
SIGGRAPH 2008
Class Notes: Don’t be a WIMP
(http://www.not-for-wimps.org)

Johannes Behr1

Fraunofer IGD
Germany

Dirk Reiners2

University of Louisiana at Lafayette
USA

October 6, 2008

1johannes.behr@igd.fraunhofer.de
2dirk@lite3d.com

Class Description

Virtual and augmented reality have been around for a long time, but for most people they are movie
fantasies. Very few people outside a few research labs have worked with or experienced these
systems for themselves. On the other hand, interactive 3D graphics applications are ubiquitous,
mostly in the form of games. More and more people are working in animation and games, creating
models and programs for interactive 3D applications on standard monitors.

The goal of this class is to demonstrate that the leap to actual immersive or augmented environ-
ments is not as big as you might think. It explains how high-powered 3D graphics cards, mainstream
applications of stereoscopic displays in 3D TV and movies, and webcams that achieve TV-quality
images have significantly lowered the barriers to entry. And how, in combination with those hardware
advances, freely available software based on open standards like X3D provides all the tools you need
to access the elusive world of virtual and augmented reality applications. Following a summary of
the basic principles of stereo displays, tracking systems and post-WIMP interaction metaphors, the
main part of the course is a practical introduction to creating and running your own interactive and
immersive applications.

Prerequisites

Basic knowledge of computer graphics. Understanding of what polygons, lights, and cameras are.
Helpful but not required: graphics programming or 3D animation experience. This class is intended
for attendees who are interested in interactive 3D graphics and might want to move beyond the WIMP
(Window, Icon, Menu, Pointer) environment.

Instructors

Johannes Behr, Fraunhofer IGD, Germany

Johannes Behr leads the VR group at the Fraunhofer Institut für Graphische Datenverarbeitung in
Darmstadt, Germany. His areas of interest focus on virtual reality, computer graphics and 3D inter-
action techniques. Most of the results of his recent work are available as part of the InstantReality
Framework. He has an MS from the University of Wolverhampton and received his PhD from the
Technische Universität Darmstadt.

Dirk Reiners, University of Louisiana at Lafayette, US

Dirk Reiners is a faculty member in the Center for Advanced Computer Studies (CACS) at the Uni-
versity of Louisiana at Lafayette. His research interests are in interactive 3D graphics and software
systems to make building 3D applications easier. He has an MS and a PhD from the Technical
Technische Universität Darmstadt and is the project lead for the OpenSG Open Source scenegraph.

1

Contents

1 Introduction 5
1.1 What is VR/AR . 5
1.2 Building VR/AR Applications . 6

2 X3D as a Basic Technolgy 7
2.1 Utilizing X3D for VR/AR Development . 7
2.2 Related Work . 8
2.3 Hello world in X3D . 8

2.3.1 What we need . 9
2.3.2 How we do it . 9

2.3.2.1 Understanding the code . 9
2.3.3 Show the words . 9

2.4 Creating X3D Applications . 10
2.4.1 Relation to X3D . 10
2.4.2 X3D Sources to read . 10
2.4.3 X3D Conformance . 10
2.4.4 Growing number of Nodes and Components 10
2.4.5 Mimetypes and encodings . 11

2.5 Get your engine right . 12
2.5.1 Scene . 12
2.5.2 Engine . 12
2.5.3 ContextSetup . 12
2.5.4 The Scene node in classic encoding . 14

3 MultipleViews and Stereo 16
3.1 Rendering . 16
3.2 Stereo Basics . 17

3.2.1 Depth perception of human eyes . 17
3.2.1.1 Monocular depth perception . 17
3.2.1.2 Binocular depth perception . 17

3.2.2 Depth generation in VR . 18
3.2.3 Eye separation . 19

3.3 Multiple Windows and Views . 21
3.3.1 Engine configuration . 21
3.3.2 Multiple view areas . 22
3.3.3 Multiple windows . 23

3.4 Active Stereo . 24
3.4.1 Hardware . 24
3.4.2 Stereo modifier . 24
3.4.3 Quad Buffer Stereo . 25

3.5 Passive Stereo . 26
3.5.1 Stereo modifier . 27
3.5.2 Stereo by overlapping view areas . 27
3.5.3 Stereo by separate view areas . 28

2

4 Interaction and Devices 31
4.1 Interaction . 31

4.1.1 Low-Level Sensors . 31
4.1.2 High-Level Sensors . 33

4.2 Input/Output streams . 34
4.2.1 Introduction . 34
4.2.2 IOSensor basics . 34
4.2.3 Implicit Service definition . 34
4.2.4 Explicit Service definitions . 34

4.2.4.1 Parameter of Services . 35
4.2.4.2 IO Slots of Services . 35

4.2.5 Conclusion . 35
4.3 Connecting Devices . 36

4.3.1 Introduction . 36
4.3.2 Finding your slots . 36

4.3.2.1 Connect your device to the local machine 36
4.3.2.2 Start the correct Device-handler . 37
4.3.2.3 Get a list of all out-slots . 38

4.3.3 Use the information to start an IOSensor . 38
4.3.4 Conclusion . 42

4.4 Space-Mouse/Navigator/Pilot Device . 42
4.4.1 Introduction . 42
4.4.2 Start the correct device Handler . 42

4.4.2.1 USB Device on Windows . 43
4.4.2.2 USB Device on OSX . 43
4.4.2.3 Serial-Device on all Systems . 44

4.4.3 Controlling the Application . 45
4.5 Navigator . 45

4.5.1 Introduction . 45
4.5.2 Getting the data - the IOSensor . 45
4.5.3 Moving around - the Navigator3D . 45

4.6 Immersive PointingSensor Interaction . 47
4.6.1 Desktop based interaction . 47
4.6.2 Fully immersive interaction . 47

4.7 Vision Marker Tracking . 49
4.7.1 Introduction . 49
4.7.2 IOSensor . 49

4.8 Vision Tracking Device . 51
4.8.1 Introduction . 51
4.8.2 Tracking in General . 51
4.8.3 The Example . 51
4.8.4 Modifications . 54

4.8.4.1 VideoSource . 54
4.8.4.2 Marker . 55

4.9 Apple Sudden Motion Sensor . 56
4.9.1 Introduction . 56
4.9.2 Shaking . 56
4.9.3 Tilt . 56

4.10 Serial Communication . 57
4.10.1 Introduction . 57
4.10.2 Setting up the serial port . 57
4.10.3 Sending Data to the Serial Port . 58
4.10.4 Receiving Data from the Serial Port . 58
4.10.5 Example Scene . 58

3

5 Clustering 61
5.1 Cluster Basics and Load Balancing . 61

5.1.1 Topologies . 61
5.1.2 Load balancing . 62

5.1.2.1 Image space balancing (Sort-First) 62
5.1.2.2 Geometry based balancing (Sort-Last) 63

5.1.3 Network configuration . 64
5.1.4 InstantPlayer and InstantCluster . 64
5.1.5 Technical Details . 64

5.2 CAVE cluster . 64
5.2.1 Aspects of a CAVE . 64
5.2.2 Assumptions . 65
5.2.3 Setting up the views . 65
5.2.4 Load balancing . 71
5.2.5 Head tracking . 71

5.3 Single display cluster . 73
5.3.1 Single Display cluster . 73

5.4 Multiple display cluster . 74
5.4.1 Multi display cluster . 74

5.4.1.1 Different concepts . 74
5.4.1.2 Using ClusterWindow . 75
5.4.1.3 Using TiledClusterWindow . 75

5.4.2 Load balancing . 77
5.4.3 Multi display stereo configuration . 77

6 Scripting 80
6.1 Scripting: Java . 80

6.1.1 Introduction . 80
6.1.2 Setting up the Scene and the Script . 80

6.1.2.1 Setting up a Java Class . 80
6.1.2.2 Getting Values from the Scene . 81
6.1.2.3 Writing back Values to the Scene . 81

7 Animation 83
7.1 Followers . 83

7.1.1 Introduction . 83
7.1.2 PositionChaser3D . 83

7.2 Steering behaviour basics . 84
7.2.1 What are steering behaviours? . 84
7.2.2 The steering sytem . 85
7.2.3 Adding vehicles . 85

7.2.3.1 Parameterizing the vehicle . 85
7.2.4 Adding behaviours to the vehicles . 86
7.2.5 Updating the vehicles . 86
7.2.6 I don’t see anything!? . 87
7.2.7 Moving some boxes . 87
7.2.8 Debugging vehicles and behaviours . 87

7.2.8.1 Vehicle’s outputOnly fields . 87
7.3 Humanoid animation . 87

7.3.1 Overview . 88
7.3.2 Animation . 88
7.3.3 Morphing . 92

8 Conclusion 94

4

Chapter 1

Introduction

This document contains additional material and tutorials to support and simplify different aspects of
he VR/AR application development process. It’s not about basic visualisation or tracking methods but
about building applications based on available results, standards and systems. The target audience
are people interested in using the technology rather than developing it.

1.1 What is VR/AR

We give some basic definitions for VR/AR but these are very limited and defining this topics is not the
goal of the course, partially because even though the topics have been around for a long time there
is no commonly agreed definition. The goal of the course is to give people the ability to start building
interactive, immersive applications. Basic definitions of AR and VR can be found in the literature
([47, 53, 34, 30]) or online ([55, 56]).

Most of the literature defines some basic elements which are critical but variable for all VR/AR
applications:

Virtual Content The content of the medium defines the virtual world. This imaginary space, man-
ifested through a medium, defining any collection or number of objects in a space and the
relations and rules in the corresponding simulation.

Immersion Being mentally and physically immersive are important criteria for VR applications. Whereby
physical immersion is a defining characteristic of virtual reality and mental immersion is proba-
bly the goal of most media creators. Therefore it is important that there is a synthetic stimulus
of the body’s senses via the use of technology. This does not imply all senses or that the entire
body is immersed/engulfed. Most systems focus on vision and sound. Some include touch and
haptics, generally known as force feedback. Other senses are much harder to stimulate by a
computer and are only touched in very few research environments.

Sensory feedback Sensory feadback is an ingredient essential to virtual reality. The VR system
provides direct sensory feedback to the participants based on their physical position. In most
cases it is the visual sense that receives the most feedback, as it is also the sense that brings
most of the information from the environment into the human system anyway.

Interactivity For VR to seem authentic, it must respond to user actions, namely, be interactive. The
system must produce sensory feedbacks according to the user action. Most systems give
visual feedback with an updaterate from at least 30 times per second. More is desirable, and
immersion gets lost when the time lag between user actions and sensable reactions exceeds
100 ms.

There is not a single interaction and navigation method or device that would define VR nor AR.
There is no Window, Icon, Menu, 2D-Pointer defining a single methoper but every application de-
signer is free to choose whatever is most attractive or appropriate for the current set of goals. This
gives the developer on the one hand a lot of freedom but on the other hand asks for a new set of
development tools, standards and methods.

5

1.2 Building VR/AR Applications

Early Virtual Reality (VR) applications where mainly focusing on "virtual prototypes", "ergonomic
evaluation", "assembly-disassembly" and "design review". The automotive industry was one of the
driving forces of Virtual and Augmented Reality and today this technology is used in many application
areas. The automotive industry learned how to use VR successfully, saving time and costs by building
and evaluating virtual prototypes. But in fact, only large companies could take advantage of virtual
reality, because of the high initial hardware and software costs. Consequently small companies were
not using VR/AR and also for many application domains, using VR/AR was not profitable.

Things have changed significantly, and today the initial costs of the main expense factors, the
computer graphics hardware and projection systems, are at least an order of magnitude lower than
5-10 years ago. Nearly every modern PC is equipped with a 3D-graphics card (e.g. nvidia Geforce,
ATI Radeon), which is able to deliver graphics performance easily outperforming the high end graph-
ics systems from last decade (e.g. Silicon Graphics Onyx systems), which were built to run VR/AR
applications. Furthermore VR/AR systems have evolved a lot: Abstract device management is com-
monplace today, there are some well accepted base technologies, e.g. X3D, and the introduction
of component models offer great flexibility, allowing application designers to tackle a wide variety of
application domains with a single software system (all-purpose), including Augmented Reality (AR)
based applications.

6

Chapter 2

X3D as a Basic Technolgy

There is no standard method or tool for VR/AR application development. This course material and
tutorials are based on X3D as one of the few widely accepted industry standards in the field and the
InstantReality framework, because it is freely available and supports the wide variety of applications
and technologies that are covered in this course.

2.1 Utilizing X3D for VR/AR Development

The InstantReality toolkit (IR) [16, 11] is an open/free environment for VR/AR applications developed
at the Institute for Computer Graphics (IGD) in Darmstadt, Germany, which utilizes the X3D ISO
standard as application description language.

One of the main reasons for starting the project was the ever present need for a faster and more
efficient application development and teaching tool. Therefore, the goal was to define abstractions
for interaction and behaviour descriptions, which work well for VR and AR applications but which is
also suitable for beginnes

Like most traditional toolkits, IR uses a scene-graph to organize the data, for spatial as well
as logical relations. In addition to the scene description, a VR/AR application needs to deal with
dynamic behaviour of objects, and the user interaction via the available input devices. The major
drawback of traditional VR/AR-toolkits is the fact that the application developer has to implement
a controller to handle all aspects of both behaviour and interaction for most applications anew. To
overcome this drawback, modern component design models providing techniques like connection
oriented programming [51] were employed for IR. The basic idea is that the system should provide
a component-framework which allows the user to load and wire different components to fulfill the
widest possible variety of different application requests.

Instead of designing another application model, we adopted the basic idears of the X3D ISO
standard [24].

The X3D node is not just a static graph-element but defines a state, state-changes, and in-
put/output slots for every node. Application development is done by instantiating and wiring nodes,
which are provided by the system.

The use of X3D as an application programming language leads to a number of advantages over
a proprietary language:

• It is integral to an efficient development cycle to have access to simple yet powerful scene
development tools. With X3D, the application developer can use a wide range of systems for
modelling, optimizing and converting, as the X3D standard is supported by most major modelc
reation tools.

• The interface is well defined by a company-independent ISO standard.

• Due to platform independence, development and testing can even be done on standard desktop
computers.

• X3D and the used scripting language based on the widely used ECMAScript (aka JavaScript)
are much easier to learn and teach than the low level interfaces often provided by traditional
VR/AR toolkits.

7

• There is a growing number of CAD and simulation packages which export static and dynamic
X3D worlds.

• There is a great number of books and tutorials available.

From an application developer’s point of view, the IR runtime environment acts and feels very
much like a web-client based browser.

However, since our goal was not to build another X3D web client but a full feature VR environment,
the system includes some additional aspects not found in traditional X3D clients:

• The X3D specification includes only high level sensors. The X3D sensors recognize that “the
user” has touched or turned some part of the world but do not define how a specific input
device or user action has to be handled. The X3D specification of high level sensors has to
be reinterpreted for immersive environments. Additionally, the system must provide low level
sensors that stream data (e.g. stream of float values) from the real to the virtual world and vice
versa.

• The system utilizes the concept of nodes and routes not only for the scene itself but also for
the browser configuration and any other dynamic aspect. Every dynamic component (e.g. Job,
Window) in IR is a node with fields, communicating with slots living in a specific namespace
and hierarchy. The namespace type defines the use and the types of nodes that can live in the
namespace. The route mechanism not only defines the communication channels directly, but
also the thread paths used to parallelize the system execution indirectly.

• The VRML standard allows the developer to create prototypes with behaviour scripting in Java
or JavaScript/ECMAScript. In order to achieve maximum performance, we need the ability to
extend the node pool with native C++ implementations and fetch these nodes without recom-
piling or linking the toolkit.

• We should provide standard interfaces (e.g. HTTP, SOAP) so that other software packages (e.g.
simulation packages) can utilize IR just like a visualisation and interaction service provider.

We tried to address these different requirements in the design and development of the IR system
and present and discuss some of our results in this paper.

2.2 Related Work

These days, there are very few immersive VR applications which are really built from scratch, just
using a hardware abstraction library for graphics (e.g. OpenGL [46]) and sound (e.g. OpenAL [38]).
Most systems utilize at least a scene graph library like OpenSG [43], OpenSceneGraph [39], Per-
former [45] or Inventor [50].

Most VR frameworks include abstractions for input devices and multi-screen and stereo setups
[21, 32, 33]. But there are only very few, which really provide abstractions for behaviour and ani-
mation description [25, 57]. However, there are some VR Systems which even provide connection
oriented programming techniques as part of the application development model: the Avocado [52]
and Lightning [23] systems are VR systems using the concepts of routes for internode communica-
tion to define the behaviour graph, but are not related to VRML or X3D. Both systems are based on
the Performer [45] library and define a scene-graph behaviour graph, which is very closely related to
the Performer rendering system. The OpenWorld [27] system is a VRML based development sys-
tem, which also provides support for stereo views, but is not a full feature VR-System with various
abstractions for input and output systems.

