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Abstract

Adaptive bitonic sorting is a sorting algorithm suitable for implementation on EREW parallel
architectures. Similar to bitonic sorting, it is based on merging, which is recursively applied to
obtain a sorted sequence. In contrast to bitonic sorting, it is data dependent. Adaptive bitonic
merging can be performed in O

(
n
p

)
parallel time, p being the number of processors, and executes

only O
(
n
)

operations in total. Consequently, adaptive bitonic sorting can be performed in O
(
n logn

p

)
time, which is optimal. So, one of its advantages is that it executes a factor of O

(
logn

)
less operations

than bitonic sorting. Another advantage is that it can be implemented efficiently on modern GPUs.

1 Introduction

This chapter describes a parallel sorting algorithm, adaptive bitonic sorting [2], that offers the
following benefits:

• it needs only the optimal total number of comparison/exchange operations, O
(
n log n

)
;

• the hidden constant in the asymptotic number of operations is less than in other optimal parallel
sorting methods;

• it can be implemented in a highly parallel manner on modern architectures, such as a streaming
architecture (GPUs), even without any scatter operations, i.e., without random access writes.

One of the main differences between “regular” bitonic sorting and adaptive bitonic sorting is that
regular bitonic sorting is data-independent, while adaptive bitonic sorting is data-dependent (hence
the name).

As a consequence, adaptive bitonic sorting cannot be implemented as a sorting network, but only
on architectures that offer some kind of flow control. Nonetheless, it is convenient to derive the
method of adaptive bitonic sorting from bitonic sorting.

Sorting networks have a long history in computer science research (see the comprehensive sur-
vey [3]). One reason is that sorting networks are a convenient way to describe parallel sorting
algorithms on CREW-PRAMs or even EREW-PRAMs (which is also called PRAC for “parallel
random access computer” ).

In the following, let n denote the number of keys to be sorted, and p the number of processors. For
the sake of clarity, n will always be assumed to be a power of 2. (In their original paper [2], Bilardi
and Nicolau have described how to modify the algorithms such that they can handle arbitrary
numbers of keys, but these technical details will be omitted in this article. )

∗This is a slightly updated version of [1].
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Figure 1: Three examples of sequences that are bitonic. Obviously, the mirrored sequences (either way) are
bitonic, too.

Figure 2: Left: according to their definition, bitonic sequences can be regarded as lying on a cylinder or as being
arranged in a circle. As such, they consist of one monotonically increasing and one decreasing part. Middle: in
this point of view, the network that performs the L and U operators (see Figure 5) can be visualized as a wheel
of “spokes”. Right: visualization of the effect of the L and U operators; the blue plane represents the median.

The first to present a sorting network with optimal asymptotic complexity were Ajtai, Komlós,
and Szemerédi [4]. Also, Cole [5] presented an optimal parallel merge sort approach for the CREW-
PRAM as well as for the EREW-PRAM. However, it has been shown that neither is fast in practice
for reasonable numbers of keys [6, 7].

In contrast, adaptive bitonic sorting requires less than 2n log n comparisons in total, independent
of the number of processors. On p processors, it can be implemented in O

(
n logn

p

)
time, for p ≤ n

logn .
Even with a small number of processors it is efficient in practice: in its original implementation,

the sequential version of the algorithm was at most by a factor 2.5 slower than quicksort (for
sequence lengths up to 219) [2].

2 Fundamental Properties

One of the fundamental concepts in this context is the notion of a bitonic sequence.

Definition 1 (Bitonic sequence)
Let a = (a0, . . . , an−1) be a sequence of numbers. Then, a is bitonic, iff it monotonically in-
creases and then monotonically decreases, or if it can be cyclically shifted (i.e., rotated) to become
monotonically increasing and then monotonically decreasing.

Figure 1 shows some examples of bitonic sequences.
In the following, it will be easier to understand any reasoning about bitonic sequences, if one

considers them as being arranged in a circle or on a cylinder: then, there are only two inflection
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Figure 3: Comparator/exchange
elements.

