
Silhouette Area Based Similarity Measure for
Template Matching in Constant Time

Daniel Mohr and Gabriel Zachmann

Clausthal University
{dmoh,zach}@tu-clausthal.de

Abstract. In this paper, we present a novel, fast, resolution-independent
silhouette area-based matching approach. We approximate the silhouette
area by a small set of axis-aligned rectangles. This yields a very memory
efficient representation of templates. In addition, utilizing the integral
image, we can thus compare a silhouette with an input image at an
arbitrary position in constant time.
Furthermore, we present a new method to build a template hierarchy op-
timized for our rectangular representation of template silhouettes. With
the template hierarchy, the complexity of our matching method for n
templates is O(logn). For example, we can match a hierarchy consist-
ing of 1000 templates in 1.5ms. Overall, our contribution constitutes an
important piece in the initialization stage of any tracker of (articulated)
objects.

Key words: pose estimation, tracking, template matching, rectangle
packing problem

1 Introduction

Most template-based object tracking systems compare a segmented input image
with a set of templates at numerous positions in the input image, especially
at initialization. The main focus of this paper is to present a novel, very fast
algorithm for this stage of a complete tracking system. In a complete tracking
system, this initial match would then be used by the next stage to estimate
position, orientation and pose.

Usually, when a model of an articulated object is available, there is a large
number of templates that must be compared with the input image. Since the
template matching stage does very little besides the comparisons, it is crucial
that each comparison can be performed extremely fast.

In this paper, we propose a novel method for very fast approximate area sil-
houette comparison between model templates and the segmented input image.
For one template comparison, Stenger el al. [1] achieved a computation time
proportional to the contour length of the template silhouette. We propose a
new method, which reduces the computation time to be constant in the contour
length and image resolution. To achieve this, we first approximate all template
silhouettes by axis-aligned rectangles, which is done in a preprocessing step. In

2 D. Mohr, G. Zachmann

the online phase, we compute the integral image [2, 3] of the segmented image.
With this, the joint probability of a rectangle to match to an image region can
be computed by four lookups in the integral image. Moreover, we present an al-
gorithm to build a template hierarchy that can compare a large set of templates
in sublinear time. The main contributions are:
An algorithm that approximates arbitrary shapes by a minimal set of axis-
aligned rectangles. This results in a resolution-independent, very memory ef-
ficient silhouette area representation.
An algorithm to compare an object silhouette in O(1). In contrast the algorithm
proposed by [1] needs O(contour length).
We propose an algorithm to cluster templates hierarchically guided by their mu-
tually overlapping areas. Our method builds on the recently developed batch
neural gas clustering algorithm, which yields better results than more classi-
cal algorithms. This hierarchy further reduces the matching complexity for n
templates from O(n) to O(log n).

Artificial hand
template
generator

Template
Silhouette Images

Sets of foreground
rectangles

Sets of back-
ground rectangles

Input Image

Log foreground
likelihood

Log background
likelihood

Joint
probabilities

P
re

p
ro

ce
ss

in
g

O
n

lin
e

co
m

p
u

ta
ti

o
n

Matching
(Sec 3.2)

Approximation
by rectangles

(Sec. 3.1)

Color likelihood
image

Fig. 1. Overview of our approach using rectangle sets to approximate a silhouette.
This speeds up the matching by a factor 5–30 compared to the approach proposed by
Stenger et al. [1].

Our approach only requires that binary silhouettes of the model in an arbi-
trary pose can be generated and that the input image can be segmented. The
segmentation result does not necessarily need to be binarized. The approach can
handle scalar segmentations as well.

It should be obvious that our proposed methods are suitable for any kind
of template based matching of silhouettes. For sake of clarity, though, we will
describe our novel methods in the following by the example of the human hand,
since human hand tracking is our long-term target application. This includes
the full 26 DOFs of the hand, not only a few poses or only the 2D position. To
achieve this challenging task, we mainly use two different features for matching:
edge gradients and skin color. In this paper, we focus on the skin color feature.
We use a skin segmentation algorithm that computes for each image pixel the
probability to represent skin or background, resp. We generate our templates by

Similarity Measure for Template Matching 3

an artificial 3D hand model. This model can be rendered in any desired state,
and it can be easily projected onto 2D and binarized to get the hand silhouette.
Given an input image, the goal then is to find the best matching hand silhouette.

