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Abstract—Small bodies (e.g. asteroids and moons) are one of the
most important targets for physical exploration of space. For
space missions, it is a central aspect to test the guidance, naviga-
tion, and control algorithms. This is typically ensured through
physically-based simulations of the space mission in a virtual
testbed, because of its time and cost-efficiency. Information
about the gravitational field is crucial for the orbit and especially
for planning a landing maneuver. Most small bodies have an
irregular shape, which contributes to a complex gravitational
field.

In this study, we present and compare three different methods
to model the gravitational field of small bodies and apply them
to three test cases that we describe in detail.

Our first method is based on the polyhedral method that pro-
vides a closed-form analytical solution of the gravity field for
(assumed) homogeneous density. The idea behind the second
method is to represent the small body’s mass by a polydisperse
sphere packing. This allows us an easy and efficient computation
through parallelization on the GPU (Graphics Processing Unit).
The third method models the internal mass distribution of the
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body as a set of solid elements in spherical coordinates. The
body is divided into longitudes and latitudes and the radius is
divided into subsections. The used size of the volume elements is
chosen to ensure high accuracy in representing the shape of the
body. All three methods are also applicable on the surface of the
body, making it interesting in the context of surface gravimetry.

We evaluate the three methods using two ideal shapes (sphere
and cube) and one real shape model (Martian moon Phobos).
We compare the gravitational acceleration at their surface and
measure the relative error of the models concerning the analyt-
ical solutions. We also look at the computational cost of each
method. Our proposed methods indicate that each of them is
suitable for modeling asteroids with different characteristics.
We provide reliable gravitation data for purposes such as space-
craft orbit analysis and evaluation of the small body’s surface
domain.
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1. INTRODUCTION
In the last years, several robotic spacecraft have visited small
celestial bodies, i.e. asteroids, and comets. For example, the
Japanese Hayabusa mission touched down on the surface of
the near-Earth object Itokawa in November 2005 to collect
material from the surface [1]. The follow-up Hayabusa-
2 mission, launched in 2014, arrived at its target in June
2018 and deployed two rovers and a small lander onto the
surface of asteroid Ryugu. After the spacecraft successfully
fired an impactor into the asteroid in February 2019 to create
an artificial crater a sample was collected from beneath the
surface of the asteroid [2]. The spacecraft is now on its way
to the small asteroid 1998 KY26 during the extended mission.
The comet 67P/Churyumov-Gerasimenko was orbited by the
European Rosetta spacecraft from August 2014 until the
end of September 2016 including the landing of Rosetta’s
Philae lander in November 2014. The mission ended with
the landing of the Rosetta spacecraft on the comet on 30th
September 2016. The spacecraft of the still-active mission
OSIRIS-REx traveled to the near-Earth asteroid Bennu and
collected a sample of the material from the surface. The
sample will return to Earth in 2023. The planetary defense
mission Hera1, which is currently under development at the
European Space Agency (ESA), will be launching in October
2024. The spacecraft will visit the 65803 Didymos binary
asteroid and will measure among other scientific objectives
the outcome of NASA’s DART mission kinetic impactor test.

During all of the above-mentioned missions, close-proximity
operations have been or will be carried out. The conventional
way to model the gravitational attraction acting on a space-
craft uses a spherical harmonic [3] or ellipsoidal harmonics
[4] representation for the gravity field. This method is of high
accuracy and low computational cost, but with the disadvan-
tage that the spherical harmonic or ellipsoidal harmonics rep-
resentation is only valid outside of the circumscribing sphere
(Brillouin sphere). It diverges inside of the Brillouin sphere,
e.g. [5]. Therefore, it cannot be used when a spacecraft or
lander is getting close to the surface of an irregularly shaped
body and alternative methods are needed for representing and
calculating the gravity field inside the Brillouin sphere.

However, when missions include a landing on such a small
body, the spacecrafts obviously have to descend into the
Brillouin sphere. Moreover, they usually have to land au-
tonomously, due to the communication delay. Consequently,
a detailed model of the gravity field inside the Brillouin
sphere is essential for successful missions to small bodies.
Even though the type of method is a basic prerequisite to
model and design the trajectory of a lander on an irregularly
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shaped body, it can also be used for autonomous landing on
a small body concerning the higher computational onboard
capabilities. This would also include autonomous detection
and selection of the landing site and therefore also the on-
board computation of different landing trajectories. Another
application of the methods is to model the interior structure of
a body based on its known gravity field and shape for example
derived from Radio Science and camera observations from
larger distances.