Figure 4: A network that performs
the rotation operator.

Figure 5: A half-cleaner that per-
forms the L and U operators.

points around the circle. This is justified by Definition 1. Figure 2 depicts an example in this
manner.

As a consequence, all index arithmetic is understood modulo n, i.e., index i + k ≡ i + k mod n,
unless otherwise noted, so indices range from 0 through n− 1.

As mentioned above, adaptive bitonic sorting can be regarded as a variant of bitonic sorting,
which is

In order to capture the notion of “rotational invariance” (in some sense) of bitonic sequences, it
is convenient to define the following rotation operator.

Definition 2 (Rotation)
Let a = (a0, . . . , an−1) and j ∈ N. We define a rotation as an operator Rj on the sequence a:

Rja = (aj , aj+1, . . . , aj+n−1)

This operation is performed by the network shown in Figure 4. Such networks are comprised of
elementary comparators (see Figure 3).

Two other operators are convenient to describe sorting.

Definition 3 (Half-cleaner)
Let a = (a0, . . . , an−1).

La = (min(a0, an
2

), . . . ,min(an
2 −1, an−1)),

Ua = (max(a0, an
2

), . . . ,max(an
2 −1, an−1)).

In [8], a network that performs these operations together is called a half-cleaner (see Figure 5).
It is easy to see that, for any j and a,

La = R−j mod n
2
LRja, (1)

and

Ua = R−j mod n
2
URja. (2)

This is the reason why the cylinder metaphor is valid.
The proof needs to consider only two cases: j = n

2 and 1 ≤ j < n
2 . In the former case, equation 1

becomes La = LRn
2
a, which can be verified trivially. In the latter case, equation 1 becomes

LRja =
(
min(aj , aj+n

2
), . . . ,min(an

2 −1, an−1), . . . ,min(aj−1, aj−1+n
2

)
)

= RjLa.
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Figure 6: Examples of the result of the L and U operators. Conceptually, these operators fold the bitonic
sequence (black), such that the range n

2
through n − 1 (light gray) is shifted into the range 0 through n

2
− 1

(black); then, operators L and U yield the upper (red) and lower (blue) hull, resp.

Thus, with the cylinder metaphor, the L and U operators basically do the following: cut the
cylinder with circumference n at any point, roll it around a cylinder with circumference n

2 , and
perform position-wise the max and min operator, resp. Some examples are shown in Figure 6.

The following theorem states some important properties of the L and U operators.

Theorem 1
Given a bitonic sequence a,

max{La} ≤ min{Ua} .
Moreover, La and Ua are bitonic, too.

In other words, each element of La is less than or equal to each element of Ua.
This theorem is the basis for the construction of the bitonic sorter [9]. The first step is to devise

a bitonic merger (BM). We denote a BM that takes as input bitonic sequences of length n with
BMn. A BM is recursively defined as follows

BMn(a) =
(

BMn
2

(La), BMn
2

(Ua)
)
.

The base case is, of course, a two-key sequence, which is handled by a single comparator. A BM
can be easily represented in a network as shown in Figure 7.

Given a bitonic sequence a of length n, one can show that

BMn(a) = Sorted(a). (3)

It should be obvious that the sorting direction can be changed simply by swapping the direction of
the elementary comparators.

Coming back to the metaphor of the cylinder, the first stage of the bitonic merger in Figure 7 can
be visualized as n

2 comparators, each one connecting an element of the cylinder with the opposite
one, somewhat like spokes in a wheel. Note that here, while the cylinder can rotate freely, the
“spokes” must remain fixed.

From a bitonic merger, it is straight-forward to derive a bitonic sorter, BSn, that takes an unsorted
sequence, and produces a sorted sequence, either up or down. Like the BM, it is defined recursively,
consisting of two smaller bitonic sorters and a bitonic merger (see Figure 8). Again, the base case
is the two-key sequence.

3 Analysis of the Number of Operations of Bitonic Sorting

Since a bitonic sorter basically consists of a number of bitonic mergers, it suffices to look at the
total number of comparisons of the latter.
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Figure 7: Schematic, recursive diagram of a network
that performs bitonic merging.