We use the joint probability as proposed by Stenger et al. [1] to compare
the silhouettes with the segmentation result. A simple area overlap, of course,
could be used, too. The only difference is that the sum instead of the product
of probabilities would have be computed. For details, see Sec. 3.

2 Related Work

A lot of object tracking approaches based on silhouette comparison have been
proposed. The approaches can be divided into two classes. The first class needs
a binary silhouette of both, the model and the query image. The second class
compare binary model silhouette area with the likelihood map of the query
image.

A simple method belonging to the first class is used in [4, 5]. The difference
between the model silhouette and segmented foreground area in the query im-
age is computed. The exponential of the negative squared difference is used as
silhouette matching probability. A slightly different measure is used by Kato et
al. [6]. First, they define the model silhouette area AM , the segmented area AI

and the intersecting area AO = AI∩AM . The differences AI−AO, AM−AO and
AI−AM are integrated in the same way, as described above, into the overall mea-
sure. In [7], the non-overlapping area of the model and the segmented silhouettes
are integrated into classical optimization methods, e.g. Levenberg-Marquardt or
downhill simplex. Nirei et al. [8] first compute the distance transform of both the
input and model silhouette. Regarding the distance transformed images as vec-
tors, they compute the normalized scalar product of these vectors. Additionally,
the model is divided into meaningful parts. Next, for each part, the area overlap
between the part and the segmented input image is computed. Then, a weighted
sum of the quotient between this overlap and the area of the corresponding
model part is computed. The final similarity is the sum of the scalar product
and the weighted sum. In [9, 10] a compact description of the hand model is
generated. Vectors from the gravity center to sample points on the silhouette
boundary, normalized by the square root of the silhouette area, are used as hand
representation. During tracking, the same transformations are performed to the
binary input image and the vector is compared to the database. A completely
different approach is proposed by Zhou and Huang [11]. Although they extract
the silhouette from the input image, they use only local features extracted from
the silhouette boundary. Their features are inspired by the SIFT descriptor [12].
Each silhouette is described by a set of feature points. The chamfer distance
between the feature points is used as similarity measure.

All the aforementioned approaches have the same drawback: to ensure that
the algorithms work, a binary segmentation of the input image of high quality
is necessary. The thresholds, needed for the binarization, are often not easy to
determine.

4 D. Mohr, G. Zachmann

To our knowledge, there are much less approaches working directly on the
color likelihood map of a segmentation. In [13] the skin-color likelihood is used.
For further matching, new features, called likelihood edges, are generated by
applying an edge operator to the likelihood ratio image. But, in many cases, this
leads to a very noisy edge image. In [1, 14, 15], the skin-color likelihood map is
directly compared with hand silhouettes. The product of all skin probabilities
at the silhouette foreground is multiplied with the product of all background
probabilities in the template background. Stenger et al. [14] proposed a method
for the efficient computation of this joint probability. The row-wise prefix sum in
the log-likelihood image is computed. The original product along all pixels in a
row reduces to three lookups in the prefix sum. Thus, the complexity to compute
the joint probability is linear in the number of pixels along the template border.

Nevertheless, the above mentioned approach has some disadvantages. First of
all, the template representation is resolution dependent. Typically, the distance
of the object from the camera is not constant, and thus different sizes of the
templates need to be considered. Consequently, for each scale, an extra set of
the templates has to be kept in memory. Also, the higher the resolution of the
images, the higher is the matching cost.

Our approach does not have all these disadvantages.

3 Silhouette Representation

The key issue of our fast matching approach is the representation of the template
silhouettes. Figure 1 shows an overview of our approach.