Stiles et al. [49] adapted VRML for immersive use and was especially concerned about sensor
and viewpoint handling in immersive environments. Our work on low level and high level sensors is
partly based on his results.

2.3 Hello world in X3D

This section shows you how to create a “Hello world!” in X3D

8

2.3.1 What we need

This section will show you how to write the famous “Hello world!” program in X3D. All you need is a
text-editor and a X3D-browser like the IR viewer.

2.3.2 How we do it

First start up the text-editor and enter the following code:

<?xml version="1.0" encoding="UTF-8"?>

<X3D profile='Immersive'>

<Scene>

</Scene>

</X3D>

Save the file and call it simple.x3d
Sweet! You just created the most simplest X3D world possible - an empty one. You can check

that it is empty by opening it with your favourite X3D browser and watch if the browser gives any
warnings. If he does consult the browser documentation if it supports the X3D XML encoding - some
browser might only support the X3D Classic VRML encoding.

2.3.2.1 Understanding the code

Let’s have a look at the code:

<?xml version="1.0" encoding="UTF-8"?>

This is the XML file declaration and it’s used for easy identification. The file declaration should be
present in every valid XML file so just copy-and-paste it there.

The file declaration is followed by the X3D document root element which specifies a profile :

<X3D profile='Immersive'>

A complete overview of the profiles concept can be found in the X3D specification . Simply put
it tells the browser which kind of nodes the world uses so that the browser can check if he supports
the profile (and the nodes associated to that profile). The Immersive profile used here is targeted at
“implementing immersive virtual worlds with complete navigational and environmental sensor control”

Next comes the empty Scene element:

<Scene></Scene>

In the following we will put some text into our scene.

2.3.3 Show the words

What is missing in our world is the content. Since we want the two words “Hello world!” in fully blown
3D we add the following Text element to the Scene so that the code now looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<X3D profile='Immersive'>

<Scene>

<Shape>

<Text string="Hello world!" />

</Shape>

</Scene>

</X3D>

We added a Shape which contains a Text geometry - and that’s it! Save the file to helloworld.x3d

and start it up. The words “Hello World” should be shown by your X3D browser.
You could now continue to play around with the Text , e.g. changing the depth or the fontStyle .
Files:

• simple.x3d

• helloworld.x3d

9

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification_+_Amendment1_to_Part1/Part01/concepts.html#Profiles
http://instantreality.org/documentation/nodetype/Scene/
http://instantreality.org/documentation/nodetype/Text/
http://instantreality.org/documentation/nodetype/Shape/
http://instantreality.org/documentation/nodetype/Text/
http://instantreality.org/documentation/nodetype/Text/
file:extra/simple.x3d
file:extra/helloworld.x3d

2.4 Creating X3D Applications

This section is the first in a group of sections which tries to teach how to develop VR/AR applications
with the InstantReality Framework. This section tries to explain some basics but is mainly a starting
point to get you pushed into the right direction. These sections are no sections on VR/AR in general
or developer sections for framework internals.

2.4.1 Relation to X3D

One goal of the IR design was to make it really easy to write immersive VR and AR applications. One
basic idea was, not to use a single GUI-Tool or method but a software abstraction layer which would
allow us to define rich, dynamic and highly interactive content. Since there is no ISO/ANSI/whatever
standard for such an VR/AR application-interface, we tried to adapt something which is well known,
practical and very close to our domain: X3D.

Figure 2.1: X3D as feature and node subset of Avalon/IR

The X3D standard is a royalty-free ISO standard file format and run-time architecture to repre-
sent and communicate 3D scenes and objects using XML. The standard itself is a successor of the
VRML97 ISO standard. We utilized and extended this standard to fit the requirements we had from
the VR/AR domain. This way our nodes and features are really a superset of X3D/VRML, and every
X3D application is a valid Avalon application.

2.4.2 X3D Sources to read

To get started you have at least to understand the basic concepts of VRML/X3D. The official web-
page has the X3D spec online which is not what you would like to read in the beginning. The
developer section on the Web3d page holds some interesting links to sections and software tools. If
you prefer some text books you should check out the X3D Book from Don Brutzman and Leonard
Daly. Sometimes you can find some interesting, possibly used and really cheap VRML books, like
the “VRML Handbook” or e.g. “VRML - 3D-Welten im Internet”.

2.4.3 X3D Conformance

Most VRML/X3D files should work right away. If you have some files that do not perform right, please
visit the forum or write us a mail including the file and/or a short description.

However, there are some known bugs and not yet implemented VRML/X3D features. The online
documentation should list the state of every implementation.

2.4.4 Growing number of Nodes and Components

VRML was a static ISO standard which only defined a fixed set of 54 nodes. X3D almost doubled
this number in the first version and indroduced Components and Profiles to group and organize all
nodes. X3D, in contrast to VRML, was designed to be extensible and therefore people keep revising
the standard or build application specific node-sets like we did. If you look at the documentation you

10

http://www.Web3d.org
http://www.Web3d.org
http://www.Web3d.org/x3d
http://x3dgraphics.com/
http://forum.instantreality.org/
http://www.instantreality.org/documentation
http://www.instantreality.org/documentation

can see how the node-sets were growing over time from VRML 2.0, X3D 3.0, X3D 3.1 up to X3D 3.2.
In addition to the nodes new components (e.g. for shaders) where also introduced.

2.4.5 Mimetypes and encodings

X3D supports not just a single data encoding but three in order to fulfill different application require-
ments. First of all there is an XML based encoding, which is easy to read and write for humans as
well as for computers.

<?xml version="1.0" encoding="UTF-8"?>

<X3D profile='Immersive'>

<Scene>

<Shape>

<Text string="Hello world!" />

</Shape>

</Scene>

</X3D>

The VRML syntax has some disadvantages concerning parsing and the like. However for histori-
cal reasons the VRML encoding is still supported in X3D as the so-called classic encoding:

#X3D 3.0 utf8

Shape {

geometry Text {

string "Hello, World"

}

}

The binary format can be loaded very efficiently but is is not readable by human beings at all (well
I know somebody that can read parts of it but this is another story).

0000000 00e0 0100 7800 02cf 7378 2864 7468 7074

0000010 2f3a 772f 7777 772e 2e33 726f 2f67 3032

0000020 3130 582f 4c4d 6353 6568 616d 692d 736e

0000030 6174 636e f065 023c 3358 7844 7006 6f72

0000040 6966 656c 4643 6c75 786c 7606 7265 6973

0000050 6e6f 3342 302e 817b 1881 6f6e 614e 656d

0000060 7073 6361 5365 6863 6d65 4c61 636f 7461

0000070 6f69 086e 6826 7474 3a70 2f2f 7777 2e77

0000080 6577 3362 2e64 726f 2f67 7073 6365 6669

0000090 6369 7461 6f69 736e 782f 6433 332d 302e

00000a0 782e 6473 3cf0 5304 6563 656e 043c 6853

00000b0 7061 7c65 5403 7865 7874 7305 7274 6e69

00000c0 0867 2205 6548 6c6c 206f 6f77 6c72 2164

00000d0 ff22 ffff

All those data files can be gzip-compressed and the system loader can handle the compression
automatically. The loader/writer framework supports all three encodings and VRML 2.0 equally well
and in addition tools (e.g. aopt) to convert between these formats. You can not mix different en-
codings in the same file but you are free to mix the encodings in a single application (e.g. having a
foo.wrl inline in you bar.x3d world) .

Right now we are using the XML and VRML encoding through-out the sections. But we will include
some translation mechanisms later on.

Files:

• helloworld.x3d

• helloworld.x3db

• helloworld.x3dv

11

file:extra/helloworld.x3d
file:extra/helloworld.x3db
file:extra/helloworld.x3dv

2.5 Get your engine right

This section shows you how to build up different elements of a more complex application by providing
a scene, engine and context-setup description. The different parts allow the author to cluster and
specify various aspects of your final application. The Scene contains the dynamic spatial content,
the Engine contains device and environment specific parts (e.g. window or cluster setup) and the
ContextSetup defines the application independent parts like the path of your java installation. The
ContextSetup parameter are normally stored in the system preferences (e.g. plist-files on Mac or
registry entries on Windows) but this sections shows how to overwrite the settings per application

2.5.1 Scene

The Scene defines the default SAI execution context and the root node of your spatial world. As
shown in the following example it is only valid as X3D element. There is only one Scene per execution
context or file allowed. However you can Inline extra X3D-files which must include a Scene element.

<X3D>

<Scene>

<Shape>

<Box size='1 2 9'/>

</Shape>

</Scene>

</X3D>

2.5.2 Engine

The scene describes the content of and interaction with the world - they do not describe on which
kind of output device or how the content should be displayed. This is where the engine file comes
in. Imagine you want to display your world in red/green stereo, or you want it to be displayed on a
three-sided power-wall, etc. This can all be done via an engine setting without even touching your
world. This separation between the world and the engine file allows you to visualize your world on a
variety of output devices without changing the world itself.

The next example shows a very simple engine setting as an example of a basic engine file,
which only contains a RenderJob . The RenderJob includes a WindowGroup, an abstraction used
to combine render threads, which itself includes two windows. Therefore the engine will start two
windows on the desktop showing the same scene and camera.

The Engine sub-tree is a own X3D-namespace and can include any nodes which are not SceneBaseN-
odes. For example scripts and event-filter are very usefull as part of your engine. The Engine
also does not have to be complete. Missing jobs will automatically be inserted by using the En-
gine.requiredJobList values. More complex engine settings can be found in the cluster section.

<X3D>

<Engine>

<RenderJob DEF='render'/>

<WindowGroup>

<Window DEF='win1'/>

<Window DEF='win2'/>

</WindowGroup>

</RenderJob>

</Engine>

<Scene>

<Inline url='theWorld.X3D'/>

<Scene>

</X3D>

2.5.3 ContextSetup

The ContextSetup stores all setup and preferences per execution context which are related to specific
nodes or components but independent of a specfic instance of a node. You can set different limits,

12

http://instantreality.org/documentation/nodetype/RenderJob/
http://instantreality.org/documentation/nodetype/ContextSetup/

e.g. texture size and system pathes (like the Java classpath and various other properties which are
usual stored in the player plist or registry entry).

If and only if you really have to overwrite it in the application file you can create an extra Con-
textSetup child as part of the X3D element.

<X3D>

<ContextSetup maxTexSize='2048'>

<Engine>

...

</Engine>

<Scene>

...

<Scene>

</X3D>

The attributes and the values are not fixed and dynamically build up from the loaded component.
Use the WebInterface access point in order to see the configuration of your running system. The
following section includes a list of attributes for the beta3 player including all components.

cdfPath /Users/jbehr/src/Avalon/tmp/cdfFolder ()

defines the for the cdf data

multiContext FALSE ()

Run more than one context

appThreadCount 16 ()

The number of application threads

forbidFieldFree FALSE ()

forbid Field free optimize

forbidNodeFree FALSE ()

forbid Node free optimize

rayIntersectMode auto (auto,lowMem,fast,fastest)

defines the ray intersection mode

forceSingleDataTypeRoute FALSE ()

force routes to connect only slots with same type

explicitGZIPTest FALSE ()

use the explicit gzip test

forbidReindex FALSE ()

forbid geos to reindex to share properties

forbidStripFan FALSE ()

forbid geos to strip/fan the mesh data

forbidVertexResort FALSE ()

forbid vertex resort to improve cache usage

forbidSingleIndex FALSE ()

forbid singe-index opt. for static/unshared obj.

forbidIndexResize FALSE ()

forbid optimized-index opt. for static/unshared obj.

forbidDList FALSE ()

forbid DisplayLists for static obj

forbidVBO FALSE ()

forbid VertexBufferObjects for static obj

forbidNormalUpdate FALSE ()

forbid normal updates for dynamic obj.

geoPropertyUpdateMode memcpy (none,memcpy,stl-assign,stl-swap)

mode used to update backend geoProps

maxTexSize 4096 ()

max texture u,v,w size, 0 means hardware limit

forceTexCompress FALSE ()

force textures to use compressed internal types

frontCollision TRUE ()

do front-collision check while navigating

zRatio 20000 ()

13

ratio to specify the z-near limit

defaultJobList TimerJob,InteractionJob,ExternalInterfaceJob,WebServiceJob,CollisionJob,SoundJob,CombinerJob,SynchronizeJob,RenderJob ()

Defines the default jobs

showStatusMessage true ()

show the status message in render view

infoScreenAnimationTime 0.5 ()

info screen animation time in seconds

logoMode auto (auto,on,off)

logo mode

forceSingleThread FALSE ()

force single thread app/render cycle

keyAssignMode ctrlMod (autoSwitch,app,sys,ctrlMod,altMod,shiftMod)

defines how key-events are assigned to sys/app

binSearchKeyIndex FALSE ()

use binSearch to find the key value

tessellationFactor 1 ()

tessellationFactor (from 0 to 1)

ecmaScriptShareRunTime FALSE ()

ecmascript share-runTime

ecmaScriptGlobalMem 8388608 ()

ecmascript global system mem size

ecmaScriptLocalMem 8192 ()

ecmascript local script mem size

ecmaGCPerFrame none (none,auto,force)

set GarbageCollection mode per frame

javaVMPath ()

The path to the Java virtual machine

javaClassPath /Users/jbehr/src/Avalon/java/instantreality.jar ()

The Java class path

javaOptions ()

Options that are transfered to the Java virtual machine

cgVertexProfile auto (auto,arbvp1,vp20,vp30,optimal)

Cg vertex shader profile

cgFragmentProfile auto (auto,arbfp1,fp20,fp30,optimal)

Cg fragment shader profile

rigidBodyTrigger Collision ()

name of the rigid body physics trigger

2.5.4 The Scene node in classic encoding

The classic encoding normally does not include an explicit Scene node. All root nodes of a single file
are added to the scene as children. Here we extent the spec by allowing to explicitly set context root
nodes like ContextSetup, Engine or Scene nodes.

#X3D 3.0 utf8

Engine {

}

Scene {

children [

Transform {

...

}

]

}

This section just tries to explain the Context root nodes, like Scene, Engine and ContextSetup-
nodes, and how to build up an application using only one or none of them. More useful examples
can be found in the cluster and rendering sections .

14

An execution context will always have an Engine and ContextSetup node. In most cases there is
only an explicit (=X3D encoding) or implicit Scene (=classic encoding) and the runtime system will
automatically create the object.

15

Chapter 3

MultipleViews and Stereo

In this section we will outline some of the modifications and extensions for running X3D applications
in immersive environments with multiple views and stereo setups: which nodes and techniques we
have to adopt and which additional nodes are useful and necessary.

The X3D standard only supports a single Camera with the bound Viewpoint. The Viewpoint is a
node in the scengraph defining a position, orientation and fieldOfView. There is no Window, Viewport
or clipping area defined. For different VR/AR scenarios it is essential to drive Multi-screen and Multi-
pipe setups. Therefore we have to define some extensions and refinements to fulfill the requirements
we have.

3.1 Rendering

The proposed X3D Specification Revision 1 [24] includes two new components, Layering and Layout,
which provide nodes and functionality to render and layout different scene-parts in different layers.
The Layer and LayerSet nodes define the sub-trees and rendering order but do not define what
kind of composition method is used. Layer nodes are intended to create special 2D-/3D-interaction
elements such as heads-up displays or non-transforming control elements. With the new Viewport
node additional clip boundaries can be defined, but they only refer to a single render window. There is
no notion of how this information shall be treated in a multi screen cluster setup. This gets even worse
when having a closer look at the Layout component. Because of nodes like the ScreenFontStyle and
its pixel-specific addressing it is mainly designed as a means to provide some additional information
and with desktop applications and interaction metaphors in mind, but is not applicable for immersive
systems.

Augmented (AR) or Mixed Reality (MR) applications in general require methods that render dif-
ferent layers of information - at least some sort of video-stream as background and 2D- and 3D-
annotations. Even more complex layering techniques with certain compositing methods, including
mechanisms for general multi-pass techniques as proposed in [?] with the RenderedTexture node,
are needed to implement image-based rendering techniques like for instance dynamic HDR glow
or motion-blur. For such advanced rendering effects which are - depending of the type of applica-
tion - quite essential for evoking the sensation of presence and immersion, the possibility to render
window-sized and view-aligned quads and additionally some way to control the composition method
is needed. Besides this especially in immersive environments real time shadows are needed for
depth cues and correct perception.

For desktop applications and simple mono projector systems image-based rendering can be
achieved by using an extended LayoutLayer node from the Rev1 specification, and additionally in-
troducing novel X3DAppearanceChildNode types for advanced render state control for image com-
positing. This approach can be extended for stereo systems by introducing special shader uniform
variables denoting such information like left/right eye (named ’StereoLeftEye’ in the following pixel
shader code fragment) or even a cluster window id. This way creating stereo textures can be easily
accomplished.

