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Abstract. For both visual analysis and computer assisted diagnosis sys-
tems in breast MRI reading, the delineation and diagnosis of ductal carci-
noma in situ (DCIS) is among the most challenging tasks. Recent studies
show that kinetic features derived from dynamic contrast enhanced MRI
(DCE-MRI) are less effective in discriminating malignant non-masses
against benign ones due to their similar kinetic characteristics. Adding
shape descriptors can improve the differentiation accuracy. In this work,
we propose a set of novel morphological features using the sphere pack-
ing technique, aiming to discriminate non-masses based on their shapes.
The feature extraction, selection and the classification modules are inte-
grated into a computer-aided diagnosis (CAD) system. The evaluation
was performed on a data set of 106 non-masses extracted from 86 pa-
tients, which achieved an accuracy of 90.56%, precision of 90.3%, and
area under the receiver operating characteristic (ROC) curve (AUC) of
0.94 for the differentiation of benign and malignant types.

1 Introduction

Dynamic contrast enhanced MRI (DCE-MRI) has been widely used in breast
cancer screening of high risk patients, preoperative staging, and post-treatment
follow-up, for its high sensitivity. According to the BI-RADS lexicon, based on
the morphological characteristics, the lesions are classified into mass-like, non-
mass-like, and foci [1]. The diagnosis of breast cancer in its intraductal stage
might help to prevent it from becoming invasive cancer [2]. However, the delin-
eation and diagnosis of non-masses, most notably DCIS, is challenging in breast
MRI reading even for human observers [2, 3]. Clinical evidences show that the
kinetic parameters have the potential to distinguish benign and malignant in
masses more effectively, but fail to demonstrate usefulness in discriminating the
non-masses [3]. Therefore, the computer-aided diagnosis (CAD) tools strongly
relying on kinetic features often fail in classifying non-masses. In terms of sen-
sitivity and specificity in non-masses, no previous trials achieved a performance
matching CAD approaches for solid masses [2]. To achieve better performance,
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there is a demand for prominent morphological features depicting the lesion
shapes and distributions [1].

Recently, a few CAD systems focusing on differentiating non-masses in MRI
have been reported [4, 5]. Chen et al. [4] combines the kinetic features derived
from characteristic kinetic curves (CKCs), morphological and texture features,
which were tested with a collection of both mass and non-mass lesions and yield
an AUC of 0.85. Hoffmann et al. [5] evaluated the discriminative power of a set
of morphological and kinetic descriptors separately, and the Zernike velocity mo-
ments, capturing the joint spatiotemporal behaviors of the lesions, to diagnose a
collection of non-mass-like breast lesions. However, none of the features exceeds
an AUC value of 0.8. Goto et al. [6] directly compared the diagnostic perfor-
mance of DCE-MRI (early enhancement) with that of high-spatial-resolution
MRI (morphologic features) for the first time. They claimed that in the ma-
jority of cases breast lesions were correctly diagnosed merely based on certain
morphologic features, which makes those features more important than early
enhancement for differentiating malignant breast lesions from benign. The accu-
racy of 95% and 87% were achieved for masses and non-masses respectively.

In this work, we propose three novel morphological features, describing lesion
shapes based on the already existing sphere packing algorithm [7], in combination
with Zernike descriptors [8]. These features lead to a more precise shape based
delineation of malignant and benign lesions and thus a higher discrimination
accuracy. Beside introduction of novel morphological features, the contribution
of this paper lies in the feature extraction and selection of the features and the
evaluation of their performance in discriminating benign and malignant non-
mass-like lesions. All these feature types are integrated as modules into a CAD
framework implemented on MeVisLab platform1. The processing pipeline de-
picting each individual module is shown in Fig.1. To test the performance of the
introduced features, we conducted several experiments using a data set including
86 patients with 106 non-mass-like lesions, among which 68 were pathologically
confirmed malignant, and 38 were benign findings. We evaluated the classifier
performance using the mentioned features with a Random Forest (RF) classifier
in a 10-fold cross-validation scheme, and we achieved an accuracy of 90.56%,
precision of 90.3%, and the area under the ROC curve (AUC) value of 0.94.
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Fig. 1. The integrated framework comprising preprocessing, feature extraction and
selection, and lesion analysis modules.