To avoid the issues mentioned in the previous section, we propose a novel
resolution-independent representation of template silhouettes. With such a rep-
resentation, one can perform silhouette matching at arbitrary resolutions in con-
stant time with respect to the template size. We propose to approximate a sil-
houette by a set of axis-aligned mutually disjoint rectangles. In the remainder
of this paper, we denote the integral image of a gray scale image I by II:

II(x, y) =
∑

0≤i≤x
0≤j≤y

I(i, j) (1)

Let R be an axis-aligned rectangle with upper left corner u and lower right
corner v, both inside I. The sum of the area R of all pixels in I is given by∑

R

I(i, j) = II(vx, vy) + II(ux − 1,uy − 1)− II(vx,uy − 1)− I(ux − 1, vy) (2)

Let TS with TS(x, y) ∈ {0, 1} be a binary image representing a template T .
Let S and S̄ denote the set of foreground and background pixels in TS , resp.
We compute a set of n mutually non-overlapping rectangles R = {Ri}i=1···n
that cover S. The number of rectangles n depends on the silhouette shape and
thus varies slightly from silhouette to silhouette. Figure 2 shows some example
silhouettes with their approximating rectangles.

Similarity Measure for Template Matching 5

Fig. 2. Example silhouettes approximated by a set of rectangles (at 32×32 squares).
The left column shows rectangles approximating the foreground, the middle one the
rectangles approximating the background. The right one shows the template hierarchy
generated by our approach in Sec. 3.3. For the sake of clarity, only the rectangles
approximating the foreground are shown.

3.1 Rectangle Covering Computation

In the following, we denote a set of rectangles approximating S with RS . To
obtain a good approximation, one has to minimize the non-overlapping area A
of S and RS ,

A = min
RS

∣∣∣(S ∪ ⋃
Ri∈RS

Ri) \ (S ∩
⋃

Ri∈RS

Ri)
∣∣∣ (3)

Obviously, there is a trade-off between A and RS . The smaller the number of
rectangles, the faster the matching is, but also the more inaccurate.

A lot of work solving similar problems exists. One has to differentiate between
rectangle covering [16–18] and partitioning [19, 20] problems. Covering allows an
arbitrary overlap between the rectangles in RS , partitioning does not. Most cov-
ering and partitioning algorithms compute solutions under the constraint that
the rectangles lie completely inside the polygon to be covered. Our problem is
similar to standard partitioning in that we do not allow overlaps between the
rectangles RS , but it differs from partitioning because we do not need rectan-
gles to lie completely in the silhouette S. In fact, we even encourage a solution
where some rectangles lie slightly outside. The reason is that S never perfectly
matches the observed real hand. Therefore, we can allow A > 0, which usually
leads to solutions with much smaller numbers of rectangles RS . In the follow-
ing, we present a simple algorithm to obtain a solution with A < δ, where δ is
application-dependent.

First, the model (here, the human hand) is rendered at a given state and
rasterized at a high resolution. We obtain the resulting template T and, after

6 D. Mohr, G. Zachmann

thresholding, the binary image TS . For simplification, we normalize the image
dimensions to be in [0, 1]. Next, we subdivide the image into r×s uniform boxes.
The rectangles to cover S are oriented at the raster defined by these boxes.
Basically, we compute the covering of an r×s image, which we denote by Srs.

In the first step of our dynamic programming approach, we perform the
following initialization: we define a benefit value gi = g(Ri) for each feasible
rectangle Ri in Srs, which indicates the benefit of a rectangle when included in
the final set of covering rectangles RS . This value is computed as:

g(Ri) = −θ +
∑

(x,y)∈Ri

(TS(x, y)− τ) (4)

The parameter τ ∈ [0, 1] controls the penalty for covering a background box by
a rectangle and the gain for covering a foreground box. For a value close to 0,
the algorithm covers more background boxes in order to cover more foreground
boxes as well. If τ is close to 1, the rectangles tend to cover no background
rectangles and, thus, are nearly completely inside the silhouette. For now, we
assume that τ = 0.5. In Sections 3.2 and 3.3 we will need other values for τ .