Another challenge is how to treat these different kinds of layers in really immersive environments
like e.g. the CAVE. Here, the correct positioning of user interface elements can be consistently
handled with our special Viewspace node, which transforms its children to the coordinate system of

16

the current active viewpoint. But there still exists no continuous conceptual model for handling pure
effects layer nodes for mono/stereo and all display types ranging from a desktop PC to a tiled display
cluster system.

Another important issue are multi resolution surfaces (e.g. LOD or adaptively tessellated NURBS)
on the one hand and simulation systems (like physics and particle systems) on the other hand on multi
screen setups. The latter can especially lead to problems when the simulation is non-deterministic
and distributed across a cluster for all render windows. If the simulation calculations are not bound
to the application thread but run on different client PCs, the result is not necessarily the same and
might therefore lead to rendering errors. Similar problems can occur with multi resolution meshes. If
the view dependent tessellation is different on neighboring windows of tiled display systems this can
also lead to artifacts.

3.2 Stereo Basics

This chapter is not a section at all but a brief excursion into optics. It gives an overview over the
human eye as a tool to perceive our world stereoscopically. It will also introduce those factors which
are responsible for depth perception and which are further used to generate an artificial stereoscopic
view in virtual reality environments. As the trick is to create and present a different image for each of
your eyes, the last section will discuss the most popular technologies to get this done in a more or
less simple way.

There are no preconditions.

3.2.1 Depth perception of human eyes

There are two categories of depth perception, the monocular perception related to only one eye and
the binocular perception related to both eyes.

3.2.1.1 Monocular depth perception

Occlusion Farther objects are being occluded by nearer objects.

Perspective Objects of the same size are bigger if they are nearer to the viewer.

Depth of field Adaption of the eye lens warping, so called accomodation, focuses objects in a spe-
cific distance to the viewer. Other objects with a different distance to the viewer appear blurred.

Movement parallax If objects with a different distance to the viewer move with the same speed,
nearer objects appear to be faster than farther objects.

Figure 3.1: Monocular depth perception: Occlusion, perspective, depth of field and movement paral-
lax

3.2.1.2 Binocular depth perception

• Parallax (Each of our eyes sees a slightly different image of the world. This is because
each eye is a separate camera which)
grabs the environment from a different position. In the image below you see two eyes fo-
cusing the black point. The optical axes show the alignment of the eyes and the projected
point on the retinas. There is another point in green which is also projected. Those points

17

have the same distance L and R to the optical axes on both retinas, they are correspond-
ing points . Each point on the horopter , let’s say a focus circle, has these characteristics.
Points which are in front or behind the horopter have different distances, L’ and R’ , to the
optical axes on the retina. The difference between R and L is the so called disparity ,
which is positive or negative dependent on the position in front or behind the horopter.
Points on the horopter have a disparity of 0.

• Convergence (The distance between our eyes is fixed but the angle depends on the
distance of a focused object. If we watch)
the clouds in the sky the eye orientation is nearly the same but when we look at a fly which
sits on our nose, the left eye looks more to the right and the right eye to the left, so we are
squiting. This angle between the optical axes of both eyes, the convergence, gives our
brain a hint about the distance to an object.

Figure 3.2: Binocular depth perception: Disparity on focused and non-focused points

3.2.2 Depth generation in VR

Generation of stereoscopic viewing in virtual reality environments depends mainly on the above de-
scribed parallax and convergence, which go hand in hand. On a projection plane two separate im-
ages are displayed, one for the left and one for the right eye. Therefore the scene must be rendered
from two different cameras, next to each other like the human eyes. A separation technique has to
make sure that one eye receives only one image but this issue is discussed in the next chapter.

As each eye receives its appropriate image, their optical axes have a specific angle which yields
to the convergence. The brain recognizes both points as the same point and interprets it as it was
behind the projection plane or in front of it.

Parameters which affect the convergence are the distance to the projection plane which is called
zero parallax distance and the eye distance . With these parameters depth impression can be
adjusted.

18

Figure 3.3: Stereo projection in VR

3.2.3 Eye separation

Different images for both eyes have to be generated, presented and redivided to the eyes. How these
three steps are performed depends on the chosen technology. Those are categorized into active and
passive approaches.

Active eye separation means a presentation of left and right images one after each other with
high frequency while the eyes are alternately being shut in the same frequency by shutter glasses
(see image below). The advantage is to see the original images without reduction of colors or color
spectrums. On the other hand you need hardware (graphics card, beamer) which is able to display
images in a high frequency of about 120 Hz as well as synchronisation with shutter glasses.

With passive stereo, images for the left and right eye are displayed simultaneously. A common
approach is to separate color channels in order to show the blue channel for the left eye and and the
red channel for the right eye. A user wears glasses that filter the red or blue channel away as you
can see in the left image below. The big disadvantage is the corruption of proper colors.

A better approach in this direction is the technology of Infitec , which doesn’t split whole color
channels but color spectrums in each channel. For each eye three different bands - for red, green
and blue wavelenths - are filtered, with the result to get a total of six bands: right eye red, right
eye green, right eye blue, left eye red, left eye green and left eye blue. The desired colors are not
completely modified like in the color channel separation case, but only a few frequency regions are
lost instead of a whole color channel.

Another concept of passive stereo is the separation by polarization filters. Light oscillates in
different directions and a polarization filter just filters light in a way to let only parts of the light in
a specific direction come through. So, for one eye, vertical oscillating and for the other, horizontal
oscillating light is permitted. It’s a simple solution as the filters are not very expensive and can
be easily put in front of a video beamer and into cheap paper glasses. The downside is a loss of
brightness and interesting effects when inclining the head. This effect can be reduced with radial
polarization approaches instead of horizontal and vertical .

19

http://www.infitec.net/

Figure 3.4: Active eye separation by shutter glasses

Figure 3.5: Eye separation by color

Figure 3.6: Eye separation by color spectrum (schematic illustration)

20

Figure 3.7: Eye separation by polarisation filter

3.3 Multiple Windows and Views

This section describes the configuration of multiple windows and multiple view areas per window. It
is a precondition for the later parts of this section and the Clustering section.

Please read the “Engine” section if you are not yet familiar with the concept of different Context
base elements.

3.3.1 Engine configuration

First we try to get some basic window settings right. Therefore we have to setup the RenderJob. In
the engine section that is used for local rendering, the definition for the rendering in most cases looks
like the following line:

DEF render RenderJob {}

Instant Reality automatically adds the missing configuration to produce an image on a local win-
dow. To be able to understand more complex rendering configurations, we’ll have a short look at the
automatically generated configuration for a local window.

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

size 512 512

views [

Viewarea {

lowerLeft 0 0

upperRight 1 1

}

]

}

]

}

]

}

21

http://instantreality.org/documentation/nodetype/RenderJob/

...

With this configuration we have one local window with one Viewarea that covers the whole window.

3.3.2 Multiple view areas

To create a second view area we just have to add a Viewarea node and define the region where it
should appear in the window. 0 means the left or bottom side and 1 is the right or top. If you set
values greater than 1, they are interpreted as pixel values. In each view area, the complete scene is
rendered.

Figure 3.8: Concept of view areas in a window

The code for putting two view areas next to each other will look like this:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

size 800 400

views [

Viewarea {

lowerLeft 0 0

upperRight 0.5 1

}

Viewarea {

lowerLeft 0.5 0

upperRight 1 1

}

]

}

]

}

]

}

...

22

http://instantreality.org/documentation/nodetype/Viewarea/

Figure 3.9: Two view areas next to each other a local window

View areas can be modified in a way to change the camera position and orientation by ViewModi-
fier nodes. This is especially used for stereo configurations and CAVE environments (see appropriate
sections or nodetype tree documentation).

3.3.3 Multiple windows

Multiple windows can be configured by adding LocalWindow nodes into the RenderJob section:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

size 800 400

position 0 0

views [

Viewarea {

lowerLeft 0 0

upperRight 0.5 1

}

Viewarea {

lowerLeft 0.5 0

upperRight 1 1

}

]

}

LocalWindow {

size 300 300

position 500 500

views [

Viewarea {

lowerLeft 0 0

upperRight 1 1

}

]

}

]

}

]

}

...

23

http://instantreality.org/documentation/nodetype/ViewModifier/
http://instantreality.org/documentation/nodetype/ViewModifier/
http://instantreality.org/documentation/nodetype/LocalWindow/

Files:

• MultipleViewareas.wrl

• MultipleWindows.wrl

• tie.wrl

3.4 Active Stereo

This section describes the configuration of the engine to achieve an active stereoscopic view of
scenes by using synchronized shutter glasses.

Please read the sections “Multiple Windows and Views” as well as “Stereo Basics” in this category
to get a good overview about stereo approaches and basic configuration issues regarding multiple
views in Instant Reality.

3.4.1 Hardware

A “normal” graphics card uses a double buffer approach, a back buffer to write into and a front buffer
to display in the meantime to avoid flickering. To use active stereo you should take a graphics card
with quad buffer, i.e. four buffers. That means it uses a front and a back buffer for each eye.

As display you can either use a monitor or a video beamer which is able to display active stereo
images interleaved in time.

Now you just need some shutter glasses which let you see the correct image for the appropriate
eye. It is synchronized with the graphics card, mostly using infrared as you can see in the image
below.

Figure 3.10: Infrared synchronized shutter glasses

3.4.2 Stereo modifier

If we want to do stereo, then we need two view areas. One for the left eye and one for the right
eye. For stereo it is neccessary to modify viewing parameters. For this kind of modification there
exists a number of modifiers in Instant Reality. For a simple stereo projection we have to use the
ShearedStereoViewModifier :

...

Viewarea {

modifier [

24

file:extra/MultipleViewareas.wrl
file:extra/MultipleWindows.wrl
file:extra/tie.wrl
http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/

ShearedStereoViewModifier {

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

zeroParallaxDistance 1

}

]

}

...

Depending on the eye which should be represented by this modifier, leftEye and rightEye has to
be set to TRUE or FALSE. zeroParallaxDistance and eyeSeparation values are in metres, so they
have good default values, if your scene is also modeled in metres. Otherwise you could either adapt
the values or as a better approach, you should use a NavigationInfo node in the Scene namespace
and set the sceneScale field to 0.01 if the scene is modeled in centimetres or 0.001 if the scene is
modeled in millimetres and so on. The advantage is you can keep the stereo configuration fix for your
setup and each scene and just need to change one value.

...

Scene {

children [

NavigationInfo {

sceneScale 0.01

}

...

]

}

3.4.3 Quad Buffer Stereo

Active stereo configuration is simple. First you have to tell the LocalWindow to use four instead of
two buffers, the default setting.

...

LocalWindow {

buffer 4

...

}

...

In the window we need two view areas, one for the left and one for the right eye. These areas are
overlapping as we don’t set specific regions for them. For each Viewarea we define a ShearedStere-
oViewModifier which is responsible for the camera modification of the left or right eye respectively.
It has also to be defined which buffers on the graphics card should be used by which view area.
Therefore we set

...

Viewarea {

leftBuffer TRUE

rightBuffer FALSE

...

}

...

for the left eye view area and

...

Viewarea {

leftBuffer FALSE

rightBuffer TRUE

...

25

http://instantreality.org/documentation/nodetype/NavigationInfo/
http://instantreality.org/documentation/nodetype/LocalWindow/
http://instantreality.org/documentation/nodetype/Viewarea/
http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/
http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/

}

...

for the right eye view area.
After all the configuration looks like the one below:

RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

buffer 4

size 1024 768

views [

Viewarea {

leftBuffer TRUE

rightBuffer FALSE

modifier [

ShearedStereoViewModifier {

leftEye TRUE

rightEye FALSE

}

]

}

Viewarea {

leftBuffer FALSE

rightBuffer TRUE

modifier [

ShearedStereoViewModifier {

leftEye FALSE

rightEye TRUE

}

]

}

]

}

]

}

]

}

Files:

• activeStereo.wrl

• tie.wrl (test model)

3.5 Passive Stereo

This section describes the configuration of the engine to achieve a passive stereoscopic view of
scenes. It will distinguish between overlapped view areas and separated side by side view areas.
The first one is performed by splitting color channels and using red/blue glasses. The latter can
be used to achieve a stereo setup with two video beamers and appropriate filters for example. You
should also check the preconditions for this section.

Please read the sections “Multiple Windows and Views” as well as “Stereo Basics” in this category
to get a good overview about stereo approaches and basic configuration issues regarding multiple
views in Instant Reality. Notice that this section is just about passive stereo.

26

file:extra/activeStereo.wrl
file:extra/tie.wrl

3.5.1 Stereo modifier

If we want to do stereo, then we need two view areas. One for the left eye and one for the right
eye. For stereo it is neccessary to modify viewing parameters. For this kind of modification there
exists a number of modifiers in Instant Reality. For a simple stereo projection we have to use the
ShearedStereoViewModifier :

...

Viewarea {

modifier [

ShearedStereoViewModifier {

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

zeroParallaxDistance 1

}

]

}

...

Depending on the eye which should be represented by this modifier, leftEye and rightEye has to
be set to TRUE or FALSE. zeroParallaxDistance and eyeSeparation values are in metres, so they
have good default values, if your scene is also modeled in metres. Otherwise you could either adapt
the values or as a better approach, you should use a NavigationInfo node in the Scene namespace
and set the sceneScale field to 0.01 if the scene is modeled in centimetres or 0.001 if the scene is
modeled in millimetres and so on. The advantage is you can keep the stereo configuration fix for your
setup and each scene and just need to change one value.

...

Scene {

children [

NavigationInfo {

sceneScale 0.01

}

...

]

}

3.5.2 Stereo by overlapping view areas

To receive a simple red/blue stereoscopic view, we have to overlap two view areas, display only one
color channel per area (red or blue) and put a ShearedStereoViewModifier into both areas. After all
the code looks like this:

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

views [

Viewarea {

red TRUE

green FALSE

blue FALSE

lowerLeft 0 0

upperRight 1 1

modifier [

ShearedStereoViewModifier {

leftEye TRUE

rightEye FALSE

27

http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/
http://instantreality.org/documentation/nodetype/NavigationInfo/
http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/

}

]

}

Viewarea {

red FALSE

green FALSE

blue TRUE

lowerLeft 0 0

upperRight 1 1

modifier [

ShearedStereoViewModifier {

leftEye FALSE

rightEye TRUE

}

]

}

]

}

]

}

]

}

Figure 3.11: Stereo view due to separated color channels

The result will look like this. Everything you need now are some glasses with a red foil for the left
eye and a blue foil for the right eye.

3.5.3 Stereo by separate view areas

Splitting color channels is the fastest variant of stereoscopic viewing. But we get much better results
if we use the full color of “left” and “right” images. That’s the reason why we render both images side-

28

by-side, choose our output device, let’s say a graphics card with two outputs and a video beamer on
each output. The beamer images are then superposed. To receive only one image per eye we use
polarization or color spectrum filters (see Stereo Basics section) in front of the beamers and in front
of our eyes.

To be able to show the image for the left eye on the left side of our window and the image for the
right eye on the right side, we use two view areas again. The first is located from 0 - 0.5 and the
second from 0.5 to 1.

...

LocalWindow {

size 600 300

views [

Viewarea {

lowerLeft 0 0

upperRight 0.5 1

modifier [

ShearedStereoViewModifier {

leftEye TRUE

rightEye FALSE

}

]

}

Viewarea {

lowerLeft 0.5 0

upperRight 1 1

modifier [

ShearedStereoViewModifier {

leftEye FALSE

rightEye TRUE

}

]

}

]

}

...

Figure 3.12: Stereo view side-by-side view areas

Your graphics card has to be configured so that the left side of the desktop is visible on the left
output and the right side of the desktop is visible on the right graphics output. Additionally the size of
the window must cover the whole desktop. This can be done by the following code.

...

LocalWindow {

fullScreen TRUE

29

}

...

Now we have a simple stereo setup. The disadvantage is that a single PC is responsible for the
simulation and the rendering of two images per frame. We can get a much better performance, if we
are using 3 (or more) hosts where one is responsible for the simulation, one to calculate the right eye
image and one to calculate the left eye image. To find out more about this, read the sections in the
Cluster section .

Files:

• stereoOverlap.wrl (color channel split)

• stereoSeparated.wrl

• tie.wrl (test model)

30

file:extra/stereoOverlap.wrl
file:extra/stereoSeparated.wrl
file:extra/tie.wrl

Chapter 4

Interaction and Devices

4.1 Interaction

One major drawback of the X3D specification is the extremely limited support for Input/Output (IO)
devices. The X3D specification does not mention devices at all - it only specifies some very high-
level nodes that allow to control the way the user navigates in the scene (NavigationInfo node) and
interacts with objects (PointingDeviceSensor nodes). The actual mapping between these nodes and
the concrete devices connected to the computer is up to the browser. While this interaction model
is sufficient for web-based 3D applications consisting of simple walk-through scenarios running on a
desktop machine, it is much too limited for immersive VR and AR applications. For example, consider
a driving simulator with a mock-up of the dashboard. The simulator (written in X3D) should be able
to get the status of the switches on the dashboard e.g. used to switch the headlights on or off. Or
consider a video see-through AR application where the X3D scene needs to get the video images
from a camera attached to the system to put them into the background of the virtual scene. This
demonstrates that there are much more usage scenarios for IO devices than the simple navigation
and point-and-click scenarios currently supported by the X3D specification.

