
Proceedings of DETC’97
1997 ASME Design Engineering Technical Conferences

September 14-17, 1997, Sacramento, California

DETC97/CIE-4306

REAL-TIME AND EXACT COLLISION DETECTION
FOR INTERACTIVE VIRTUAL PROTOTYPING

Gabriel Zachmann
Fraunhofer Institute for Computer Graphics

Wilhelminenstrasse 7
64283 Darmstadt, Germany

email: zach@igd.fhg.de

ABSTRACT
Many companies have started to investigate Virtual Reality

as a tool for evaluating digital mock-ups. One of the key func-
tions needed for interactive evaluation is real-time collision de-
tection.

An algorithm for exact collision detection is presented
which can handle arbitrary non-convex polyhedra efficiently.
The approach attains its speed by a hierarchical adaptive space
subdivision scheme, the BoxTree, and an associated divide-and-
conquer traversal algorithm, which exploits the very special ge-
ometry of boxes.

The traversal algorithm is generic, so it can be endowedwith
other semantics operating on polyhedra, e.g., distance computa-
tions.

The algorithm is fairly simple to implement and it is de-
scribed in great detail in an “ftp-able” appendix to facilitate easy
implementation. Pre-computation of auxiliary data structures is
very simple and fast.

The efficiency of the approach is shown by timing results
and two real-world digital mock-up scenarios.

Keywords: digital mock-up, interference detection, virtual re-
ality, hierarchical data structures.

INTRODUCTION
Virtual prototyping, namely digital mock-ups (DMU), are

becoming more and more important to help reduce the time-to-
market, and thus the costs of a new model or product. It is said

that each day of delay in producing a new car model costs about
2 million dollars (Dai and Reindl, 1986).

Many companies, especially in the automotive and aircraft
industries, have started to evaluate Virtual Reality (VR) as a
back-end to CAD and CAE in order to investigate a DMU of a
new design. The idea is to allow designers, manufacturing plan-
ners, stylists, and analysts to evaluate several aspects of the new
product interactively and immersively. All relevant parts includ-
ing functional, descriptive, and other properties can be converted
into a Virtual Environment (VE). Then, appearance, serviceabil-
ity, packaging, variants, safety, and other aspects can be studied
immersively and interactively by one or many engineers at the
same time, possibly at different locations.

Collision detection in virtual prototyping scenarios One of
the main goals of using a VR system for design evaluation is the
potentially high degree of “reality” which can be experienced
when immersed in a VE. In order to achieve this, the VR system
needs to be able (among other things) to simulate realistic and
natural object behavior at interactive frame rates.

In order to simulate a natural VE (Magnenat-Thalmann and
Thalmann, 1994), the VR system must inhibit mutual penetra-
tion of objects. It should also make them “slide” on the surface
of other objects when the user moves them to a position where
penetrationwould occur. When the user interacts with the VE us-
ing a data-glove it should also be possible to grab or push objects
just like in the real world.

Other tasks of a VR system in the context of DMU are ge-
ometrical and spatial analyses. In a fitting simulation a designer

1 Copyright ¹ 1997 by ASME

might want to check interactively, if a slightly larger, different
part would fit in the place of the original part (see Figure 11. Or
he might want to scale or shift a part while the system checks
all relevant safety distances. In order to check serviceability of
a part, the VR system has to track the work space necessary for
removing the part by a human worker and for the tools, and it has
to report both intentional as well as “forbidden” collisions. Dur-
ing an assembly or disassembly simulation it is often necessary
to simulate kinematics in order to render a sensible design study.

When tools are to be used in an interactive serviceability test,
the VR system must check geometric and spatial relationships
between the tool and the object being manipulated by the worker.
For instance, when the worker has placed a wrench on a screw,
the system must maintain both objects coaxial while the worker
unscrews it.

Handling collisions is at the core of all of the above men-
tioned functionalities. Two major parts can be identified in col-
lision handling: collision detection and collision response. Al-
though both parts pose interesting problems, this paper will focus
only on the collision detection part. For further reading on the
collision response part see, for example, (Moore and Wilhelms,
1988; Bouma and Vanecek, Jr., 1991).

Requirements and solution The requirements on a collision
detection algorithm for interactive virtual prototyping are very
demanding. Under all circumstances, the collision detection
must be real-time in order to retain the effect of immersion. The
algorithm must be able to handle arbitrary polyhedra, since most
polynomial geometry data, converted from CAD data, are usu-
ally not “well-formed” in the following sense: there might be
gaps between polygons belonging to the same object, polygons
could overlap, and almost all polyhedra are not convex, some
are even not closed. Furthermore, most collision handling mod-
ules must be given at least one point of intersection in order to
take reasonable steps. Finally, the algorithm must be able to de-
tect collisions for large object complexities at interactive speed,
since polygon counts for typical CAD data range from 5,000 to
50,000 polygons per object.

