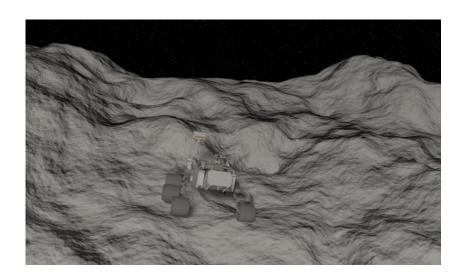
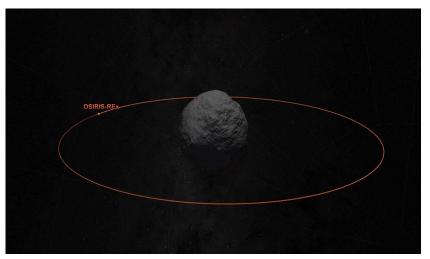


Procedural 3D Asteroid Surface Detail Synthesis

Xi Zhi Li, Rene Weller, Gabriel Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

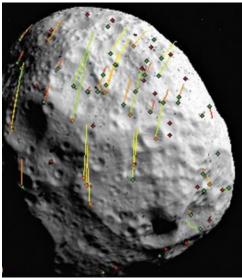
EGEV 2020, May 25-29, Sweden





Motivation

- Space mission simulation
 - Virtual testbed
 - Terrain-based navigation
 - Optic-based tracking & landing
 - Physical mock-ups testing
 - 3D Printing



[NASA 2019]

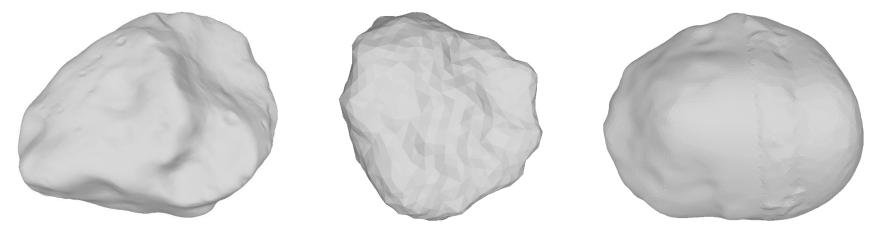
DFKI GmbH

[Martin 2014]

Motivation

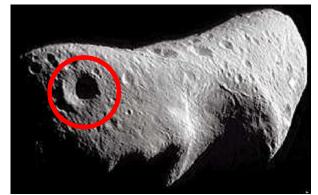
- Movies or Video Games
 - Diverse global shapes
 - Diverse surface details

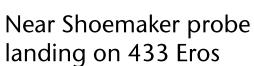
Space Sci-Fi Movies "Iron Sky"

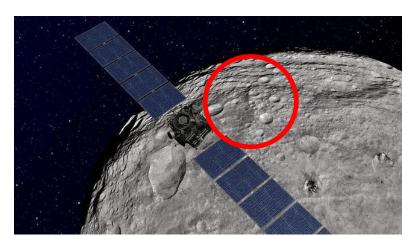

Game "No Man's Sky"

Challenge

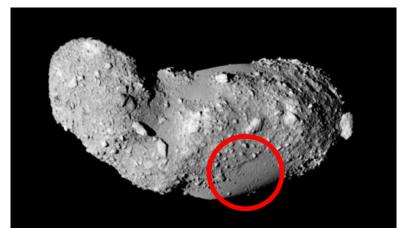
Low-poly models (Data From 3D Asteroid Catalog)


Realistic (lightcurve inversion, bi-static radar / telescope measurement)



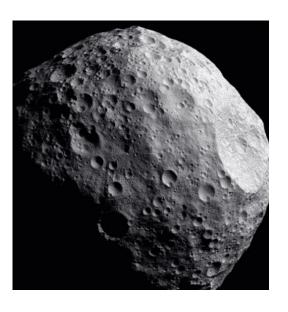


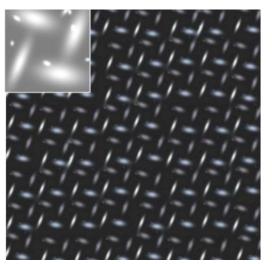
Challenge



Itokawa

- Realistic (lightcurve inversion, bi-static radar / telescope measurement)
- Diversity
 - Diverse terrain primitives
 - Spatial heterogeneity
- High-resolution model