1 MeVisLab: Medical image processing and visualization platform:
http://www.mevislab.de [Accessed on 16 March 2016]
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2 Materials and Methods

2.1 Imaging Technique and Data Set

The DCE-MRI images were acquired on a 1.5 T scanner (Magnetom Vision,
Siemens, Erlangen) in Nijmegen, Netherlands. A dedicated breast coil (CP Breast
Array, Siemens, Erlangen) was used in prone patient placement. The pixel spac-
ing differed between volumes with values ranging from 0.625 mm to 0.722 mm.
The slice thickness was 1.3 mm, and the volume size was 512× 256× 120 voxels.
TR and TE were 6.80 s and 4.00 s, respectively, at a 20 degree flip angle. All
patients were histologically confirmed by needle aspiration/excision biopsy or
surgical removal. Subsequently, the amount of malignant lesions were 68, most
of which were diagnosed as DCIS. The rest were diagnosed as invasive duc-
tal carcinoma (IDC), invasive lobular carcinoma (ILC), lobular carcinoma in
situ (LCIS) and metastasis. On the other hand, benign histologic findings were
found in 38 lesions including fibrocystic changes (FCC), adenosis and hyperpla-
sia. One experienced radiologist retrospectively reviewed the histologic reports
and identified the reported lesions. All the lesions were manually segmented with
a computer-assistant tool using region-growing and manual correction.

2.2 Feature Extraction

A total of four morphological features are proposed, including three novel shape
descriptors based on the already existing data structure generated by sphere
packing algorithm, plus the Zernike descriptors. These features are able to effi-
ciently describe the shape and distribution properties of the lesions.

Features based on sphere packing The morphological features that we ex-
plored are extracted using the data structures generated by the sphere packing
technique [7], which is a new and promising data representation for several fun-
damental problems in computer graphics and virtual reality, such as collision
detection and deformable object simulation. The algorithm iteratively fills the
lesion with a fixed number of non-overlapping spheres starting with the one with
the largest possible radius, under the condition that they should completely lo-
cate inside the lesion. Next, all the components of the spheres (3D coordinates
and radius) are normalized by scaling down to unit length with respect to their
minimum and maximum values of the components. Once each lesion is packed by
the aforementioned spheres, the following morphological features are extracted.

a) Volume-radius histogram: A histogram in which the radius ranges of in-
ternal spheres lie on the x-axis with an arbitrary number of bins and the y-axis
is the sum of the spheres volumes with the radius falling into a bin. The sphere
packing initially occupies as much volume from the lesion as possible with the
biggest possible sphere. Therefore, in benign lesions (with a more regular or
round shape), the majority of the lesion space is occupied by a few number of
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sizable spheres and the rest by considerably smaller ones. In contrast, in malig-
nant lesions, most of the volume is occupied with medium-sized spheres (Fig. 2).

Fig. 2. The volume-radius histogram of two lesions packed with 200 spheres. In benign
lesions (left) most of their space is filled with sizable spheres; in malignant lesions
(right), medium-sized ones occupy most of the internal space.

b) Packing fraction of enclosing sphere: For each lesion, all the internal
spheres generated by the sphere packing algorithm were enclosed by a bigger
sphere or ball and the occupied fraction of that is calculated as a feature. It is
dimensionless and always less in unit range. Several strategies can be applied
to define the center point’s location of the aforementioned sphere, such as mean
centering of coordinates, placing it between the two most distant spheres, in the
center of the largest internal sphere, and the center of the smallest enclosing ball
[9]. In benign lesions (which often have a regular and round shape) the enclosing
sphere is more occupied and has less empty gaps than the malignant ones. This
fraction is closer to one for benign and is near zero for malignant lesions.

