

Inpainting of Depth Images using Deep Neural **Networks for Real-Time Applications**

Roland Fischer, Janis Roßkamp, Thomas Hudcovic, Anton Schlegel, Gabriel Zachmann

University of Bremen, Bremen, Germany

r.fischer@uni-bremen.de

16-18 October, Lake Tahoe, USA

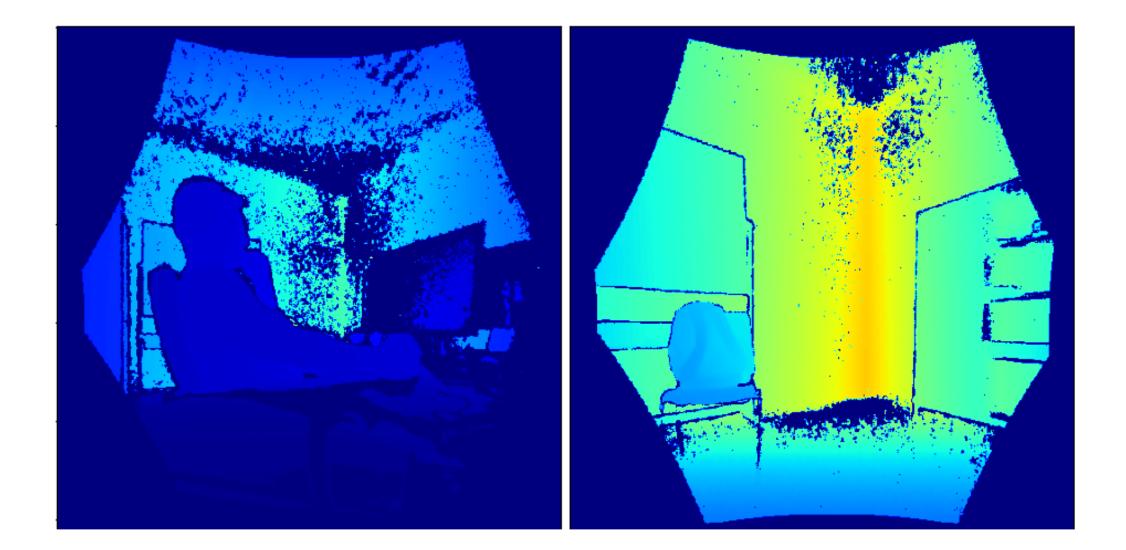
ISVC 2023

- RGB-D cameras/lidar widely employed
 - SLAM, object-detection, real-time avatars

Details

Results

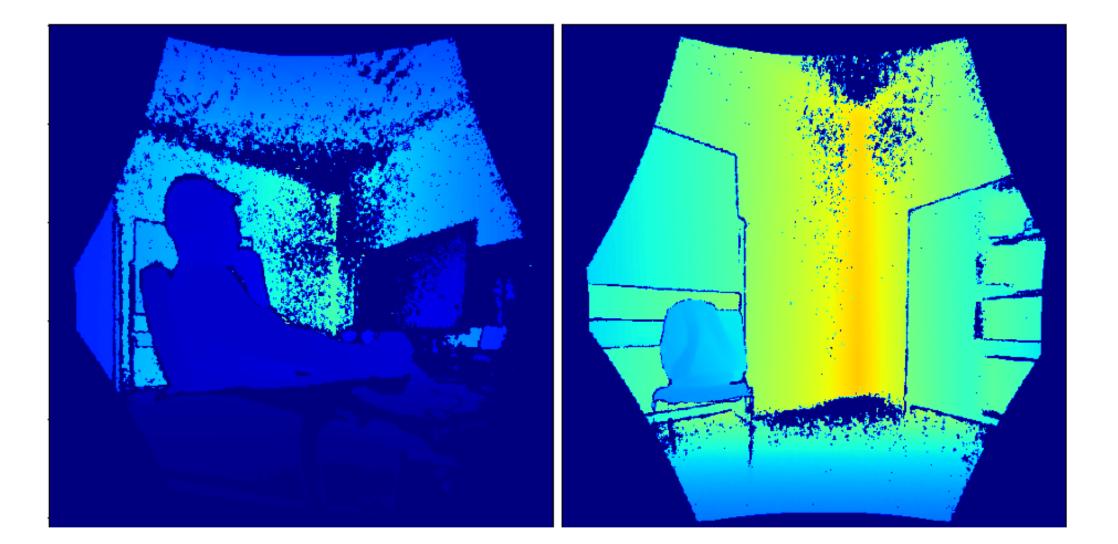
- RGB-D cameras/lidar widely employed
 - SLAM, object-detection, real-time avatars
- Issue: Sensor noise, holes in depth data



Details

Results

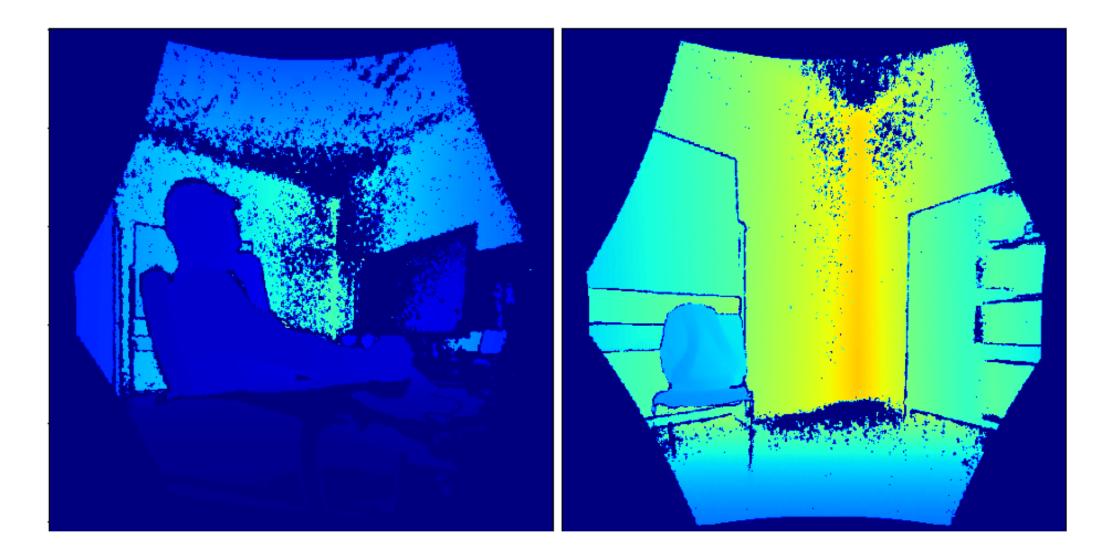
- RGB-D cameras/lidar widely employed
 - SLAM, object-detection, real-time avatars
- Issue: Sensor noise, holes in depth data
- Important task to reconstruct missing areas



Details

Results

- RGB-D cameras/lidar widely employed
 - SLAM, object-detection, real-time avatars
- Issue: Sensor noise, holes in depth data
- Important task to reconstruct missing areas
- High quality real-time inpainting challenging



Results

Impressive results with deep learning for various computer vision tasks

- Impressive results with deep learning for various computer vision tasks
- Deep learning-based inpainting mostly on color
 - Non-standard convolutions [Yu19,Ning19]
 - GANs [Isola17,Shao20]

- Impressive results with deep learning for various computer vision tasks
- Deep learning-based inpainting mostly on color
 - Non-standard convolutions [Yu19,Ning19]
 - GANs [Isola17,Shao20]
- Depth image inpainting
 - Still uses color guidance [Tao22,Lee22]
 - Only small holes [Jin20]

Details

Results

Conclusion

- Impressive results with deep learning for various computer vision tasks
- Deep learning-based inpainting mostly on color
 - Non-standard convolutions [Yu19,Ning19]
 - GANs [Isola17,Shao20]
- Depth image inpainting
 - Still uses color guidance [Tao22,Lee22]
 - Only small holes [Jin20]
- Transformer/Diffusion models very slow [Deng22,Rombach22]

Details

Results

Conclusion

Our Contributions

- Real time depth image inpainting using deep learning
 - Without color guidance, also larger holes

Details

Results

Our Contributions

- Real time depth image inpainting using deep learning
 - Without color guidance, also larger holes
- Investigated performance of various models
 - Partial convolutional U-Net
 - Patch-based GAN
 - Standard U-Net
 - LaMa

Details

Results

Our Contributions

- Real time depth image inpainting using deep learning
 - Without color guidance, also larger holes
- Investigated performance of various models
 - Partial convolutional U-Net
 - Patch-based GAN
 - Standard U-Net
 - LaMa
- Detailed quantitative and qualitative evaluation
 - Two public standard datasets + self-recorded one

Details

Results

- Training:
 - NYU Depth V2 (indoor, Kinect v1)

NYUV2, color/depth [Silberman12]

Details

Results

Conclusion

- Training:
 - NYU Depth V2 (indoor, Kinect v1)
 - Added own synthetic holes

NYUV2, color/depth [Silberman12]

Details

Results

Conclusion

- Training:
 - NYU Depth V2 (indoor, Kinect v1)
 - Added own synthetic holes
- Evaluation
 - NYUV2

NYUV2, color/depth [Silberman12]

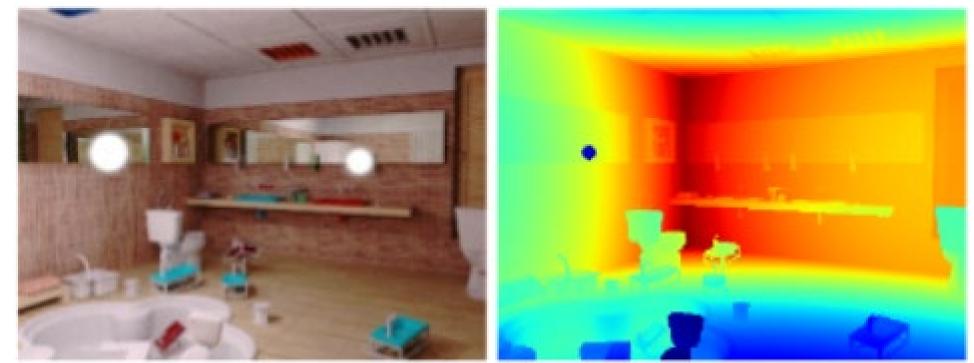
Details

Results

Conclusion

- Training:
 - NYU Depth V2 (indoor, Kinect v1)
 - Added own synthetic holes
- Evaluation
 - NYUV2
 - SceneNet RGB-D (synthetic indoor scenes, low resolution, using depth only, added holes)

NYUV2, color/depth [Silberman12]



SceneNet, color/depth [McCormac16]

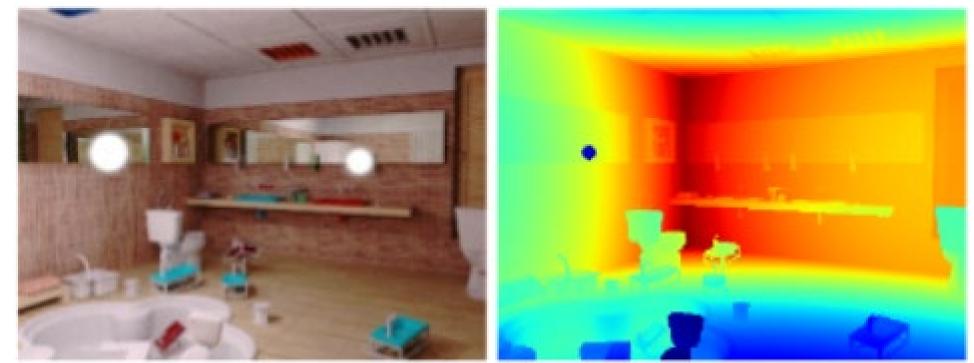
Details

Results

Conclusion

- Training:
 - NYU Depth V2 (indoor, Kinect v1)
 - Added own synthetic holes
- Evaluation
 - NYUV2
 - SceneNet RGB-D (synthetic indoor scenes, low resolution, using depth only, added holes)
 - Self-recorded Azure Kinect data

NYUV2, color/depth [Silberman12]

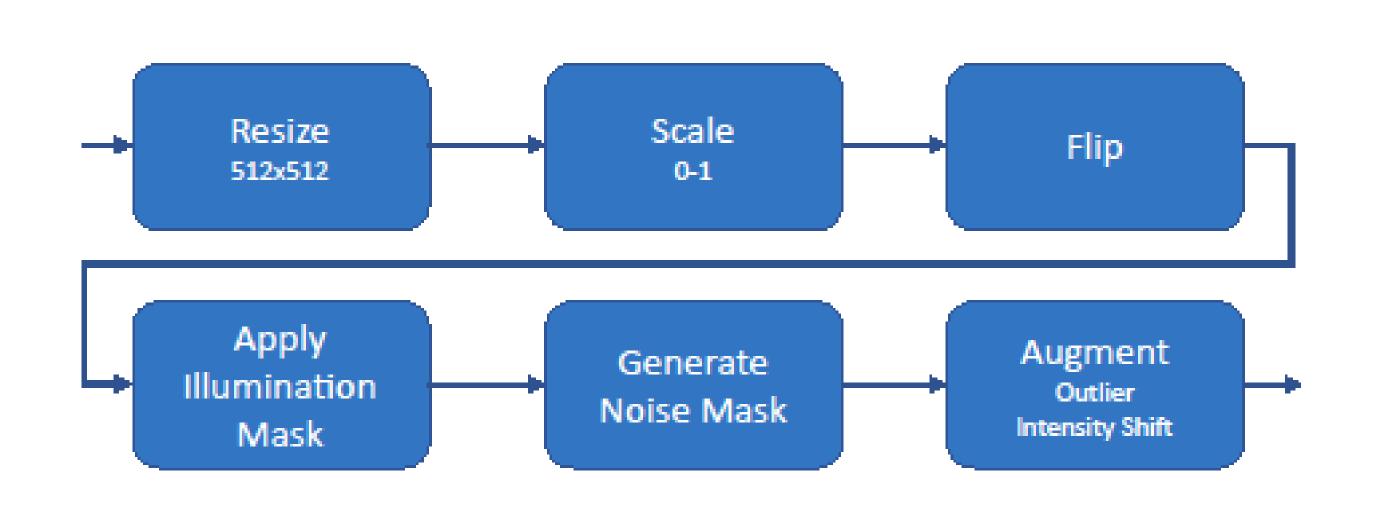


SceneNet, color/depth [McCormac16]