Figure 8: Schematic, recursive diagram of a bitonic
sorting network.

The total number of comparators, C(n), in the bitonic merger BMn is given by

C(n) = 2C(
n

2
) +

n

2
, with C(2) = 1

which amounts to

C(n) =
1

2
n log n.

As a consequence, the bitonic sorter consists of O
(
n log2 n

)
comparators.

Clearly, there is some redundancy in such a network, since n comparisons are sufficient to merge
two sorted sequences. The reason is that the comparisons performed by the bitonic merger are
data-independent.

4 Derivation of Adaptive Bitonic Merging

The algorithm for adaptive bitonic sorting is based on the following theorem.

Theorem 2
Let a be a bitonic sequence. Then, there is an index q such that

max
(
aq, . . . , aq+n

2 −1

)
≤ min

(
aq+n

2
, . . . , aq−1

)
(4)

The following outline of the proof assumes, for the sake of simplicity, that all elements in a are
distinct. Employing the cylinder metaphor again, we can clearly see that any horizontal plane cuts
the sequence at exactly two places (i.e., indices) (see Figure 2, right hand side). Therefore, any
such “cut plane” partitions a bitonic sequence into two contiguous sub-sequences, and all elements
of the “lower” sequence are smaller then any element of the “upper” sequence. (Remember that
index arithmetic is always meant modulo n, therefore, “contiguous” can involve a wrap-around,
too.) Now, use the median as the cut plane, so each sub-sequence has exactly length n

2 . The indices
where this cut happens are just q and q + n

2 . Figure 9 shows an example (in one dimension).
The following theorem is the final key stone for the adaptive bitonic sorting algorithm.

Theorem 3
Any bitonic sequence a can be partitioned into four sub-sequences (a1,a2,a3,a4) such that either

(La, Ua) = (a1,a4,a3,a2) (5)
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Figure 9: Visualization for the proof of Theorem 2.

or

(La, Ua) = (a3,a2,a1,a4). (6)

Furthermore,

|a1|+ |a2| = |a3|+ |a4| = n

2
, (7)

|a1| = |a3| , and (8)

|a2| = |a4| , (9)

where |a| denotes the length of sequence a.

Figure 10 illustrates this theorem by an example.
In other words, in order to establish (La, Ua), we either need to swap (just) a2 and a4, or we

need to swap a1 and a3.
This theorem can be proven fairly easily, too: the length of the subsequences is just q and n

2 − q,
where q is the same as in Theorem 2. Assuming that max{a1} < m < min{a3}, nothing will change
between those two sub-sequences (see Figure 10). However, in that case min{a2} > m > max{a4};
therefore, by swapping a2 and a4 (which have equal length), the bounds max{(a1,a4)} < m <
min{a2,a3)} are obtained. The other case can be handled analogously.

Remember that, in a half-cleaner, there are n
2 comparator-and-exchange elements, each of which

compares ai and ai+n
2
. They will perform exactly this exchange of sub-sequences, without ever

looking at the data.
Now, the idea of adaptive bitonic sorting is to find the sub-sequences, i.e., to find the index q

that marks the border between the sub-sequences. Once q is found, one can (conceptually) swap
the sub-sequences, instead of performing n

2 comparisons unconditionally.
Finding q can be done simply by binary search driven by comparisons of the form (ai, ai+n

2
).

Overall, instead of performing n
2 comparisons in the first stage of the bitonic merger (see Figure 7),

the adaptive bitonic merger performs log(n
2 ) comparisons in its first stage (although this stage is

no longer representable by a network).
Let C(n) be the total number of comparisons performed by adaptive bitonic merging, in the worst

case. Then

C(n) = 2C(
n

2
) + log(n) =

k−1∑
i=0

2i log(
n

2i
)

with C(2) = 1, C(1) = 0 and n = 2k. This amounts to

C(n) = 2n− log n− 2
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Figure 10: Example illustrating Theorem 3.