Our proposal, and the one implemented in IR, is to use a layered approach to integrate sup-
port for IO devices into X3D. On the basic layer, we propose a set of low-level sensors that allow
the application to receive data streams from or to send data streams to devices or external software
components. On top of this layer is a set of high-level sensors consisting of the traditional PointingDe-
viceSensor nodes mentioned in the X3D specification. This approach is similar to that of traditional
2D user interfaces where we have a low-level layer consisting of simple mouse and keyboard events
and higher-level layers consisting of user interface elements like buttons, text fields and menus.

4.1.1 Low-Level Sensors

The purpose of the low-level sensors is to send or receive raw data streams without imposing any
interpretation of these streams by the X3D browser. It is the sole responsibility of the X3D applica-
tion to handle these data streams in a use- and meaningful way. Recently, there have been some
competing proposals for low-level sensors [9, ?, ?]. These proposals suffer from two design flaws:

• It is generally not a good idea to specify nodes like “JoystickSensor”, “MidiSensor” or “Track-
erSensor”. An approach like this means that we have to specify nodes for all kinds of devices
available, which is obviously not possible. There will always be devices that do not fit into the
set of device classes available in the X3D specification. As a result, this approach does not
reliably and convincingly solve the problem.

• Even worse, these types of nodes require that the X3D application developer has to foresee
what kinds of devices are available to the users of his application. This is obviously not possible
and conflicts with the typical use-case of X3D applications - downloading them from a web
server and running them on any kind of hardware available.

For these reasons, we proposed another solution [?] which does not have these drawbacks. The
idea is to treat devices as entities consisting of typed input and output data streams. We admit that
this is not as straightforward as using special nodes for each kind of device, but the benefits far

31

DEF cam Viewpoint { ... }

DEF headPos SFVec3fSensor

{ label "Head Position" }

ROUTE headPos.value_changed

TO cam.set_position

DEF headRot SFRotationSensor

{ label "Head Orientation" }

ROUTE headRot.value_changed

TO cam.set_orientation

Shape {

appearance Appearance {

DEF videoTex PixelTexture {}

}

geometry IndexedFaceSet { ... }

}

DEF frame SFImageSensor

{ label "Video Frames" }

ROUTE frame.value_changed

TO videoTex.set_image

Figure 4.1: Template of an AR application in X3D.

outweigh this disadvantage. We get maximum flexibility, we do not bloat the X3D standard, and we
get a stable basis for higher layers of abstraction. So we propose a set of sensors, one for each X3D
field type. The interface of these nodes looks like this (“x” is just a placeholder for the concrete X3D
field types SFBool, SFFloat, ..., MFBool, MFFloat, ...):

xSensor : X3DDirectSensorNode {

x [in,out] value

SFBool [] out FALSE

SFString [] label ""

}

The “value” exposed field is used to send or receive data values. The “out” field specifies whether
the node is used to receive data values (“FALSE”) or to send data values (“TRUE”). Finally, the “label”
provides means to map the sensor node to a concrete data stream of a device. The important point
here is that we do not specify where the data comes from (e.g “Joystick 1/X-Axis”). Instead, in the
label field we specify what the data values are used for (e.g. “Move left/right”). When the user loads
an X3D scene that contains sensors that are not mapped to devices, a dialog window opens that
lists the labels of the sensors. Next to each label is a drop-down menu that contains all devices that
are currently connected to the machine and that have a matching type and direction. This is just the
same procedure that we are used to when we start a game, e.g. a first-person-shooter, for the first
time. Before we can start playing the game, we have to go into a “Configuration” dialog to specify
which joystick to use and which of the joystick’s buttons is the fire button and so on. We propose to
do the same for X3D scenes. After the user specified a mapping for the sensors, the X3D browser
can save the mapping in a database (using the URL of the X3D scene as a key), so the user does
not have to do this configuration each time he starts the X3D scene later on. It is also possible to
define some kind of default mapping, e.g. we could specify that an SFFloat input sensor with the
label “Move left/right” by default gets mapped to the x-axis of the first joystick.

Figure 4.1 shows a simplified template of a video see-through AR application written in X3D that
demonstrates how to use low-level sensors. There is a SFVec3fSensor that provides the current head
position from the tracking system, and a SFRotationSensor that provides the orientation. We simply
route both values into a Viewpoint node. Furthermore, there is a SFImageSensor that provides video
images from a camera. These images are routed into a PixelTexture node that is mapped onto an
IndexedFaceSet in the background of the virtual scene.

32

DEF pointerTransform Transform {

children DEF userBody UserBody {

children Shape { ... }

}

}

DEF handPos SFVec3fSensor

{ label "Hand Position" }

ROUTE handPos.value_changed

TO pointerTransform.set_position

DEF handRot SFRotationSensor

{ label "Hand Orientation" }

ROUTE handRot.value_changed

TO pointerTransform.set_orientation

DEF handHot SFBoolSensor

{ label "Hand Active" }

ROUTE handHot.value_changed

TO userBody.set_hot

Figure 4.2: Using the UserBody.

4.1.2 High-Level Sensors

High-level sensors are sensors that are built on top of low-level sensors. They provide a more abstract
interface to devices. Examples for high-level sensors are the X3D PointingDeviceSensor nodes as
well as all means for navigating in the virtual scene. The PointingDeviceSensor nodes allow to
interact with objects in the scene. The user can choose which object to manipulate by locating a
pointing device “over” the object. In the case of 2D projections on desktop clients, “over” is defined
by moving the mouse pointer over the object. But unfortunately, the X3D specification does not give
any hints about how to interpret “over” in immersive, stereo projections using 3D or even 6D devices.
Stiles et al. [49] describe possible solutions. In our system, we use a special node called “UserBody”
that defines a 3D pointer. Its interface looks like this:

UserBody : Group {

SFBool [in,out] hot FALSE

}

It is simply a Group node that has one additional field, “hot”. The children of this group node con-
sist of geometries that form the shape of the 3D pointer. The “hot” fields specifies whether the pointer
is active (i.e. “clicked”) or not. There can be an arbitrary number of UserBodies, e.g. for multiuser
applications. The pointer gets transformed in the 3D scene the usual way by putting Transform nodes
in the transformation hierarchy above the UserBody and by routing position and orientation values
into these transform nodes. We usually get the position and orientation values via low-level sensors
from a tracking system, e.g. when using a stylus to interact with a scene, but it is possible to use
arbitrary sources for these values, e.g. Script nodes. This is similar to the proposal made by Polys et
al. in [?]. Figure 4.2 shows an example that demonstrates how to connect the UserBody to a tracking
system.

To interact with PointingDeviceSensors, our systems provides three different kinds of interaction
modes, “project”, “intersect” and “collision”, which have specific advantages depending on the kind
of application and interaction device. The user can select one of these interaction modes by using
the user interface of our system. “project” is useful for interaction devices that only provide position
values (3 degrees of freedom). We shoot a ray from the Viewpoint through the center of origin of the
UserBody node. The first object that gets hit by this ray is the object our pointer is currently “over”.
“intersect” and “collision” are useful for interaction devices that provide position values as well as
rotation values (6 degrees of freedom). When using “intersect”, we shoot a ray from the origin of the
UserBody node along the negative z axis. Again, the first object that gets hit is the object we are
“over”. When using “collision”, the user actually has to collide the geometry of the UserBody with
another object.

33

4.2 Input/Output streams

This section shows you how to use an IOSensor to connect input/output streams; as example we will
use two joystick-axes to control the diffuse-color of a box.

4.2.1 Introduction

IR supports various ways to get the device data in/out of your application/scene to handle different
classes of applications and scenarios. For web-applications it’s desirable to have device-independent
setups. On the other hand the system must provide concrete and low-level access to services to
handle complex and extensive application-/device-setups which are part of a fixed and controlled
desktop or even immersive environments. For device-independent setups, you can just define labeled
streams inside of a scene and map this streams outside (e.g. interactive or as part of your engine) to
a logical devices. To access the device directly you have to specify a concrete service-type.

This section shows how to utilize IOSensor-nodes to handle both setups.

4.2.2 IOSensor basics

The IOSensor allows you to connect a local or network-device or service. (Side node: To be more
precise: it abstracts a backend or namespace of the device-subsystem which is in most cases a single
device) There are other X3D extensions and systems which also provide low-level device access but
most of them provide one node per logical device-class. We followed a different approach: We
have a single IOSensor node type. Every IOSensor node instance can be used to connect to a
service/namespace of the supported device-subsystems. Interfaces and parameters of a concrete
device, if any, will be mapped to dynamic fields, similar to the Script node. Therefore the node has,
more or less, only two fields.

IOSensor : X3DSensorNode {

SFString [] type [auto] [joystick,video,...]

SFString [] name []

}

The type specifies the type of device/namespace/backend which should be used or can be set to
’auto’. This switches two essential modes: The implicit or explicit naming of services which leads in
most cases to device independent respectively dependent setups.

4.2.3 Implicit Service definition

If your application needs IO-data-streams but would not like to specify which device or service should
be used the ’type’ field should be set to ’auto’. In this case, the system and runtime environment will
try to map the user-given IO-slots to concrete devices automatically or by asking the user.

DEF camNav IOSensor {

eventOut SFFloat speed

eventOut SFFloat direction

}

4.2.4 Explicit Service definitions

If the type field is not auto it should define one of the supported device/backend/namespace types.
Ths standard device-abstraction system supports more than 30 backends. All definitions can be
accessed by using the ’device management’ system provided in the Help-Menu.

Which devices are available depends on the system and environment. The name-field is used as
an identifier in the device-subsystem. It is not used inside of your X3D-application.

34

4.2.4.1 Parameter of Services

Every device type provides a list of dynamic SFString fields which can be used as parameters. Most
backend types provide e.g. a ’device’ field which takes a number (e.g. 0,1,2) or even a description
substring of the description:

DEF myStick IOSensor {

type "joystick"

device "microsoft"

}

If the type ’joystick’ does not provide a dynamic ’device’-field you will get a warning and a list of
valid fields in the application log. You can also lookup valid backend-fields using the online interface
which is available through the help menu. The parameter-fields only depend on the device type but
not on a single service instance. For example all joystick-backends provide a ’device’-field but every
joystick instance provides a different number of buttons and axes.

4.2.4.2 IO Slots of Services

The IOSensors use user-provided dynamic in/out-slots to connect to these devices: e.g. the x/y axis
of a joystick could be accessed in the following way

DEF myStick IOSensor {

type "joystick"

eventOut SFFloat *x*axis*

eventOut SFFloat *y*axis*

}

DEF myScript Script {

eventIn SFFloat speed

}

ROUTE myStick.*x*axis TO myScript.speed

These slots can be used together with ROUTES to process and transmit the events from or to
the device. The names of the slots are used to map the device interfaces to the node interface. To
increase the usability file-system like wild-cards (* and ?) are supported. Again: Use the backend-
interfaces which can be accessed in your Help-menu to check the provided slots.

The last example shows how to map the image data of a local camera onto a box.

DEF video IOSensor {

type "video"

eventOut SFImage frame*

}

Shape {

appearance Appearance {

texture DEF tex PixelTexture { }

}

geometry Box { }

}

ROUTE video.frame* TO tex.image

4.2.5 Conclusion

This section only shows how to get your data in. It does not show how to use the data for interaction
and navigation purpose. If you would like to use the data together with high level PointingSensors
look at the section Immersive PointingSensor Interaction. For a section on abstract 3D-Navigators
please have a look at the Navigator section .

Files:

• joystickToColorTutorial.x3d

• videoCameraTutorial.x3d

35

file:extra/joystickToColorTutorial.x3d
file:extra/videoCameraTutorial.x3d

4.3 Connecting Devices

This section shows you how to connect a device to the framework and how to find all in/out slots of
the device interactively. This is necessary if you would like to write a application which automatically
connects a device using e.g. a IOSensor (See Input/Output streams section). It only shows how to
start a IO-Node and how to find the coresponding input/output slots. You still need to connect the
streams to the application (e.g. using a IOSensor) and some code to process the input data (e.g.
SteeringNavigator); The section uses a simple joystick but the steps are in general the same for every
device

4.3.1 Introduction

The framework does not classify a specific interface for a device-type but dynamically creates in-
put/output slots for every device instance. This has the advantage that we can connect any kind of
device providing any kind of data channels. But the design has also one major drawback: You always
have to test a specific physical device to see what kind of in/out slots it provides. There is for e.g.
only a single “Joystick”-Type which supports any number of buttons and axis. Therefore the same
code can be used to connect a 12-Button/6-axis joypad or an 5-Button/0-axis apple-remote (which is
also registered as joystick in OSX).

You can connect the in/out slots interactively which gives you the most flexibility e.g. using the
Web-Interface. However, if you really know what you are doing and would like to write a application
which uses for e.g. an IOSensor to start and connect a specific device you have to know what kind
of slots there are. This first part of the section shows you to find those slots. The second part shows
how to use this information with an IOSensor.

4.3.2 Finding your slots

4.3.2.1 Connect your device to the local machine

Connect the device to the same machine where you would like to run the InstantPlayer system (You
can use devices remotely easily using the InstantIO-Server but this is not the topic of this section).
Here I connect a logitech joypad to my notebook.

Figure 4.3: plug the device in

36

4.3.2.2 Start the correct Device-handler

Start the InstantPlayer and open the Web-Interface of the Device-Managment system by clicking on
“Help->Web Interface Device Managment” in the menu bar entry. This opens your preferred web-
browser showing the Web Interface of the device managment system called InstantIO.

This page may look like a static page but this is actual the dynamic User-Interface for the device
managment system. The Web interface allows you to control the system remotely which is very
handy for Immersive or mobile-AR applications.

Figure 4.4: start the interface and go to the root namespace

Go to RootNamespace to open the root Namespace page.

Figure 4.5: go to nodes page to get a list of active nodes

Click further on Nodes to open the page to add and remove device handler to the current names-
pace.

In the lower side of the page you find the “Create new node” section which allows you to create a
new device handler. Select the correct type for the connected device. In our case we select “Joystick”

37

Figure 4.6: select a type to create a new handler

and push the “Create” Button.
The following page allows you to set some parameter for the device. In our case it is the name

and the device identifier. More information can be found on the specific page
This should start the device handler and bring you back to the list of active devices.
There is now a “Operating Logitech Dual Action” which is sleeping since no Sensor is connected.

Click on the Root link at the top of the page to get back to the namespace page.

4.3.2.3 Get a list of all out-slots

Now since we have an active device handler for the joystick we can see what kind of dynamic slots
are available.

Now click on OutSlots to get a list of all available OutSlots for the new device
This list shows 12 Buttons and 6 Axis which the joystick provides. These are all slots of the

physical device.

4.3.3 Use the information to start an IOSensor

The IOSensor allows you to start a InstantIO type directly from your Scene. Use dynamic outputOnly
slots, the same way you use them in Script nodes, to connect the slots. The Name of the slots have
to be the same as in the above list. There is one aspect you have to keep in mind. The InstantIO
slots sometimes contain spaces and you have to replace those with wildcards (* and ?) to create a
single token.

DEF myStick IOSensor {

type "joystick"

outputOnly SFFloat *Hat*x*axis*

outputOnly SFFloat *Hat*y*axis*

}

If you use the xml encoding you can use the full name including any kind of spaces:

<IOSensor DEF='myStick' type='joystick'>

<field accessType='outputOnly' name='Hatswitch X-Axis' type='SFFloat'/>

<field accessType='outputOnly' name='Hatswitch Y-Axis' type='SFFloat'/>

</IOSensor>

38

Figure 4.7: pick the right type for you device

39

Figure 4.8: fill in the parameter the start the type

Figure 4.9: fill in the parameter the start the type

40

Figure 4.10: Scene

Figure 4.11: got to OutSlots to get a list

41

You can connect those slots to any kind of other node (e.g Navigator or Script) to process the
incoming values. Look at the next parts in this section to get further information. Look at the Input-
Output stream section to get further information about the IOSensor.

4.3.4 Conclusion

This section shows how to connect external devices and how to find their provided slots. This is the
information you need to connect the service to the framework. You can do it interatively or as part of
your scene useing an IOSensor or similiar services.

4.4 Space-Mouse/Navigator/Pilot Device

This tutorial demonstrates how to connect a 3Dconnexion (former LogiCad3D) SpaceMouse, Space-
Navigator, SpacePilot or compatible device to Instant Player.

4.4.1 Introduction

This tutorial demonstrates how to connect a 3Dconnexion (former LogiCad3D) SpaceMouse, Space-
Navigator, SpacePilot or compatible device to Instant Player. There are three different approaches,
depending on the type of device and the operating system you are using.