c) Graph topological features: Graph analysis can assist characterizing the
complex structures, leading to a better realization of relations that exist between
their components [10]. In this work, it is adapted to characterize the spatial ar-
rangement of the lesion’s internal spheres. We constructed the graphs, in which
the center points of embedded spheres are considered as nodes, and spatial re-
lationship between them as edges with weights according to their distance. Sev-
eral structures, including Prim’s and Kruskal’s minimum spanning trees, relative
neighborhood, Gabriel, and β-skeleton graphs were examined to gain the best
accuracy (Fig. 3). Finally, the Gabriel graph showed the highest. Furthermore,
spatial constraints such as maximum neighbors (K-Max) were employed to form
sub-graphs. We used several cluster validity indices, such as graph compactness
indices, edge density, structure linearity [11], Dunn’s Index, Davies Bouldin in-
dex, MinMaxCut, graph’s cohesion [12], modularization quality, global silhouette
index, Jaccard Coefficient, Folkes, Mallows, Hubert, and Arabie’s indices [13] to
extract the global and local graph-based geometrical features. The feature vector
is formed by the values of all the aforementioned indices.
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(a) (b) (c) (d)

Fig. 3. Kruskal’s (a) and Prim’s (b) minimum spanning trees, relative neighborhood
(c), and Gabriel (d) graph structures obtained by connecting 200 internal spheres.

3D Zernike descriptors Moment-based descriptors have been broadly used
for object recognition [8] and shape matching [14] to provide a compact numerical
expression of the spatial features. We extracted 3D Zernike descriptors using an
extension of spherical-harmonics-based descriptors, presented by Novotni and
Klein [15], which captures object coherence in the radial direction.

3 Results and Evaluations

To examine the performance of the proposed features, the first evaluation was
conducted without applying any feature selection. We adopted all 106 findings
comprising 68 malignant and 38 benign lesions. Each lesion was packed with 4000
spheres. The parameter tuning for the aforementioned features was performed
by parameter sweeping of values in a multi-dimensional parameter space and
applying the following classification on the feature vectors of each combination
to get the best parameter values of the highest accuracy (see Table 1).

Feature extraction module Parameters Best value No. Features

Volume-radius histogram Number of bins 50 50
Packing fraction of the enclosing ball Center point’s location Mean centering 1
Graph morphological features K-Max, Graph type No. nodes, Gabriel 19
Zernike descriptors Maximum order 15 72

Table 1. Feature types and their parameter space, plus the optimized values and
number of their output features.

For validation of the extracted features, binary classifiers - including Random
Forest, Naive Bayes, AdaBoost, and Support Vector Machine (SVM) - were
trained with a total of 142 features acquired from the above mentioned methods.
For each classifier, a stratified 10-fold cross-validation scheme was applied on the
lesions in the data set. The classification power, expressed as AUC is listed in
Table 2. The best results were achieved with the RF classifier.
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Classifier type TP Rate FP Rate Precision AUC
ben. mal. ben. mal. ben. mal. ben. mal.

Random Forest 0.78 0.91 0.08 0.21 0.83 0.88 0.90 0.90
Naive Bayes 0.86 0.44 0.55 0.13 0.46 0.85 0.66 0.81
AdaBoost 0.65 0.89 0.10 0.34 0.78 0.82 0.83 0.83
Support Vector Machine 0.68 0.29 0.70 0.31 0.35 0.62 0.48 0.48

Table 2. The TP and FP rates, precision, and AUC values from classification re-
sults of different lesion types using four different classifiers (ben. is benign and mal. is
malignant). Here the RF classifier outperforms the other three.

3.1 Classification Results with Feature Selection

For the machine learning algorithms, it is important to use feature reduction
mechanisms to decrease over-fitting of the training data. Taking advantage of
Mean Decrease in Accuracy (MDA) and Mean Decrease GINI (MDG) [16] as
variable importance criteria, from a total of 142 features in features set, the top
30 most effective ones were selected for evaluation. Using the RF classifier, MDA
ranking showed a higher accuracy than MDG. Among the top features rated by
MDA, volume-radius histogram, packed fraction of enclosing ball, graph features,
and Zernike descriptors features gained the highest order respectively. It should
be mentioned that, among those features, only three graph features of linear
structure, new compactness index Cp∗, and Dunn’s index [13] (Eq. 1) appeared
on the top 30 MDA features.