Details

Results

Conclusion



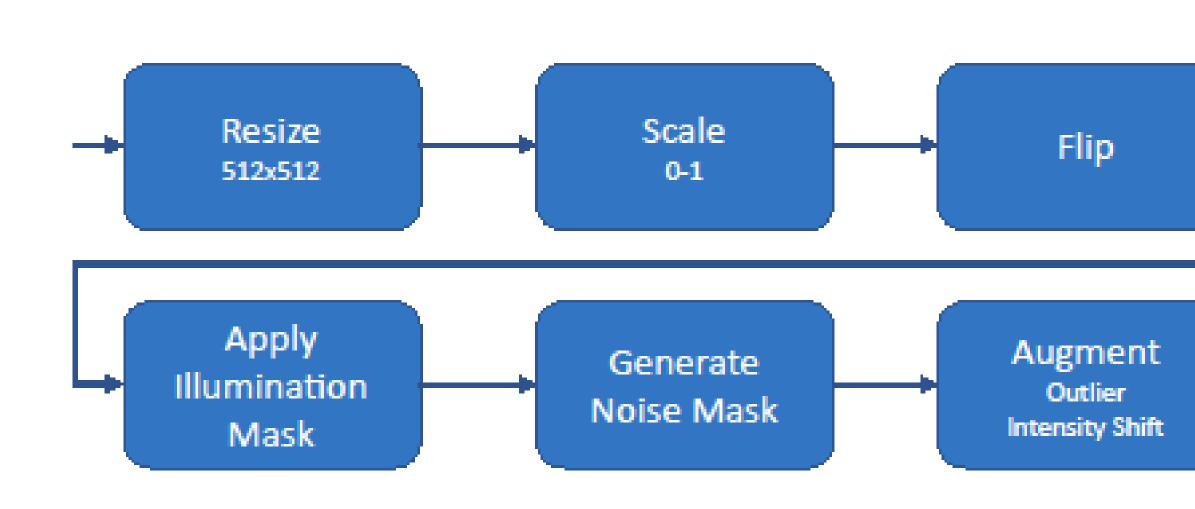
Related Work

Overview

Details

Results

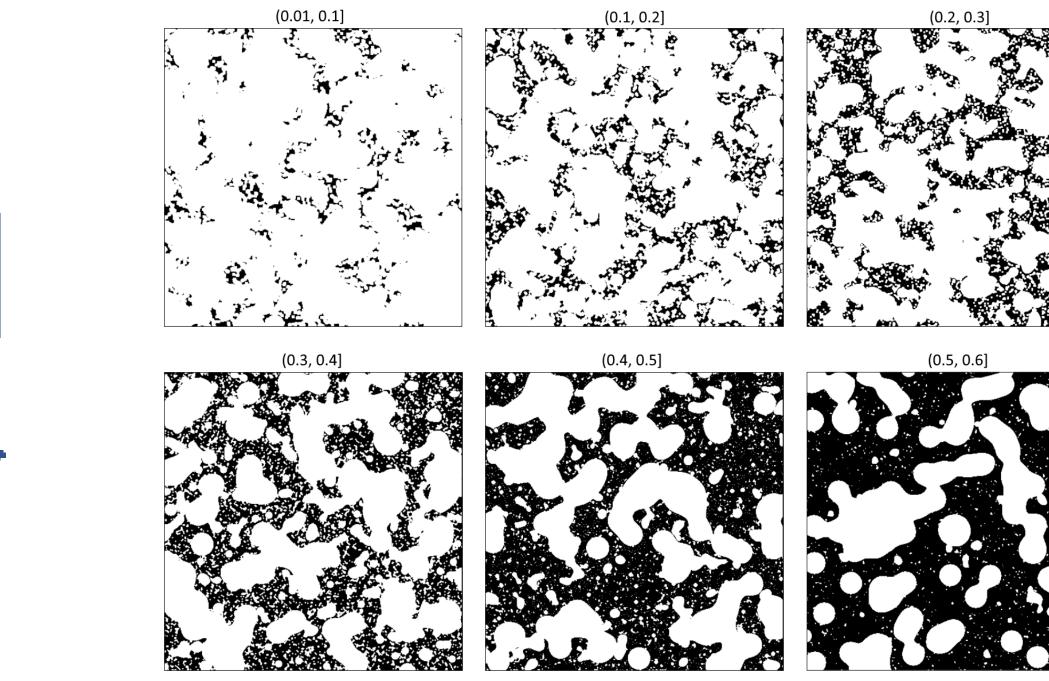
Conclusion



Related Work

Overview

Mask Categories

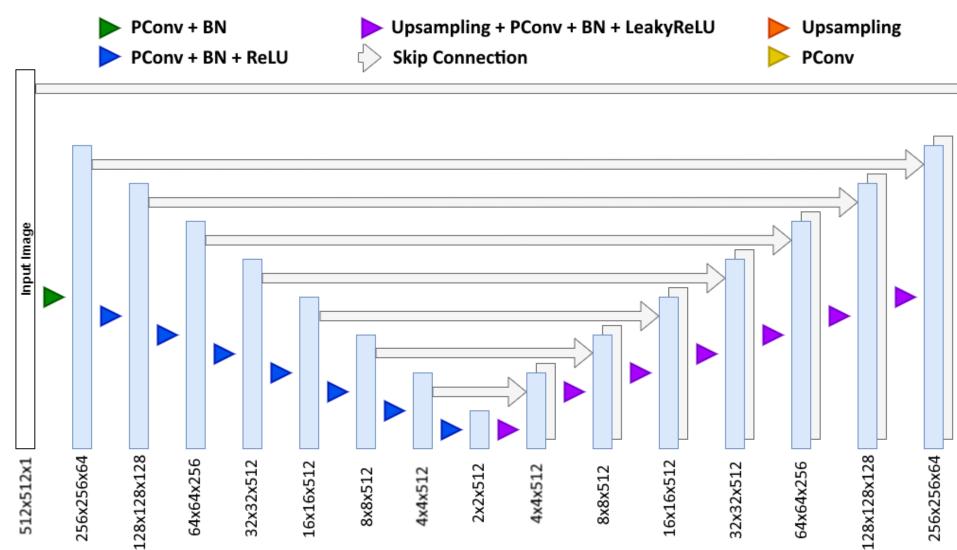


Black: Holes/masked out

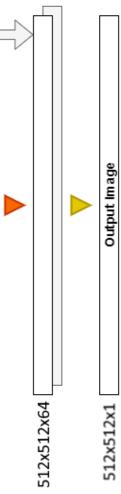
Results

Conclusion

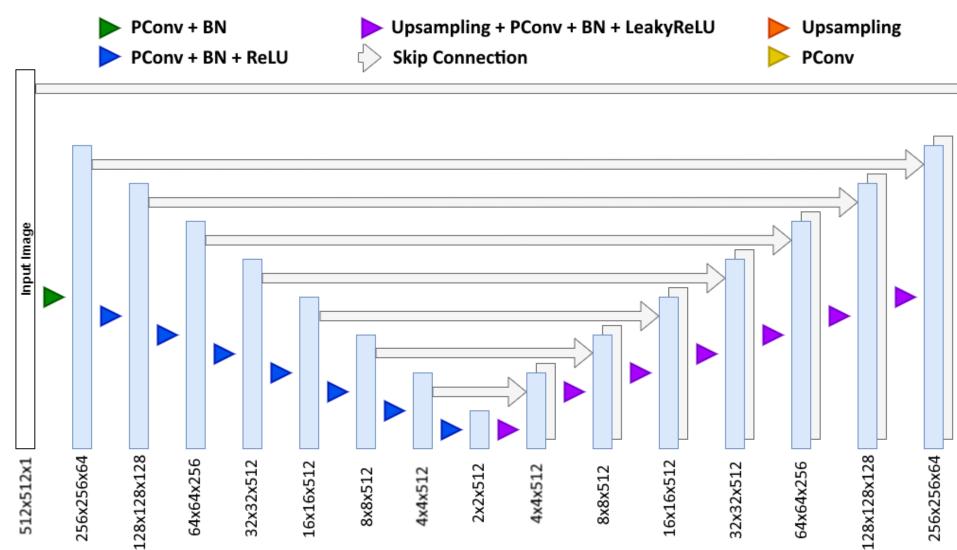
• Partial Convolutionial U-Net [Liu18]



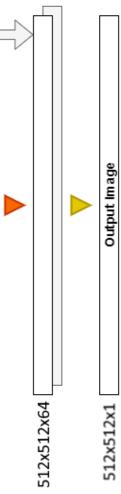
Results



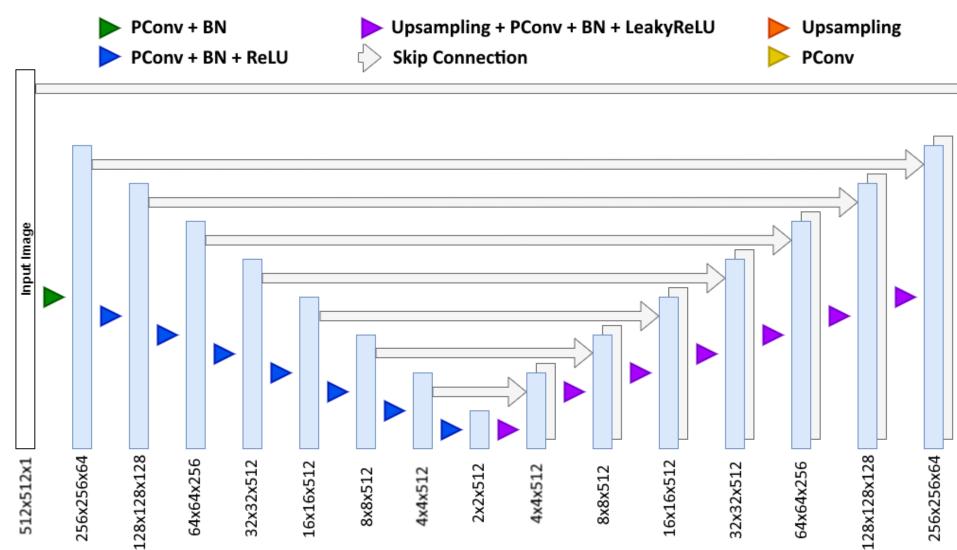
- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers



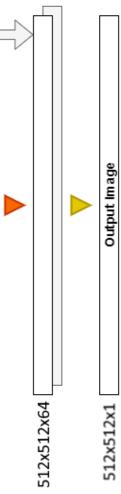
Results



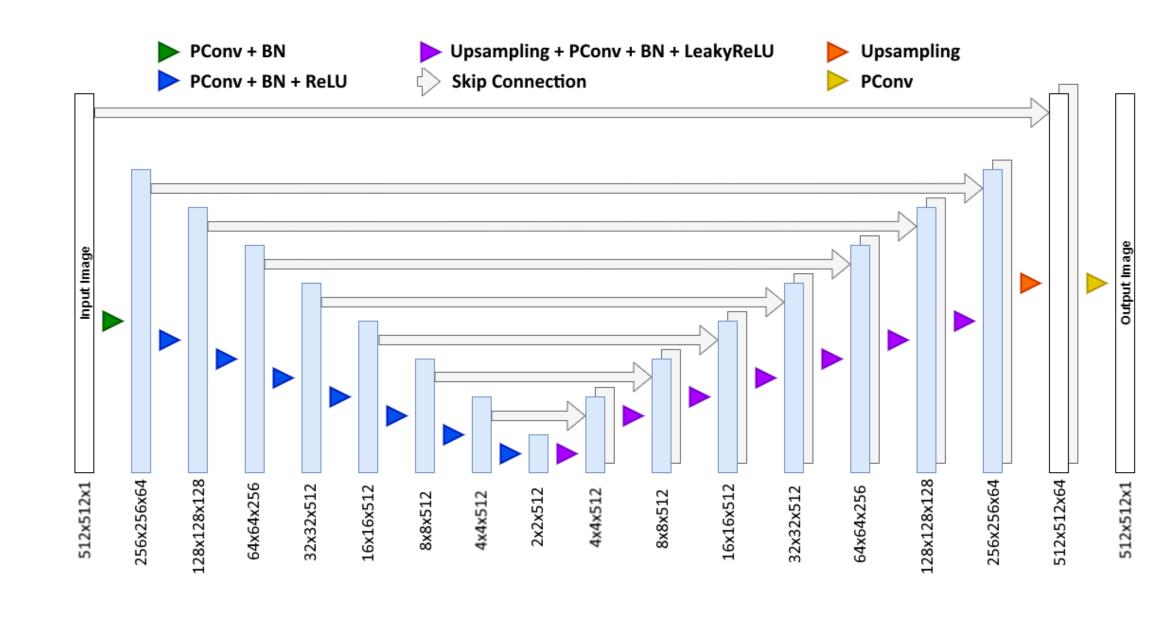
- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers
- Patch-based GAN [Isola17]



Results

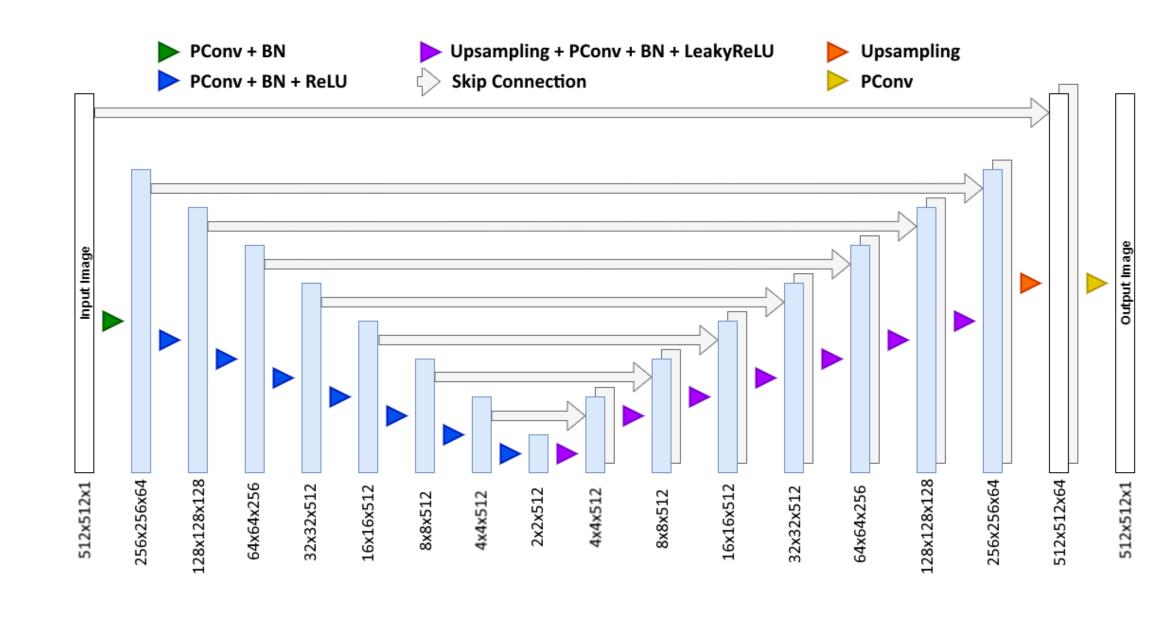


- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers
- Patch-based GAN [Isola17]
 - U-Net generator, convolutional PatchGAN classifier as discriminator



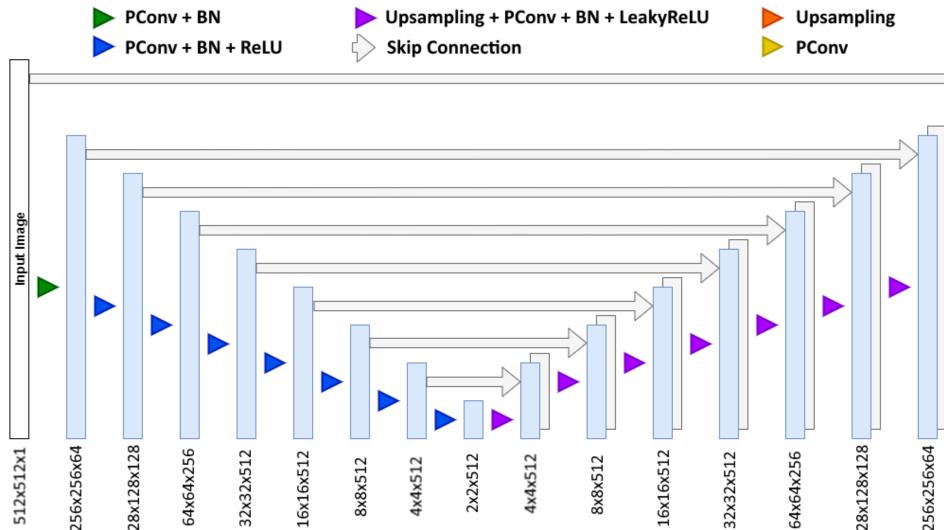
Results

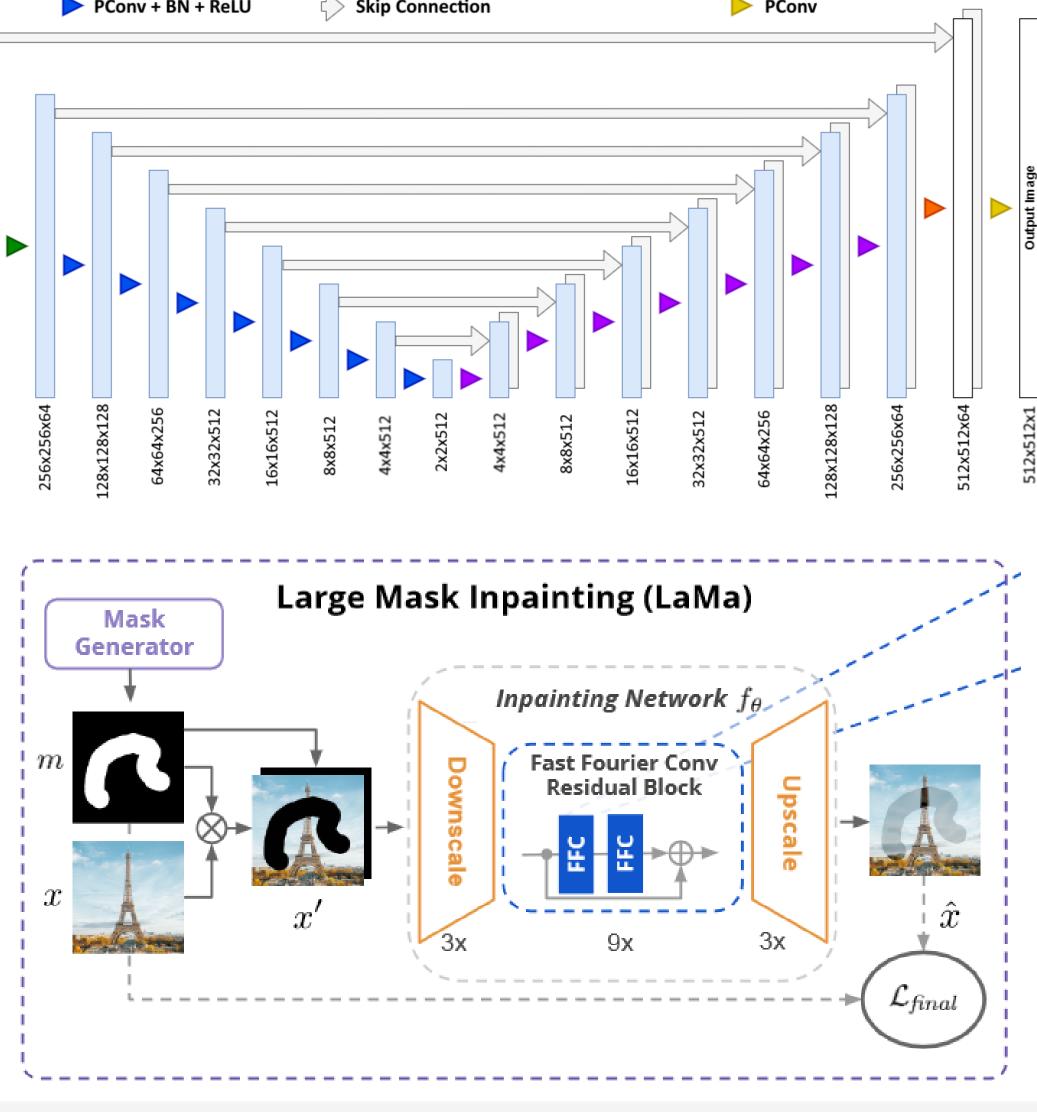
- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers
- Patch-based GAN [Isola17]
 - U-Net generator, convolutional PatchGAN classifier as discriminator
- Standard U-Net



Results

- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers
- Patch-based GAN [Isola17]
 - U-Net generator, convolutional PatchGAN classifier as discriminator
- Standard U-Net
- LaMa [Suvorov22]