In general all the devices provide 6 degrees of input. Three axes for translation and three axes
for rotation. In addition the devices support a varying number of buttons, ranging from 2 to more than
20. The main difference is the type of connection.

Figure 4.12: SpaceNavigator and SpacePilot using an USB-Connector

New devices, e.g. SpaceNavigator and SpacePilot, use a USB connector.
Older devices, like the classic DLR SpaceMouse are usually connected via a serial slot. These

are becoming rare, so in most cases a USB slot will be fine.

4.4.2 Start the correct device Handler

The correct InstantIO Handler depends on the physical device and opperating system. Look for the
“Input/Output streams” tutorials to get more background information about the IOSensor.

42

Figure 4.13: SpaceMouse using an Serial-Connector

4.4.2.1 USB Device on Windows

The SpaceNavigator backend is the recommended way to connect SpaceNavigator and SpacePilot
devices on Windows. It does not exist on Mac OS X or Linux, and it does not work out of the box for
classic SpaceMice connected to the serial port.

To get the backend working, first install the appropriate driver from the 3Dconnexion web site (it is
actually the same driver for all USB devices, “3DxSoftware 3.x”). Then, integrate an IOSensor node
into the scene whose type is “SpaceNavigator”:

DEF ios IOSensor {

type "SpaceNavigator"

eventOut SFFloat X?translation

eventOut SFFloat Y?translation

eventOut SFFloat Z?translation

eventOut SFRotation Rotation

eventOut SFBool Button??1

eventOut SFBool Button??2

}

The SpaceNavigator backend has three float outslots that provide values between -1 and 1 for
the x, y and z translation of the cap, one rotation outslot for the rotation of the cap, and two boolean
outslots for the buttons “1” and “2” of the SpaceNavigator (we currently do not support the other
buttons available on other 3Dconnexion devices like the SpacePilot).

4.4.2.2 USB Device on OSX

The Joystick backend is the recommended way to connect SpaceNavigator and SpacePilot devices
on Mac OS X. It does not work on Windows or Linux, and it does not work for classic SpaceMice
connected to the serial port.

To get the backend working, do not install any drivers - just integrate an IOSensor node into the
scene whose type is “Joystick”. In the “device” SFString field, you can either specify the name of the
device or its index (0 is the first joystick device in the system, 1 the second, and so on):

DEF ios IOSensor {

type "Joystick"

device "0"

eventOut SFFloat X-Axis

43

http://www.3dconnexion.com/

eventOut SFFloat Y-Axis

eventOut SFFloat Z-Axis

eventOut SFFloat X-Rotation

eventOut SFFloat Y-Rotation

eventOut SFFloat Z-Rotation

eventOut SFBool Button??1

eventOut SFBool Button??2

}

The Joystick backend has three float outslots that provide values between 0 and 1 for the x, y and
z translation of the cap, three float outslots that provide values between 0 and 1 for the x, y and z
rotation of the cap, and boolean outslots for each button of the device.

4.4.2.3 Serial-Device on all Systems

The SpaceMouse backend is the recommended way to connect classic (serial) SpaceMouse devices
on all operating systems.

To get the backend working, do not install any drivers - just integrate an IOSensor node into the
scene whose type is “SpaceMouse”. In the “device” SFString field, you have to specify the serial port
the SpaceMouse is connected to (0 is COM1, 1 is COM2, and so on).

DEF ios IOSensor {

type "SpaceMouse"

device "0"

eventOut SFFloat X?translation

eventOut SFFloat Y?translation

eventOut SFFloat Z?translation

eventOut SFFloat X?rotation

eventOut SFFloat Y?rotation

eventOut SFFloat Z?rotation

eventOut SFBool Button?1

eventOut SFBool Button?2

eventOut SFBool Button?3

eventOut SFBool Button?4

eventOut SFBool Button?5

eventOut SFBool Button?6

eventOut SFBool Button?7

eventOut SFBool Button?8

}

The SpaceMouse backend has three float outslots that provide values between 0 and 1 for the x,
y and z translation of the cap, three float outslots that provide values between 0 and 1 for the x, y and
z rotation of the cap, and eight boolean outslots for the buttons “1” - “8” of the device. It is currently
not possible to access the “*” button of the device via the IOSensor node.

Side Node: It is also possible to get older (serial) SpaceMouse devices working with the Space-
Navigator backend on Windows, but that involves a little bit of hacking. You have to install the appro-
priate driver from the 3Dconnexion web site (“3DxSoftware 2.x”). Additionally you have to get and
register a library (TDxInput.dll). This library only comes with the drivers for newer (USB) devices
(“3DxSoftware 3.x”). So you have to perform the following steps to get older (serial) devices working:

• Get and install the driver for newer (USB) devices (“3DxSoftware 3.x”). As I already said, this
driver is the same for all USB devices, so it does not matter whether you choose the driver for
the SpaceNavigator, the SpacePilot or any other USB device.

• Locate the library “TDxInput.dll”. On an english version of Windows, when you installed the
driver into the default location, the location of that library is “C:Program Files3Dconnexion3Dconnexion
3DxSoftware3DxWarewin32”. Copy that library into a safe location.

• Uninstall the 3DxSoftware 3.x driver.

• Get and install the driver for older (serial) devices (“3DxSoftware 2.x”).

44

• Register the library “TDxInput.dll”. To to that, you have to log in as an administrator, open the
command line, go into the directory that contains the library, and enter the following command:
“regsvr32 TDxInput.dll”. Do not move the library to another location or remove it from the hard
disk - it is registered at that specific location.

4.4.3 Controlling the Application

The IOSensor nodes give you the raw datastreams of the devices. You, as application developer,
are totally free to use it to change various application states. You can e.g. navigate the camera,
transform BodyPart nodes to trigger PointSensors or change the color of an object according to the
current rotation state.

You can use Scripts to code this behavior or use helper Nodes like an SteeringNavigator. Check
the “Navigator” and “Immersive PointingSensor Interaction” tutorial for more details.

Attached to this tutorial you find a simple example which shows most usual case. Using a Space-
Navigator/SpacePilot on Windows to control a Navigator while walking/flying in a Virtual Environment

Files:

• space-nav.x3d

4.5 Navigator

This sections shows how to use 2D and 3D navigators together with device inputs to move the user
camera.

4.5.1 Introduction

For desktop applications navigation is simply accomplished by using the mouse. Internally a so-called
Navigator2D node, which is part of the engine, especially the Viewarea node, is used to navigate with
a mouse through the 3D scene. Thus it has three input fields, “mousePress”, “mouseRelease”, and
“mouseMove”. Actually they were designed for reacting to mouse events, but as other devices may
produce similiar events, for the purpose of generality those events may be routed to the 2D Navigator
as well. But generally the user doesn’t need to worry about that.

This is different for the 3D Navigators, which were especially developed for joysticks or VR-
devices. They also inherit from the abstract Navigator base node, but for convenience they are
part of the scene and therefore have to be suitably parameterized, which will be explained in later
sections.

4.5.2 Getting the data - the IOSensor

If you want to navigate or interact with your scenes using a joystick, spacemouse or a similiar external
device you first need an IOSensor in your scene, for retrieving the input values. Below is an example
for addressing a joystick. Usage of e.g. a spacemouse would be quite similiar, with the ’type’ field set
to type “spacemouse”.

DEF ios IOSensor {

type "joyStick"

eventOut SFFloat *x*axis

eventOut SFFloat *z*rot*

eventOut SFBool *button*8

}

4.5.3 Moving around - the Navigator3D

Now that you have the values of your device, there are basically two options for navigating. On
the one hand you can route the translational and rotational values to a Script node, calculate the
corresponding transformations and route the results to your Viewpoint. Because this might be quite
cumbersome on the other hand you can alternatively use a Navigator3D node. Currently there are
three types: the PointingNavigator , the SpaceNavigator , and the SteerNavigator .

45

file:extra/space-nav.x3d
http://instantreality.org/documentation/nodetype/Navigator2D/
http://instantreality.org/documentation/nodetype/Viewarea/
http://instantreality.org/documentation/nodetype/IOSensor/
http://instantreality.org/documentation/nodetype/PointingNavigator/
http://instantreality.org/documentation/nodetype/SpaceNavigator/
http://instantreality.org/documentation/nodetype/SteerNavigator/

• The PointingNavigator is especially useful for fully immersive navigation in combination with a
Pen. Via point and “click” you can fly to the chosen location, which is conceptually similiar to
the ’lookat’ navigation type. The calculated movement is generated from relative movements of
the device.

• The SpaceNavigator allows navigation regarding all six degrees of freedom by directly manip-
ulating the camera position in 3D space, but therefore usually a lot of practice is needed.

• The SteerNavigator tries to alleviate this by providing a simpler interface for walk-through and
fly modes with devices like joystick and spacemouse. In the following the latter navigation type
will be further explained exemplarily.

After having outlined what type of navigators exist, it will now be explained, how they are used.
One possibility is to instantiate a navigator as a child of a Viewpoint , which is shown in the

following code fragment. This has the great advantage that the navigator is automatically connected
to the currently active Viewpoint.

Viewpoint {

position 45.15 0.42 5.11813

orientation -0.21 0.97 0.0644 0.59193

navigator [

DEF nav SteerNavigator {

inputRange [0 1]

rotationSpeed -0.2 -0.2 -0.2

translationSpeed 10 10 10

}

]

}

ROUTE ios.*x*axis TO nav.set_yRotation

ROUTE ios.*z*rot* TO nav.set_zTranslation

As can be seen in the next code fragment, despite fields for the type of navigation etc., the
NavigationInfo also contains a MFNode field “navigator” for holding the 3D navigator, which will be
called for the currently bound ViewBindable node.

NavigationInfo {

type "walk"

navigator [

DEF nav SteerNavigator {

inputRange [0 1]

rotationSpeed -0.2 -0.2 -0.2

translationSpeed 10 10 10

}

]

}

ROUTE ios.*x*axis TO nav.set_yRotation

ROUTE ios.*z*rot* TO nav.set_zTranslation

Now there remains one question. How do the navigators update their internal state? The Steer-
Navigator for instance has six input fields for [x|y|z]Rotation as well as for [x|y|z]Translation, which
define a rotation around the corresponding axis or a translation in the appropriate direction respec-
tively. For updating camera movement, you only need to route the corresponding values from your
device sensor node to the navigator node as shown above.

Furthermore there exist some interesting fields for fine-tuning your navigator. The “inputRange”
field specifies the input value range e.g. [-1;1] or [0;1]. It is possible to specify one value for all
inputs or a single range for all 6 input values. The “rotationSpeed” field defines the rotations per
second for each axis; the values can also be negative for inverting the direction of rotation. The
“translationSpeed” field defines the speed of the translation in meters per second for each axis.

In order to avoid drift when not interacting with the input device the SteerNavigator has two
SFVec3f fields for defining the values of zero deflection for each axis (meaning the control sticks, after

46

http://instantreality.org/documentation/nodetype/PointingNavigator/
http://instantreality.org/documentation/nodetype/SpaceNavigator/
http://instantreality.org/documentation/nodetype/SteerNavigator/
http://instantreality.org/documentation/nodetype/Viewpoint/
http://instantreality.org/documentation/nodetype/NavigationInfo/
http://instantreality.org/documentation/nodetype/SteerNavigator/

initially having moved them already, are now at rest): “zeroDeflectionTrans” and “zeroDeflectionRot”.
Last but not least the SteerNavigator node has an SFBool eventIn slot called “updateRotationCenter”.
If this slot is triggered a point along the viewing ray, usually the point of intersection with the scene
geometry, is set as the new center of rotation (default is the origin), which is used in examine mode
as the center point around which the viewpoint is rotated.

The example file shows a simple walk-through world using an IOSensor for joystick movement
and a SteerNavigator for showing the previously explained fields in action.

Files:

• walk_through.wrl

4.6 Immersive PointingSensor Interaction

This sections shows how to use a UserBody together with immersive interaction devices in order to
trigger pointing sensors.

4.6.1 Desktop based interaction

For desktop applications object manipulation is simply accomplished by using the mouse or similiar
devices. The X3D PointingDeviceSensor nodes therefore allow to interact with objects in the scene.
The user can choose which object to manipulate by locating the mouse pointer “over” the object.
Here the interaction concepts directly follow the way they are described in the pointing device sensor
component of the X3D specification.

Hint: This concept can easily be generalized for any screen-space based input data. Internally the
so-called Navigator2D node, which is part of the engine, is used to handle navigation and interaction
with a mouse within a 3D scene. But other devices like e.g. optical tracking may produce similiar
events, which can also be used. Because those concepts were already explained in the context of
2D/3D navigation, the interested reader may refer to the corresponding navigation section .

4.6.2 Fully immersive interaction

Within X3D a pointing-device sensor is activated when the user locates the pointing device “over”
geometry that is influenced by that specific pointing-device sensor. For desktop clients with a 2D
mouse this is just defined by the mouse pointer. In immersive environments (e.g. a CAVE using a
6DOF interaction device) it is not so straightforward how “over” should be understood.

Therefore one additional node to generalize the immersive implementation is provided. The User-
Body derived from the Group node defines a sub-graph as so-called user body. The UserBody has
only one extra SFBool field “hot”. The hot-field is analogous to a mouse button for 2D interaction and
corresponds to the “button pressed” state.

If the UserBody is instantiated as child of a Transform node it can be transformed by external
interaction devices like a spacemouse or a pen (whose values can be accessed by means of the
IOSensor node), and can be used for direct visual feedback of pointing tasks as well as for colliding
with real scene geometry, equivalent to a 3D mouse cursor.

The type of interaction is set in the NavigationInfo node. Currently the following interaction types
are possible:

• none - no interaction

• ray - handles ray selection in 3D; the ray origin is the position of the user body, and the ray
points into the negative z direction (typically an array, by grouping a Cone and a Cylinder, is
used for representing the proxy geometry, in this case don’t forget to add an additional rotation
of ’1 0 0 -1.5707963’ for correct adjustment to the parent Transform)

• nearest - also ray based, but uses the nearest sensor, because sometimes it might be quite
difficult to really hit an object by means of a ray intersect

• projection - like ’ray’ this type also handles ray selection in 3D, but this time the ray points from
the camera through the origin of the user body’s coordinate system, what is especially useful
for desktop applications. Be careful not to mix up the origin (which might not be visible) with the

47

file:extra/walk_through.wrl
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification_Revision1_to_Part1/
http://instantreality.org/documentation/nodetype/Navigator2D/
http://instantreality.org/documentation/nodetype/UserBody/
http://instantreality.org/documentation/nodetype/UserBody/
http://instantreality.org/documentation/nodetype/Group/
http://instantreality.org/documentation/nodetype/Transform/
http://instantreality.org/documentation/nodetype/IOSensor/
http://instantreality.org/documentation/nodetype/NavigationInfo/

real position of your object. Hint: When using the Viewspace a Geometry2D node works best
as user body.

• collision - here the notion of being “over” is modelled by means of a collision of the user body
geometry with the sensor geometry

With the help of the following code fragment (the complete version can be found in the example)
a typical usage scenary will finally be exemplarily discussed.

DEF script Script {

eventIn SFTime update

eventIn SFFloat set_xRotation

eventIn SFFloat set_yRotation

eventIn SFFloat set_zRotation

eventIn SFFloat set_xTranslation

eventIn SFFloat set_yTranslation

eventIn SFFloat set_zTranslation

eventOut SFRotation rotation_changed

eventOut SFVec3f translation_changed

url "javascript: ..."

}

DEF timeSensor TimeSensor { loop TRUE }

ROUTE timeSensor.time TO script.update

DEF ios IOSensor {

type "spacemouse"

eventOut SFFloat X*Rotation

eventOut SFFloat Y*Rotation

eventOut SFFloat Z*Rotation

eventOut SFFloat X*Translation

eventOut SFFloat Y*Translation

eventOut SFFloat Z*Translation

eventOut SFBool Button*

}

DEF navInfo NavigationInfo {

interactionType "ray"

sceneScale 0.01

}

Viewspace {

scaleToScene TRUE

children [

DEF userBodyTrans Transform {

children [

DEF userBody UserBody {

...

}

]

}

]

}

ROUTE ios.X*Rotation TO script.set_xRotation

ROUTE ios.Y*Rotation TO script.set_yRotation

ROUTE ios.Z*Rotation TO script.set_zRotation

ROUTE ios.X*Translation TO script.set_xTranslation

ROUTE ios.Y*Translation TO script.set_yTranslation

ROUTE ios.Z*Translation TO script.set_zTranslation

48

ROUTE ios.Button* TO userBody.hot

ROUTE script.rotation_changed TO userBodyTrans.set_rotation

ROUTE script.translation_changed TO userBodyTrans.set_translation

Because a UserBody can only have an effect when being moved around, you first have to update
its position and orientation to determine which 3D objects are to be hit. This can be done with the
help of an IOSensor for receiving the input data of your desired interaction device. In this example a
spacemouse was chosen.