The parameter θ adds a penalty to each rectangle Ri in the covering set R.
The parameter controls the aforementioned trade-off between the covering error
A and the number of rectangles in R. Because θ is a local control parameter, we
cannot directly control the global error A. Instead, we set θ to an initial value,
compute the covering, evaluate the error A and, if it is to high, we decrease θ
and run the algorithm again.

We compute the optimal covering as follows. Let R∗ denote the optimal
covering for silhouette S. Let Ru

v = R
ux,uy
vx,vy denote a rectangle with upper left

corner u and lower right corner v. Assume Ru
v or a subset is part of the optimal

covering, and let D(Ru
v) denote the ”benefit” value of this sub-covering. Then

either Ru
v ∈ R∗ or Ru

v contains a number of non-overlapping rectangles that are
in R∗. Thus, the covering problem exhibits the optimal substructure property
and dynamic programming can be applied. Therefore, we can compute

D(Ru
v) = max

{
0, g(Ru

v), max
ux<x<vx

{
D(Rux,uy

x,vy
) +D(Rx,uy

vx,vy
)
}
,

max
vx<y<vy

{
D(Rux,uy

vx,y) +D(Rux,y
vx,vy

)
} } (5)

Obviously, the optimal solution is obtained through D(R0,0
r,s) and the base case

is D(Rx,y
x+1,y+1) = g(Rx,y

x+1,y+1).
In our implementation, we try a number of different solutions r×s = 2 ×

2, · · · , 32×32. As soon as the covering accuracy criterion is fulfilled, we terminate
the computation.

3.2 Matching Silhouettes

In the previous section, we have developed an algorithm to compute for each
template silhouette a resolution-independent compact representation consisting

Similarity Measure for Template Matching 7

of axis-aligned rectangles. In the following, this representation will be used for
fast silhouette area based template matching.

Our goal is to compare a silhouette S with an input image I at a given
position p using the joint probability (see Stenger et al. [14]). The first step is
the foreground/background segmentation. Due to its higher robustness compared
to binary segmentation, we want to use the color likelihood. In the following, the
color likelihood image of an input image I is denoted with L̃ with L̃(x, y) ∈ [0, 1].
To convert the product in the joint probability into sums, we take the pixel-wise
logarithm: L(x, y) = log L̃(x, y).

Utilizing Eq. 2, we can compute the joint probability at position p by:

PS(p) =
∑

Ri∈RS

(IL(

(
vi
x

vi
y

)
+p)+IL(

(
ui
x

ui
y

)
+p)−IL(

(
vi
x

ui
y

)
+p)−IL(

(
ui
x

vi
y

)
+p)) (6)

The rectangle set RS approximates only the silhouette foreground. To get the
appropriate match probability for a template, one has to take into account the
background distribution, too.

Fortunately, the set of background pixels S̄ of a silhouette image, obviously,
can be approximated by a set of rectangles with the same algorithm described
in the last section. Having computed RS̄ , we can compute PS̄ .

PS and PS̄ are resolution-dependent and need to be normalized. In the fol-
lowing, we explain the normalization for PS . PS̄ can be normalized analogously.
A naive approach is to normalize PS . However, this fails in cases where the
template is partially outside the input image. Therefore, we propose a “smart”
normalization as follows.

For each pixel not covered by any rectangle, including all pixels of the tem-
plate image that are outside the image borders, we assume a likelihood value of
0.5. The value is motivated by the assumption that at a pixel not yet observed,
the probability to be foreground or background is equal. Lets denote the number
of pixels of rectangle Ri inside the input image at position p in an input image
by Np

Ri
. Then we normalize PS as follows:

PN
S (p) =

1

|S|
(PS(p)·log(0.5)(|S| −Np

R)) , with Np
R =

∑
Ri∈RS

Np
Ri

(7)

To ensure, that |S| − Np
R is positive, we set the parameter τ from Eq. 4 to

0.95. The final joint probability is

PN = exp(
1

2
(PN

S + PN
S̄)) (8)

where PN
S̄

is the normalized background joint probability. Treating the joint
probabilities for the foreground and background equally takes care of the fact
that different silhouette shapes have different area relative to their bounding box
used in the template: in a silhouette with fewer foreground pixels, the matching
of the background pixels should not have a bigger weight then the foreground
pixels and vice versa.