Details

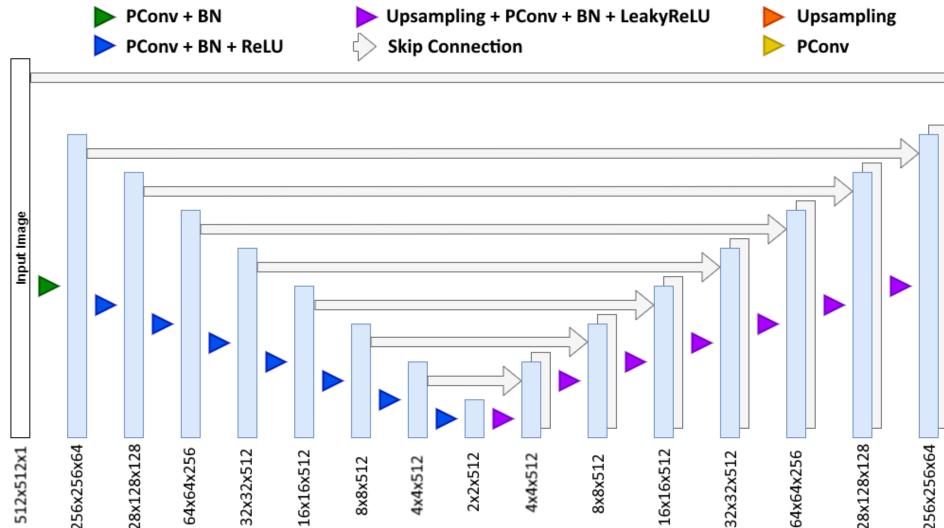
Results

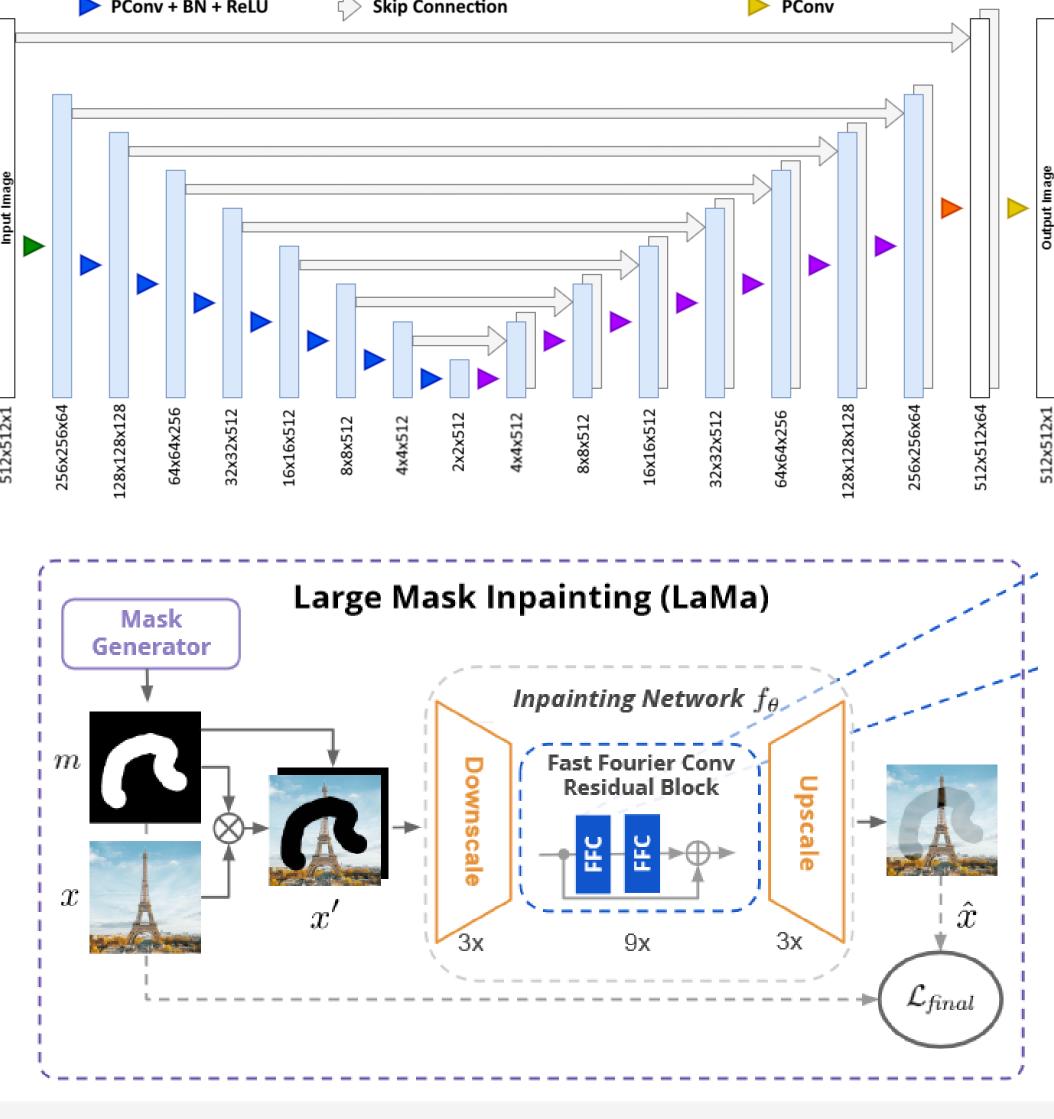
- Partial Convolutionial U-Net [Liu18]
 - Convolutions masked on valid pixels
 - Dynamic mask updates between layers
- Patch-based GAN [Isola17]
 - U-Net generator, convolutional PatchGAN classifier as discriminator
- Standard U-Net
- LaMa [Suvorov22]
 - Fourier convolutions provide large receptive field
 - Large training masks

Motivation

Related Work

Overview





Details

Results

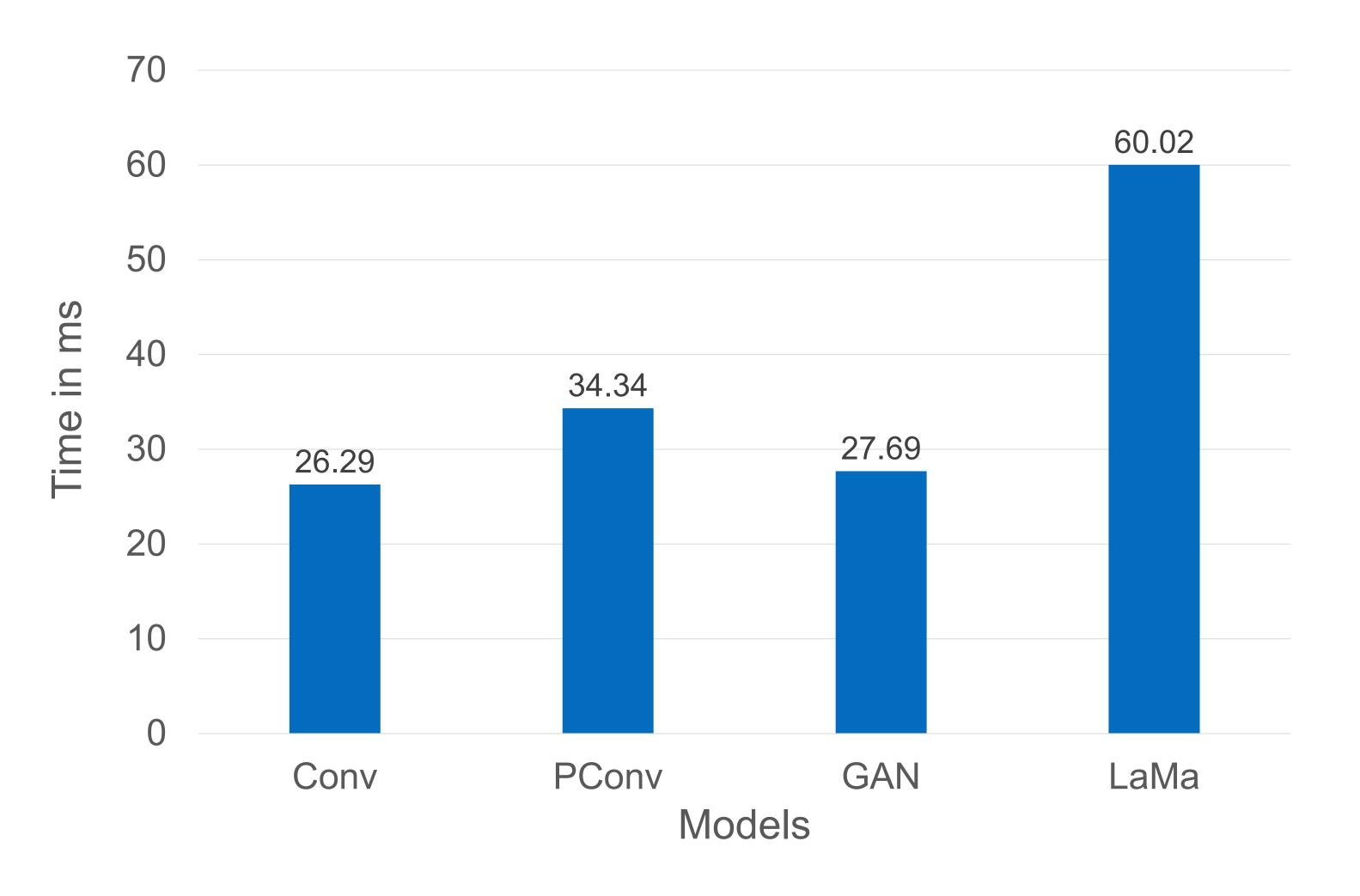
Training Procedure & Loss Functions

- Trained for 7 epochs (LaMa: 5), batch size 2 (LaMa: 5)
- Losses:
 - Conv/PConv (like the original paper): Two per-pixel accuracy losses, a perceptual loss, two style losses, a total variation loss
 - GAN: Combination of above with original generator loss (including L1 loss)
 - LaMa (like the original paper for comparability): A high receptive field perceptual loss, an adversarial loss, a discriminator-based perceptual loss, and gradient penalty

Results

Bremen

Results - Inference Timings



Details

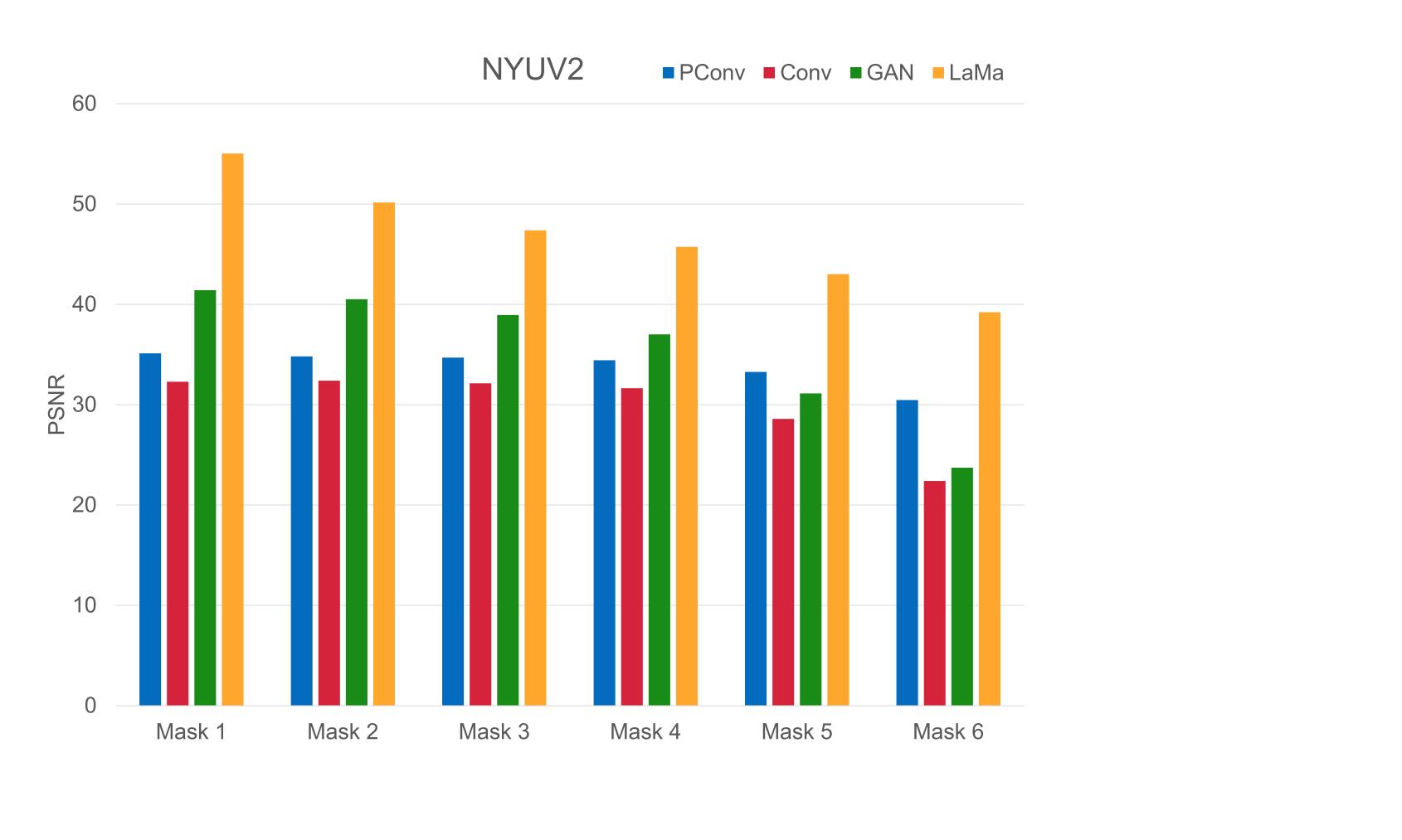
Results

• Measured metrics: MAE, MSE, PSNR, SSIM

Details

Results

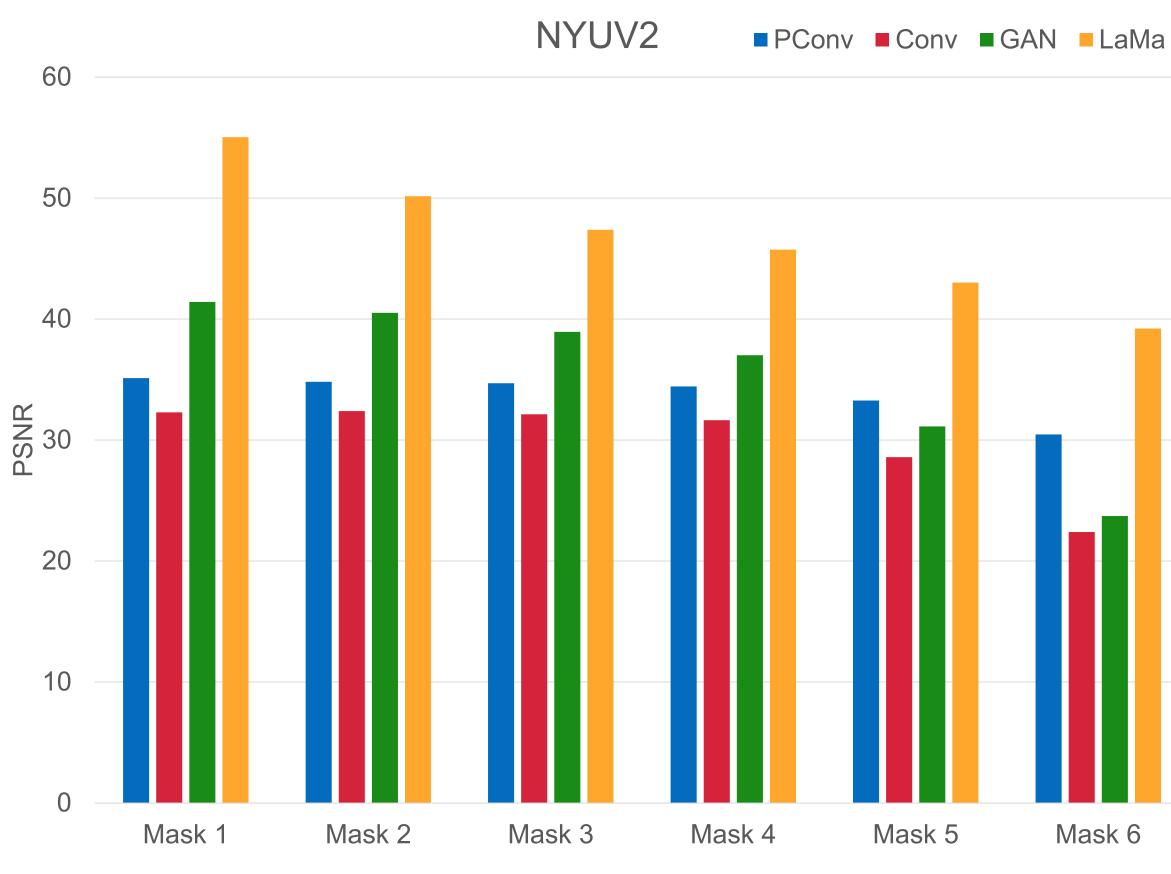
• Measured metrics: MAE, MSE, PSNR, SSIM



Details

Results

Measured metrics: MAE, MSE, PSNR, SSIM



LaMa best, GAN second best on small/medium masks, PConv on larger ones and most consistent