While good results have been achieved for convex polyhe-
dra, non-convex, arbitrary polyhedra still present a “hard” prob-
lem under real-time constraints.

The BoxTree-algorithmmeets the above mentioned require-
ments: it can handle all objects which are just a collection of
plane polygons. Objects may even be self-overlapping. It is fast
enough to provide for interactive collision detection rates. If two
such polyhedra intersect at a given time, the algorithm will find
two (or more) witnesses (an edge and a polygon).

The BoxTree data structure is a binary tree, which is a hier-
archical, non-uniform, adaptive space subdivision. The leaves of
a BoxTree contain edges and polygons which define the associ-
ated polyhedron. Based on some heuristics, a tree construction
algorithm builds a near-optimal tree with respect to the collision

detection algorithm.
The hierarchical data structure is built only once for every

object. It does not have to be transformed as the object moves.
The results show that the BoxTree algorithm performs much

better than simple (potentially O n2) algorithms when object
complexity is above a certain level (200 polygons/object).

Due to the recursive refinement nature of the algorithm, it
can be interrupted at any stage should the application choose to
do so in order to insure a constant frame rate. So, this algorithm
is a good candidate for adaptive workload balancing.

Outline of the paper. Section describes previous work
done in the field. Section introduces our new algorithm, while
Section provides a detailed description of the algorithm to build
the associated data structure. Results are presented in Section .
The paper concludes with an outlook in Section , and conclusions
in Section .

PREVIOUS WORK
Collision detection seems to have attracted much attention

over the past 15 years. In the beginning, researchers seem to
have come from the area of robotics and computational geometry.
Later on, physically based modeling and animation had a special
need for exact collision detection. Despite its comparatively long
history, real-time exact collision detection has not been tackled
except for the past few years.

Computational geometry first focused on the construction of
the intersection of two polyhedra (Muller and Preparata, 1978;
Mehlhorn and Simon, 1985). Later, researchers realized that the
detection problem is interesting by itself and can be solved more
efficiently than the construction problem (Dobkin and Kirk-
patrick, 1985; Reichling, 1988). The algorithms are very effi-
cient in the asymptotical worst-case, however, they seem to be
only of theoretical interest, because the hidden constant is prob-
ably very large. No implementation is known to us.

In the field of robotics, a completely different approach has
been pursued: collisions are detected in configuration space (see
(Erdmann and Lozano-Pérez, 1987), for example). This ap-
proach seems to be well suited for path-planning. However, no
real-time implementation seems feasible.

The representation of objects has great impact on collision
detection algorithms. Non-b-rep representations, e.g., octree,
BSP, CSG, etc., allow/need quite different approaches (Navazo
et al., 1986; Naylor et al., 1990; Thibault and Naylor, 1987).

For collision avoidance systems, an approximate collision
detection is quite appropriate (Clifford A. Shaffer, 1992).

(Hubbard, 1995) present an object partitioning approach
somewhat similar to ours using spheres instead. However, the
construction of the auxiliary data structures is much more in-
volved, plus the covering of space with spheres is inherently re-
dundant. (García-Alonso et al., 1994) partition the set of poly-

2 Copyright ¹ 1997 by ASME

gons of an object by a uniform grid. In general, hierarchical
schemes outperform their non-hierarchical counterpart, if they
don’t have to be re-built dynamically.

(Gilbert et al., 1988) compute the distance between convex
polyhedra (or its spherical extension) with approximately linear
complexity. (Lin and Manocha, 1991) present an incremental
distance algorithm for convex polyhedra. Recently, (Ponamgi
et al., 1995) developed a hierarchy of convex bounding volumes.
However, the algorithms are quite complicated to implement. A
separating plane is used to compute the distance between convex
polyhedra by (Heckbert, 1994, I.8).

An approach which computes the exact time of collisionwas
given by (Canny, 1986), who use quaternions to represent orien-
tations and formulate the problem in 7-dim. configuration space.
However, this is neither relevant for VR systems nor can it be
computed in real-time. In this paper, we will not consider the
issue of finding the exact time of primal contact between two
polyhedra.

Octrees have been considered by (Yu et al., 1996). They
have presented a fast method for simultaneous traversal of axis-
aligned octrees. However, octrees are very time-consuming to
build, so they are not suitable for real-time collision detection in
dynamic environments.