The only question that remains is how to achieve the data rearrangement, i.e., the swapping of
the subsequences a1 and a3 or a2 and a4, resp., without sacrificing the worst-case performance of
O
(
n
)
. This can be done by storing the keys in a perfectly balanced tree (assuming n = 2k), the

so-called bitonic tree. (The tree can, of course, store only 2k − 1 keys, so the n-th key is simply
stored separately.) This tree is very similar to a search tree, which stores a monotonically increasing
sequence: when traversed in-order, the bitonic tree produces a sequence that lists the keys such
that there are exactly two inflection points (when regarded as a circular list).

Instead of actually copying elements of the sequence in order to achieve the exchange of sub-
sequences, the adaptive bitonic merging algorithm swaps O

(
log n

)
pointers in the bitonic tree. The

recursion then works on the two sub-trees. With this technique, the overall number of operations
of adaptive bitonic merging is O

(
n
)
. Details can be found in [2].

Clearly, the adaptive bitonic sorting algorithm needs O
(
n log n

)
operations in total, because it

consists of log(n) many complete merge stages (see Figure 8).

It should also be fairly obvious that the adaptive bitonic sorter performs an (adaptive) subset of
the comparisons that are executed by the (non-adaptive) bitonic sorter.
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5 The Parallel Algorithm

So far, the discussion assumed a sequential implementation. Obviously, the algorithm for adaptive
bitonic merging can be implemented on a parallel architecture, just like the bitonic merger, by
executing recursive calls on the same level in parallel.

Unfortunately, a näıve implementation would require O
(
log2 n

)
steps in the worst-case, since

there are log(n) levels. The bitonic merger achieves O
(
log n

)
parallel time, because all pair-wise

comparisons within one stage can be performed in parallel. But this is not straight-forward to
achieve for the log(n) comparisons of the binary-search method in adaptive bitonic merging, which
are inherently sequential.

However, a careful analysis of the data dependencies between comparisons of successive stages
reveals that the execution of different stages can be partially overlapped [2]. As La, Ua are being
constructed in one stange by moving down the tree in parallel layer by layer (occasionally swapping
pointers), this process can be started for the next stage, which begins one layer beneath the one
where the previous stage began, before the first stage has finished, provided the first stage has
progressed “far enough” in the tree. Here, “far enough” means exactly two layers ahead.

This leads to a parallel version of the adaptive bitonic merge algorithm that executes in time
O
(
n
p

)
for p ∈ O

(
n

logn

)
, i.e., it can be executed in O

(
log n

)
parallel time.

Furthermore, the data that needs to be communicated between processors (either via memory,
or via communication channels) is in O

(
p
)
.

It is straight-forward to apply the classical sorting-by-merging approach here (see Figure 8), which
yields the adaptive bitonic sorting algorithm. This can be implemented on an EREW machine with
p processors in O

(
n logn

p

)
time, for p ∈ O

(
n

logn

)
.

6 A GPU Implementation

Because adaptive bitonic sorting has excellent scalability (the number of processors, p, can go
up to n/ log(n)) and the amount of inter-process communication is fairly low (only O

(
p
)
), it is

perfectly suitable for implementation on stream processing architectures. In addition, although it
was designed for a random access architecture, adaptive bitonic sorting can be adapted to a stream
processor, which (in general) does not have the ability of random-access writes. Finally, it can
be implemented on a GPU such that there are only O

(
log2(n)

)
passes (by utilizing O

(
n/ log(n)

)
(conceptual) processors), which is very important, since the number of passes is one of the main
limiting factors on GPUs.

This section provides more details on the implementation on a GPU, called “GPU-ABiSort”
[10, 11]. For the sake of simplicity, the following always assumes increasing sorting direction, and it
is thus not explicitely specified. As noted above, the sorting direction must be reversed in the right
branch of the recursion in the bitonic sorter, which basically amounts to reversing the comparison
direction of the values of the keys, i.e., compare for < instead of > in Algorithm 3.

