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Motivation

• RGB-D cameras/lidar widely employed

• SLAM, object-detection, real-time avatars

• Issue: Sensor noise, holes in depth data

• Important task to reconstruct missing areas

• High quality real-time inpainting challenging
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Related Work

• Impressive results with deep learning for various computer vision tasks

• Deep learning-based inpainting mostly on color

• Non-standard convolutions [Yu19,Ning19]

• GANs [Isola17,Shao20]

• Depth image inpainting 

• Still uses color guidance [Tao22,Lee22]

• Only small holes [Jin20]

• Transformer/Diffusion models very slow [Deng22,Rombach22]

3Motivation Related Work Overview                            Details                                 Results                                   Conclusion



Our Contributions
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• Without color guidance, also larger holes
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Our Contributions

• Real time depth image inpainting using deep learning

• Without color guidance, also larger holes

• Investigated performance of various models 

• Partial convolutional U-Net

• Patch-based GAN

• Standard U-Net

• LaMa

• Detailed quantitative and qualitative evaluation 

• Two public standard datasets + self-recorded one

4Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion



Datasets

5Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion

• Training:

• NYU Depth V2 (indoor, Kinect v1)

NYUV2, color/depth [Silberman12]



Datasets

5Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion

• Training:

• NYU Depth V2 (indoor, Kinect v1)

• Added own synthetic holes
NYUV2, color/depth [Silberman12]



Datasets

5Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion

• Training:

• NYU Depth V2 (indoor, Kinect v1)

• Added own synthetic holes

• Evaluation

• NYUV2

NYUV2, color/depth [Silberman12]



Datasets

5Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion

• Training:

• NYU Depth V2 (indoor, Kinect v1)

• Added own synthetic holes

• Evaluation

• NYUV2

• SceneNet RGB-D (synthetic indoor scenes, 

low resolution, using depth only, added holes)

NYUV2, color/depth [Silberman12]

SceneNet, color/depth [McCormac16]



Datasets

5Motivation Related Work                              Overview                            Details                                 Results                                   Conclusion

• Training:

• NYU Depth V2 (indoor, Kinect v1)

• Added own synthetic holes

• Evaluation

• NYUV2

• SceneNet RGB-D (synthetic indoor scenes, 

low resolution, using depth only, added holes)

• Self-recorded Azure Kinect data

NYUV2, color/depth [Silberman12]

SceneNet, color/depth [McCormac16]
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Black: Holes/masked out 

Mask Categories
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Network Details

• Partial Convolutionial U-Net [Liu18]

• Convolutions masked on valid pixels

• Dynamic mask updates between layers 

• Patch-based GAN [Isola17]

• U-Net generator, convolutional PatchGAN classifier 

as discriminator

• Standard U-Net

• LaMa [Suvorov22]

• Fourier convolutions provide large receptive field

• Large training masks
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Training Procedure & Loss Functions
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• Trained for 7 epochs (LaMa: 5), batch size 2 (LaMa: 5)

• Losses:

• Conv/PConv (like the original paper): 

Two per-pixel accuracy losses, a perceptual loss, two style losses, a total variation loss

• GAN: Combination of above with original generator loss (including L1 loss)

• LaMa (like the original paper for comparability): 

A high receptive field perceptual loss, an adversarial loss, a discriminator-based 

perceptual loss, and gradient penalty



Results - Inference Timings
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Results - Quantitative Analysis   
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Conclusion

• Investigated depth image inpainting using deep learning

• Real-time application

• Without color guidance

• Trained on NYUV2 with synthetic holes

• All models reasonably good

• LaMa best but slow (60ms)

• Part. Conv. U-Net, GAN (small holes) good, real-time-capable

• Highly scene-dependent
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Future Work

• Incorporate RGB data as optional input

• Investigate transformer models (real-time) (use temporal coherency)

• Produce ground truth for Azure Kinect (couple with stereo cam?)

• Produce accurate error model for Azure Kinect

• Automatically switch model based on scene/holes
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Thank you for your attention!
Questions?

r.fischer@uni-bremen.de

mailto:r.fischer@uni-bremen.de
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