Dunn(C) =
d(Ci, Cj)

diam(Ch)
, Cp∗ =

N−1∑
i=1

N∑
j=i+1

sim(vi, vj)

N(N − 1)/2
(1)

Furthermore, applying the Principal Component Analysis (PCA) feature se-
lection was investigated to reduce the dimensionality even more and find the
best correlation between the features. However, no improvement was seen in the
evaluation results. Table 3 shows the classification results of the RF using 10-
FCV before and after applying MDA, MDG, PCA over MDA, and PCA over
MDG.

Feature No. TP Rate FP Rate Precision Accuracy AUC
selection features ben. mal. ben. mal. ben. mal. ben. mal. ben. mal.

No selection 142 0.789 0.912 0.088 0.211 0.833 0.886 13.2% 86.79% 0.907 0.907
MDG 30 0.816 0.956 0.044 0.184 0.912 0.903 9.43% 90.56% 0.935 0.935
MDA 30 0.816 0.956 0.044 0.184 0.912 0.903 9.43% 90.56% 0.94 0.94
PCA on MDG 5 0.763 0.941 0.059 0.237 0.879 0.877 12.26% 87.73% 0.935 0.935
PCA on MDA 5 0.816 0.926 0.074 0.184 0.861 0.900 11.32% 88.67% 0.936 0.936

Table 3. The classification results of the RF using 10-FCV before and after applying
MDA and MDG rankings, plus PCA on them (ben. is benign and mal. is malignant).
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4 Conclusion and Discussion

This paper focuses on utilizing the sphere packing (non-overlapping and non
-uniform radii) to develop a set of novel morphological features to classify breast
non-mass-like lesions. Under the assumption that malignant lesions tend to have
irregular shapes and margins compared to benign lesions (which have more reg-
ular and round shape), the sphere packing based features can effectively capture
the shape differences and thus increase the discrimination accuracy. All the pro-
posed features are translation, rotation, and scaling invariant, since they either
are coordinate free features, or because we normalized the data at first.

To our knowledge, this is the first time that such an object representation
has been investigated for classifying non-mass lesions in MRI. One advantage
of sphere packing is that it can describe volumetric shapes more concisely than
a voxel representation or mesh surface. In addition, it allows for deriving ad-
ditional meta-representations (e.g. proximity graphs and skeletons), which we
investigated in this work too. Among many other insights, we discovered that
the volume-radius histogram is a particularly efficient shape descriptor to classify
non-mass breast lesions into benign and malignant.

To reduce the redundancy of the extracted features, we investigated the ap-
plication of two feature selection techniques: MDA and PCA to decrease the
over-fitting of the data. The classification performance of these features was
tested with a data set of 106 non-mass-like lesions collected from 86 patients.
Two experiments comparing the performance with and without feature selec-
tion were conducted. The classification accuracy, using different classifiers was
evaluated. The best AUC value of 0.94 was achieved when using MDA selected
features with a RF classifier and 10-FCV scheme. The experiment demonstrated
the discriminative power of our proposed features and their potential to increase
the diagnostic accuracy of a CAD system. In the future, we will focus on further
improving the calculation efficiency of these features and also investigate more
features based on the sphere packing.

We acknowledge that there are limitations in our study. Firstly, to the best
of our knowledge, there is no validated data set for non-masses publicly avail-
able that we can perform a benchmark on and compare the results with others.
Therefore, we used aforementioned data set that were labeled meticulously by
radiologists, which makes it the best-suited data set for our work. Secondly, we
are aware that the evaluation using the 10-FCV method might cause some over-
fitting on the data. Nevertheless the 10-FCV is generally even more reliable than
other current methods, such as leaveoneout CV and Bootstrap, as it has a lower
variance. Reducing the number of features to 30 finals using MDA leads to very
low over-fitting and unbiased results at the end.
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