THE BOXTREE ALGORITHM
Motivation for BoxTrees

Here is a very simple algorithm for arbitrary objects with
traditional speed-up improvements:

Check every edge of polyhedron A if it intersects any of the
polygons of polyhedron B, and vice versa. (It is not sufficient to
check only the edges of A against polygons of B. It is also not
sufficient to check vertices for being interior.)

Of course, the algorithm above can be improved by some
pre-checks: in a pre-phase, we collect all polygons of B which
are in the bounding box of A. Then, edges of A are checked only
against those polygons of B which have passed this pre-check.
This “filtering” is done merely on the basis of bounding boxes,
so it is fast enough to improve overall performance. (The speed-
up gained by this phase is about a factor of 1 5.) Another very
simple pre-check is to test if the edges e of A are in the bounding
box of B. There is no need to do this in a pre-phase, since every
edge is considered exactly once.

In the following, this algorithm will be called the “simple”
algorithm. It is an O n2 algorithm in the worst-case.

Profilings have shown that most of the time of the simple
algorithm presented above is spent in the inner loop (which is
called the all pairs weakness). Within this inner loop, most of
the time is spent with the loop construct itself plus the bounding
box check!

The idea is to use a divide-&-conquer approach. It is in-
spired by BSP trees, k-d trees, and balanced bipartitions (known

B

B

A

B

A

f

r

r

f

A

A rf

ffA

Figure 1. ONLY FACES AND EDGES OF OVERLAPPING BOXES
HAVE TO BE CHECKED FOR INTERSECTION. FOR EXAMPLE,
EDGES OF A.L DON’T HAVE TO BE CHECKED WITH POLYGONS OF
B.L .

in the area of VLSI layout algorithms).

Outline of the algorithm
The simple algorithm as given abovewill be improved by the

following divide-&-conquer approach (see Figure 1): we divide
the bounding boxes of A and B into two parts, not necessarily of
equal size (we call them “left” and “right” sub-box); we partition
the set of edges of A into two sets depending whether they are
in the left or the right sub-box; in the same manner, we partition
the set of polygons of B. When checking edges of A and faces
of B for intersection, we first check whether bbox(A) intersects
bbox(B) (the non-aligned ones!); if they don’t, we’re finished. If
they do, we check all 4 pairs of sub-boxes of A and B, resp., for
intersection. Obviously, we need to check edges against poly-
gons only, if their boxes do intersect.

Of course, the sub-box pre-processing is done recursively,
which is why we will call the whole data structure a BoxTree.

Sometimes, it is more efficient if we split a box such that one
of the sub-boxes doesn’t contain any polygons at all (such a box
will be called “empty”). The check between an empty box and
another (non-empty) one is trivial. Of course, “chipping off” an
empty sub-box is not always possible, nor is it always sensible
(criteria will be derived below in).

BoxTrees will be constructed in object space, i.e., no trans-
formations are applied to the object. When objects are trans-

3 Copyright ¹ 1997 by ASME

Figure 2. THIS VISUALIZATION OF THE BOXTREE ALGORITHM
SHOWS, HOW MANY AND WHICH POLYGONS ARE ACTUALLY CON-
SIDERED FOR INTERSECTION. THE LEAVES OF THE BOXTREE ARE
DEPICTED GRAPHICALLY BY BOXES.

formed during a simulation, the boxes of their BoxTrees have to
be transformed as well. However, it turns out that we need to
transform only the root boxes. We do that by setting up the re-
cursive traversal appropriately. Then, no further transformations
(of sub-boxes) have to be done.

The intersection test of two boxes could be done by the
Liang-Barsky algorithm (Liang and Barsky, 1984). However, ex-
ploiting the very special geometry of boxes allows a much more
efficient intersection test for two boxes: we will clip all box-
edges parallel to each other at the same time. This will enable us
to re-use many results during one box/box-check, plus we can re-
use all of the arithmetical computations when descending down
one level in the BoxTree. Special features of boxes are: the faces
form three sets of two parallel faces each, the edges form three
sets of four parallel edges each, when a box is divided by a plane
perpendicular to an edge, all edges retain their entering/leaving
status.

Simultaneous recursive traversal of BoxTrees
Simultaneous recursive traversal of two BoxTrees consists

of two phases: an initialization phase and a traversal phase. By
“simultaneous” we mean that the two trees of both objects are
traversed synchronously.

The algorithm (see also Figure 2) has the following pseudo-
code outline:

y

z

p

q

b

x

b

B

right sub-box B.r

cB
x

left sub-box B.l

b

A

x

y
z

q’’

xh’-plane
xl’’-plane

Figure 3. SPLITTING BOX B PERPENDICULAR TO ITS X-EDGES
BOUNDS THE LINE INTERVALS OF EDGES OF A.

