tracking, voice input, and menus. We have
reported on a robust algorithm for gesture recogni-
tion, a way to robustly recognize voice commands,
and on our experiences with robust menu interaction.
Robust tracking can be achieved by predictive filter-
ing [Zac00].

Natural grasping can be solved with an algorithm
presented in this paper. This is a robust interaction,
even without relying on abstract gestures. Similarly, a
robust physically-based simulation has been proposed
in order to create collision-free assembly paths. In
the absence of control over the user’s hand, natural-
ness must be sacrificed over correctness; force-feedback
would be needed to retain both correctness and natu-
ralness.



Figure 6: All the algorithms and paradigms presented in this paper have been integrated in our VR system Virtual
Design II, which is used by car industries to carry out virtual assembly simulation in scenarios like the two shown above.

All of these algorithms and metaphors have been
developed in cooperation with automotive industry
partners and are integrated into our VR system Vir-
tual Design II, which is being utilized for the virtual
prototyping process in applications as design review,
styling review, immersive scientific visualization, and
others. In particular, the virtual assembly module
containing the functionality and human machine in-
terface described in this paper has proven by usability
tests to be efficient and mature for assembly simula-
tion [?].

8 Future Work

In order to make the sliding simulation and natural
grasping even more efficient, collision detection algo-
rithms should provide some measure of the amount of
interpenetration. This information could be used to
estimate the contact points more quickly.

A particularly difficult problem for the sliding al-
gorithm is presented by the way slide-in units are de-
signed (for instance, car radios): these parts and their
compartments are usually designed such that their re-
spective hulls overlap precisely, so that the virtual
parts will actually have a collision when in final posi-
tion.

Interacting with the system itself will become an
area for further research. As the number of func-
tionalities offered by the VR system increases, and
as the amount of information about the current state
of the system and about the virtual environment in-
creases, interaction with the system can become more

and more difficult. Given the type of VR input devices
needed for the respective application, it is important
not to confuse the user yet provide an efficient inter-
face.

Force feedback is currently an active area of re-
search. For simple cases, algorithms and devices are
available, but as of yet, there is no device suitable for
virtual assembly simulation. However, force feedback
would greatly increase intuitivity and user efficiency
as well as the transferability of the results obtained in
interactive simulations.

Building on our algorithms presented in Section 5,
we are currently developing haptic simulation algo-
rithms for a novel force feedback device. These will
be integrated with our VR system Virtual Design II
and applied to complex scenarios such as Figure 6. A
main focus is laid on stability of the simulation and
user safety. In addition, we are investigating the per-
ceptual quality of haptic rendering. In order to achieve
stable behavior of the system, very high update rates
must be guaranteed. This requires further increase of
the speed of collision detection [Zac01].
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active rigid body menipulation with obstacle
contacts. The Journal of Visuazlization and
Computer Animation, 9:243–257, 1998. 5

[CDG97] Chi-Cheng P. Chu, Tushar H. Dani, and Ra-
jit Gadh. Multi-sensory user interface for
a virtual-reality-based computer-aided design
system. Computer-Aided Design, 29(10):709–
725, 1997. 2

[ES99] Jens Eckstein, and Elmar Schömer. Dynamic
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