8 D. Mohr, G. Zachmann

Using the same template at different sizes, i.e. when the distance from an
object to the camera changes, is straight forward: simply scale the rectangles ac-
cordingly. No additional representation has to be stored. Comparability between
the same template at different sizes is ensured by the normalization.

3.3 The Template Hierarchy

In the previous section, we have described a novel method to match an arbitrary
template T to an input image I. In a typical tracking application, especially
when dealing with articulated objects, a huge number of templates must be
matched. A suitable approach to reduce the complexity from O(#templates)
to O(log #templates) is to use a template hierarchy. However, building a well
working one is still a challenging task.

We propose an approach to build a hierarchy that naturally fits with our rep-
resentation of the silhouettes by rectangles. In addition, it even further reduces
the computational effort per template matching. We build the tree structure by
utilizing a hierarchical clustering algorithm. Vectors, describing the similarity
between templates, are computed and used as input for the clustering algorithm
[21]. The output are k disjoint clusters, where k defines the number of chil-
dren per tree node. At each node in the template tree, rectangles covering the
intersection of all template silhouette of all children are pre-stored.

For matching n templates, we traverse the hierarchy. The rectangles from
the root to one leaf constitutes a covering of that template, which is thus being
matched incrementally during traversal. At the same time, we prune large parts
of the hierarchy (i.e. large numbers of templates), because we descend only into
those subtrees with largest probability. Figure 2 illustrates the basic idea of
our template hierarchy. Due to space limitations, we can not provide a detailed
description of the template tree generation and traversal.

HRBM
RBM
LBM

Open hand (1)

Image Resolution / pixel2

C
om

p
u

ta
ti

on
T

im
e

(m
se

c)

1024768512384256

14
12
10
8
6
4
2
0

HRBM
RBM
LBM

Pointing hand (2)

Image Resolution / pixel2
1024768512384256

14
12
10
8
6
4
2
0

HRBM
RBM
LBM

Moving fingers (3)

Image Resolution / pixel2
1024768512384256

14
12
10
8
6
4
2
0

Fig. 3. Each plot shows the average computation time for all three approaches: LBM
[1], RBM (our approach), HRBM (our approach incl. hierarchy). Clearly, our ap-
proaches are significantly faster and, even more important, resolution independent.

Similarity Measure for Template Matching 9

4 Results

For all our experiments, we have chosen to set the silhouette image discretization
to r= s = 32 boxes. The parameters in Eq. 4 were set initially to τ = 0.95 and
θ= (1−τ) ∗ 10−4. In order to achieve a small enough global error A < δ, θ was
halved successively. In our experience, 5 iterations were sufficient.

4.1 Rectangle Approximation

First, we evaluated the quality of our approach approximating silhouettes by
axis-aligned rectangles. The two important criteria are the area of the covered
silhouette and the number of rectangles needed. Let us denote the benefit value
for the perfect covering (i.e. all foreground and no background pixels are covered)
by DP and its solution by RP . For an accuracy measure we use:

Q =
D(R0,0

r,s) + θ|R∗|
DP + θ|RP |

(9)

In our experiments, where we have tried to cover a representative set of
postures and orientations, we have observed that on average, we need about
20 rectangles to obtain a covering accuracy of Q = 0.7. In practice, we have
observed that this value is appropriate for the similarity measure. Covering only
a part of the silhouette can even increase the matching quality because we obtain
a higher tolerance to slightly varying shapes in the input image.

4.2 Matching Quality

We compare our approach with a state-of-the-art approach proposed by Stenger
et al. [1], because our approach was inspired by theirs and the application (hand
tracking) is the same.