Because a spacemouse has six SFFloat eventOut slots, three for translation along the x, y, and
z axis, and three for rotation about these axes, the final translation (of type SFVec3f) and rotation
(of type SFRotation) have to be assembled in a script. After that the results are routed to the parent
transform of the UserBody node, which contains the pointer geometry.

In this example the user body is also a child of a Viewspace node. This is due to the fact, that
usually the pointer geometry is not really considered as being part of the scene but rather a tool for
interacting in immersive environments.

In this context two fields are quite important: If scaleToScene is true, the Viewspace is scaled to
the same size as defined in sceneScale of the NavigationInfo. This is very useful in case the scene
wasn’t modelled in meters; hence if the scene was modelled e.g. in centimeters, the sceneScale field
should be set to 0.01.

Warning
Please note, that currently only the first UserBody can activate pointing device sensors
in ray, nearest and collision mode; whereas the projection mode may not work in multi-
viewport/ highly immersive environments.

Files:

• Ray intersect

• Projective intersect

• Projective intersect with HUD

4.7 Vision Marker Tracking

This section shows you how to use instant reality’s vision module for marker tracking.

4.7.1 Introduction

instant vision is a set of visual tracking systems starting with simple marker tracking going to mark-
erless tracking like line trackers and KLT. The true power of the system lies in the ability to combine
several such tracking procedures, for instance using a line tracker for initialisation with an absolute
pose and KLT for frame to frame tracking.

In this example we will focuson a simple marker tracking example using the VisionLib backend.

4.7.2 IOSensor

The marker tracking is loaded like any other HID device via an IOSensor. These are instant vision’s
fields:

• VideoSourceImage (SFImage) : Camera image

• TrackedObjectCamera_ModelView (SFMatrix) : Camera’s modelview matrix

• TrackedObjectCamera_Projection (SFMatrix) : Camera’ projection matrix

• TrackedObjectCamera_Position (SFVec3f) : Camera’s position

• TrackedObjectCamera_Orientation (SFRotation) : Camera’s orientation

49

http://instantreality.org/documentation/nodetype/Viewspace/
file:extra/mainUserBody.wrl
file:extra/ir_userbody.wrl
file:extra/ir_userbody_vs.wrl

<IOSensor DEF='VisionLib' type='VisionLib' configFile='visionlib.pm'>

<field accessType='outputOnly' name='VideoSourceImage' type='SFImage'/>

<field accessType='outputOnly' name='TrackedObjectCamera_ModelView' type='SFMatrix4f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Projection' type='SFMatrix4f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Position' type='SFVec3f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Orientation' type='SFRotation'/>

</IOSensor>

In order to use the camera’s correct modelview and projection in the scene we are using a
Viewfrustrum instead of a standard Viewpoint. By routing the IOSensor’s TrackedObjectCamera_ModelView
and TrackedObjectCamera_Projection to the ViewFrustrum’s modelview and projection the virtual
camera matches the real camera’s position and orientation relative to the marker.

<Viewfrustum DEF='vf' />

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_ModelView' toNode='vf' toField='modelview'/>

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_Projection' toNode='vf' toField='projection'/>

With the camera’s image in the background we are creating an Augmented Reality scenario.

<PolygonBackground>

<Appearance positions='0 0, 1 0, 1 1, 0 1' >

<TextureTransform rotation='0' scale='1 -1'/>

<PixelTexture2D DEF='tex' autoScale='false'/>

</Appearance>

</PolygonBackground>

<ROUTE fromNode='VisionLib' fromField='VideoSourceImage' toNode='tex' toField='image'/>

This example works with standard webcams with vga resolution. An example how to manipulate
instant vision’s configuration file and to create and use different markers will follow.

Figure 4.14: visionlib.jpg

Files:

• visionlib.x3d (Example)

• visionlib.pm (Configuration File)

• visionlib.pdf (Marker)

50

file:extra/visionlib.x3d
file:extra/visionlib.pm

4.8 Vision Tracking Device

This tutorial shows you how to vision based tracking; As example we will create a marker tracker.

4.8.1 Introduction

4.8.2 Tracking in General

World The desciption of the world how the tracking system sees it. It contains one ore more Tracke-
dObjects.

TrackedObject Describes the objects to be tracked, thus this node contains all information about an
object which should be tracked

Marker One way to track things is the use of a marker. To describe a TrackedObject with a marker
this node is added to the TrackedObject

Camera A camera is used in every vision tracking system. The node contains one Intrinsic and one
Extrinsic data node.

ExtrinsicData Part of the camera description, contains the parameters descibing the position and
orientation of the camera in the world.

IntrinsicData Second part of the camera description, describes the internal parameters of a camera
like resolution, focal length or distortion.

ActionPipe The execution units (Actions) in InstantVision are arranged in an execution pipe which
is called an ActionPipe.

DataSet All data items used in InstantVision are placed in the DataSet and have a key(name) to
refere to them.

4.8.3 The Example

Two files will be needed to setup an InstantReality scene with a vision tracking device. The first is a
VisionLib configuration file, which describes the tracking setup, the second is a scene file for IR.

The VisionLib config (visionlib.pm). All images and cameras used in the VisionLib config are
exported to InstantPlayer, so you can use the images as textures or backgrounds and the cameras
as transformations for Viewpoint, Viewfrustum or ComponentTransform. The names of the Images
are the same as in the VisionLib config, the cameras are split into 4 names where the first part names
the TrackedObject from which the camera is derived and the postfix names the output type. In the
Example these names are “TrackedObjectCamera_ModelView”, “TrackedObjectCamera_Projection”,
“TrackedObjectCamera_Position”, “TrackedObjectCamera_Orientation”. The camera here is derived
from World.TrackedObject which gave the name.

Tracking multiple markers can be achieved by duplicating the TrackedObject sections and give
the TrackedObjects distinctive keys and marker codes. As described above, you will get the camera
(inverted object) transformations named like the TrackedObject key + (e.g.) “Camera_ModelView”.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<VisionLib2 Version="2.0">

<Plugins size="0">

</Plugins>

<ActionPipe category="Action" name="AbstractApplication-AP">

<VideoSourceAction category="Action" name="VideoSourceAction">

<Keys size="2">

<key val="VideoSourceImage"/>

<key val=""/>

</Keys>

<ActionConfig preferred_height="480" preferred_width="640" shutter="-1" source_url="ds"/>

51

</VideoSourceAction>

<ImageConvertActionT__ImageT__RGB_FrameImageT__GREY_Frame category="Action" name="ImageConvertActionT">

<Keys size="2">

<key val="VideoSourceImage"/>

<key val="ConvertedImage"/>

</Keys>

</ImageConvertActionT__ImageT__RGB_FrameImageT__GREY_Frame>

<MarkerTrackerAction category="Action">

<Keys size="5">

<key val="ConvertedImage"/>

<key val="IntrinsicData"/>

<key val="World"/>

<key val="MarkerTrackerInternalContour"/>

<key val="MarkerTrackerInternalSquares"/>

</Keys>

<ActionConfig MTAThresh="140" MTAcontrast="0" MTAlogbase="10" WithKalman="0" WithPoseNlls="1"/>

</MarkerTrackerAction>

<TrackedObject2CameraAction category="Action" name="TrackedObject2Camera">

<Keys size="3">

<key val="World"/>

<key val="IntrinsicData"/>

<key val="Camera"/>

</Keys>

</TrackedObject2CameraAction>

</ActionPipe>

<DataSet key="">

<IntrinsicDataPerspective calibrated="1" key="IntrinsicData">

<!--Image resolution (application-dependant)-->

<Image_Resolution h="480" w="640"/>

<!--Normalized principal point (invariant for a given camera)-->

<Normalized_Principal_Point cx="5.0037218855e-01" cy="5.0014036507e-01"/>

<!--Normalized focal length and skew (invariant for a given camera)-->

<Normalized_Focal_Length_and_Skew fx="1.6826109287e+00" fy="2.2557202465e+00" s="-5.7349563803e-04"/>

<!--Radial and tangential lens distortion (invariant for a given camera)-->

<Lens_Distortion k1="-1.6826758076e-01" k2="2.5034542035e-01" k3="-1.1740904370e-03" k4="-4.8766380599e-03" k5="0.0000000000e+00"/>

</IntrinsicDataPerspective>

<World key="World">

<TrackedObject key="TrackedObject">

<ExtrinsicData calibrated="0">

<R rotation="1 0 0
"/>

<t translation="0 0 0
"/>

<Cov covariance="0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
"/>

</ExtrinsicData>

<Marker BitSamples="2" MarkerSamples="6" NBPoints="4" key="Marker1">

<Code Line1="1100" Line2="1100" Line3="0100" Line4="0000"/>

<Points3D nb="4">

<HomgPoint3Covd Cov3x3="0 0 0
0 0 0
0 0 0
" w="1" x="0" y="6" z="0"/>

<HomgPoint3Covd Cov3x3="0 0 0
0 0 0
0 0 0
" w="1" x="6" y="6" z="0"/>

<HomgPoint3Covd Cov3x3="0 0 0
0 0 0
0 0 0
" w="1" x="6" y="0" z="0"/>

<HomgPoint3Covd Cov3x3="0 0 0
0 0 0
0 0 0
" w="1" x="0" y="0" z="0"/>

</Points3D>

</Marker>

</TrackedObject>

</World>

</DataSet>

</VisionLib2>

52

The scene file instantiates an IOSensor based on the VisionLib config file. The output of this IO
sensor is then routed to a texture and a Viewfrustum node.

<?xml version="1.0" encoding="UTF-8"?>

<X3D>

<Engine DEF='engine'>

<TimerJob DEF='timer'/>

<SynchronizeJob DEF='synchronize'/>

<RenderJob DEF='render'>

<WindowGroup>

<Window position='10 50' size='640,480' fullScreen='false' />

</WindowGroup>

</RenderJob>

</Engine>

<Scene DEF='scene'>

<IOSensor DEF='VisionLib' type='VisionLib' configFile='visionlib.pm'>

<field accessType='outputOnly' name='VideoSourceImage' type='SFImage'/>

<field accessType='outputOnly' name='TrackedObjectCamera_ModelView' type='SFMatrix4f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Projection' type='SFMatrix4f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Position' type='SFVec3f'/>

<field accessType='outputOnly' name='TrackedObjectCamera_Orientation' type='SFRotation'/>

</IOSensor>

<Viewfrustum DEF='vf' />

<PolygonBackground>

<Appearance positions='0 0, 1 0, 1 1, 0 1' >

<TextureTransform rotation='0' scale='1 -1'/>

<PixelTexture2D DEF='tex' autoScale='false'/>

</Appearance>

</PolygonBackground>

<Transform translation='0 0 0'>

<Shape DEF='geo2'>

<Appearance>

<Material emissiveColor='1 0.5 0' />

</Appearance>

<Teapot size='5 5 5' />

</Shape>

</Transform>

<ROUTE fromNode='VisionLib' fromField='VideoSourceImage' toNode='tex' toField='image'/>

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_ModelView' toNode='vf' toField='modelview'/>

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_Projection' toNode='vf' toField='projection'/>

</Scene>

</X3D>

<Viewpoint DEF='vf' fieldOfView='0.5' />

<ROUTE fromNode='VisionLib' fromField='VideoSourceImage' toNode='tex' toField='image'/>

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_Position' toNode='vf' toField='position'/>

<ROUTE fromNode='VisionLib' fromField='TrackedObjectCamera_Orientation' toNode='vf' toField='orientation'/>

#VRML V2.0 utf8

DEF trackingSensor IOSensor {

type "VisionLib"

configFile "visionlib.pm"

53

eventOut SFImage VideoSourceImage

eventOut SFMatrix4f TrackedObjectCamera_ModelView

eventOut SFMatrix4f TrackedObjectCamera_Projection

eventOut SFVec3f TrackedObjectCamera_Position

eventOut SFRotation TrackedObjectCamera_Orientation

}

DEF trans Transform {

children [

Shape {

appearance Appearance {

texture DEF tex PixelTexture2D {

}

}

geometry Box {

}

}

]

}

ROUTE trackingSensor.VideoSourceImage TO tex.image

ROUTE trackingSensor.TrackedObjectCamera_Orientation TO trans.rotation

4.8.4 Modifications

This section gives you some clues what to change to get your setup running.

4.8.4.1 VideoSource

The example above uses DirectShow (or QT on the Mac) to access a camera. This should work
for all cameras which support it, these will usually have a WDM driver to be installed. To use other
cameras you need to change the VideoSource:ActionConfig:source_url field in the .pm file. There
are also a number of arguments which can be passed to the video source driver. The arguments are
added to the source url like this: driver://parameter1=value;parameter2=value .

Some drivers and their parameters are (available on platform in parentheses):

ds (win32, darwin) Windows driver as mentioned above, on a Mac this is the same as “qtvd” Param-
eters are: device - string name of the camera, mode - string name of the mode, framerate -
integer. The driver compares the given parameters to whatever DS reports about the camera,
if there is a mach the maching parameters are used, other values are ignored.

vfw (win32) Old VideoForWindows driver. That is a good luck driver, no parameters implemented.

v4l (linux) Works with video4linux (old version 1). No parameter support yet but you can pass
something like v4l:///dev/myvideodev to select a device and it reads environment variables
VIDEO_SIZE which is an integer value [0-10] which selects a video size between 160x120
and 768x576

ieee1394 (win32) FireWire DC cameras which run with the CMU driver http://www.cs.cmu.edu/~iwan/1394/index.html
on windows. No parameters available for now.

ieee1394 (linux) FireWire DC cameras which run with the video1394 kernel module and libdc1394
(coriander), which includes PGR devices. Parameters are: unit - integer value for selecting a
camera at the bus, trigger - boolean [0,1] 1 switches on external trigger, downsample - boolean
[0,1] downsamples a bayer coded image to half size, device - string like “/dev/video1394/0” the
device file to use.

ieee1394pgr (win32) PointGreyResearch cameras, license needed. Parameters are: unit - integer
value for selecting a camera at the bus, trigger - boolean [0,1] 1 switches on external trigger,
downsample - boolean [0,1] downsamples a bayer coded image to half size, mode - string

54

http://www.cs.cmu.edu/~iwan/1394/index.html

value to select a mode, when passing “mode=320” some mode with a resolution of 320x240 is
selected.

ueye (win32, linux) IDS imaging uEye cameras, license needed (more adjustments then the ds
drivers) Parameters: downsample - boolean [0,1] downsamples a bayer coded image to half
size,

vrmc (win32) VRmagic cameras, license needed, No parameters supported yet.

qtvd (darwin) Mac QuickTimeVideoDigitizer, no parameters yet

Some of these drivers require additional libs/dlls which must be installed on your system and in
the path.

4.8.4.2 Marker

A marker in IV is described by a 4x4 code mask and four corner points. You can easily change the
marker code by editing the fields DataSet:World:TrackedObject:Marker:Code:LineX. The marker is
made of 4 lines Line1 = 1100 Line2 = 1100 Line3 = 0100 Line4 = 0000 where 0 = black and 1 =
white, e.g.

Figure 4.15: marker code

the real marker must have a black square around this and another white square around. It will
look like

Figure 4.16: full marker

One way to create and print whose things is to go into word and create a 8x8 table, make the
rows and cols the same size and color the cell background with black’n’white.

55

You can also change the position of the marker in the world by changing ...Marker:Points3D:HomgPoint3Covd:[xyz]
values, make sure the marker stays rectangular and planar. The points describe the outer black bor-
der (6x6 field) not the white surrounding, they corrospond to upper left, upper right, lower right, lower
left corners of the image.

You also use multiple markers in one TrackedObject, just duplicate DataSet:World:TrackedObject:Marker
and change one of them to reflect its physical position on the object you want to track.

4.9 Apple Sudden Motion Sensor

This section shows you how to use the Apple Sudden Motion Sensor inside a 3d scene.

4.9.1 Introduction

In 2005 Apple introduced the Sudden Motion Sensor for its portable computers in order to protect
the hardrive. This example only works on Apple Powerbooks, iBooks, MacBooks and MacBooks Pro
build after 2005.

The sensor is a 3-axis accelerometer. The AppleMotionSensor backend delivers a Vec3f with the
three acceleration values.

4.9.2 Shaking

In the first example we create an IOSensor of the type AppleMotionSensor and route its values to a
Transform node. The values are getting smoothed by a PositionDamper.

The AppleMotionSensor is loaded like any other HID device via an IOSensor. The acceleration
values are stored in the field Motion :

• Motion (SFVec3f) : Acceleration values (x, y, z)

<IOSensor DEF='AppleMotionSensor' type='AppleMotionSensor'>

<field accessType='outputOnly' name='Motion' type='SFVec3f'/>

</IOSensor>

The acceleration values could be routed to a Transform node. But in order to smooth the values
we are putting a PositionDamper inbetween.