Motivation

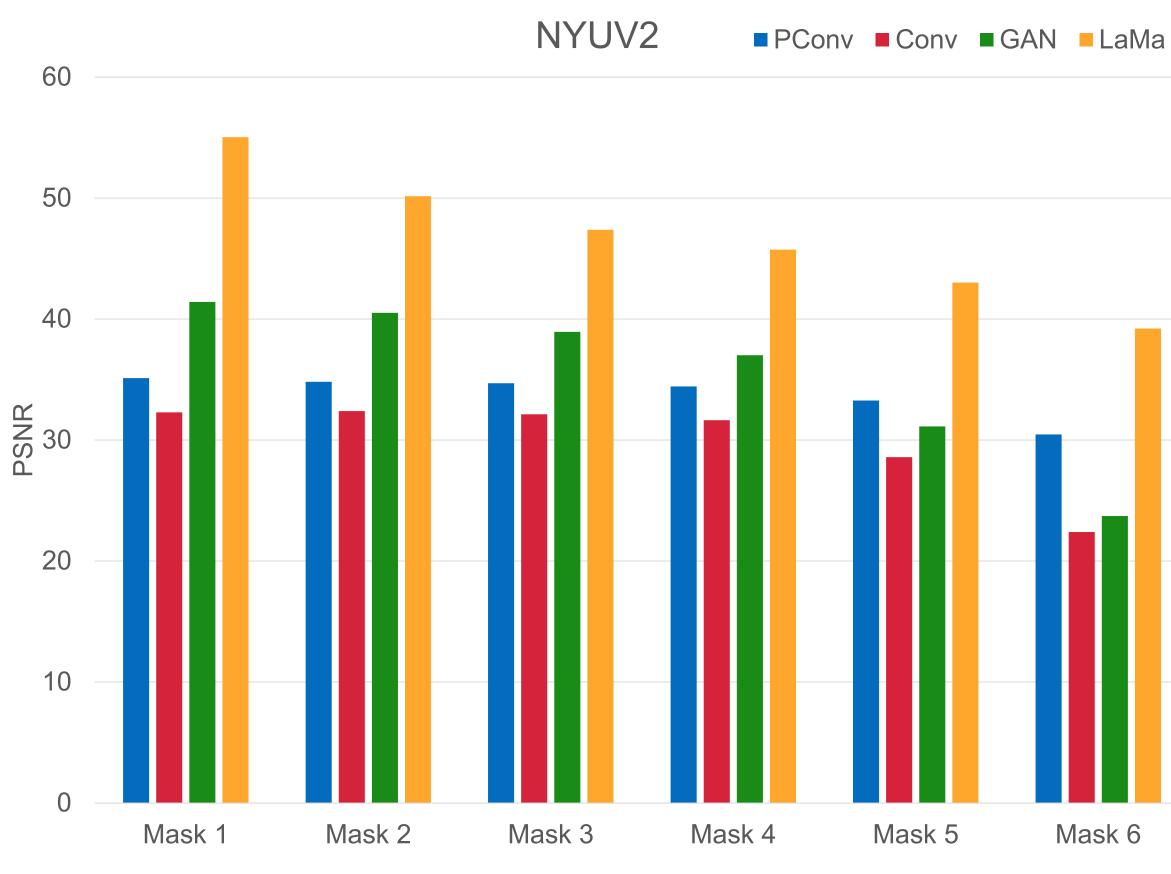
Related Work

Overview

Details

Results

Measured metrics: MAE, MSE, PSNR, SSIM

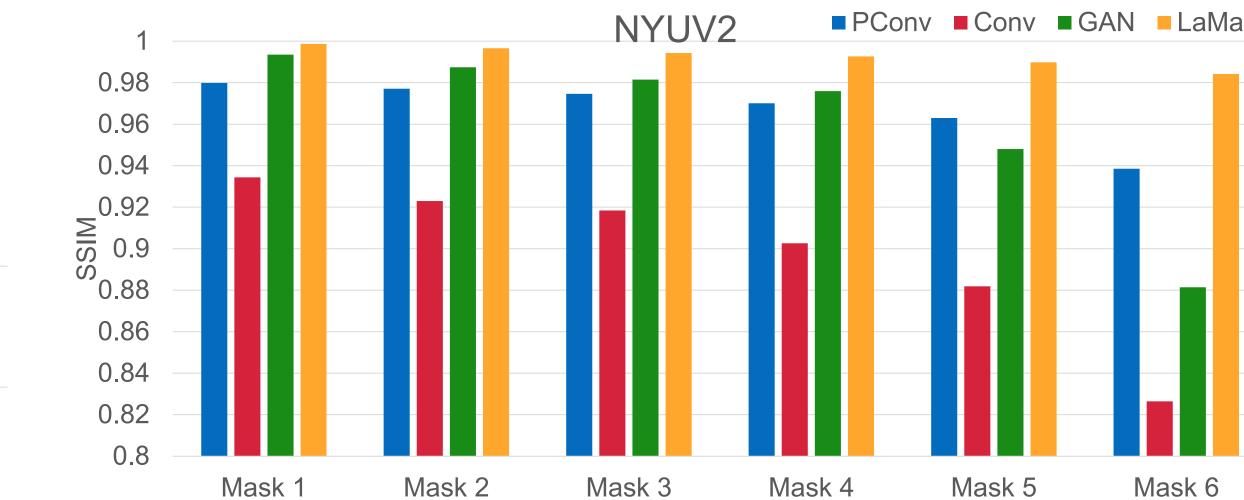


LaMa best, GAN second best on small/medium masks, PConv on larger ones and most consistent

Motivation

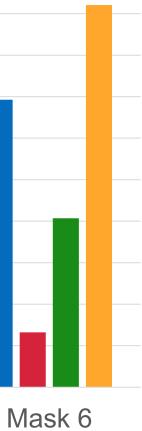
Related Work

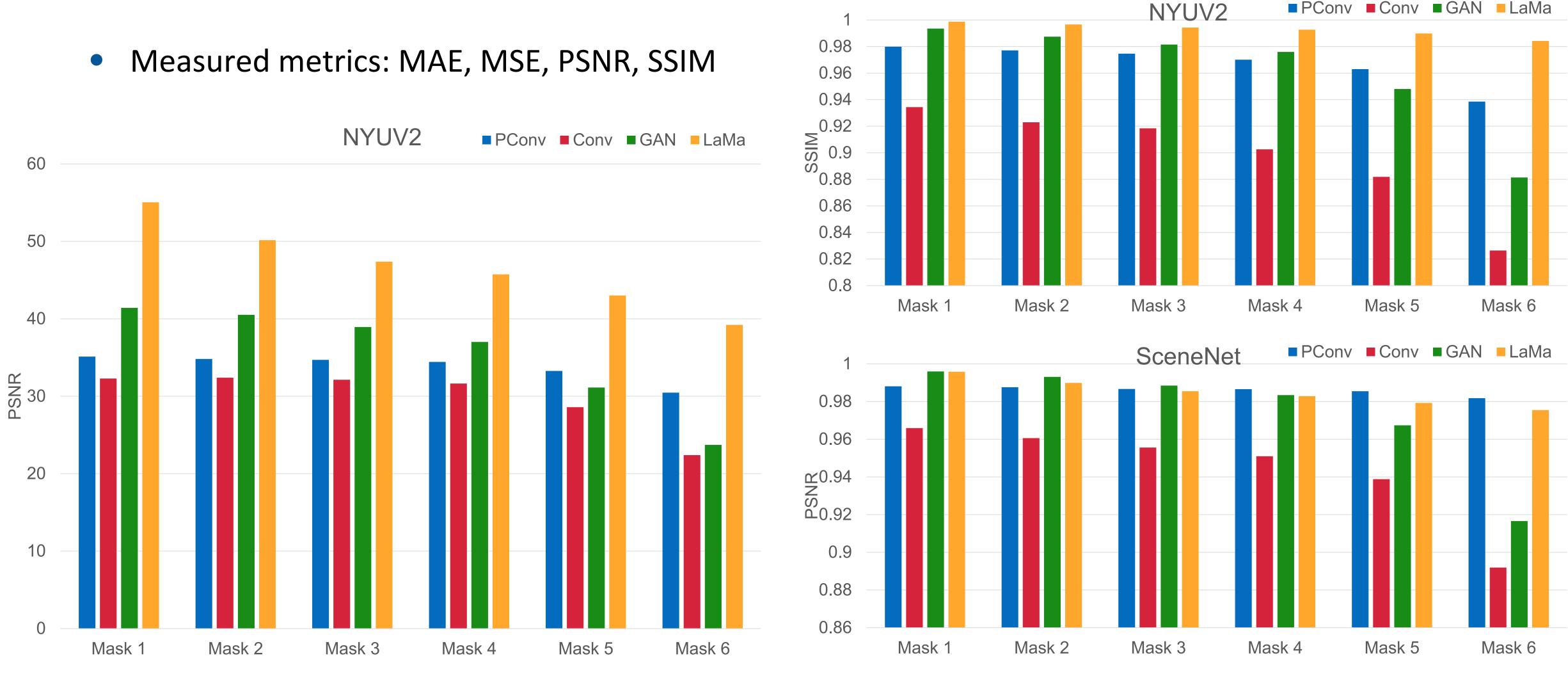
Overview



Details

Results





Motivation

Related Work

Overview

LaMa best, GAN second best on small/medium masks, PConv on larger ones and most consistent