Various methods have been proposed to circumvent this
handicap of the divergence inside the Brillouin sphere, i.e. to
compute the gravitational field closer to the surface. They
typically differ significantly for the computation time and ac-
curacy. The next section provides a review of these methods
with their advantages and also shortcomings.

In this paper, we propose a method to systematically compare
such gravity modelling algorithms. In order to do so, we have
defined a set of challenging shapes:

� A perfect sphere. For this shape, we can compute the
gravitational field analytically. It is easy and fast to compute,
however, a sphere cannot be polygonized perfectly. Hence,
we additionally provide polygonal approximations of the
sphere in different resolutions and different parametrizations.
This is challenging, especially for models that rely on polyg-
onal shape models.
� A perfect cube. Similar to the sphere, we can derive the
gravitational field of a cube analytically. In contrast to the
sphere, it can be perfectly polygonized. However, due to the
sharp edges, it is challenging for methods that do not rely on
polygonization.
� A highly detailed polygonal model of the Martian moon
Phobos. This case is prototypical for a small celestial body
of irregular shape. Moreover, there is currently an active
mission that actively measures its gravitational field. This
will be improved further by the currently planned upcoming
Japanese MMX mission. Hence, in the near future, our results
can be directly compared to actual measurements.

We selected three commonly used methods – namely a
polyhedral method and two different mascon methods – in
order to compare them systematically. In Section 3 we
start with a detailed description of the three methods, while
the succeeding Section 4 addresses the selected test cases.
Section 5 covers and discusses the obtained results via the
polyhedral method and the mascon methods for the various
shapes (sphere, cube, and the Mars moon Phobos), followed
by conclusions and future work.

2. PREVIOUS WORK
In this section, we firstly provide an overview of the different
methods used to compute the gravitational field of small
bodies. Second, we review earlier work that focused, like this
work, on the comparison between these different methods to
compute the gravitational field.

Gravitational Field Methods

For the calculation of the gravitational field inside the Bril-
louin sphere and hence on the body’s surface, different meth-
ods have been developed. The most accurate method, at least
as long as we assume a constant distribution of the density, is
the Polyhedral Method (PM) [6]. The accuracy depends only
on the polygonal resolution of the celestial body’s 3D model.
A drawback is that it is relatively computationally intensive.
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The computation time increases with an increasing polygon
count. We describe this method in detail in our Section 3
below. There exist some extensions to allow the PM to
handle varying densities within the body. The sliver approach
developed by [7] does this on a global level. Variations on
the local scale surrounding individual evaluation points were
presented by [8]. In this work, however, we consider only
homogeneous densities.

Another popular approach is the mass-concentration (mas-
con) approach. Here, a body of arbitrary shape is subdivided
into small mass elements, so-called mascons. Decreasing
the mascon size increases the accuracy, however, this also
leads to an increasing computation time. Other than for the
PM, there are different implementations of this method. The
both mascon methods Mascons - Sphere Packing (MSP) and
Mascons: Spherical coordinates (MASC) are also used in
this work and introduced in Section 3 with the PM. Two
other mascon implementations were presented by [5], using
uniform-sized cubes and spheres. Note that the potential of
the individual cubes was calculated using the expression used
for the PM [6]. A combination of the mascon and spherical
harmonics approach was proposed by [9]. The basic idea is
to discretize a model of Phobos into small cubes, and then
evaluate the spherical harmonic gravitational field of each
individual cube.

Method Comparisons

While there is a multitude of works using the different grav-
itation field computation methods introduced in the previous
paragraph, the inter-comparison between different methods
as done in this work is still limited.

The single-sized sphere and cube mascon approaches were
compared by [5] with the PM method on the example
Itokawa. Relatively large deviations were found close to the
surface that diminished with increasing altitude. Note that [5]
also compared the difference in gravitational field between a
single cube and sphere, however, this is not to be confused
with the comparisons made in Section 5.