In the following, we will denote the algorithm from [1] as line-based match-
ing (LBM), ours as rectangle-based matching (RBM), and ours including the
hierarchy with hierarchical matching (HRBM). It is not quite fair to compare
a hierarchical approach to non-hierarchical ones. The reason for this is that,
during the traversal, the decision which child nodes are visited is based only on
the information of the children itself, not on the whole subtree. Thus, there is
no guarantee that the subtree containing the best matching template is visited
at all. Nevertheless, mostly HRBM provides a result very similar to the best
matching template and, therefore, we add the results of the hierarchical match
to our plots to analyze the potential of the hierarchy.

In the following, we will evaluate the difference between the methods with
regard to resolution-independence, computation time, and accuracy. We gener-
ated templates with an artificial 3D hand model. We used the templates also as
input images. There are two reasons to use such synthetic input datasets. First,
we have the ground truth and second, we can eliminate negative influences like

10 D. Mohr, G. Zachmann

differences between hand model and real hand, image noise, bad illumination,
and so on.

We generated three datasets for evaluation. Dataset 1, consisting of 1536
templates, is an open hand at different rotation angles. Dataset 2 is a pointing
hand rendered at the same rotation angles as dataset 1. In dataset 3, consisting
of 1080 templates, we used an open hand with moving fingers. Additionally, for
each position of the fingers, we rendered the model at different rotations.

First, we examined the dependence between the resolution and computation
time. We used input images at 5 different resolutions. We averaged the time to
compute the joint probability for all frames at 49 positions. The result is shown
in Figure 3. Clearly, LBM’s computation time depends linearly on the resolution,
while our approaches exhibit constant time.

Second, we compared the matching quality of the three approaches. We ex-
pect LBM to work best on the artificial datasets because, for each template,
there is an exactly matching input image. Supposing the LBM templates are
available at the same resolution than the hand found in the input image, there
is a pixelwise identically template for each input image. For evaluation we used
an input image resolution of 256×256 and compared the template at 5 different
scalings (from 70×70 up to 200×200). The scalings are chosen such that one
of the five scales matches to the hand in the input image with an accuracy of
±1 pixel. All three approaches always found the correct location of the hand in
the input image. Thus, for evaluation, we recorded at this position the 10 best
matching templates (rank 0–9). Please see Fig 4 for the results. In the open-hand
and pointing-hand datasets, LBM and RBM work nearly equally well. Appar-
ently, all approaches have some difficulties to find the correct template in the
moving-fingers dataset. The reason for that is that, in this set, there are many
templates with nearly identical silhouette: they differ only by one finger flexed
by a few degrees. Due to the difference in scale by one pixel, even the LBM can
fail to find the best matching template.

HRBM
RBM
LBM

Open hand (1)

Rank of correct template

N
u

m
b

er
of

F
ra

m
es

>99876543210

1600
1400
1200
1000
800
600
400
200

0

HRBM
RBM
LBM

Pointing hand (2)

Rank of correct template

>99876543210

1600
1400
1200
1000
800
600
400
200

0

HRBM
RBM
LBM

Moving fingers (3)

Rank of correct template

>99876543210

800
700
600
500
400
300
200
100

0

Fig. 4. The histograms show the matching accuracy for all three approaches: LBM [1],
RBM (our approach) and HRBM (our approach incl. hierarchy). Rank k means that
the correct template is found to be the k−th best match. Lower ranks are better.

Similarity Measure for Template Matching 11

5 Conclusions

In this paper, we have developed a silhouette area based similarity measure for
template matching with constant time complexity. We get a significant increase
in template matching speed and reduction of storage space by accepting a slight
decrease of matching accuracy. We have also proposed a novel method to com-
pute such a rectangle covering based on dynamic programming. Additionally,
we have presented a template hierarchy, which exploits our representation of
the silhouettes. This hierarchy reduces the computational complexity for a set
of templates from linear to logarithmic time. Please remember that our con-
tributions constitute just one of the many pieces of a complete hand tracking
system.