As noted above, the bitonic tree stores the sequence (a0, . . . , an−2) in in-order, and the key an−1

is stored in the extra node. As mentioned above, an algorithm that constructs (La, Ua) from a can
traverse this bitonic tree and swap pointers as necessary. The index q, which is mentioned in the
proof for Theorem 3, is only determined implicitly. The two different cases that are mentioned in
Theorem 3, equations (5) and (6), can be distinguished simply by comparing elements an

2 −1 and
an−1.

This leads to Algorithm 1. Note that the root of the bitonic tree stores element an
2 −1 and the

extra node stores an−1. Applying this recursively yields Algorithm 2. Note that the bitonic tree
needs to be constructed only once at the beginning during setup time.

Because branches are very costly on GPUs, one should avoid as many conditionals in the inner
loops as possible. Here, one can exploit the fact that Rn/2a = (an

2
, . . . , an−1, a0, . . . , an

2 −1) is
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Algorithm 1: Adaptive construction of La and Ua (one stage of adaptive bitonic merging)

input : Bitonic tree, with root node r and extra node e, representing bitonic sequence a

output: La in the left subtree of r plus root r, and Ua in the right subtree of r plus extra node e

// phase 0: determine case

if value(r) < value(e) then
case = 1

else
case = 2

swap value(r) and value(e)

( p, q ) = ( left(r) , right(r) )

for i = 1, . . . , log n− 1 do
// phase i

test = ( value(p) > value(q) )

if test == true then
swap values of p and q

if case == 1 then
swap the pointers left(p) and left(q)

else
swap the pointers right(p) and right(q)

if ( case == 1 and test == false ) or ( case == 2 and test == true ) then
( p, q ) = ( left(p) , left(q) )

else
( p, q ) = ( right(p) , right(q) )

Algorithm 2: Merging a bitonic sequence to obtain a sorted sequence

input : Bitonic tree, with root node r and extra node e, representing bitonic sequence a

output: Sorted tree (produces sort(a) when traversed in-order)

construct La and Ua in the bitonic tree by Algorithm 1

call merging recursively with left(r) as root and r as extra node

call merging recursively with right(r) as root and e as extra node

9



Algorithm 3: Simplified adaptive construction of La and Ua

input : Bitonic tree, with root node r and extra node e, representing bitonic sequence a

output: La in the left subtree of r plus root r, and Ua in the right subtree of r plus extra node e

// phase 0

if value(r) > value(e) then
swap value(r) and value(e)

swap pointers left(r) and right(r)

( p, q ) = ( left(r) , right(r) )

for i = 1, . . . , log n− 1 do
// phase i

if value(p) > value(q) then
swap value(p) and value(q)

swap pointers left(p) and left(q)

( p, q ) = ( right(p) , right(q) )

else
( p, q ) = ( left(p) , left(q) )

bitonic, provided a is bitonic, too. This operation basically amounts to swapping the two pointers
left(root) and right(root). The simplified construction of La and Ua is presented in Algorithm 3.
(Obviously, the simplified algorithm now really needs trees with pointers, whereas Bilardi’s original
bitonic tree could be implemented pointer-less (since it is a complete tree). However, in a real-world
implementation, the keys to be sorted must carry pointers to some “payload” data anyway, so the
additional memory overhead incurred by the child pointers is at most a factor 1.5 . )

6.1 Outline of the implementation

As explained above, on each recursion level j = 1, . . . , log(n) of the adaptive bitonic sorting al-
gorithm, 2logn−j+1 bitonic trees, each consisting of 2j−1 nodes, have to be merged into 2logn−j

bitonic trees of 2j nodes. The merge is performed in j stages. In each stage k = 0, . . . , j − 1, the
construction of La and Ua is executed on 2k subtrees. Therefore, 2logn−j ·2k instances of the La /
Ua construction algorithm can be executed in parallel during that stage. On a stream architecture,
this potential parallelism can be exposed by allocating a stream consisting of 2logn−j+k elements
and executing a so-called kernel on each element.