Another comparison was done of the MSP with the PM by
[10]. The bodies compared were the asteroids Itokawa and
Lutetia, as well as Eros, however, the presented results were
limited to altitudes of 100 m and 1 m above the surface, and
therefore did not include comparisons directly on the surface.

In [11] the authors have proposed a finite element method
to compute the gravitational potential and gravitation with
tetrahedra. Their method combines the mascon and poly-
hedral methods. After the conventional division technique
(tetrahedralization) they have used the polygon method for
each tetrahedron and also compared it to the polygon method
for the whole asteroid 216 Kleopatra as an example. Their
errors seemed to be very small and limited by floating-
point precision, but they have not provided any run-time
information.

A comparison between the finite cube elements method and
shapes with an analytical solution for gravitation was done
in [12]. The cubes were approximated as spheres because
it allows an easy calculation of gravitation and also reduces
the running time. Moreover, they have investigated a fractal
object, the effects of choosing a structural index SI , which is
a measure of the degree of homogeneity of gravity/magnetic
equations and they focussed on solving the inverse problem:
estimating the inner structure of asteroids with Euler de-
convolution.

3. METHODS
This work uses and compares a total of three methods:

� the Polyhedral Method (PM),
� the Mascons - Sphere Packing (MSP) method, and
� the Mascons - Spherical coordinates (MASC) method.

When referring to mascon methods, we refer to both methods
MSP and MASC. In the following, each of these methods is
introduced in detail.

Polyhedral Method (PM)

The polyhedral method (PM) is a well-known analytical
closed-form approach to compute the exterior gravitation of
any polyhedron shape developed by [6]. One big advantage
is that this method is valid and stable down to the body’s
surface, i.e. also inside the circumscribing Brillouin sphere,
where e.g. spherical harmonics are prone to divergence. This
makes the methods interesting for surface gravimeter science
[13], [14] and landing operations [15], [16], as well as touch-
and-go maneuvers [17]. On the downside, however, the
method only works for a homogeneous (constant) density
throughout the body and does not intrinsically allow to vary
the density within the shape. While this method works even
on the surface of the body, it is undefined on a vertex or edge
which limits the solution space of the cube analysis (Section
5).

For the PM, we use an algorithm implementation developed
by [18] with minor adaptations. This code was verified with
an independent PM implementation, provided by [19]. The
gravitational attraction can be expressed as

g(x) = �G�
X

e2edges

Eij � ~rij �Lij+G�
X

e2facets

Fijk� ~rijk�!ijk

(1)

where we refer to [6] for the full derivation and to [19] for a
slightly adapted notation.

Mascons: Sphere Packing (MSP)

Our second competing method is based on mascons. In
general, the idea behind the mascon model is to subdivide
a body into smaller parts, called mascons. The gravitational
field of each of these mascons is calculated by concentrating
the mass of this element in its center and computing the
gravitational field of a point source. Integration over the
mass elements then yields the resulting gravity. Traditionally,
mascons are often represented as uniform cubes or spheres.
The MSP method uses a slightly different approach: the main
idea is to use a polydisperse sphere packing, i.e. the spheres
are all inside the shape, they are allowed to differ in their
radii and they do not overlap each other. This should lead to
a better distribution of the mascons for faster computations
times and higher accuracy.

Moreover, spheres allow an easy computation of gravitational
acceleration at any point. If we consider a set of n spheres,
then we can compute the gravitational acceleration at a given
point x as follow:

g(x) =

nX
i=1

GMi

jjrijj2
r̂i (2)
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(a) (b) (c)

Figure 1: In 1a is a polygonal mesh of Phobos (275k
triangles, [21]) with the corresponding sphere packing in 1b
(800k spheres, generated with Protosphere [20]) and a cross-
section of the packing in 1c.

with r i = ci � x the vector between the sphere centerci and
given pointx. M i is the mass of the sphere andG the gravita-
tional constant. We also easily parallelize the computation of
Equation 2: For each mascon, a thread is running to compute

Algorithm 1 Gravity(SpherePacking S, QueryPoint x)

for all spheres si 2 S do in parallel
r i = ci � x
gi (x) = GM i

jj r i jj 2 r̂ i

end for
parallel scanover allgi computeg(x) =

P n
i =1 gi (x)

the gravitational acceleration and a parallel scan sums up the
accelerations. We have two main challenges with the mascon
model: the arrangement of mascons and the assignment of
masses to the mascons.