<Transform DEF='tr'>

<Shape>

<Appearance>

<Material diffuseColor='1 1 1' />

</Appearance>

<Box/>

</Shape>

</Transform>

<PositionDamper DEF='pd' tau='0.1' />

<ROUTE fromNode='AppleMotionSensor' fromField='Motion' toNode='pd' toField='set_destination'/>

<ROUTE fromNode='pd' fromField='value_changed' toNode='tr' toField='set_translation'/>

Files:

• test_suddenMotion.x3d (Example)

4.9.3 Tilt

In this second example we are mapping the acceleration on the orientation of an object.
Calling the SFRotation() constructor with the acceleration vector and a vector SFVec3f(0,1,0)

calculates the sensor’s orientation. By routing that value on a Transform’s rotation the object seems
to keep its position while rotating the notebook.

56

file:extra/applesuddenmotion.x3d

<Script DEF='script'>

<field accessType='inputOnly' name='set_motion' type='SFVec3f'/>

<field accessType='outputOnly' name='rotation_changed' type='SFRotation'/>

<![CDATA[javascript:

var rotation_changed;

var vector = new SFVec3f(0,1,0);

function set_motion(motion)

{

rotation_changed = new SFRotation(motion, vector);

}

]]>

</Script>

<ROUTE fromNode='AppleMotionSensor' fromField='Motion' toNode='script' toField='set_motion'/>

<ROUTE fromNode='script' fromField='rotation_changed' toNode='tr' toField='set_rotation'/>

Files:

• test_suddenMotion_02.x3d (Example)

4.10 Serial Communication

This section shows you how to communicate with a serial device.

4.10.1 Introduction

This section shows how to communicate with a serial device within a 3D scene. Possible devices are
microcontroller boards like Arduino or Wiring , but also for example Wacom tablets, GPS devices and
rotary encoders.

4.10.2 Setting up the serial port

The serial port is set up with an IOSensor node at the beginning of the scene. The following param-
eters are available:

• Device : A number starting at 0 specifying the serial interface to use. 0 for COM1 or the first tty
serial device. (default: 0)

• BaudRate : Baud rate of the serial port. 9600, 19200, ... (default: 9600)

• DataBits : Number of data bits used for the communication on the serial port. Possible values
are 7 or 8. (default: 8)

• Parity : Type of parity used for the communication on the serial port. Possible values are even,
odd or none. (default: none)

• StopBits : Number of stop bits used for the communication on the serial port. Possible values
are 1 or 2. (default: 1)

• Handshake : Type of handshake (flow control). Possible values are none, hardware or software.
(default: none)

• DTR : The status of the DTR line.

• RTS : The status of the RTS line.

• Init String : An initialisation string that is send to the serial device to start operation.

57

file:extra/suddenmotionTilt.x3d
http://www.arduino.cc
http://www.wiring.org.co

• Deinit String : A deinitialisation string that is send to the serial device to stop operation.

• Delimiter : Ascii value of the character that splits the serial message (default: no delimiter)

• MaxBytes : The maximum number of bytes a message consists of. A value of -1 means that
there is no maximum number of bytes. (default: -1)

<IOSensor DEF='serial' type='serial' Device='0' Delimiter='10' BaudRate='9600'>

<field accessType='outputOnly' name='Data out' type='SFString'/>

<field accessType='inputOnly' name='Data in' type='SFString'/>

</IOSensor>

Here we are seeting up a serial device with 9600 baud rate at COM1 or tty.usbserial-00001. The
delimiter is set to a line break (ASCII value: 10). All other parameters have the default values.

There are two fields for the incoming and outgoing data:

• Data out : Data from the serial device to the scene

• Data in : Data from the scene to the serial device

4.10.3 Sending Data to the Serial Port

By routing the KeySensors’ keyPress field to the serial devices’ Data in field we are sending each
keystroke (SFString) to the serial port. We also specify a name for the device handler via the name
field.

<KeySensor DEF='keysensor' />

<ROUTE fromNode='keysensor' fromField='keyPress' toNode='serial' toField='Data in'/>

4.10.4 Receiving Data from the Serial Port

In order to get the data from the serial port and to show it in the scene we are routing the values from
the serial devices’ Data out field to a Text nodes’ string field.

<Transform>

<Shape>

<Text DEF='text' string='' solid='true'>

</Shape>

</Transform>

<ROUTE fromNode='serial' fromField='Data out' toNode='text' toField='string'/>

4.10.5 Example Scene

This is a simple example for the communication between an Arduino microcontroller and instant
viewer . We are sending keystrokes from the scene to the controller. The software on the Arduino
board switches an LED on when “1” is sent and switches it off when “2” is sent. It sends the Strings
“On” and “Off” back to the scene where it is routed on a Text node’s string.

<X3D>

<Scene DEF='scene'>

<IOSensor DEF='serial' type='serial' Device='0' Delimiter='10' BaudRate='9600'>

<field accessType='outputOnly' name='Data out' type='SFString'/>

<field accessType='inputOnly' name='Data in' type='SFString'/>

</IOSensor>

<Viewpoint position='0.625 0.3 1.9' />

<Transform>

58

<Shape>

<Appearance>

<Material diffuseColor='1 1 1' />

</Appearance>

<Text DEF='text' string='/../' solid='true'>

<FontStyle justify='BEGIN' family='SANS' />

</Text>

</Shape>

</Transform>

<ROUTE fromNode='serial' fromField='Data out' toNode='text' toField='string'/>

<KeySensor DEF='keysensor' />

<ROUTE fromNode='keysensor' fromField='keyPress' toNode='serial' toField='Data in'/>

</Scene>

</X3D>

Figure 4.17: Scene

void setup()

{

Serial.begin(9600);

pinMode(13, OUTPUT);

}

void loop()

{

if (Serial.available() > 0)

{

int incoming = Serial.read();

if ((char)incoming == '1')

{

digitalWrite(13, HIGH);

Serial.println("On");

}

else if ((char)incoming == '2')

{

digitalWrite(13, LOW);

Serial.println("Off");

}

59

}

}

Figure 4.18: Arduino LED

Files:

• serialTutorial.x3d

• serialExample.pde

60

file:extra/serialTutorial.x3d
file:extra/serialExample.pde

Chapter 5

Clustering

5.1 Cluster Basics and Load Balancing

This section gives an overview over cluster topologies in computer graphics. It continues with the
often ignored topic of load balancing, as clusters are mostly used to set up multi display environments
without a real distribution of load. In InstantReality the activation of load balancing is very easy. You
will also get a basic introduction on how to setup your network and start cluster servers to be ready
to use for your cluster. Different setups will be explained in the following sections of this Clustering
section.

5.1.1 Topologies

To make expensive computations faster, a common approach nowadays is establishing a cluster of
more or less convenient hardware, let’s say PCs. In computer graphics we can imagine several
configurations using a cluster of PCs as you can see in following scenarios.

Most common systems look like the illustration below, several PCs are connected over a network
to render and display a virtual scene together on multiple displays. The advantage is a high resolution
but as one PC is responsible for exactly one display the system is only as fast as the PC which has
the highest render load.

Figure 5.1: Multi display cluster configuration

To render complex geometries a configuration as shown below is possible. The scene has to be
distributed to PCs in a cluster, they compute their task and send the results back to the PC which
composes and displays the final image. In this case we use a cluster to render complex scenes but
we lose the high resolution of a multi display system.

61

Figure 5.2: Single display cluster configuration

If we like to benefit of both advantages, i.e. high resolution and effective rendering of complex
models, we need a flexible system. In this system we have several PCs in a network where some are
playing a role as display and others that are not. This topology can also be used as stereo setup for
instance.

The InstantReality system provides the concept of using an arbitrary number of displays in a
specified alignment together with an arbitrary number of PCs. Those can be connected to a display
or not. This flexible concept allows each of the above basic setups. But it can also be used to
create more complex configurations like cave environments with displays which are orthogonal to
each other or even displays in an arbitrary angle. To see how simple a cluster is configured please
read the following sections in the Clustering section. But you should finish this one for load balancing
aspects and basic IR cluster setup information.

5.1.2 Load balancing

In a cluster, PCs should share the overall load equally between each other to be effective and to get
the best performance. In computer graphics all of them generate an equally cost intensive part of the
scene. A proper and fast precomputation of the scene takes place before distributing parts of it to the
PCs. Finally every rendered section which belongs to another display PC is copied over the network
to its target. This approach offers arbitrary setups like single display and multi display systems, both
as mono or stereo solution with an effective balancing of the upcoming load.

There are several approaches to balance the load of 3D scenes. Two big categories are image
space distribution and geometry distribution.

5.1.2.1 Image space balancing (Sort-First)

In image space distributed balancing, also called Sort-First , a precomputation takes place which
transforms only bounding boxes of objects into camera space to get the approximate position of
geometries on the displays. By this information a cost function is estimated. This is based on

62

Figure 5.3: Multi display configuration with load balancing

transformation costs as well as the rasterization costs and therefore takes the number of vertices
and size of rendered bounding boxes into account.

Now that each PC has it’s estimated costs, parts of viewports are distributed to render on an-
other PC which has only low costs. The resulting rendered parts are sent back to the display PC
over network. If you want to learn more about the implemented cost estimation and load balancing
algorithms, please check the Technical Details section at the end of this section.

Figure 5.4: Image space based load balancing

5.1.2.2 Geometry based balancing (Sort-Last)

In this kind of load balancing, parts of the scenegraph are distributed. That means geometries
are distributed between PCs and after rendering the pixel data including the depth information is
copied back to the display PC. On the display PC all received images are composed to one image
again by involving the depth. This approach shouldn’t be used on multi display systems for one
reason. Geometries can be bigger than a single display resolution, so it can’t be rendered by only
one graphics card as it doesn’t fit to the framebuffer. But on a single display cluster system it is very
fast and a better choice than Sort-First .

Important
To use load balancing effectively it is very important to have 1000Mbit network, because
pixel data has to be sent over network. Otherwise you won’t have the advantages of load
balancing.

63

Figure 5.5: Geometry based load balancing

5.1.3 Network configuration

Setup your network. Each host must be reachable by name from each other host. Try this with ping

host . If you have a local network (no access to the internet), you have to define a dummy gateway
eg. 192.168.1.254 if your network uses the IP-Range 192.168.1.0 - 192.168.1.253. On Linux, if your
/etc/hosts file contains a line like 127.0.0.1 myHostname where myHostname is not localhost, then
remove this line.

5.1.4 InstantPlayer and InstantCluster

Doing cluster rendering with the InstantReality framework you have one instance of the InstantPlayer
running your X3D application. This application provides the user interface, loads the x3d file including
the engine configuration and does all the simulation for your scene. To be able to produce a graphics
output on another host, you have to run an InstantCluster on this host. Start the “InstantCluster”
entry in your menu or application directory or use an autostart mechanism to run it all the time. It
only needs resources while rendering and otherwise sleeps and waits for connections.

5.1.5 Technical Details

For technical details about the algorithms of the load balancing and some benchmarks I suggest to
have a look into the paper Load Balancing on Cluster-Based Multi Projector Display Systems .

With sort-first approach, i.e. image space based distribution, we got a speedup of 3 to 6 for a
single display setup and 16 PCs in a cluster. On multi display systems with 48 PCs (24 PCs for
displaying in 6 x 4 alignment) animations were 3 to 4 times faster.

Sort-last balancing with a model of Standford’s David Statue and 56 millions of polygons achieved
a speedup of 10 with 16 PCs in the cluster and even over 20 with more than 32 PCs. For the
composition of image parts it uses a new pipeline approach.

5.2 CAVE cluster

This section demonstrates how to setup a CAVE environment with three projection walls. It will also
take stereo functionality into account which is essential in a CAVE as well as load balancing between
cluster PCs.

To get knowledge of multi display configurations and stereo setups, I suggest to work through the
other Clustering sections and Multiple Views and Stereo . After that you will know everything about
a ClusterWindow and Viewarea s. Those nodes will be used in this section and extended by a view
modifier named ProjectionViewModifier .

5.2.1 Aspects of a CAVE

A CAVE consists of up to six projection walls which are usually aligned orthogonal to each other to
build a cubic room or a part of a cubic room. That’s the main reason why we have to use Cluster-
Window instead of the preconfigured node TiledClusterWindow (see section Multiple display cluster

64

http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/Viewarea/
http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/

). Each wall shows a different view of the scene, i.e. the camera looks at different directions. So
we have to configure each view manually with a ProjectionViewModifier which modifies the camera
orientation. Another attribute of a CAVE is it’s immersive character, due to stereo projection.

Figure 5.6: CAVE with 5 walls

5.2.2 Assumptions

In this section we assume to have a CAVE with 3 walls. A bottom plane, a front plane and one side
wall. Each wall has the size of 2.4 x 2.4 meters. We want the camera of our scene to be in the middle
of the CAVE. Let’s also assume, our scene is modeled in meters, so the side wall is -1.2 to the left
of the camera, the bottom plane -1.2 below and the front plane -1.2 to the front (negative z-axis).
Each projection should also have a square resolution of 1024 x 1024 pixels, generated by PCs with
a standard framebuffer resolution of 1280 x 1024 pixels.

5.2.3 Setting up the views

Now we want to configure a different view for each wall. Therefore a concept exists which allows to
define a plane in space with four points. This plane acts as a projection plane for the scene relative
to the camera.

The projection plane is configured via the node ProjectionViewModifier , a modifier for the Viewarea
node like ShearedStereoViewModifier . It also inherits the fields leftEye , rightEye and eyeSeparation
from the stereo modifier.

The projection view modifier for the left wall and the left eye in our CAVE setup will look like this:

...

modifier [

DEF mod_front_left ProjectionViewModifier {

surface [

-1.2 -1.2 -1.2,

1.2 -1.2 -1.2,

1.2 1.2 -1.2,

-1.2 1.2 -1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

65

http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
http://instantreality.org/documentation/nodetype/Viewarea/
http://instantreality.org/documentation/nodetype/ShearedStereoViewModifier/

Figure 5.7: CAVE scheme with 3 walls

Figure 5.8: Projection plane for the left CAVE wall (proportions are not authentic)

66

}

]

...

The surface points have to be counterclockwise, starting with the lower left corner. For the right
eye on the same wall you just have to set leftEye to FALSE and rightEye to TRUE .

Respectively the front wall has to be set up like this:

...

modifier [

DEF mod_left_left ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

-1.2 -1.2 -1.2,

-1.2 1.2 -1.2,

-1.2 1.2 1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

}

]

...

And finally for the floor:

...

modifier [

DEF mod_bottom_left ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

1.2 -1.2 1.2,

1.2 -1.2 -1.2,

-1.2 -1.2 -1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

}

]

...

Important
Important: Use the same unit (e.g. metres, millimetres) for the projection surfaces like your
scene is modeled in. Otherwise you will get interesting field of views.

With stereo configuration we now have 6 different views. Each view should be rendered by one
PC. Let’s call them front_leftEye , front_rightEye , left_leftEye , left_rightEye , bottom_leftEye and
bottom_rightEye . As mentioned in the Assumptions section, each PC has a resolution of 1280 x
1024 pixels. So we will need a window with enough space for each PC (better said framebuffer of PC),
which results in a ClusterWindow of a size of 7680 x 1024 pixels. The ClusterWindow configuration
now looks like this:

...

ClusterWindow {

servers [

"front_leftEye"

"front_rightEye"

"left_leftEye"

"left_rightEye"

67

http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/

"bottom_leftEye"

"bottom_rightEye"

]

size 7680 1024

hServers 6

vServers 1

...

}

...

This configuration results in the following partitioning of the window:

Figure 5.9: Partitioning of the cluster window

The last missing issue is the setup of view areas on the cluster window, because CAVE walls are
square (1024 x 1024) but framebuffers of the PCs are not (1280 x 1024). We will define a square
Viewarea per non-square PC region on the cluster window and put one of the above projection view
modifiers into each.