Simultaneous traversal of BoxTrees
a = box in A’s BoxTree, b = box in B’s BoxTree
a.l, a.r are left and right sub-boxes of a

traverse(a,b):
a, b don’t intersect return
a or b is empty return
b leaf

a leaf
elementary operation on BoxTree leaves
return

a not leaf
a.l,b intersect traverse(a.l,b)
a.r,b intersect traverse(a.r,b)

b not leaf
a leaf

a,b.l intersect traverse(a,b.l)
a,b.r intersect traverse(a,b.r)

a not leaf
a.l,b intersect

a.l,b.l intersect traverse(a.l,b.l)
a.l,b.r intersect traverse(a.l,b.r)

a.r,b intersect
a.r,b.l intersect traverse(a.r,b.l)
a.r,b.r intersect traverse(a.r,b.r)

For collision detection, the “elementary operation”, which oper-
ates on two leaves of the BoxTree, is the simple detection algo-
rithm. However, the simultaneous traversal of BoxTrees could
be used for other functions, too: the only part that would have to
be re-defined is the “elementary operation”, which provides the
“semantics” of the overall operation (see (Naylor et al., 1990) for
a similar point of view regarding BSP trees).

4 Copyright ¹ 1997 by ASME

x

y

z

A

q’’

left sub-box B.l

right sub-box B.r

B2 new y-edges

q

b by z

p

bx

Figure 4. SPLITTING BOX B PERPENDICULAR TO ITS X-EDGES
YIELDS 2 NEW Y-INTERVALS AND 2 NEW Z-INTERVALS. ALL OTHER
INTERVALS CAN BE RE-USED.

A single traversal step. We will not discuss the de-
tails of one step of a simultaneous traversal of two
BoxTrees due to limited space. Interested readers
can find a thorough description in (Zachmann, 1995)
and in ftp://ftp.igd.fhg.de/pub/doc/-
techreports/zach/BoxTree-appendix.ps.gz.
(Although the algorithm has been improved a lot, the mathemat-
ical details in (Zachmann, 1995) are still valid concerning one
traversal step.)

One step of the traversal algorithm corresponds conceptually
to splitting one box of a pair of boxes a b (see Figures 3, 4)
and calculating the overlap status of the two new pairs of boxes.
Suffice it to say here, that such a step can be performed with at
most 72 multiplications and 72 additions!

CONSTRUCTING THE BOXTREE
The BoxTrees being constructed here are inspired by k-d

trees and balanced bipartitions from VLSI layout algorithms.
We do not construct octrees because they are too inflexible.

In fact, octrees are just a special case of our data structure. Here,
we want to construct balanced trees for reasons which will be-
come clear below.

The following discussion will discuss the construction of
BoxTrees for a set of polygons. Everything carries over to edges
quite analogously.

The goal is to partition recursively the set of polygons in
such a way that the number of elementary (i.e., edge-polygon)
intersection tests with the set of polygons is minimized on av-
erage. In the following, we will derive some heuristics for an
optimal partitioning.

Whenever the collision detection algorithm steps down one
level in the BoxTree, and it discards one of the sub-boxes, we
want it to discard as many polygons as possible. This leads to a
space subdivision scheme which tries to balance the tree in terms

Figure 5. THIS SHOWS ALL THE EMPTY BOXES OF THE BOXTREE
FOR A TORUS. DURING INTERSECTION TESTS, THESE CAN BE RE-
JECTED TRIVIALLY. THE OBJECT’S COMPLEXITY IS RATHER LOW
(400 POLYGONS), SO ONLY 23% OF ITS BOUNDING BOX IS COV-
ERED BY EMPTY BOXES. WITH LARGER COMPLEXITIES 40%–60%
ARE COVERED, TYPICALLY.

of polygon counts.
In general, there will be always polygons which are con-

tained in both sub-boxes, though. During a collision check, we
have to deal with those (at least) twice. This leads to the heuristic
that a bisection of a box should cut as few polygons as possible.

We start with a given set of n polygons. Given a cut-plane
c perpendicular to the x-axis (w.l.o.g.), we denote the number
of polygons to the left, the right, and crossing c by nl , nr, and
nc, resp. According to the heuristic proposed above, we define a
penalty function for c by

p c nl nr γnc (1)

where γ is the factor by which a crossing polygon is worse than
an unbalanced one. (Note: in general, nl nr nc n.)