The La / Ua construction algorithm consists of j−k phases, where each phase reads and modifies
a pair of nodes, (p, q), of a bitonic tree. Assume that a kernel implementation performs the operation
of a single phase of this algorithm. (How such a kernel implementation is realized without random-
access writes will be described below.) The temporary data that have to be preserved from one
phase of the algorithm to the next one are just two node pointers (p and q) per kernel instance.
Thus, each of the 2logn−j+k elements of the allocated stream consist of exactly these two node
pointers. When the kernel is invoked on that stream, each kernel instance reads a pair of node
pointers, (p, q), from the stream, performs one phase of the La/Ua construction algorithm, and
finally writes the updated pair of node pointers (p, q) back to the stream.

6.2 Eliminating random-access writes

Since GPUs do not support random-access writes (at least, for almost all practical purposes,
random-access writes would kill any performance gained by the parallelism) the kernel has to be
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Figure 11: To execute several instances of the adaptive La/Ua construction algorithm in parallel, where each
instance operates on a bitonic tree of 23 nodes, 3 phases are required. This figure illustrates the operation of
these 3 phases. On the left, the node pointers contained in the input stream are shown as well as the comparisons
performed by the kernel program. On the right, the node pointers written to the output stream are shown as
well as the modifications of the child pointers and node values performed by the kernel program according to
Algorithm 3.

implement so that it modifies node pairs (p, q) of the bitonic tree without random-access writes.
This means that it can output node pairs from the kernel only via linear stream write. But this way
it cannot write a modified node pair to its original location from where it was read. In addition, it
can not simply take an input stream (containing a bitonic tree) and produce another output stream
(containing the modified bitonic tree), because then it would have to process the nodes in the same
order as they are stored in memory, but the adaptive bitonic merge processes them in a random,
data-dependent order.

Fortunately, the bitonic tree is a linked data structure where all nodes are directly or indirectly
linked to the root (except for the extra node). This allows us to change the location of nodes in
memory during the merge algorithm as long as the child pointers of their respective parent nodes
are updated (and the root and extra node of the bitonic tree are kept at well-defined memory
locations). This means that for each node that is modified its parent node has to be modified also,
in order to update its child pointers.

Notice that Algorithm 3 basically traverses the bitonic tree down along a path, changing some of
the nodes as necessary. The strategy is simple: simply output every node visited along this path to
a stream. Since the data layout is fixed and pre-determined, the kernel can store the index of the
children with the node as it is being written to the output stream. One child address remains the
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same anyway, while the other is determined while the kernel is still executing for the current node.
Figure 11 demonstrates the operation of the stream program using the described stream output
technique.

6.3 Complexity

A simple implementation on the GPU would need O
(
log2 n

)
phases (or “passes” in GPU parlance)

in total for adaptive bitonic sorting, which amounts to O
(
log3 n

)
operations in total.

This is already very fast in practice. However, the optimal complexity of O
(
log n

)
passes can

be achieved exactly as described in the original work [2], i.e., phase i of a stage k can be executed
immediately after phase i + 1 of stage k − 1 has finished. Therefore, the execution of a new stage
can start every other step of the algorithm.

The only difference from the simple implementation is that kernels now must write to parts of
the output stream, because other parts are still in use.

7 GPU-specific Details

For the input and output streams, it is best to apply the ping-pong technique commonly used in
GPU programming: allocate two such streams and alternatingly use one of them as input and the
other one as output stream.

7.1 Preconditioning the input

For merge-based sorting on a PRAM architecture (and assuming p < n), it is a common technique
to sort locally, in a first step, p blocks of n/p values, i.e. each processor sorts n/p values using a
standard sequential algorithm.

The same technique can be applied here by implementing such a local sort as a kernel program.
However, since there is no random write access to non-temporary memory from a kernel, the number
of values that can be sorted locally by a kernel is restricted by the number of temporary registers.

On recent GPUs, the maximum output data size of a kernel is 16 × 4 bytes. Since usually the
input consists of key/pointer pairs, the method starts with a local sort of 8 key/pointer pairs per
kernel. For such small numbers of keys, an algorithm with asymptotic complexity of O

(
n
)

performs
faster than asymptotically optimal algorithms.