Sphere Packing Arrangement—We use spheres to represent
the mascons, therefore we have to subdivide the space with
spheres. Unfortunately, we can not achieve a complete
covering of the targets volume. From Kepler conjecture, we
know that uniform spheres can cover at most�p

18
� 74%of

the target volume. We use polydisperse sphere packings, to
cover potentially more volume than that.

An Apollonian sphere packing is a fractal structure based on
rules. That idea was extended in [20] to arbitrary 3D objects,
which we use here. It uses a greedy algorithm that prefers
larger spheres. The result is a potentially space-�lling sphere
packing (see Figure 1). The spheres do not overlap and they
are completely inside the 3D object.

Compared to methods presented in [22], that place spheres
in a �xed grid, Protosphere is more robust, faster, and has
a better �lling fraction. The greedy choice of the largest
spheres provides a level-of-detail automatically. A very
simple solution would be to limit the number of spheres if
spheres are in descending order with respect to their size.

With no modi�cations, Protosphere generates sphere packing
fractions of more than90% for most asteroid-like objects
with 100k spheres. This packing density is more than5%
higher in [22]. Our higher packing density should improve
the gravitational �eld estimation. It is possible to de�ne the
minimum and maximum size of spheres for packing and we
can change the optimization criteria for packings to in�uence
the arrangement. We have tried to place more spheres near
the surface, which lead to an unexpected increased error for
the gravity at the surface. Therefore, we present here our
results using the standard greedy implementation and keep
investigating the previous issue.

Mass Assignment for Spheres—In the second step, we assign
masses to the spheres, which are inside the 3D mesh. The
total massM of an asteroid must be equal to the sum of all
mascons. It is not trivial to assign masses to the mascons,
especially when using sphere packings. The voids between
the spheres can lead to signi�cant errors. The difference in
sphere sizes leads to an inhomogenous void distribution. To
solve this problem, we use our method that we call “Delta per-
centage volume increase” (DPVI). Typically, smaller spheres
have a higher proportion of empty volume in their neighbor-
hood, so the idea is to increase smaller spheres more than
larger spheres. We set the volume of a sphere toVi + Vi �x

r i
,

whereVi is the volume,r i the radius of the sphere, andx is
obtained through Equation 3, which includes the constraint
that the sphere packing volume after incrementing has to be
equal to the volume of the polygonal modelVp.

x =
Vp �

P n
i =1 viP n

i =1
v i
r i

(3)

To compute the individual radius increase�r i of each sphere,
the following cubic equation can be solved:

Vi � x
r i

=
4� (r i + �r i )3

3
(4)

With the �nal volume or radius of a sphere, a corresponding
mass can be assigned considering a homogenous density.

Mascons: Spherical coordinates (MASC)

The second mascon method models the internal mass distri-
bution of the body as a set of solid elements in spherical co-
ordinates. The software package hereafter referred asMASC
was originally developed to derive gravity �eld coef�cients
based on shape and internal density distribution and has been
successfully applied to the Mars moon Phobos [23] and the
67P/Churyumov-Gerasimenko [24]. It was for this study
extended to compute in addition the gravitational acceleration
acting on a spacecraft at a certain position. The structure of
the software is divided into three parts:

1. In the �rst part, the provided shape model is divided
into longitudes� and latitudes� with an a priori speci�ed
resolution to ensure the accuracy of the derived quantities.
Different shape models such as analytical shapes (sphere,
ellipsoid), a spherical harmonics representation of shape, and
SPICE shape models can be processed [25].
2. The next step is to structure the already processed shape
model into sub-volume elements by dividing also the radius
R with a speci�ed length (see Figure 2). Each of these
volume elements is assigned a speci�c density� that de�nes
the mass of that element. Spherical harmonics and moments
of inertia are outputted and a table of mass elements with their
according center of mass position~ci as an entree for the next
processing step.
3. In the last step, the total acceleration acting on a spacecraft
at position~x is computed as the sum of the accelerations of
each of the beforehand de�ned mass elementsmi = vi � i
according to Equation 2.

4. TEST CASES

Before presenting the results in the following three sections,
we introduce the three test cases and the general test setup
that ensures comparable results. The three test cases are
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