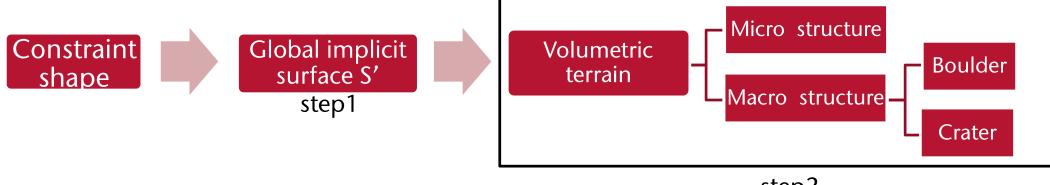




Previous Work

- Asteroid modeling [Martin 2014]
 - Subdivision surface
 - Integrating real crater height value into subdivision surface
- Texture synthesis by Locally Controlled Spot Noise(LCSN) [Pavie 2016]
 - Kernel shape transfer to texture

Approach


• Evaluate implicit surface F(p) for each grid point p

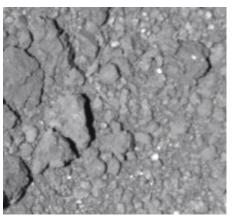
$$S = \left\{ p \in \mathbb{R}^3 \mid F(p) = T \right\}$$

- T is the isovalue of the implicit surface
- Pipeline
 - Step1: Metaball representation the global shape of asteroid M(p) [Li 2018]

$$S' = \{ p \in \mathbb{R}^3 \mid M(p) = T_0 \}$$

• Step2: Noise model represent the volumetric terrain on the global shape of asteroid N(p)

step2


Our contribution

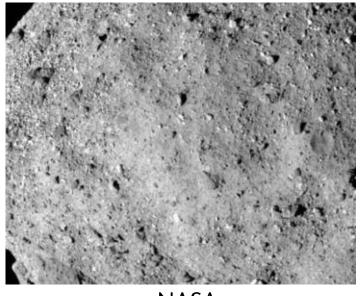
• 3D asteroid model F(p)

$$F(p) = Smooth_global_shape(p) + surface_details(p)$$

- Arbitrary resolution (compute for each point p in 3D space)
- A new noise model to generate diverse surfaces details on smooth global shape
 - Macro structures
 - Rocks, Craters

JAXA Hayabusa2

NASA

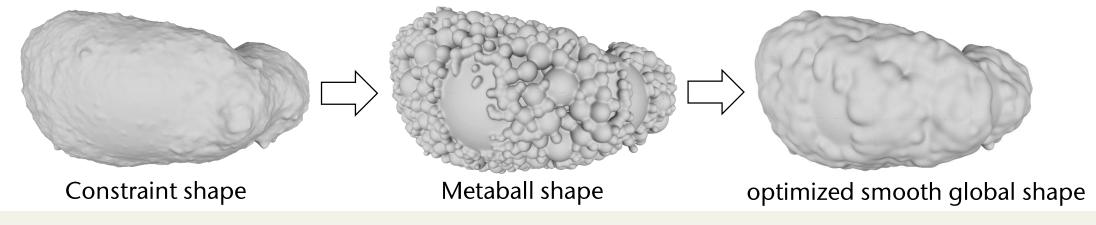

Our contribution

• 3D asteroid model F(p)

$$F(p) = Smooth_global_shape(p) + surface_details(p)$$

- Arbitrary resolution (compute for each point p in 3D space)
- A new noise model to generate diverse surfaces details on smooth global shape
 - Macro structures
 - Rocks, Craters
 - Micro structures
- Semi-automatic asteroid modeling
 - Intuitive manipulation

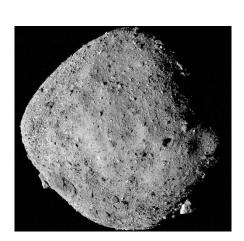
NASA



Recap Step 1: Metaball Global Shape Modelling

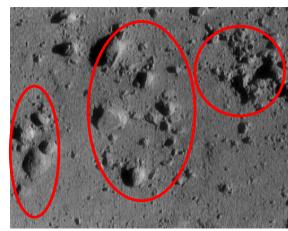
- Prototype surface (low-poly mesh)
- Metaballs define the isosurface (implicit surface S' with isovalue T_0) to approximate the prototype surface
 - Poly-disverse sphere packing(Sphere Packing [Weller 2010])
 - Micro-Gravity of irregular asteroid [Srinivas 2017]
 - Potential field
 - PSO (Particale Swarm Optimization [Samal 2007])
 - The histogram based comparision algorithm [Li 2017]

Step2: Noise Model Represent Volumetric Terrain


Impact cratering: the dominant geological process, most asteroids having heavily

cratered surfaces

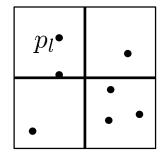
- Type1 crater: normal crater
 - impact on the bedrock
 - Bowl-shape interiors
- Type2 crater: volcanic-shape crater
 - impact on the dust surface
 - Volcanic-shape interiors
- Boulders
 - Local clustering distribution
- Surface details