The basic step for building a BoxTree is to find the cutplane
c for a given set of polygons such that c realizes the global mini-
mum

min
min p cx cx x-axis cx xmin xmax
min p cy cy y-axis cy ymin ymax
min p cz cz z-axis cz zmin zmax

5 Copyright ¹ 1997 by ASME

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20000 40000 60000 80000 100000 120000

tim
e

(m
se

c)

#polygons

sphere
torus

tetra-flakes

will be
checked

won’t be checked

Figure 6. EXPERIMENTS INDICATE THAT BUILDING BOXTREES IS
IN O N AVERAGE RUNNING TIME. THE GRAPH SHOWS TIMINGS
FOR BUILDING THE BOXTREE FOR SPHERES AND HYPERBOLOIDS.
TIMING WAS DONE ON AN R4400/200MHZ.

Figure 7. IF CROSSING POLYGONS ARE STORED AT LEAVES OF
THE BOXTREE, TOO, THEY CAN BE DISCARDED DURING THE SI-
MULTANEOUS TRAVERSAL LIKE “NON-CROSSING” POLYGONS.

We use the simpler function p c nl nr , which is monotonic.
Thus we can find the minimum by interval bisection, and the
BoxTrees yielded by this function have been satisfactory.

After we have found a cut-plane, we divide the input array
of polygons into two; crossing polygons are copied into both (for
reasons which will be made clear below). Then we start the pro-
cess over again for the two new arrays.

As mentioned above, “empty” boxes are “good” (see Fig-
ure 5). By splitting off empty boxes during the tree construc-
tion, the non-empty boxes will approximate the boundary more
closely. However, an empty box won’t pay off if it is too small,
so we introduce an empty-box-threshold.

Before trying to find the cutplane c which realizes the bal-
anced cut, we try to find a cutplane e, such that one of the two
sub-boxes is empty, and which realizes the maximum empty sub-
box. If the quotient of the volume of that empty sub-box and the
volume of its father is greater than the empty-box-threshold, then
we use the cutplane e.

The box bisection recursion will stop when one of the fol-
lowing conditions holds:

– depth dmax.
– # polygons in the box currently considered for splitting
Min.

– nl λn or nr λn (it doesn’t make sense to split the box, if
one of the sub-boxes contains almost as many polygons as
the father; typ. λ 0 8).

x

crossing

right
left

c δc+δc-

Figure 8. FOR SPLITTING A SET OF POLYGONS BY A PLANE, GEO-
METRICAL ROBUSTNESS CAN BE ACHIEVED BY GIVING THE CUT-
PLANE A CERTAIN “THICKNESS”.

When the recursion stops, we attach the array of polygons to the
corresponding leaf of the BoxTree.

It should be evident now, why we did not choose octrees: sub-
octants of a cell of the octree are not balanced, in general. Also,
implementing a simultaneous traversal of octrees is much more
complicated.

It can be shown that under certain assumptions the complex-

6 Copyright ¹ 1997 by ASME

05001000150020002500300035004000
#polygons/object

1 3 5 7 9 11 13 15
depth of box-tree

10

100

1000

avg. time (ms)

1

10

100

1000

100 1000

tim
e

(m
s)

#polygons/object

optimal BoxTree
boxtree w/o empty boxes

n^2 algorithm

Figure 9. SEARCH FOR THE OPTIMAL DEPTH OF A BOXTREE. THIS
IS THE GRAPH FOR TWO SPHERES. TESTING TWO TORI OR TWO
TETRA-FLAKES YIELDED VERY SIMILAR RESULTS. EACH SAMPLE
IS AN AVERAGE OVER 10 500 FRAMES.

Figure 10. COMPARISON OF THE BOXTREE ALGORITHM WITH THE
SIMPLE ALGORITHM. SCENARIO: TWO TORI BOUNCING OFF EACH
OTHER IN A FAIRLY TIGHT CAGE. OTHER OBJECT TYPES (SPHERE
AND TETRA-FLAKE) YIELDED SIMILAR RESULTS WITH SLIGHTLY
DIFFERENT THRESHOLDS.

ity of computing a BoxTree is in O n logn , where n is the num-
ber of polygons. Experiments indicate an even better average
running time of O n (see Figure 6).

Crossing polygons. What should we do with crossing poly-
gons (polygons which are on both sides of the cut plane)? The
approach we have taken is to store polygons only at leaves. So,
crossing polygons will be put in both sub-boxes. This avoids
some disadvantages if we would store them at iner nodes. Of
course, polygons can be stored multiple times at leaves, this way.
However, this does not cause any memory problems: tests have
shown that a BoxTree contains by a factor of 1 2 1 6 more
pointers to edges/faces than there really are.

Geometrical robustness. This issue is of great importance, as
experiments have showed clearly. This is especially true for
polygonal objects which are computer-generated and expose a
high symmetry, like spheres, tori, extruded and revolved objects,
etc. These objects usually have very good cut-planes, but if the
splitting routine is not robust, the BoxTree will be not balanced
at all.