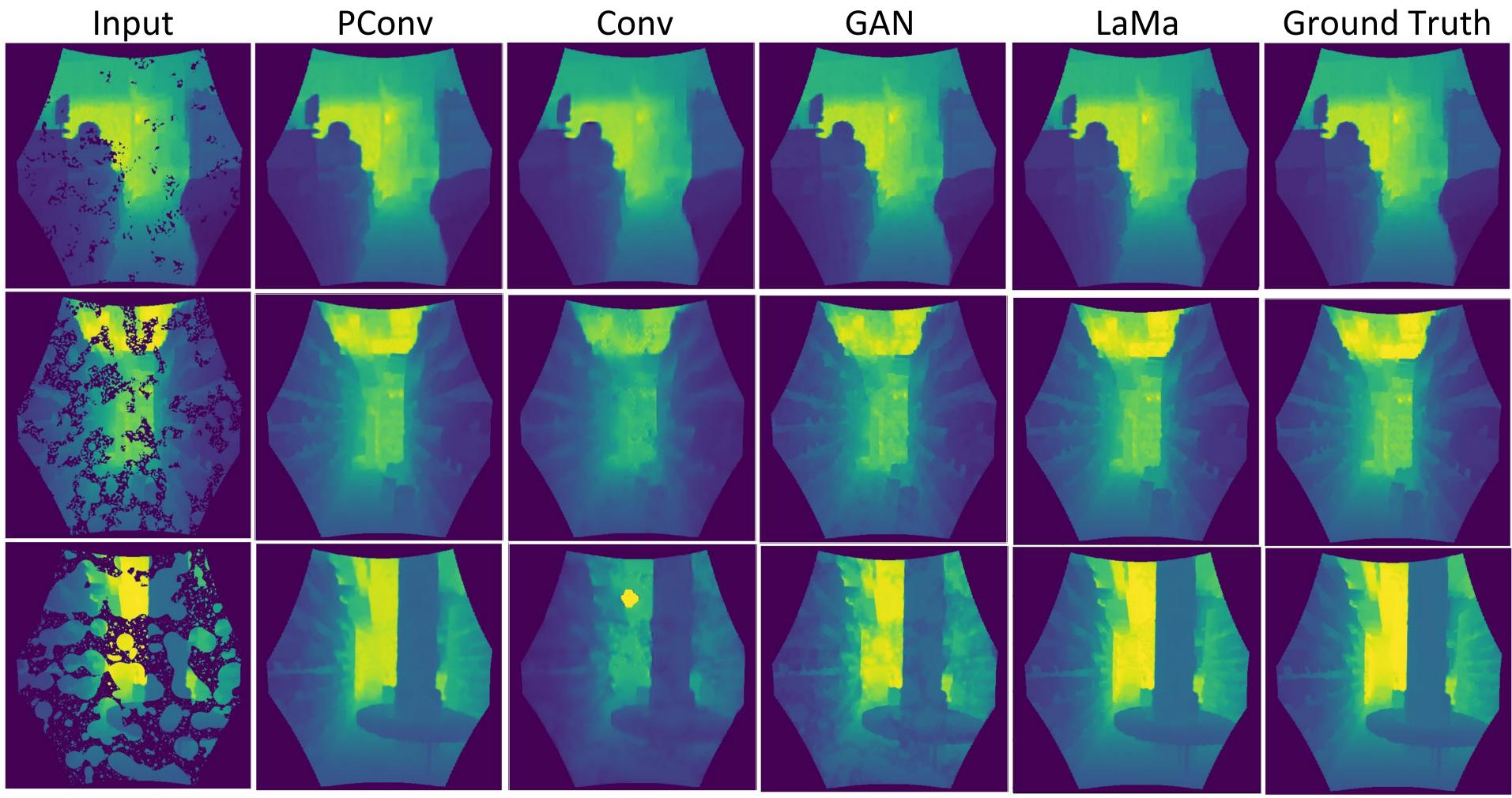
Details

Results

Conclusion

■Conv ■GAN ■LaMa

Results - Qualitative Comparision NYUV2



Motivation

Related Work

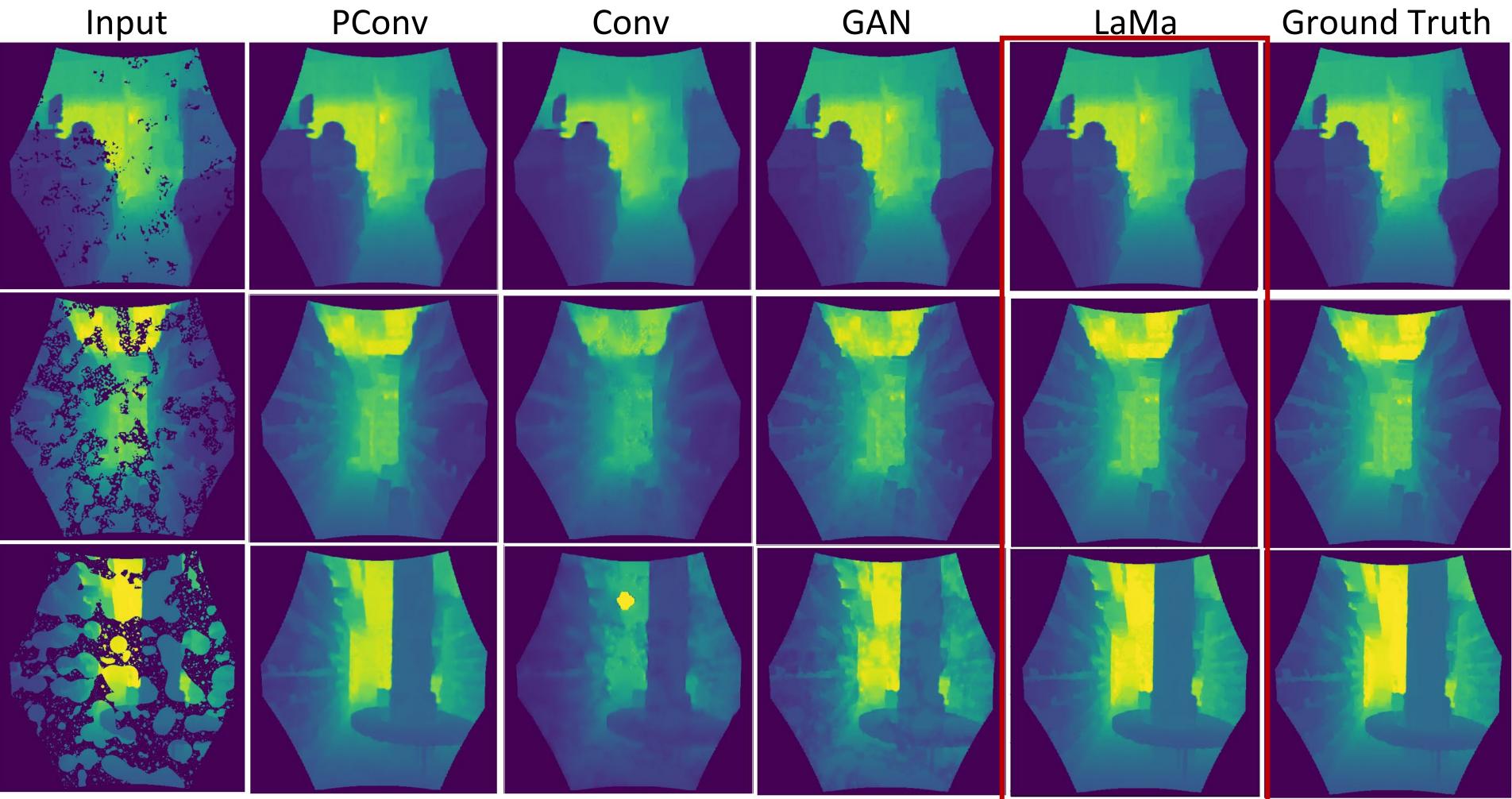
Overview

Details

Results

Conclusion

Results - Qualitative Comparision NYUV2



Lama perform best,

Motivation

Related Work

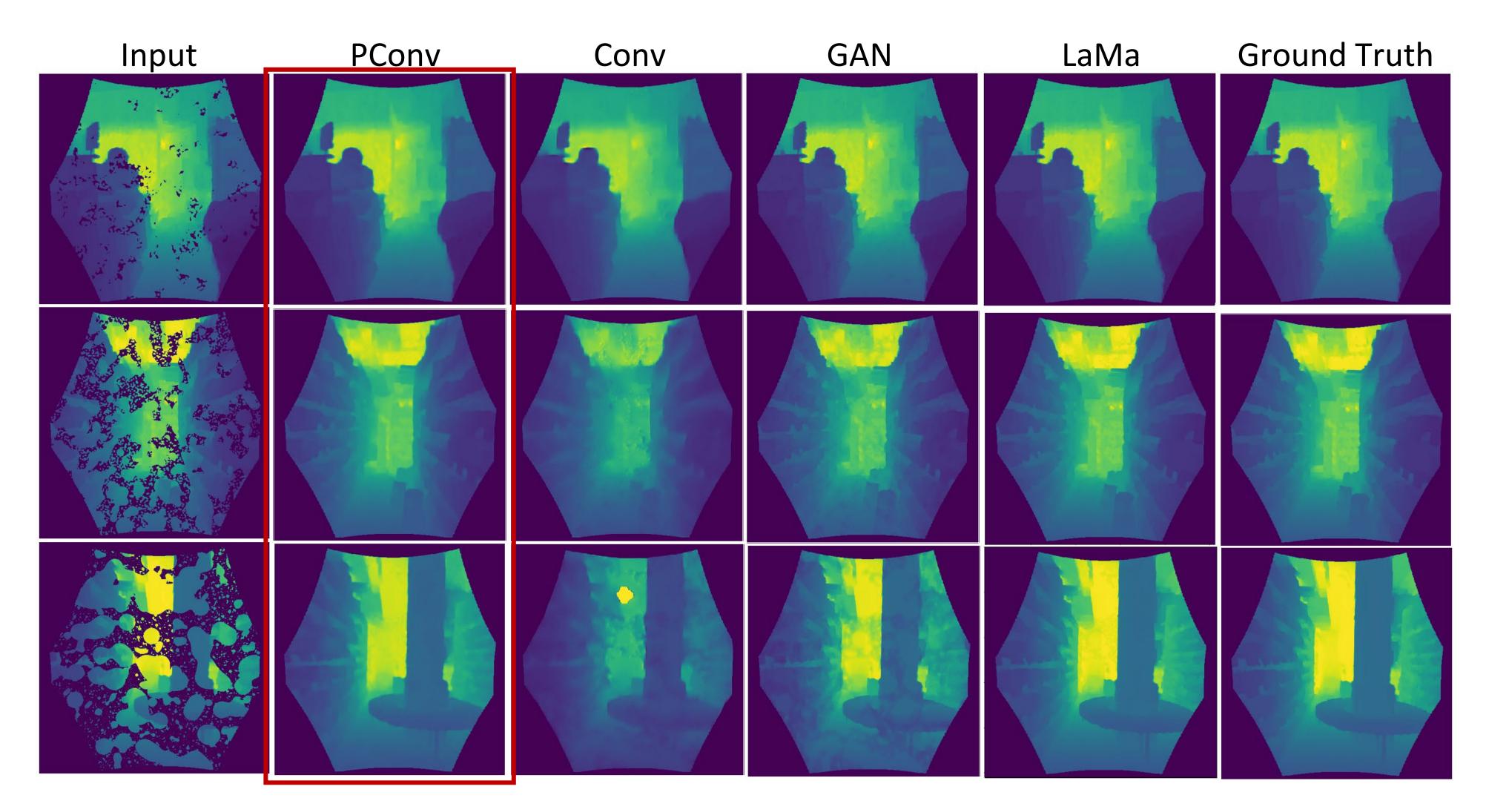
Overview

Details

Results

Conclusion

Results - Qualitative Comparision NYUV2



Lama perform best, PConv second best,

Motivation

Related Work

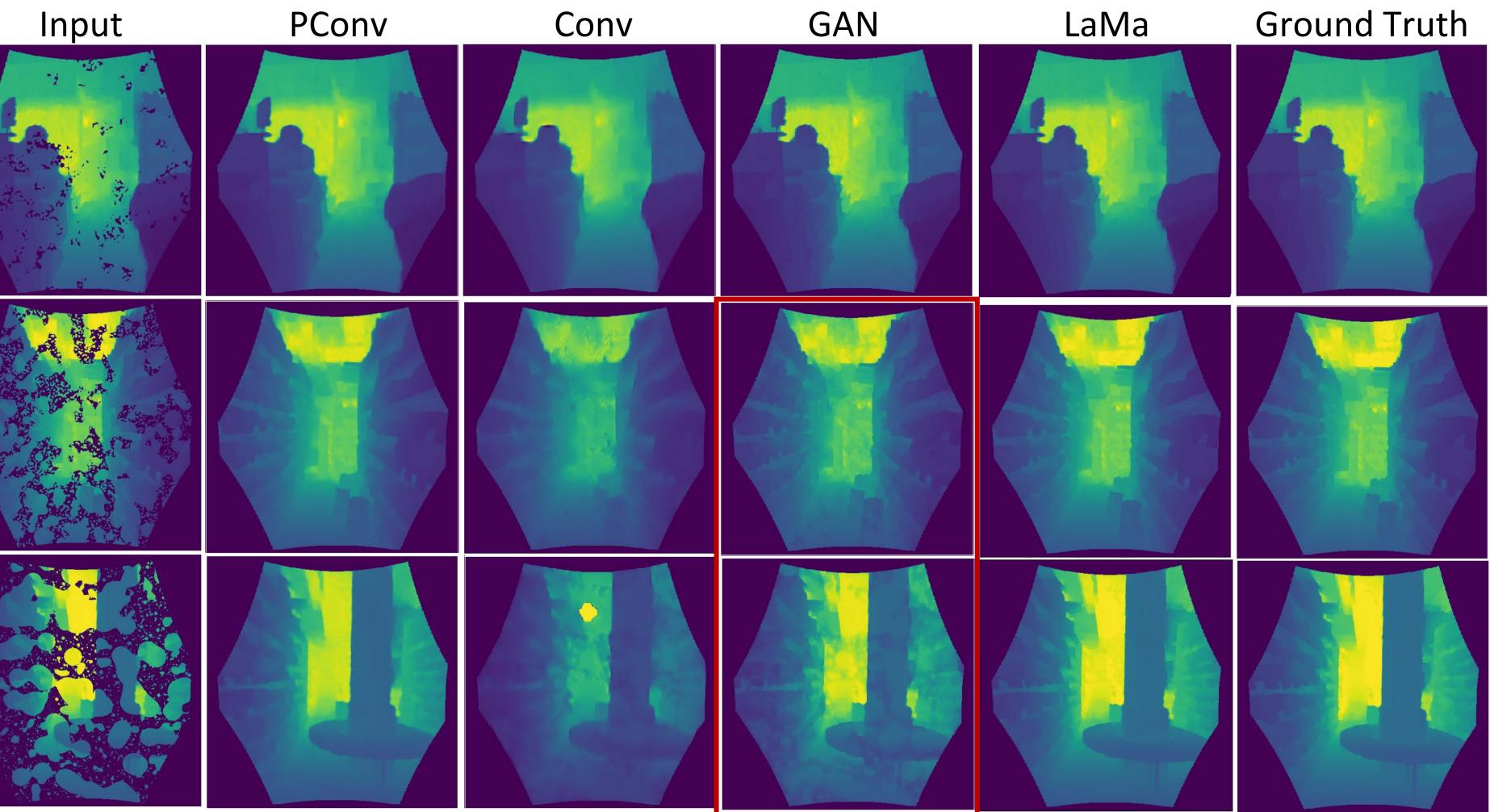
Overview

Details

Results

Conclusion

Results - Qualitative Comparision NYUV2



Lama perform best, PConv second best, GAN with issues on larger masks,

Motivation

Related Work

Overview

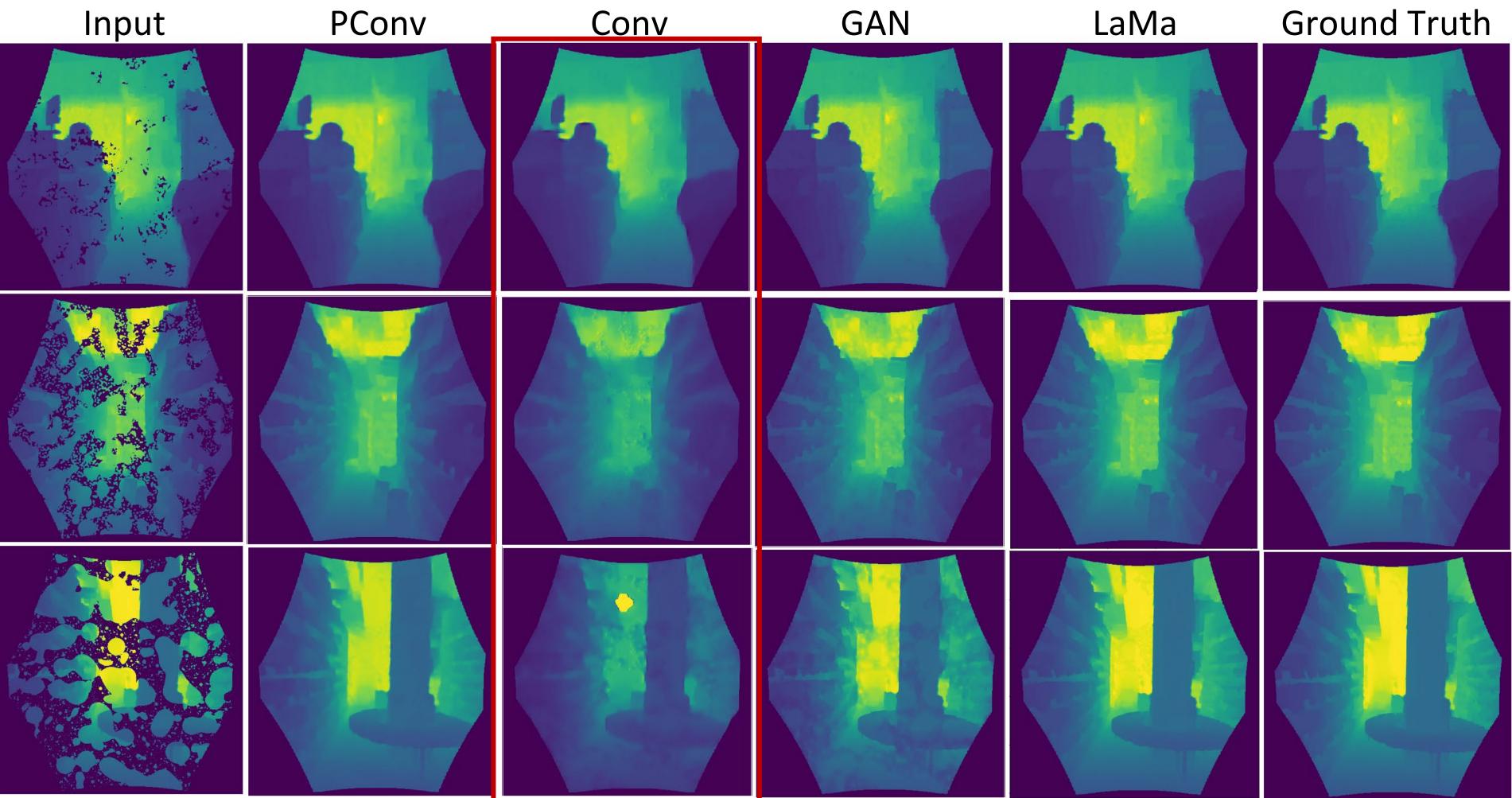
Details

Results

Conclusion

11

Results - Qualitative Comparision NYUV2



Lama perform best, PConv second best, GAN with issues on larger masks, Conv worst