Lutetia: Type1 Crater

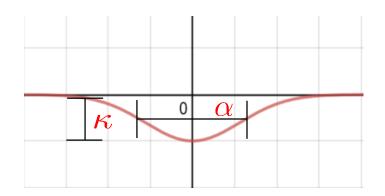
Bennu

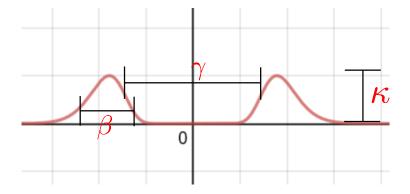
Lunar: Type2 Crater

NASA



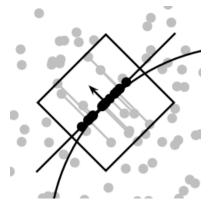
Step2: Macro Structure - LCSN

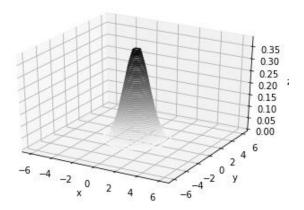


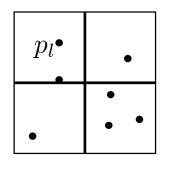

LCSN

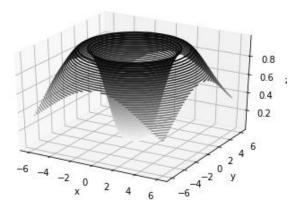
$$spot_noise(p) = \sum_{l=1}^{L} w_l (k_1(p - p_l) + k_2(p - p_l))$$

- Kernel shape (in flatland)
 - k1 $k_1(p) = -\kappa e^{-\alpha p^T p}$
 - k2 $k_2(p) = \kappa e^{-\beta (\log(\gamma p^T p))^2}$

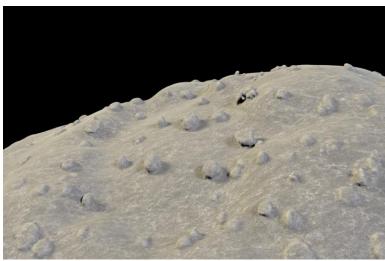

Step2: Macro Structure - LCSN

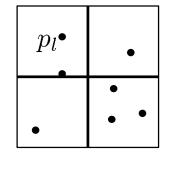


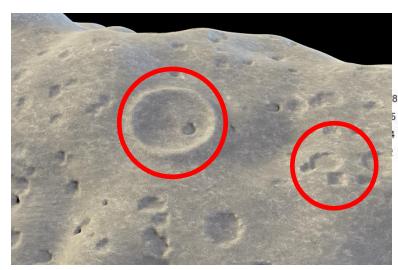

LCSN


$$spot_noise(p) = \sum_{l=1}^{L} w_l (k_1(p - p_l) + k_2(p - p_l))$$

- Kernel shape (in flatland)
 - k1 $k_1(p) = -\kappa e^{-\alpha p^T p}$
 - k2 $k_2(p) = \kappa e^{-\beta (\log(\gamma p^T p))^2}$
- Kernel shape (in 3D)
- Projection
- Result


Step2: Macro Structure - LCSN

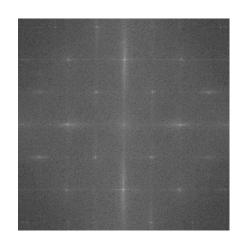

LCSN

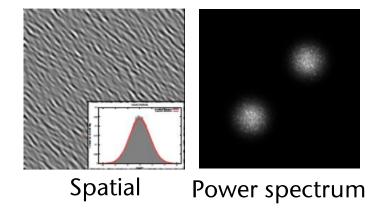

$$spot_noise(p) = \sum_{l=1}^{L} w_l (k_1(p - p_l) + k_2(p - p_l))$$

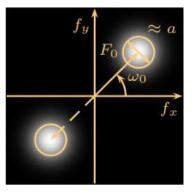
- Kernel shape (in flatland)
 - k1 $k_1(p) = -\kappa e^{-\alpha p^T p}$
 - k2 $k_2(p) = \kappa e^{-\beta (\log(\gamma p^T p))^2}$
- Kernel shape (in 3D)
- Projection
- Result

Boulders

Two types of crater


Step2: Micro Structure – Recap GNBE


Gabor noise & Gabor kernel [Lagae 2009]


Gabor_noise =
$$\sum_{i} w_{i}g(x - x_{i}, y - y_{i})$$

 $g(x, y) = Ke^{-\pi a^{2}(x^{2} + y^{2})} \cos [2\pi F_{0}(x\cos w_{0} + y\sin w_{0})]$