The problem is: when do we consider a polygon to be on
the left, the right, or on both sides of the cut-plane? Because
of numerical inconsistencies, many polygons might be classified
“crossing” even though they only touch the cut-plane (see Fig-
ure 8). The idea is simply to give the cut-plane a certain “thick-
ness” 2δ. Then, we’ll still consider a polygon left of a cut-plane

c, even if one of its edges is right of c, but left of c δ. All the
possible cases are depicted in Figure 8.

RESULTS
Timing

For timing tests we chose the following scenario: two ob-
jects move inside a “cage”. Initial positions, initial translational
and rotational velocities are chosen randomly at start-time. When
the two objects collide, they bounce off each other based on sim-
ple heuristics (e.g., by exchanging translational and/or rotational
velocities). The size of the cage is chosen so as to “simulate” a
dense environment, i.e., most of the time there are only “almost-
collisions”, which is the “bad” case for most algorithms. In gen-
eral, the cage size was chosen 1 5 2 time the radius of the
test-objects, so that collisions will happen fairly often (but large
enough so that the two objects will not “get stuck”). The test ob-
jects were regular ones, like spheres, tori, tetra-flakes, etc., and
real-world data (e.g., an alternator). Rendering was switched off,
of course. This scenario was chosen in order to exclude any side-
effects, e.g., by doing any bbox checks.

First, we determined optimal parameters for a BoxTree,
namely the maximum depth, the minimum number of poly-
gons/edges per box, and the threshold for an “empty-box” split.
To this end, we ran several tests with different objects and differ-
ent choices of those parameters. The problem is actually to find a
global optimum in 4-space for each polygon count and each ob-

7 Copyright ¹ 1997 by ASME

Figure 11. DURING AN INTERACTIVE FITTING SIMULATION IN A
VIRTUAL ENVIRONMENT, THE SYTEM HIGHLIGHTS ALL OBJECTS
COLLIDING WITH THE ALTERNATOR (DATA COURTESY AIT CON-
SORTIUM).

Figure 12. NEW PIPES CAN BE DESIGNED FROM BUILDING
BLOCKS. HERE THE USER ATTACHES A VALVE TO THE END OF
A NEW PIPE. WHEN THE VALVE TOUCHES THE PIPE AND IT HAS
NEARLY THE “CORRECT” POSITION, THE SYSTEMS SNAPS IT TO
THE PIPE. DURING POSITIONING, COLLISIONS BETWEEN VALVE
AND PIPE ARE HIGHLIGHTED BY RENDERING THE PIPE IN WIRE-
FRAME. (DATA COURTESY .)

ject type. This would require a lot of tests taking days or weeks
of CPU time! However, several timing experiments indicated
that one can indeed search for the optima of all three parame-
ters independently. Figure 9 shows the timing tests for finding
the optimal maximum depth (on an R4000/50MHz Indigo) when
the minimum number of polygons per box is 1. It turned out
that the optimal minimum number of polygons per box yields
about the same maximum depth. We also ran tests with the fixed
“optimal” maximum depth while varying the minimum number
of polygons; these tests suggested that said optimal maximum
depth, together with 1 being the minimum number of polygons
per box, is actually the best choice of those two parameters.

Similar tests were done to find the optimal threshold for
when to split off an empty box. They yielded similar results in
that there seems to be an optimal threshold which is independent
of the other parameters. Furthermore, the “near-optimal” range
seems to be fairly broad. We also checked experimentally that
empty boxes do actually give some speed-up (see Figure 10).

It also turned out (fortunately), that optimal boxtree param-

eters do not depend much on the type of the object. The tim-
ing tests described above have been conducted for spheres, tori,
cylinders, and “tetra-flakes” (a tetrahedron which has small tetra-
hedra placed recursively on its sides). They showed that the opti-
mal maximum tree depth, for example, varies by about 1 across
different object types.

The following table for the optimal maximum BoxTree
depth was obtained, which is used for generating near-optimal
BoxTrees:

#p’gons 100 300 700 1300 2000 3000
depth 4 5 6 7 8 9

Next, we compared the BoxTree algorithm (using optimal
parameters for the BoxTree construction) to the simple algorithm
as described in Section ; the result for two tori is shown in Fig-
ure 10. The same scenario as above was used. Each sample
is an average over 20 2000 frames. The tests were run on an
R4400/200MHz.