Motivation

Related Work

Overview

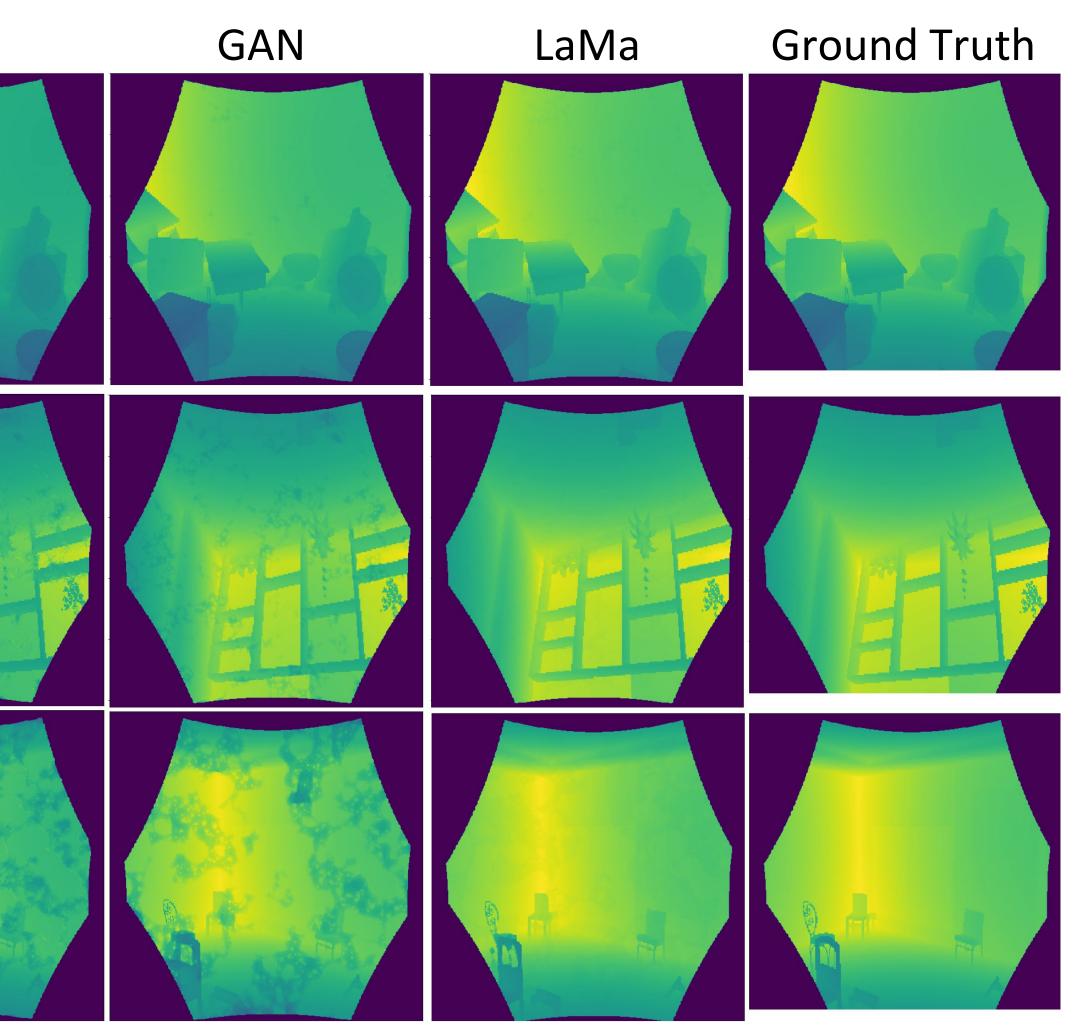
Details

Results

Conclusion

11

Input PConv Conv



Details

Results

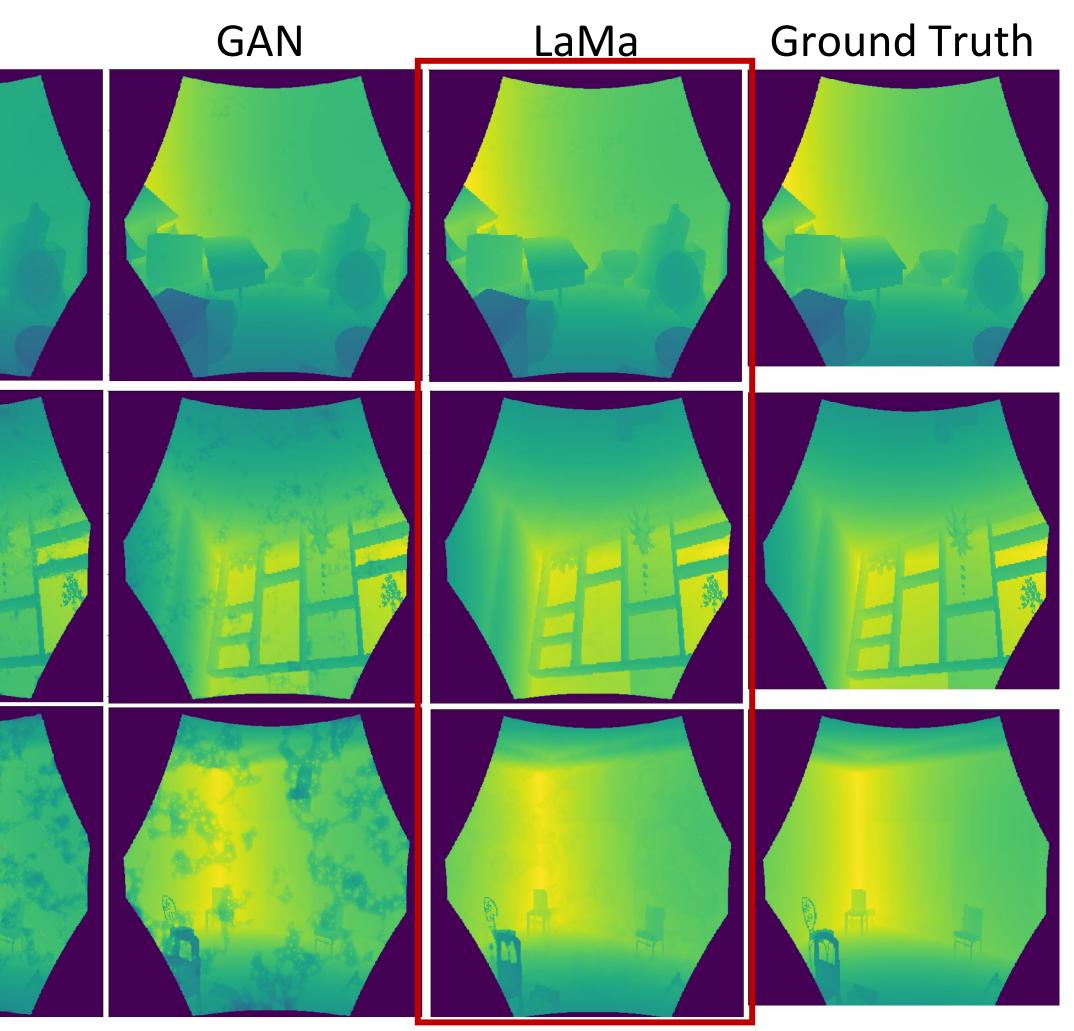
PConv Input Conv

LaMa best again,

Motivation

Related Work

Overview



Details

Results

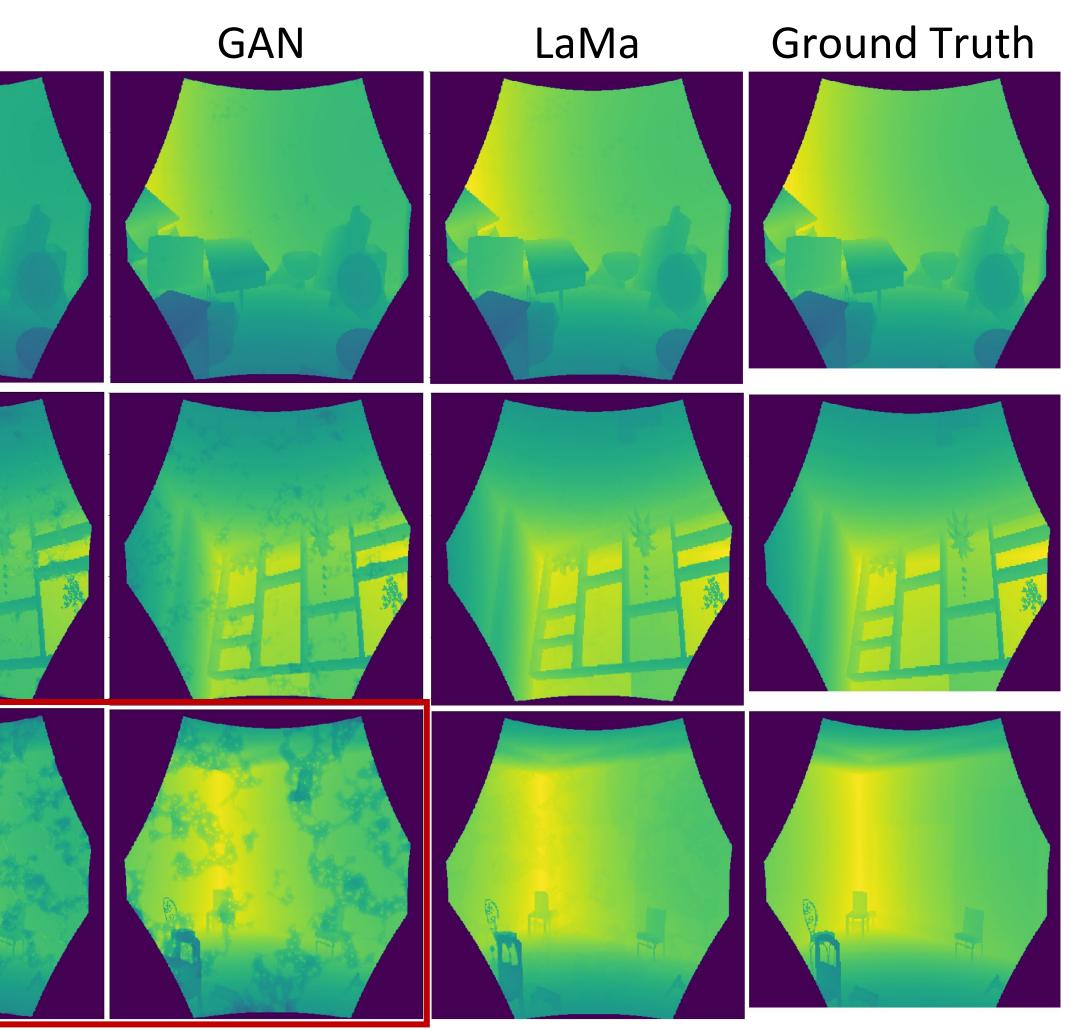
Input PConv Conv

LaMa best again, others artefacts,

Motivation

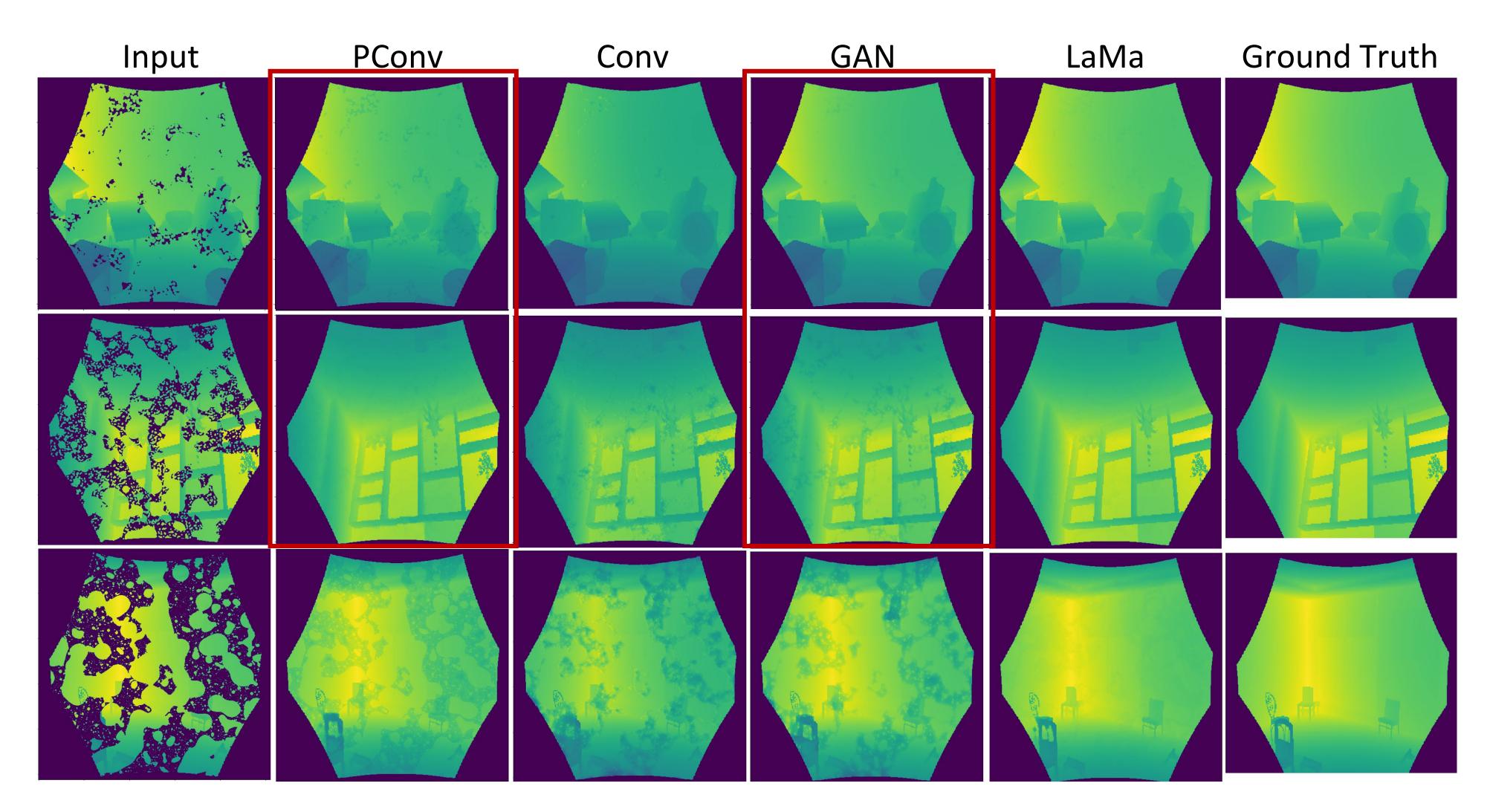
Related Work

Overview



Details

Results



LaMa best again, others artefacts, PConv/GAN ok in medium/small categories,

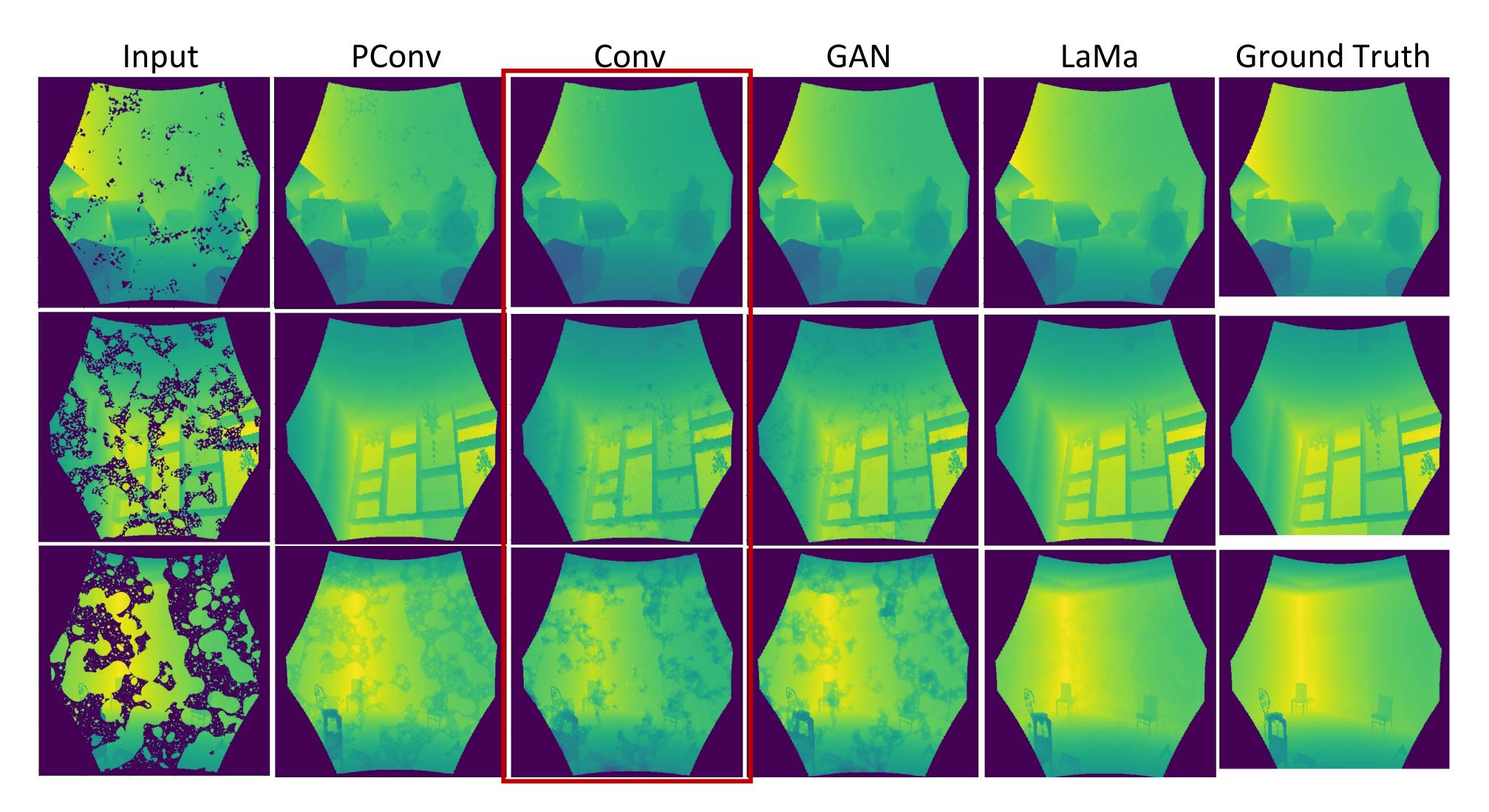
Motivation

Related Work

Overview

Details

Results



LaMa best again, others artefacts, PConv/GAN ok in medium/small categories, Conv worst again

Motivation

Related Work

Overview

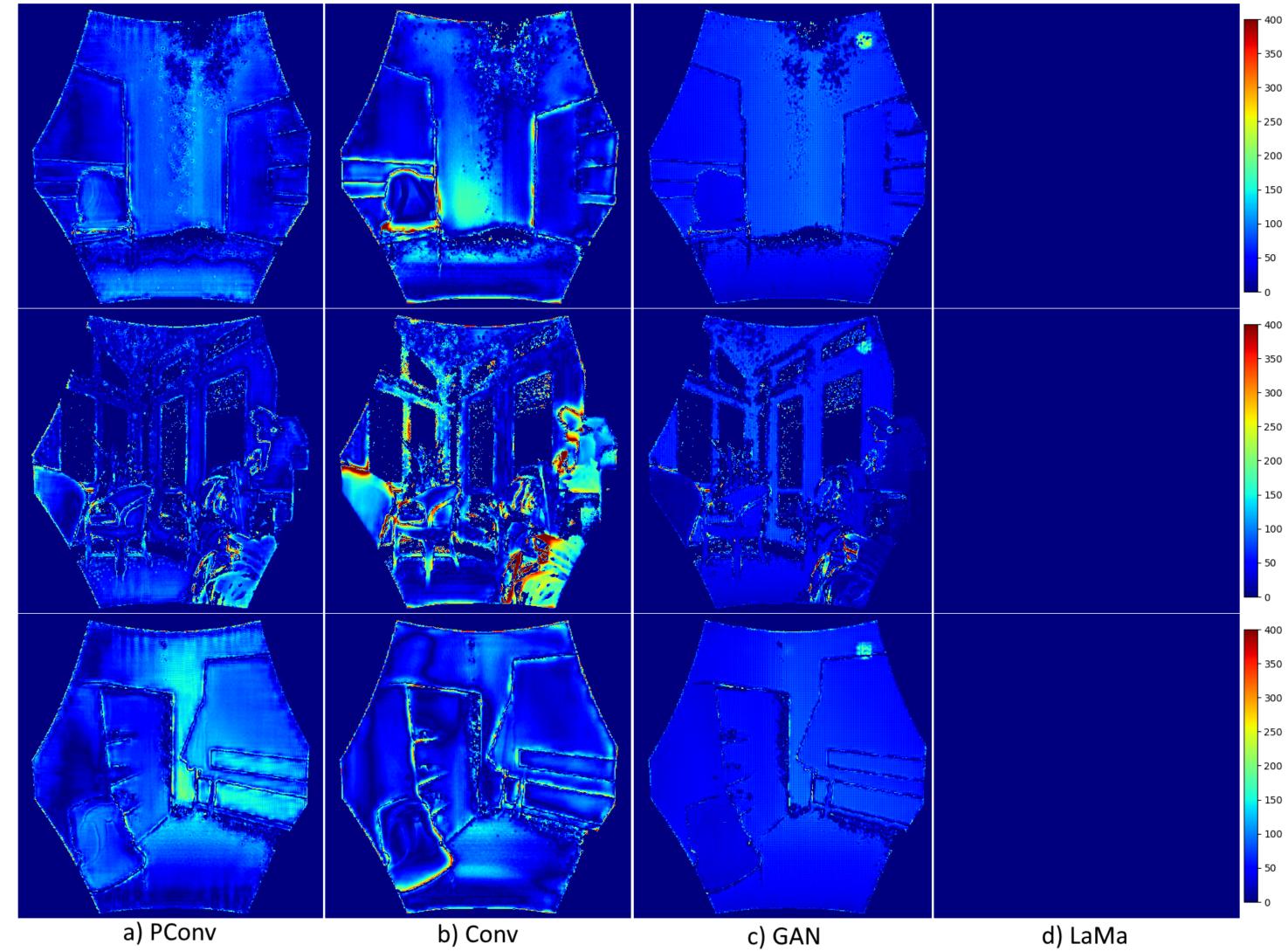
Details

Results

Bremen ŰŰ

Results - Qualitative Comparision Own dataset

Color-coded deltas of valid areas (less better)