Overall, we need about 0.7 µs on average to compare one template silhouette
to one position in an input image at an arbitrary resolution. This is about a factor
25 faster than the state-of-the-art approach from [1] at a resolution of 1024×1024.
Furthermore, the template representation is very memory efficient. For example,
for 1500 templates, the complete hierarchy consumes less then 1 MByte storage
space.

In the future, we plan to implement our approach in a massively parallel
programming paradigm. Furthermore, we will extend our hierarchical approach
to a random forest approach, which we expect to improve the template matching
quality significantly. To get different classifiers at each node, one can choose a
random subset instead of all covering templates to cluster a tree node for further
subdivision. We also plan to build a hierarchy for our templates based on edge
features and combine it with the one proposed in this paper.

References

1. Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R.: Model-based hand track-
ing using a hierarchical bayesian filter. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence. (2006)

2. Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH: Proceed-
ings of the 11th annual conference on Computer graphics and interactive tech-
niques. (1984)

3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: IEEE Conference on Computer Vision and Pattern Recognition. (2001)

4. Lin, J.Y., Wu, Y., Huang, T.S.: 3d model-based hand tracking using stochastic
direct search method. In: International Conference on Automatic Face and Gesture
Recognition. (2004)

5. Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: Interna-
tional Conference on Computer Vision. (2001)

6. Kato, M., Chen, Y.W., Xu, G.: Articulated hand tracking by pca-ica approach.
In: International Conference on Automatic Face and Gesture Recognition. (2006)

7. Ouhaddi, H., Horain, P.: 3d hand gesture tracking by model registration. In:
Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging.
(1999)

12 D. Mohr, G. Zachmann

8. Nirei, K., Saito, H., Mochimaru, M., Ozawa, S.: Human hand tracking from binoc-
ular image sequences. In: 22th International Conference on Industrial Electronics,
Control, and Instrumentation. (1996)

9. Amai, A., Shimada, N., Shirai, Y.: 3-d hand posture recognition by training con-
tour variation. In: IEEE Conference on Automatic Face and Gesture Recognition.
(2004)

10. Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-d hand posture estimation based
on 2-d appearance retrieval using monocular camera. In: IEEE International Con-
ference on Computer Vision. (2001)

11. Zhou, H., Huang, T.: Okapi-chamfer matching for articulated object recognition.
In: IEEE International Conference on Computer Vision. (2005)

12. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE In-
ternational Conference on Computer Vision. (1999)

13. Zhou, H., Huang, T.: Tracking articulated hand motion with eigen dynamics anal-
ysis. In: IEEE International Conference on Computer Vision. (2003)

14. Stenger, B.D.R.: Model-based hand tracking using a hierarchical bayesian filter.
In: Dissertation submitted to the University of Cambridge. (2004)

15. Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Visual hand tracking
using nonparametric belief propagation. In: IEEE CVPR Workshop on Generative
Model Based Vision. (2004)

16. Kumar, V.A., Ramesh, H.: Covering rectilinear polygons with axis-parallel rect-
angles. In: Annual ACM Symposium on Theory of Computing. (1999)

17. Wu, S., Sahni, S.: Covering rectilinear polygons by rectangles. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems. (1990)

18. Heinrich-Litan, L., Lübecke, M.E.: Rectangle covers revisited computationally. In:
ACM Journal of Experimental Algorithmics, Vol. 11. (2006)

19. Liou, W., Tan, J.J.M., Lee, R.C.T.: Minimum rectangular partition problem for
simple rectilinear polygons. In: IEEE Transactions on Computer-Aided Design.
(1990)

20. O’Rourke, J., Tewari, G.: Partitioning orthogonal polygons into fat rectangles
in polynomial time. In: In Proc. 13th Canadian Conference on Computational
Geometry. (2001)

21. Cottrell, M., Hammer, B., Hasenfuß, A., Villmann, T.: Batch neural gas. In: 5th
Workshop On Self-Organizing Maps. (2005)