After the local sort, a further stream operation converts the resulting sorted subsequences of length
8 pairwise to bitonic trees, each containing 16 nodes. Thereafter, the GPU-ABiSort approach can
be applied as described above, starting with j = 4.

7.2 The last stage of each merge

Adaptive bitonic merging, being a recursive procedure, eventually merges small subsequences, for
instance of length 16. For such small subsequences it is better to use a (non-adaptive) bitonic merge
implementation that can be executed in a single pass of the whole stream.

8 Timings

The following experiments were done on arrays consisting of key/pointer pairs, where the key is a
uniformly distributed random 32-bit floating point value and the pointer a 4-byte address. Since
one can assume (without loss of generality) that all pointers in the given array are unique, these
can be used as secondary sort keys for the adaptive bitonic merge.
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n CPU sort GPUSort GPU-ABiSort

32768 9 – 11 ms 4 ms 5 ms
65536 19 – 24 ms 8 ms 8 ms

131072 46 – 52 ms 18 ms 16 ms
262144 98 – 109 ms 38 ms 31 ms
524288 203 – 226 ms 80 ms 65 ms

1048576 418 – 477 ms 173 ms 135 ms
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Figure 12: Timings on a GeForce 7800 system. (There are two curves for the CPU sort, so as to visualize that
its running time is somewhat data-dependent.)

The experiments described in the following compare the implementation of GPU-ABiSort
of [10, 11] with sorting on the CPU using the C++ STL sort function (an optimized quick sort
implementation) as well as with the (non-adaptive) bitonic sorting network implementation on the
GPU by Govindaraju et al., called GPUSort [12].

Contrary to the CPU STL sort, the timings of GPU-ABiSort do not depend very much on the
data to be sorted, because the total number of comparisons performed by the adaptive bitonic
sorting is not data-dependent.

Table 12 shows the results of timings performed on a PCI Express bus PC system with an AMD
Athlon-64 4200+ CPU and an NVIDIA GeForce 7800 GTX GPU with 256 MB memory. Obviously,
the speed-up of GPU-ABiSort compared to CPU sorting is 3.1–3.5 for n ≥ 217. Furthermore, up to
the maximum tested sequence length n = 220 (= 1 048 576), GPU-ABiSort is up to 1.3 times faster
than GPUSort, and this speed-up is increasing with the sequence length n, as expected.

The timings of the GPU approaches assume that the input data is already stored in GPU memory.
When embedding the GPU-based sorting into an otherwise purely CPU-based application, the input
data has to be transferred from CPU to GPU memory, and afterwards the output data has to be
transferred back to CPU memory. However, the overhead of this transfer is usually negligible
compared to the achieved sorting speed-up: according to measurements by [10], the transfer of
1 million key/pointer pairs from CPU to GPU and back takes in total roughly 20 ms on a PCI
Express bus PC.

9 Conclusion

Adaptive bitonic sorting is not only appealing from a theoretical point of view, but also from a
practical one. Unlike other parallel sorting algorithms that exhibit optimal asymptotic complexity,
too, adaptive bitonic sorting offers low hidden constants in its asymptotic complexity and can be
implemented on parallel architectures by a reasonably experienced programmer. The practical
implementation of it on a GPU outperforms the implementation of simple bitonic sorting on the
same GPU by a factor 1.3, and it is a factor 3 faster than a standard CPU sorting implementation
(STL).

10 Bibliographic Notes and Further Reading

As mentioned in the introduction, this line of research began with the seminal work of Batcher [9] in
the late 1960s, who described parallel sorting as a network. Research of parallel sorting algorithms
was re-invigorated in the 1980s, where a number of theoretical questions have been settled [4, 5,
13, 14, 15, 2].
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Another wave of research on parallel sorting ensued from the advent of affordable, massively
parallel architectures, namely GPUs, which are, more precisely, streaming architectures. This
spurred the development of a number of practical implementations [10, 11, 16, 17, 18, 19, 20].
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