Motivation

Related Work

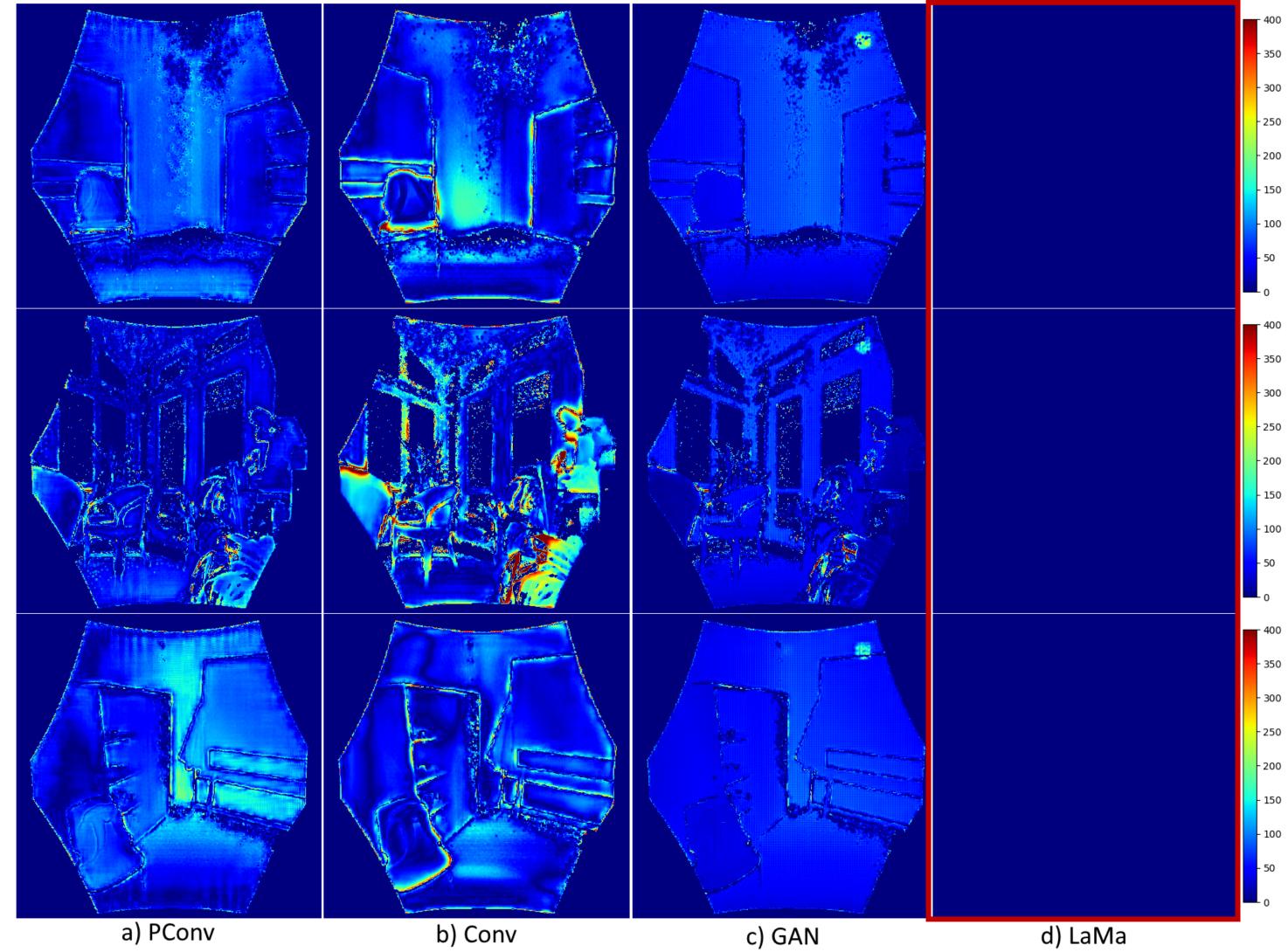
Overview

Details

Results

Color-coded deltas of valid areas (less better)

LaMa no deltas



Motivation

Related Work

Overview

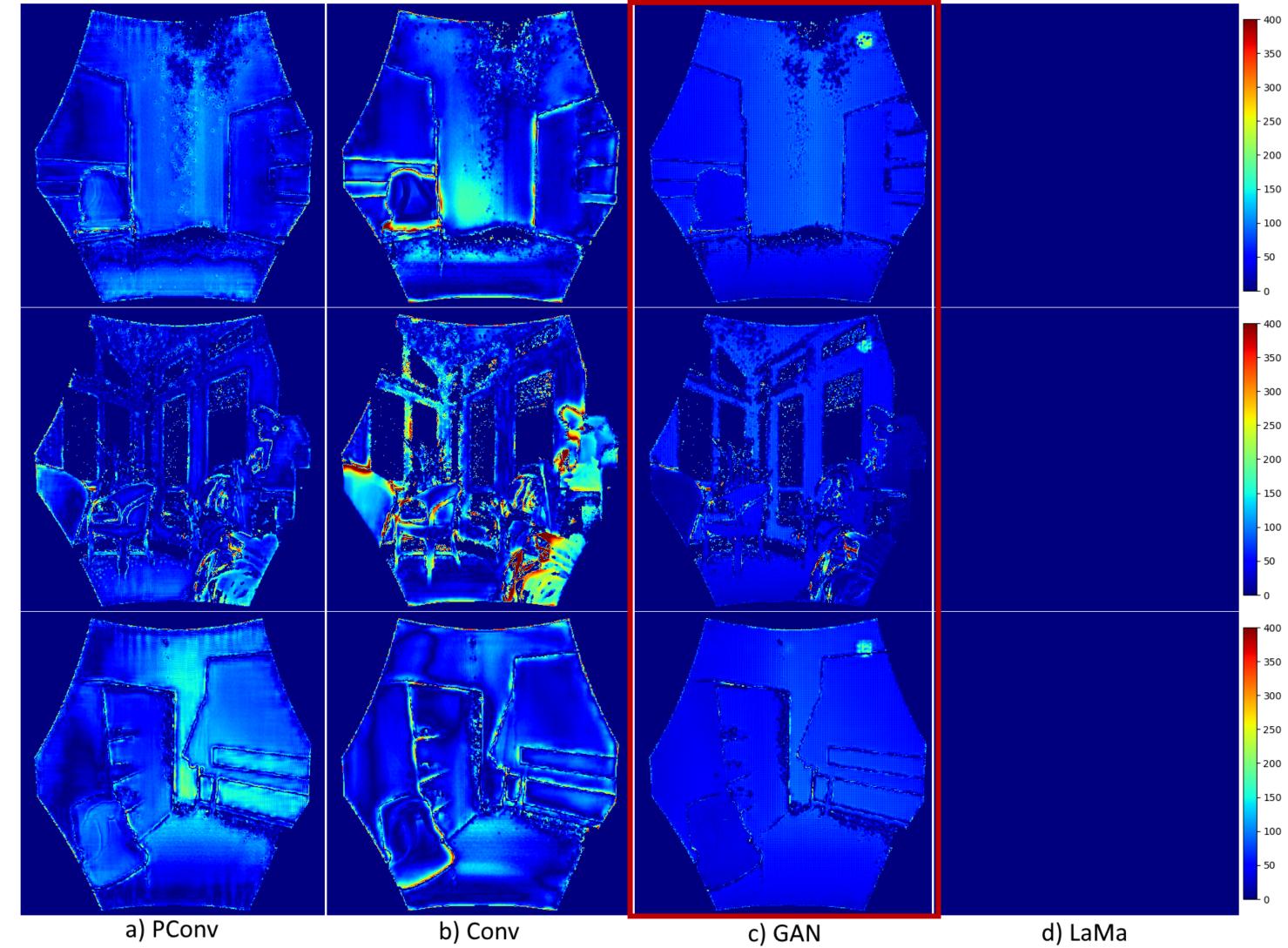
Details

Results

Color-coded deltas of valid areas (less better)

LaMa no deltas

GAN only small (apart top right)



Motivation

Related Work

Overview

Details

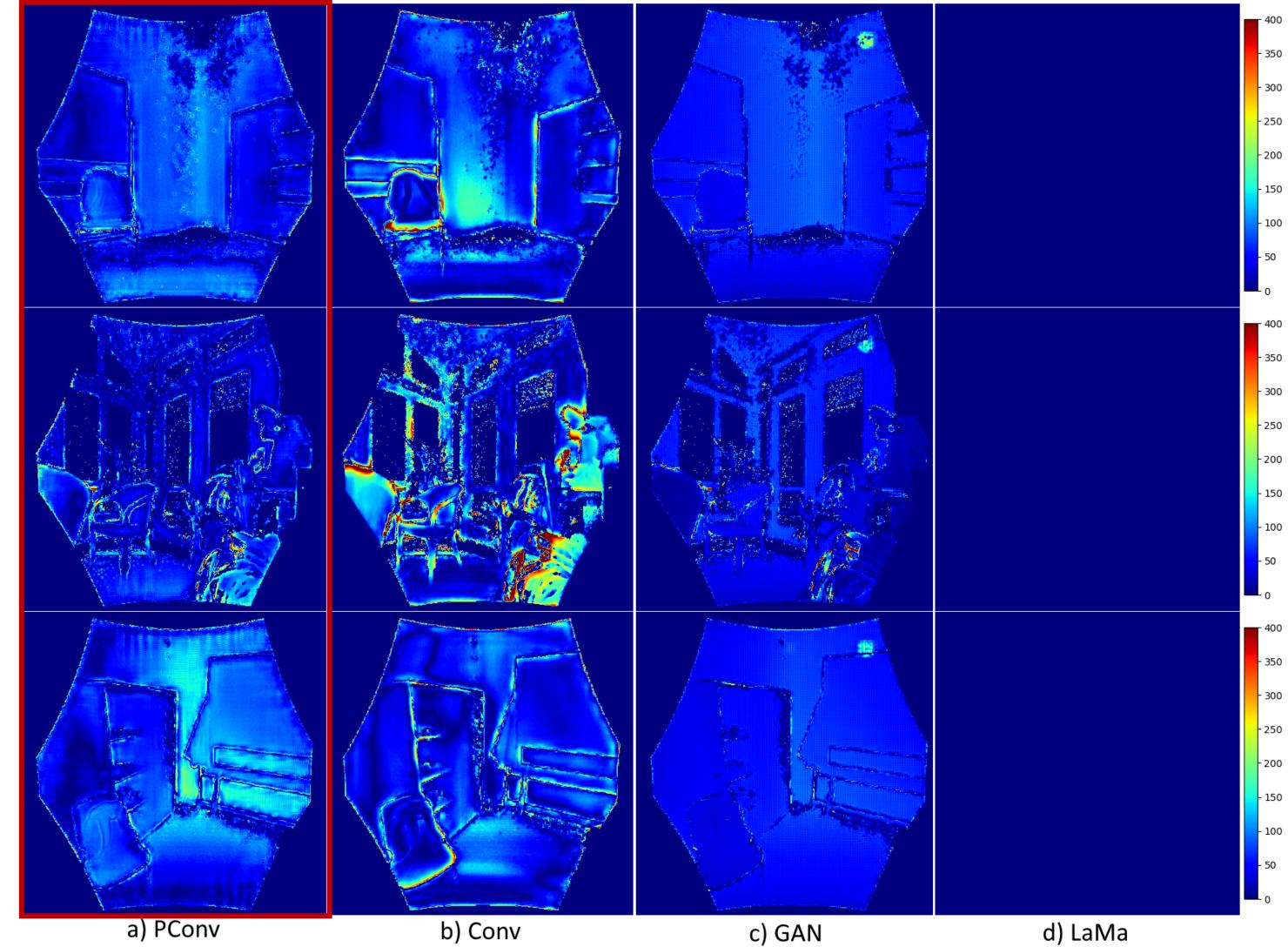
Results

Color-coded deltas of valid areas (less better)

LaMa no deltas

GAN only small (apart top right)

PConv medium



Related Work

Overview

Details

Results

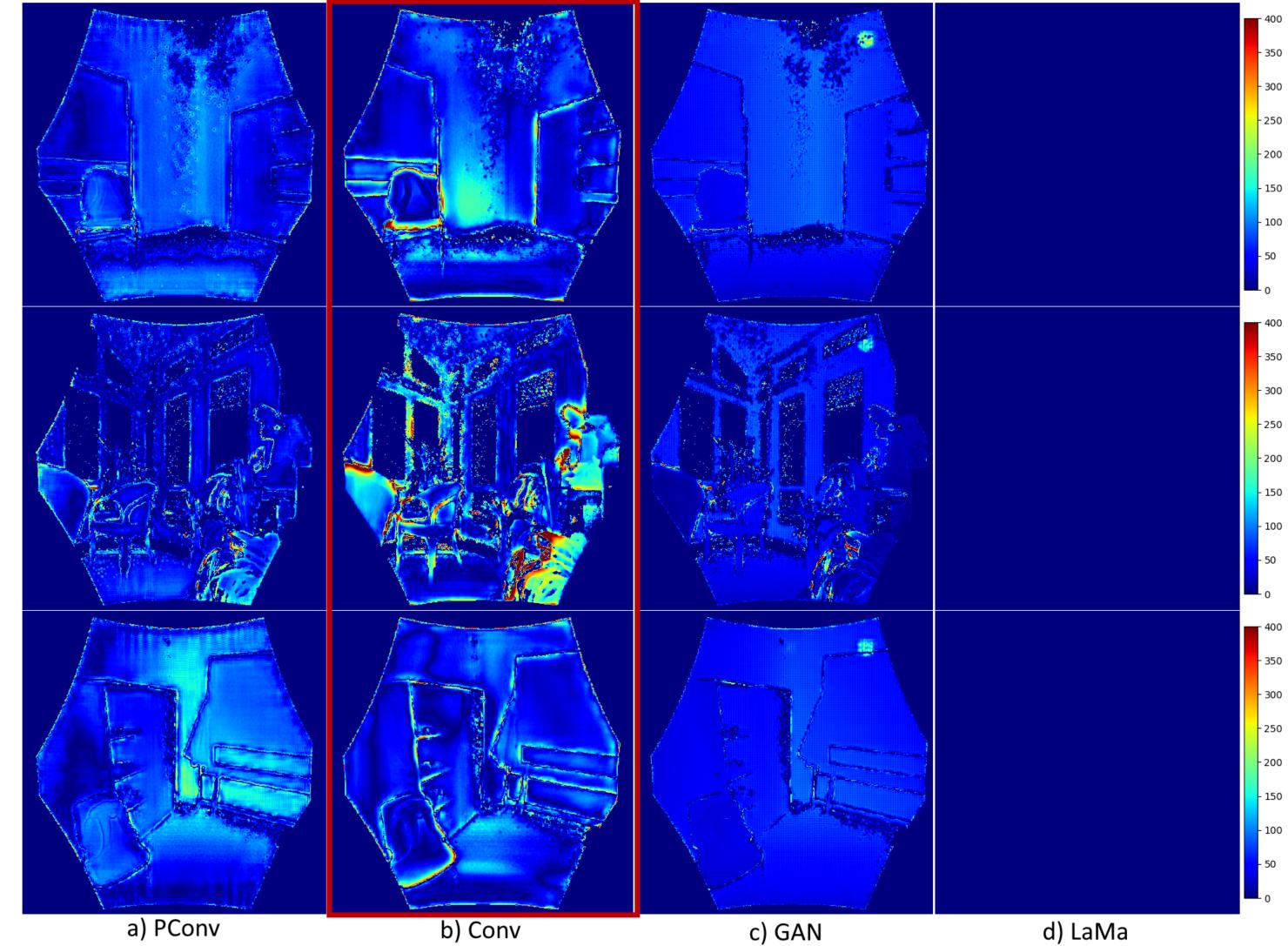
Color-coded deltas of valid areas (less better)

LaMa no deltas

GAN only small (apart top right)