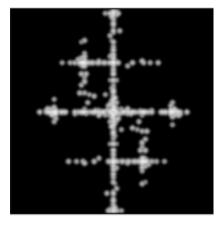
- GNBE
 - Robust Parameter Estimation

Gabor kernel Power spectrum


Step2: Micro Structure - GNBE

Our GNBE

$$\sum_{q=1}^{Q} gabor_noise_q(p) = \sum_{q=1}^{Q} \sum_{b}^{B} \frac{1}{\sqrt{\lambda_b}} \sum_{i} \frac{1}{\sqrt{P_{b,i}}} g(p - p_i)$$


b sparseness

Power spectrum

b = 5

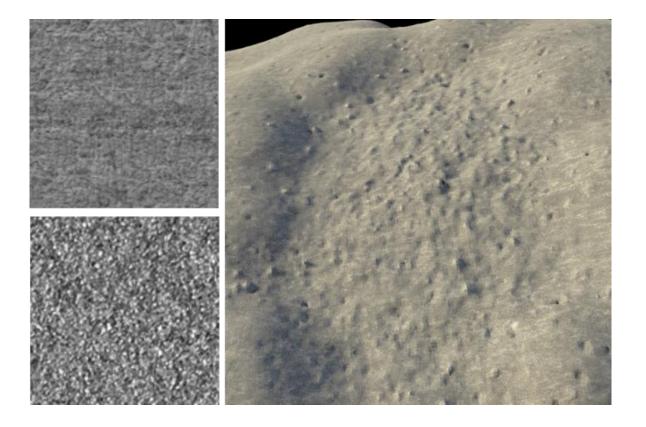
$$b = 7$$

Step2: Micro Structure - GNBE

Our GNBE

$$\sum_{q=1}^{Q} gabor_noise_q(p) = \sum_{q=1}^{Q} \sum_{b=1}^{B} \frac{1}{\sqrt{\lambda_b}} \sum_{i} \frac{1}{\sqrt{P_{b,i}}} g(p - p_i)$$

- b sparseness
- Pixel position p → 3D space point
 - Gray value into height value


Step2: Micro Structure - GNBE

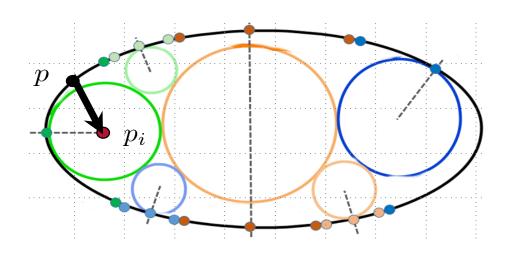
Our GNBE

$$\sum_{q=1}^{Q} gabor_noise_q(p) = \sum_{q=1}^{Q} \sum_{b}^{B} \frac{1}{\sqrt{\lambda_b}} \sum_{i} \frac{1}{\sqrt{P_{b,i}}} g(p - p_i)$$

- b sparseness
- Pixel position p → 3D space point
 - Gray value into height value
- Q layers

Step2: Modelling Spatial Heterogeneity

• Noise model $n_i(p)$

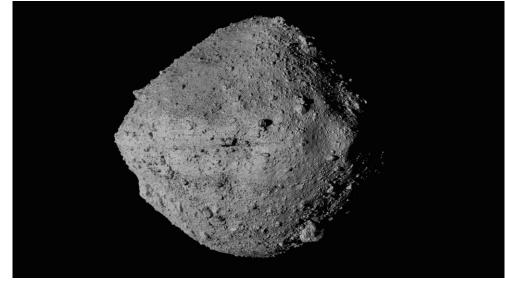

$$n_i(p) = \sum_{j=1}^{J} spot_noise_j(p) + \sum_{k=1}^{K} gabor_noise_k(p)$$

- Each point p overlapping several layers of terrain primitives
- Spatial heterogeneity
 - Weight the noise model
 - Inverse distance weight

$$dist(p_i - p) = atan(\frac{1}{p_i - p})$$

• Volumetric Terrain N(p)

$$N(p) = \sum_{i=1}^{I} dist(p_i - p)n_i(p)$$



Result

"Bennu" Real 3D Model [NASA 2020]

Synthesized Bennu look-alike

Synthesized Result

Itokawa

Eros

Motivation Conclusion Approach Results

Conclusion & Future work

- Major contributions:
 - Improve the traditional 2D procedural texture into 3D implicit terrain
 - A new noise model to generate Macro & Micro terrain structures
 - Fully implicit representation
 - Each point compute in parallel
- Limitations:
 - Macro structures synthesized by a group of specially designed equations
- Future work
 - More naturalness & More scene
 - Integrated with physically-based noise such as flow noise and curl noise
 - Faster
 - Accelerate the computation of gabor noise [Tavernier 2019]

Thank you