As expected, BoxTrees are much faster when object com-

8 Copyright ¹ 1997 by ASME

plexity is above a certain threshold, but slower for small objects.
As can be seen from the graph, a collision check of two fairly
close 1000-polygon-tori takes about 20 msec on average. The
threshold (for tori) is about 100 polygons, below which a simple
algorithm out-performs the sophisticated one.

Applications
The algorithms presented in this paper have been integrated

with our proprietary VR system “Virtual Design II” (Astheimer
et al., 1995). Several applications have been implemented with
it, mainly for automotive companies (Dai et al., 1996).

An early DMU prototype has been described by (Dai and
Reindl, 1986). This is one of the first attempts to simulate
(among other things) a complete service maintainance of a car’s
alternator by a digital mock-up: the user wearing a head-mounted
display and data-glove interacts with a scene of about 40,000
polygons representing the front of engine compartment, which is
rendered at about 20 frames/sec. He has to open the hood of the
car first. Then he has to accomplish the following steps in order:

1. remove the fan,
2. tilt the oil filter,
3. push the cooling hose to the side,
4. unscrew the fixing wheel of the V-belt,
5. grab the alternator and take it out.

Although this is still a rather simplified scenario of a real main-
tainance operation, the VR system has to provide quite a few
functionalities for object manipulation and object behavior. Each
step and each functionality including the car hood involves colli-
sion detection!

Variants of parts can be tried and fitted interactively in place
of the original ones. Figure 11 shows an example: all objects col-
liding with the new part will be highlighted on-line by switching
their rendering to wireframe.

Another example of collision detection for digital mock-ups
involves mostly pipes, here in the interior of a ship. It is an ex-
perimental application where a user can verify the design of all
kinds of pipes in a ship. Furthermore, he can modify the exist-
ing layout or even design new pipes (see Figure 12). New pipes
can be designed from building blocks such as straight segments,
curved segments, valves, T-segments, etc. The system aids the
designer by a snapping mechanism which attaches parts at each
other when they are positioned touching each other. This requires
fast and exact collision detection to achieve interactivity.

FUTURE WORK
The algorithm presented above offers many more possibili-

ties for further speed-up.
One could try a simultaneous traversal of axis-aligned

boxes. They can be computed on-the-fly from the ones on the

level above together with the information stored with each Box-
Tree node. Still, we would build the BoxTree as described in this
paper.

The algorithm seems to be particularly well suited for par-
allelization. Each recursion can be processed in parallel on up
to 4 processes (depending on how many box-pairs have to be
checked).

An incremental simultaneous traversal might save a lot of
box-box checks during tree traversal. Unfortunately, it is not yet
clear to us, how such an incremental algorithm could be imple-
mented efficiently.

CONCLUSION
An algorithm has been presented which allows real-time and

exact collision detection for complex arbitrary polyhedra. This
is achieved by a recursive divide-&-conquer approach, which is
generic and can be furnitured with other semantics as well very
easily (e.g., distance computations). The recursion step basically
consists of an intersection test of non-axis-aligned boxes, which
gains its efficiency by exploiting the special geometry of boxes
and by re-using all results from previous steps.

The associated data structure (the BoxTree) is a hierarchical,
non-uniform space decomposition, which can be pre-computed
quite efficiently at start-up time. An algorithm for that has been
presented and it has been tested thouroughly. Parameters have
been determined which yield a near-optimal object partitioning
with respect to fast simultaneous traversal.

The collision detection algorithm is very efficient: Two
1000-polygon-tori in close proximity, but not touching, can be
checked in 20 msec on average (on a R4400/200MHz).

Both the collision detection algorithm and the BoxTree con-
struction algorithm are quite easy to implement.

The algorithms presented have been integrated with our pro-
prietary VR software (Dai et al., 1996), which is being used for
virtual prototyping in German automotive industry. The effi-
ciency of the approach has been verified in several real-world
digital mock-up scenarios.

ACKNOWLEDGEMENTS
I would like to take the opportunity to thank Prof. Dr. h.c.

Dr.-Ing. J. L. Encarnação and Dr. Stefan Müller for the great
working environment, and Dr. Fan Dai for his valuable comments
and encouragement.

REFERENCES
Astheimer, P., , Dai, F., Felger, W., Göbel, M., Haase, H., Müller,

S., and Ziegler, R. (1995). Virtual Design II – an advanced VR system
for industrial applications. In Proc. Virtual Reality World ’95, pages
337–363.

9 Copyright ¹ 1997 by ASME

Bouma, W. and Vanecek, Jr., G. (1991). Collision detection and
analysis in a physical based simulation. In Eurographics Workshop on
Animation and Simulation, pages 191–203.

Canny, J. (1986). Collision detection for moving polyhedra. IEEE
Transactions an Pattern Analysis and Machine Intelligence, PAMI-
8(2):200–209.