PConv medium

Conv the highest



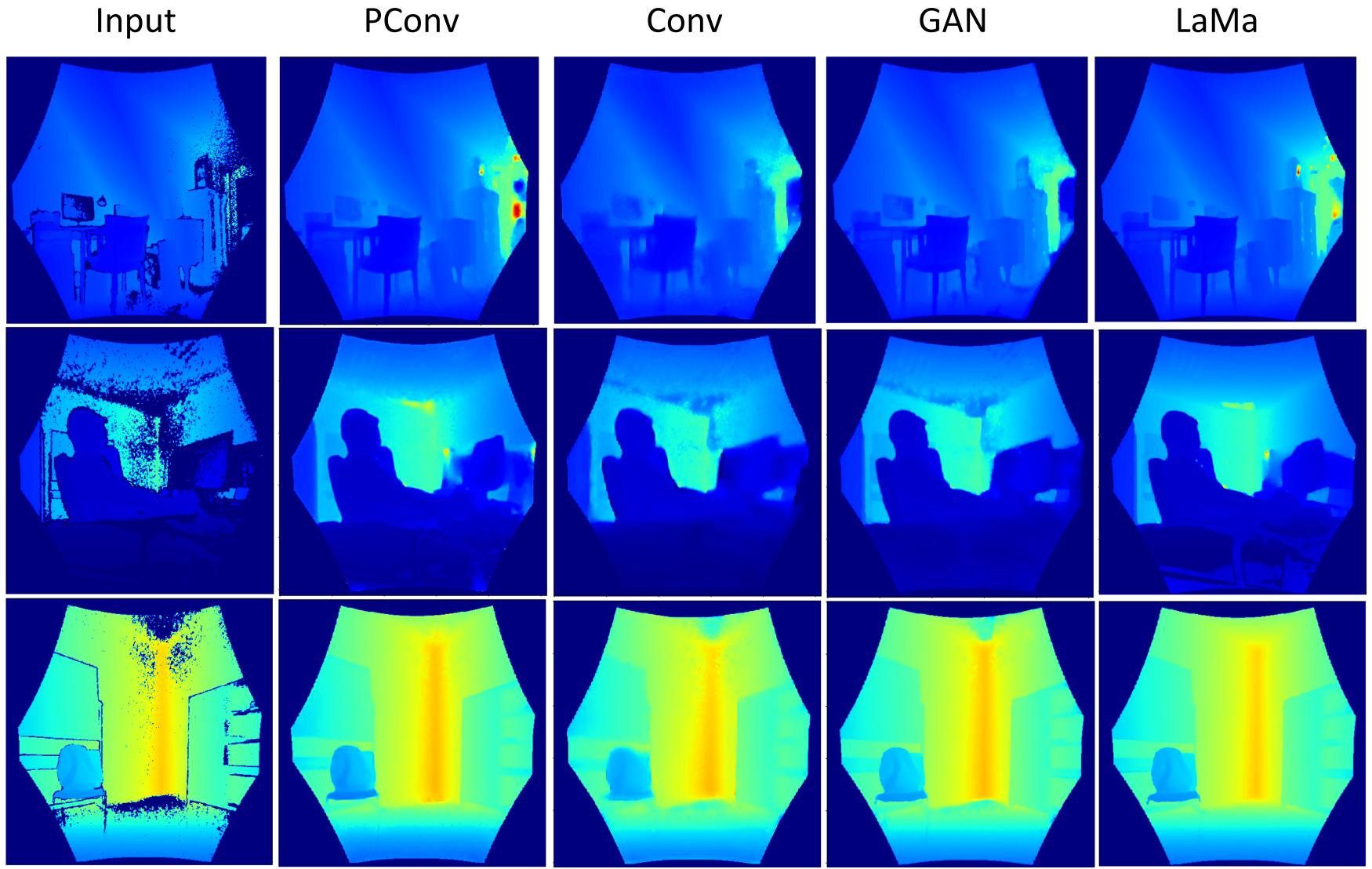
Motivation

Related Work

Overview

Details

Results



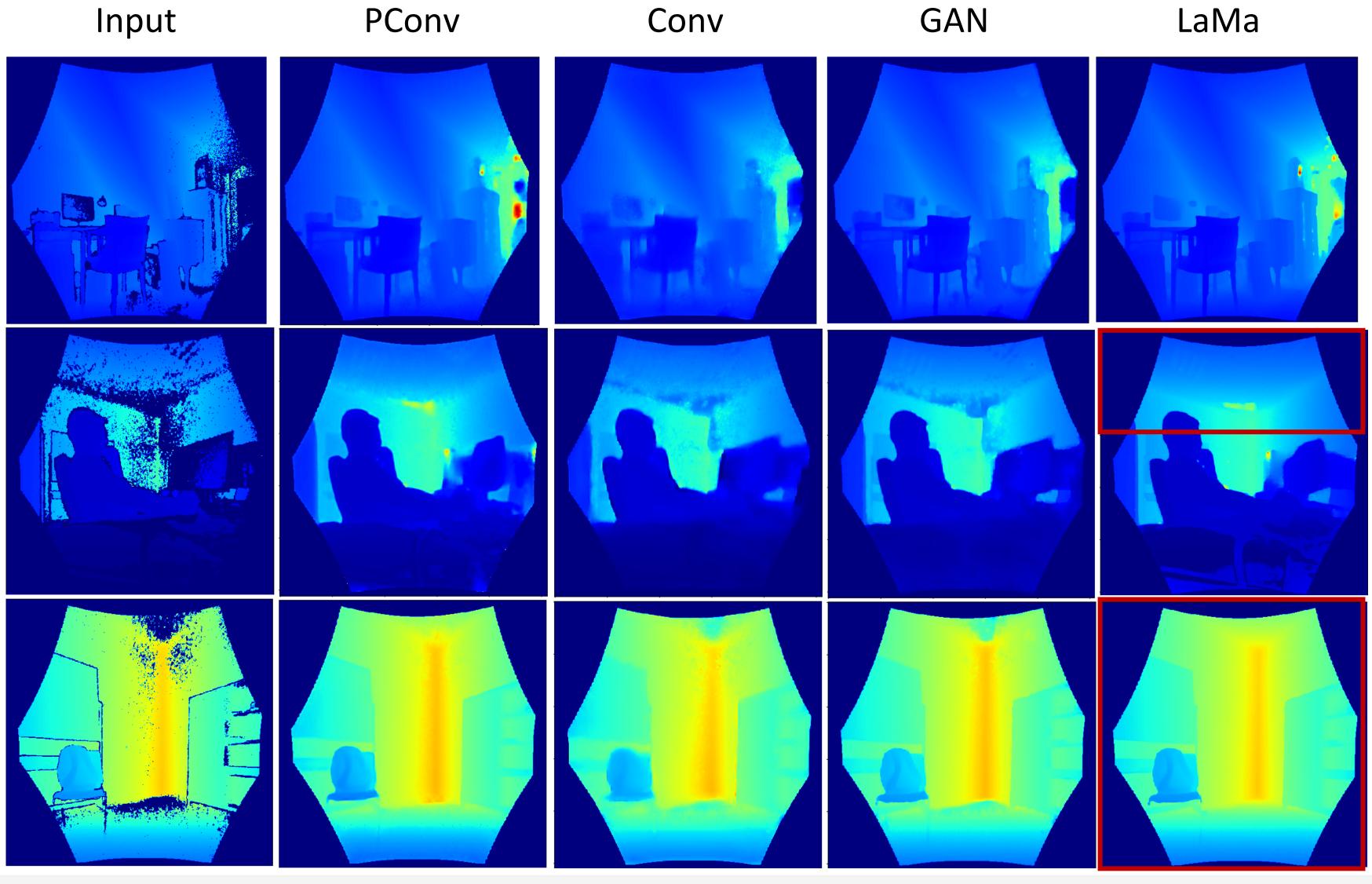
Motivation

Related Work

Overview

Details

Results



LaMa most often the best

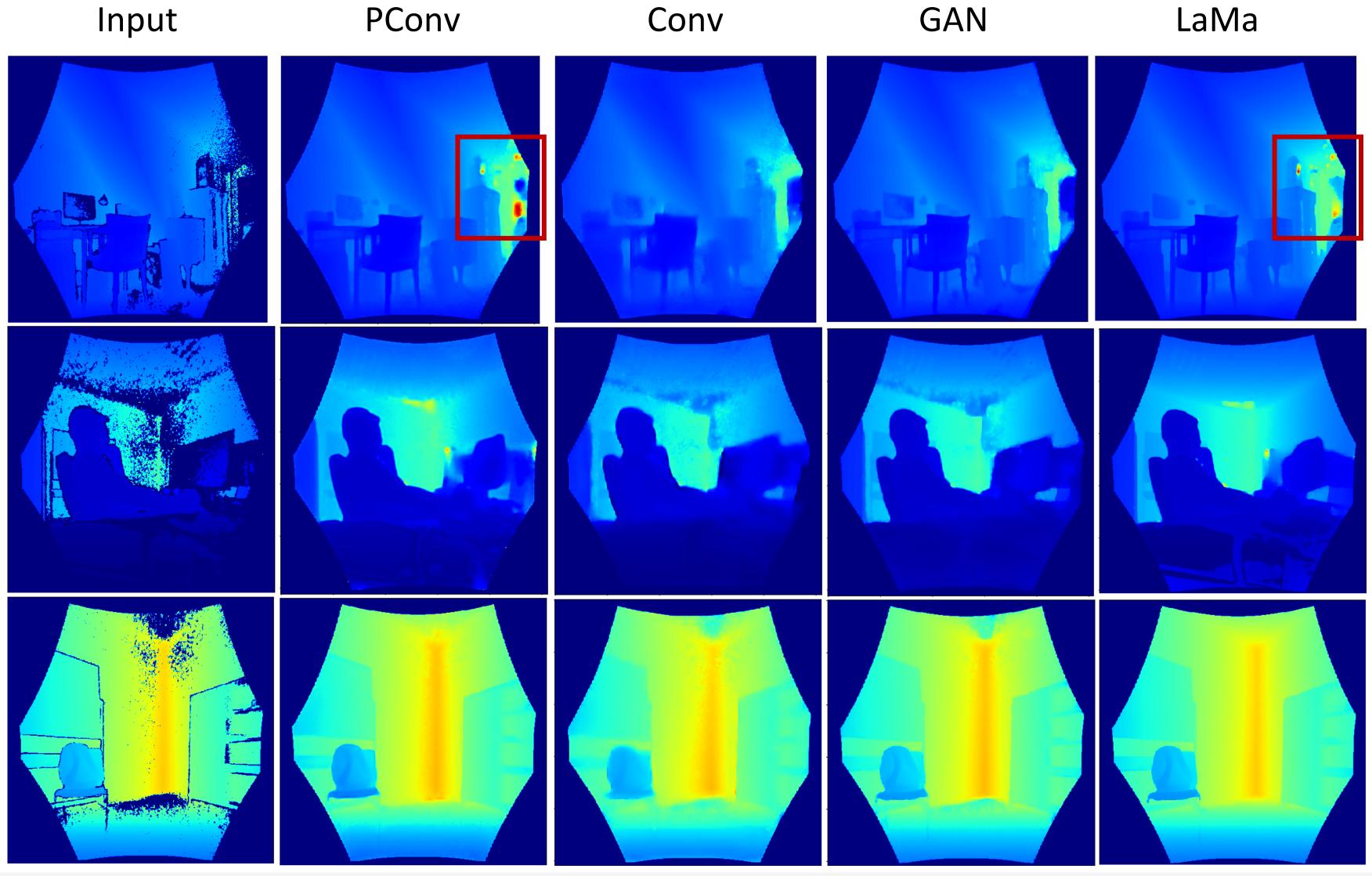
Motivation

Related Work

Overview

Details

Results



LaMa most often the best

PConv similar, both struggle with outliers

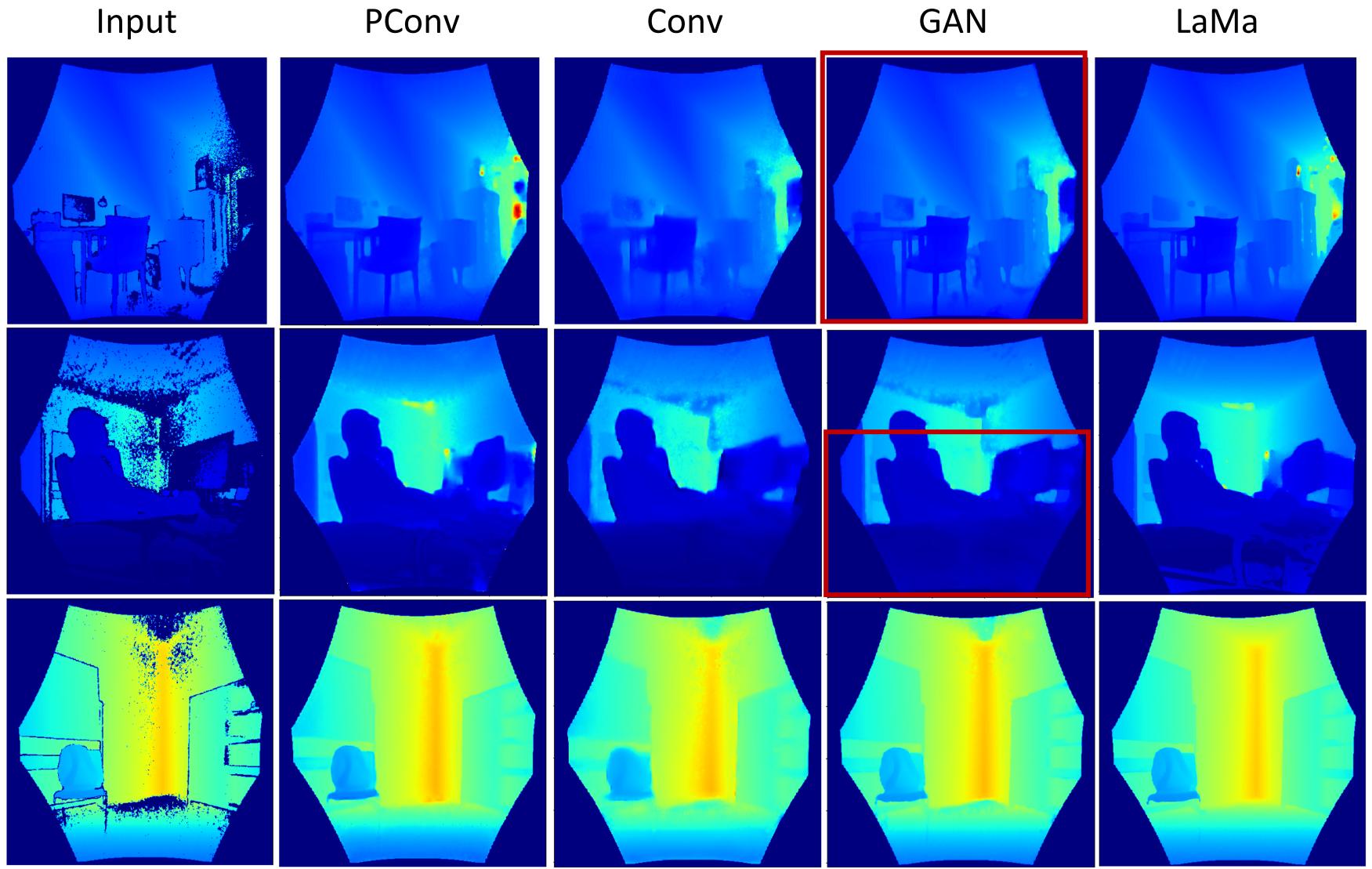
Motivation

Related Work

Overview

Details

Results



LaMa most often the best

PConv similar, both struggle with outliers

Sometimes GAN the best

Motivation

Related Work

Overview

Details

Results

Investigated depth image inpainting using deep learning

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance
- Trained on NYUV2 with synthetic holes

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance
- Trained on NYUV2 with synthetic holes
- All models reasonably good

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance
- Trained on NYUV2 with synthetic holes
- All models reasonably good
 - LaMa best but slow (60ms)

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance
- Trained on NYUV2 with synthetic holes
- All models reasonably good
 - LaMa best but slow (60ms)
 - Part. Conv. U-Net, GAN (small holes) good, real-time-capable

Details

Results

- Investigated depth image inpainting using deep learning
 - Real-time application
 - Without color guidance
- Trained on NYUV2 with synthetic holes
- All models reasonably good
 - LaMa best but slow (60ms)
 - Part. Conv. U-Net, GAN (small holes) good, real-time-capable
 - Highly scene-dependent

Details

Results

Incorporate RGB data as optional input

Details

Results

- Incorporate RGB data as optional input
- Investigate transformer models (real-time) (use temporal coherency)

Details

Results

- Incorporate RGB data as optional input
- Investigate transformer models (real-time) (use temporal coherency)
- Produce ground truth for Azure Kinect (couple with stereo cam?)

Details

Results

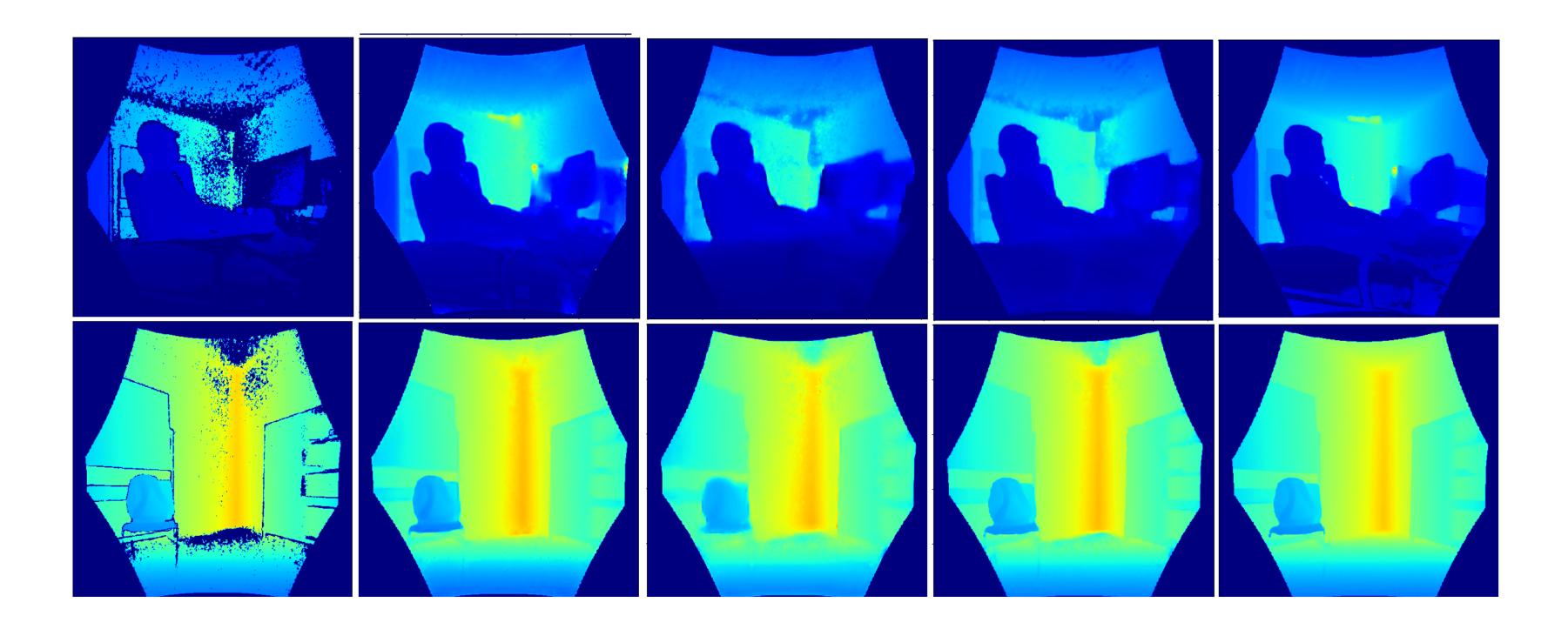
- Incorporate RGB data as optional input
- Investigate transformer models (real-time) (use temporal coherency)
- Produce ground truth for Azure Kinect (couple with stereo cam?)
- Produce accurate error model for Azure Kinect

Details

Results

- Incorporate RGB data as optional input
- Investigate transformer models (real-time) (use temporal coherency)
- Produce ground truth for Azure Kinect (couple with stereo cam?)
- Produce accurate error model for Azure Kinect
- Automatically switch model based on scene/holes

Thank you for your attention! Questions?



r.fischer@uni-bremen.de