Clifford A. Shaffer, G. M. H. (1992). A real-time robot arm colli-
sion avoidance system. IEEE Transactions on Robotics and Automation,
8(2).

Dai, F., Felger, W., Frühauf, T., Göbel, M., Reiners, D., and Zach-
mann, G. (1996). Virtual prototyping examples for automotive indus-
tries. In Proc. Virtual Reality World, Stuttgart.

Dai, F. and Reindl, P. (1986). Enabling digital mock-up with virtual
reality techniques - vision, concept, demonstrator. In ASME Design for
Manufacturing Conferences, Irvine, CA.

Dobkin, D. P. and Kirkpatrick, D. G. (1985). A linear algorithm for
determining the separation of convex polyhedra. J. Algorithms, 6:381–
392.

Erdmann, M. and Lozano-Pérez, T. (1987). On multiple moving
objects. Algorithmica, 2:477–521.

García-Alonso, A., Serrano, N., and Flaquer, J. (1994). Solving
the collision detection problem. IEEE Computer Graphics and Applica-
tions, pages 36–43.

Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988). A
fast procedure for computing the distance between complex objects in
three-dimensional space. IEEE Journal of Robotics and Automation,
4(2):193–203.

Heckbert, P. S., editor (1994). Graphics Gems IV. Academic Press,
Inc., Cambridge, MA.

Hubbard, P. M. (1995). Real-time collision detection and time-
critical computing. In SIVE 95, The First Worjshop on Simulation and
Interaction in Virtual Environments, number 1, pages 92–96, Iowa City,
Iowa. University of Iowa, informal proceedings.

Liang, Y.-D. and Barsky, B. A. (1984). A new concept and method
for line clipping. ACM Trans. Graphics (USA), 3:1–22.

Lin, M. C. and Manocha, D. (1991(?)). Efficient Contact De-
termination Between Geometric Models. PhD dissertation, Univer-
sity of California, University of North Carolina Chapel Hill, URL:
ftp://ftp.cs.unc.edu/pub/techreports/94-024.ps.Z.

Magnenat-Thalmann, N. and Thalmann, D., editors (1994). Real-
ism in Virtual Reality, pages 189–210. Wiley & Sons.

Mehlhorn, K. and Simon, K. (1985). Intersecting two polyhedra
one of which is convex. In Budach, L., editor, Proc. Found. Comput.
Theory, volume 199 of Lecture Notes in Computer Science, pages 534–
542. Springer-Verlag.

Moore, M. and Wilhelms, J. (1988). Collision detection and re-
sponse for computer animation. In Dill, J., editor, Computer Graphics
(SIGGRAPH ’88 Proceedings), volume 22, pages 289–298.

Muller, D. E. and Preparata, F. P. (1978). Finding the intersection
of two convex polyhedra. Theoret. Comput. Sci., 7:217–236.

Navazo, I., Ayala, D., and Brunet, P. (1986). A geometric mod-
eler based on the exact octree representation of polyhedra. Computer
Graphics Forum, 5(2):91–104.

Naylor, B., Amanatides, J., and Thibault, W. (1990). Merging BSP
trees yields polyhedral set operations. In Baskett, F., editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 115–124.

Ponamgi, M. K., Cohen, J. D., Lin, M. C., andManocha, D. (1995).
Incremental algorithms for colision detection between polyhedral mod-
els. In SIVE 95, The First Worjshop on Simulation and Interaction in
Virtual Environments, number 1, pages 84–91, Iowa City, Iowa. Univer-
sity of Iowa, informal proceedings.

Reichling, M. (1988). On the detection of a common intersection
of k convex polyhedra. In Computational Geometry and its Applica-
tions, volume 333 of Lecture Notes in Computer Science, pages 180–
186. Springer-Verlag.

Thibault, W. C. and Naylor, B. F. (1987). Set operations on poly-
hedra using binary space partitioning trees. In Stone, M. C., editor,
Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages
153–162.

Yu, Y., Wu, M., and Zhou, J. (1996). An octre algorithm for dy-
namic interference detection using space partitioning. In Proc. of The
1996 ASMEDesing Engineering Technical Conference and Computers
in Engineering Conference, pages 96–DECT/DAC–1046, Irvine, CA.

Zachmann, G. (1995). The BoxTree: Enabling real-time and ex-
act collision detection of arbitrary polyhedra. In Informal Proc. First
Workshop on Simulation and Interaction in Virtual Environments, SIVE
95, University of Iowa, Iowa City. The OX Association for Computing
Machinery.

10 Copyright ¹ 1997 by ASME