Figure 5.10: CAVE view areas in a cluster window

Then we will obtain the final configuration:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

#This window is just for interaction

enabled FALSE

}

ClusterWindow {

servers [

"front_leftEye"

"front_rightEye"

"left_leftEye"

"left_rightEye"

"bottom_leftEye"

"bottom_rightEye"

]

size 7680 1024

hServers 6

vServers 1

views [

#Front wall, left eye

68

http://instantreality.org/documentation/nodetype/Viewarea/

Viewarea {

lowerLeft 0 0

upperRight 1023 1023

modifier [

DEF mod_front_left ProjectionViewModifier {

surface [

-1.2 -1.2 -1.2,

1.2 -1.2 -1.2,

1.2 1.2 -1.2,

-1.2 1.2 -1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

}

]

}

#Front wall, right eye

Viewarea {

lowerLeft 1280 0

upperRight 2303 1023

modifier [

DEF mod_front_right ProjectionViewModifier {

surface [

-1.2 -1.2 -1.2,

1.2 -1.2 -1.2,

1.2 1.2 -1.2,

-1.2 1.2 -1.2

]

leftEye FALSE

rightEye TRUE

eyeSeparation 0.08

}

]

}

#Left wall, left eye

Viewarea {

lowerLeft 2560 0

upperRight 3583 1023

modifier [

DEF mod_left_left ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

-1.2 -1.2 -1.2,

-1.2 1.2 -1.2,

-1.2 1.2 1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

}

]

}

#Left wall, right eye

Viewarea {

lowerLeft 3840 0

upperRight 4863 1023

modifier [

69

DEF mod_left_right ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

-1.2 -1.2 -1.2,

-1.2 1.2 -1.2,

-1.2 1.2 1.2

]

leftEye FALSE

rightEye TRUE

eyeSeparation 0.08

}

]

}

#Bottom, left eye

Viewarea {

lowerLeft 5120 0

upperRight 6143 1023

modifier [

DEF mod_bottom_left ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

1.2 -1.2 1.2,

1.2 -1.2 -1.2,

-1.2 -1.2 -1.2

]

leftEye TRUE

rightEye FALSE

eyeSeparation 0.08

}

]

}

#Bottom, right eye

Viewarea {

lowerLeft 6400 0

upperRight 7423 1023

modifier [

DEF mod_bottom_right ProjectionViewModifier {

surface [

-1.2 -1.2 1.2,

1.2 -1.2 1.2,

1.2 -1.2 -1.2,

-1.2 -1.2 -1.2

]

leftEye FALSE

rightEye TRUE

eyeSeparation 0.08

}

]

}

]

}

]

}

]

}

...

View areas are set in pixels instead of relative window coordinates for following reasons:

• Readability: Pixel coordinates are much better to associate to a region than something like

70

0.633205...

• Accuracy: Relative coordinates like 0.633333 are not as accurate than defined pixel coordi-
nates

• Calibration: You don’t have to calibrate projectors with pixel accuracy, just calibrate the view
areas

Finally the result are 6 views you need for the CAVE. The image below shows only three views
because it doesn’t take stereo into account. It shows the Dome of Siena with front, left and bottom
views. For a better visualization in the top left corner these views are texturing a virtual 3-sided
CAVE.

Figure 5.11: CAVE views (3 walls, mono)

5.2.4 Load balancing

If you’ve read the other Clustering sections, you will know how to switch load balancing on. Just add
these two lines into the ClusterWindow node. The second one is just for debugging purpose to see
how load balancing works. Be sure to use Gigabit LAN to obtain an effective balancing.

...

balance TRUE

showBalancing TRUE

...

5.2.5 Head tracking

One important issue has not been taken into account yet. As a user is moving around in a CAVE,
the eye position is not the same as the camera position which is in the middle due to our setup of the
projection planes. So the viewing frustums for each wall are not correct for the users field of view.
They have to be adapted to the users position like the image below illustrates.

71

http://instantreality.org/documentation/nodetype/ClusterWindow/

Figure 5.12: Different head positions and resulting view frustums

You see a projection plane with a red and a blue tree. The tree images belong to the red and
blue viewing frustums. A users head is represented by coordinate systems which lie at the end of
the frustums. When the head moves from blue to red position the accordant frustum is significant to
show the correct view on the projection plane.

This additional modification of the camera is also done in the ProjectionViewModifier . A head
tracking device is needed which returns a 4 x 4 transformation matrix for position and orientation
of a head in a CAVE. The hardware is mostly an infrared or a magnetic device attached to stereo
glasses. The device handling is not in scope of this section, but finally if you have a node which
produces a transformation matrix from the device, you have to route it to the set_eyeTransform field
of all ProjectionViewModifier nodes like this:

...

DEF render RenderJob {

...

}

ROUTE headSensor.value_changed TO mod_front_left.set_eyeTransform

ROUTE headSensor.value_changed TO mod_front_right.set_eyeTransform

ROUTE headSensor.value_changed TO mod_left_left.set_eyeTransform

ROUTE headSensor.value_changed TO mod_left_right.set_eyeTransform

ROUTE headSensor.value_changed TO mod_bottom_left.set_eyeTransform

ROUTE headSensor.value_changed TO mod_bottom_right.set_eyeTransform

...

Files:

• CaveStereo.wrl

• tie.wrl (test model)

72

http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
file:extra/CaveStereo.wrl
file:extra/tie.wrl

5.3 Single display cluster

This section shows how to setup a cluster for a single display configuration. It also describes how to
use real load balancing with this setup.

Please read the section Cluster Basics in the Clustering category to get an overview of how to
configure a PC cluster using InstantCluster.

5.3.1 Single Display cluster

In this section we want to use three PCs of our cluster to render an image on a single display. That
means one PC is designated to display the final scene while the others support it by rendering parts
of the scene on their local framebuffer and sending the results (pixels of the image region) back. The
appropriate RenderJob section will look like this:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

#This window is just for interaction

enabled FALSE

}

ClusterWindow {

servers ["displaypc" "clusterpc1" "clusterpc2"]

hServers 1

vServers 1

size 1024 768

balance TRUE

showBalancing TRUE

}

]

}

]

}

...

We see two windows here, the first one is the LocalWindow , which only exists for user interaction.
We disable rendering here to gain a real speedup for the cluster window. Otherwise the PC with the
local window would have to render the whole scene itself.

The important part of the configuration is the ClusterWindow . This line

servers ["displaypc" "clusterpc1" "clusterpc2"]

lists the hostnames of PCs, which should take part in the cluster. It is followed by the specification
of the display area by setting the number of horizontal and vertical displays as well as its resolution:

hServers 1

vServers 1

size 1024 768

In this example we just use a single display with a resolution of 1024 x 768 pixels. The server
which is responsible for displaying is “displaypc”, because it is the first server in the servers list.

The next two lines set up the load balancing, where the field showBalancing is just for debugging
purpose and pigments those areas of the rendered image which are generated by other servers and
copied over the network.

balance TRUE

showBalancing TRUE

73

http://instantreality.org/documentation/nodetype/RenderJob/
http://instantreality.org/documentation/nodetype/LocalWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/

Figure 5.13: Single display cluster setup with 3 computers

The image shows framebuffers of three PCs, where the left one is dedicated to display the whole
scene (single display constellation). The other ones generate rectangular parts of the scene and
copy the pixel data to the first PC over a fast network. You can see the copied parts on the left image
as coloured rectangles if showBalancing is set to TRUE.

It is very important for an effective load balancing to use a Gigabit network. Let’s say we have
a display PC and one additional server with a resolution of 1280 x 1024 pixels each. In the worst
case the server has to deliver half or more of the the screen to the display PC. This is 1280 x 1024
/ 2 = 655.360 pixels and for each pixel three color components (RGB), which results in almost 2 MB
of data per frame. In a 100Mbit network we can send about 10 MB per second, so we would get a
framerate of 5 fps!

Files:

• SingleDisplayLoadBalancing.wrl

• SingleDisplayLoadBalancing.x3d (same as above but in X3D syntax)

• tie.wrl (test model)

5.4 Multiple display cluster

This section shows how to setup a cluster for a multi display configuration. It will also implement real
load balancing with this setup and extend it to a stereo configuration with five PCs.

Please read the Cluster Basics section in the Clustering category to get an overview of how to
configure a PC cluster using InstantCluster. For information about stereo configurations you should
take a look into the Multiple Views and Stereo section category (especially Multiple Windows and
Views , Stereo Basics and Passive Stereo sections).

5.4.1 Multi display cluster

In this chapter we want to use three PCs of our cluster to render a scene over two displays. On one
PC, just the application will run in a local window to provide interaction. Two other PCs (displaypc1
and displaypc2) are designated to display the scene over two screens.

5.4.1.1 Different concepts

There are two concepts of doing this. The first one is by using the known ClusterWindow node and
the second is the TiledClusterWindow which is especially created for n * m displays arrangements
and provides overlapping features. The latter is based on the first one internally and just simplifies
the usage on some setups.

So the question is, when to use which node. The following list should get you on the right way.
You should use a TiledClusterWindow if:

• you use multiple homogeneous displays to act as one big display

• all displays are in one plane

• above points apply and you want to use stereo

• you don’t want to see “borders” between your displays (overlapping projections) ClusterWindow

74

file:extra/SingleDisplayLoadBalancing.wrl
file:extra/SingleDisplayLoadBalancing.x3d
file:extra/tie.wrl
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/

• you use a single display cluster

• you setup a CAVE, i.e. multiple displays, but not in the same plane

• you want to configure view areas manually (e.g. for a CAVE), otherwise TiledClusterWindow is
better to use

The main difference is the reduction of work when you have to configure stereo setups in a
multi display cluster, because TiledClusterWindow configures view areas and different projection
parameters for each area by itself. Another difference is the ability of this node to take overlapping
into account. For CAVE setups you have to configure view areas manually, so you are free to arrange
CAVE walls as you want. In this section both approaches will be explained and you will soon realize
the advantage of the TiledClusterWindow .

5.4.1.2 Using ClusterWindow

The appropriate RenderJob section will look like this:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

#This window is just for interaction

enabled FALSE

}

ClusterWindow {

servers ["displaypc1" "displaypc2"]

hServers 2

vServers 1

}

]

}

]

}

...

We see two windows here, the first one is the LocalWindow , which only exists for user interaction.
We disable rendering here, otherwise the PC with the local window would have to render the whole
scene itself. This can be a problem with large models, especially when using load balancing for the
cluster later.

The important part of the configuration is the ClusterWindow . This line

servers ["displaypc1" "displaypc2"]

lists the hostnames of PCs, which should take part in the cluster. It is followed by the specification
of the display area by setting the number of horizontal and vertical displays:

hServers 2

vServers 1

By setting hServers to 2 and vServers to 1, the whole window consists of two horizontal aligned
displays. As there are just two displays (hServers * vServers), the first two servers (displaypc1 and
displaypc2) are responsible for displaying the window area which is as large as the accumulated
native resolutions of the PCs displays. The local window is opened on the machine from where the
VRML file is loaded.

5.4.1.3 Using TiledClusterWindow

The appropriate RenderJob section will look like this:

75

http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/RenderJob/
http://instantreality.org/documentation/nodetype/LocalWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/RenderJob/

Figure 5.14: Multi display cluster setup with 2 display PCs and one application PC

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

#This window is just for interaction

enabled FALSE

}

TiledClusterWindow {

servers ["displaypc1" "displaypc2"]

columns 2

rows 1

}

]

}

]

}

...

In this configuration the tiled window has 2 columns and 1 row as in the ClusterWindow case.
When using the TiledClusterWindow, there are a few additional options, like overlapping:

overlapX 20

overlapY 0

These lines result in a region between the two displays which is rendered twice. So when using
two video beamers, you can adjust these by taking the overlapping into account and an intersection
will not be as noticable as without overlaps.

Figure 5.15: Two displays with X-overlap rendering

76

Figure 5.16: Overlapped displays (overlapping highlighted)

5.4.2 Load balancing

The next two lines set up the load balancing, where the field showBalancing is just for debugging
purpose and pigments those areas of the rendered image which are generated by other servers and
copied over the network. You just have to add these into the ClusterWindow node or TiledCluster-
Window respectively.

balance TRUE

showBalancing TRUE

That means both cluster PCs support each other by rendering parts of the scene on their local
framebuffer and sending the results (pixels of the image region) back. The role changes depending
on which PC has the higher load. Additionally the resolution of the window has to be defined when
using load balancing. In ClusterWindow you have to set the overall size of the window:

size 2048 768

You may adjust it to 2560 x 1024, if your single display resolution is 1280 x 1024. In TiledCluster-
Window the size of the window is defined by setting the width and height of one tile. Together with
columns and rows fields the window size is calculated internally:

tileWidth 1024

tileHeight 768

Tile sizes have usually to be adapted to the native resolution of one single display.
We will also attach an additional PC which is only used as support for the display PCs. We write

the PC’s name at the end of the servers list, because the first (defined through hServer/vServers or
rows/columns) servers are automatically used as display.

servers ["displaypc1" "displaypc2" "supportpc"]

Figure 5.17: Multi display cluster setup with 3 computers and one application PC

5.4.3 Multi display stereo configuration

In a stereo configuration the existance of TiledClusterWindow will become clear. Imagine a stereo
setup of two displays, i.e. two PCs for the displays of the left eye and two PCs for the displays of the

77

http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/
http://instantreality.org/documentation/nodetype/TiledClusterWindow/

right eye. One display (one tile) has the resolution of 1280 x 1024 pixels, so the whole window will
have 2560 x 1024.

To foreclose the solution with a TiledClusterWindow here is the simple configuration:

...

DEF render RenderJob {

windowGroups [

WindowGroup {

windows [

LocalWindow {

#This window is just for interaction

enabled FALSE

}

TiledClusterWindow {

servers ["display_leftSide_leftEye"

"display_leftSide_rightEye"

"display_rightSide_leftEye"

"display_rightSide_rightEye"]

tileWidth 1280

tileHeight 1024

stereo TRUE

eyeSeparation 0.08

zeroParallaxDistance 1

columns 2

rows 1

}

]

}

]

}

...

The role of a server in the servers list is well defined here. If stereo is set to TRUE, the first
server (display_leftSide_leftEye) will render the left eye camera of the first display, second server
(display_leftSide_rightEye) will render the right eye camera of the first display. With third and fourth
servers it’s the same but for the right side. In a grid of m columns and n rows of displays the first one
is always lower left and the last one upper right. Additional servers are only used by load balancing
if it is switched on.

The ClusterWindow approach is more flexible as you can setup view areas which can be stereo
or not. You can try to setup the above scenario to get the same result on the displays using Cluster-
Window , but you might not want to. A hint: You’ll need a window with four displays fitting in and four
viewports each modified by a ProjectionViewModifier . How this is done and where you will need this
is discussed in the next section for setting up a CAVE environment.

Files:

• MultiDisplayLoadBalancing.wrl

• TiledDisplayLoadBalancing.wrl

• TiledDisplayStereo.wrl

• tie.wrl (test model)

78

http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/ClusterWindow/
http://instantreality.org/documentation/nodetype/ProjectionViewModifier/
file:extra/MultiDisplayLoadBalancing.wrl
file:extra/TiledDisplayLoadBalancing.wrl
file:extra/TiledDisplayStereo.wrl
file:extra/tie.wrl

Figure 5.18: Tiled stereo setup with two displays and four PCs

79

Chapter 6

Scripting

6.1 Scripting: Java

This section shows you how to use Java in script nodes for making your scene dynamic.

6.1.1 Introduction

6.1.2 Setting up the Scene and the Script

Java script nodes are exactly looking like Ecmascript nodes in X3D. Only the “url” field is linking to a
.class file instead of a .js file.

<Script DEF='javanode' directOutput='true' url='InstantJava.class'>

<field name='set_touchtime' type='SFTime' accessType='inputOnly'/>

<field name='get_newcolor' type='SFColor' accessType='outputOnly'/>

</Script>

The two fields of the script node are defining the incoming and outgoing values. set_touchtime
will route an SFTime value into Java. get_newcolor’s value will get filled by Java and routed on a
Material node in the Scene.

6.1.2.1 Setting up a Java Class

Java Classes extend vrml.node.Script . Just like Ecmascripts Java Scripts have the common initial-
ize() , shutdown() and processEvent() functions. This is an example how a basic Java Class looks
like:

import vrml.*;

import vrml.field.*;

import vrml.node.*;

import vrml.Event;

public class InstantJava extends Script

{

public void initialize()

{

System.out.println("initializing java..");

}

public void processEvent(Event e)

{

}

public void shutdown()

80

{

System.out.println("bye!");

}

}

6.1.2.2 Getting Values from the Scene

Incoming events are processed in the processEvent() function. In this example the touchTime field
of a TouchSensor is routed on the script and catched by an if condition. The event has to be casted
into the right type.

public void processEvent(Event e)

{

if (e.getName().equals("set_touchtime"))

{

ConstSFTime time = (ConstSFTime)e.getValue();

System.out.println("touched at " + time.getValue());

}

}

6.1.2.3 Writing back Values to the Scene

In order to send values to the scene we have to get the eventOut in the initialize() function and cast
it into the right type. With the function setValue(value) we are sending the values to the script node’s
field in the scene.

public SFColor get_newcolor;

public void initialize()

{

get_newcolor = (SFColor)getEventOut("get_newcolor");

get_newcolor.setValue(1, 0.5, 0);

}

Files:

• InstantJava.x3d

• InstantJava.java

• InstantJava.class

81

file:extra/InstantJava.x3d
file:extra/InstantJava.java
file:extra/InstantJava.class

Figure 6.1: random color box

82

Chapter 7

Animation

7.1 Followers

This section shows you how to use damper and chaser nodes for animation.

7.1.1 Introduction

Followers divide in Dampers and Chasers. They are an easy to use alternative for common X3D
interpolators. You only have to define a destination value and the duration of the interpolation in
order to create a tween. Instant Reality provides the following dampers and chasers:

• ColorChaser

• ColorDamper

• CoordinateChaser

• CoordinateDamper

• OrientationChaser

• OrientationDamper

• PositionChaser2D

• PositionChaser3D

• PositionDamper2D

• PositionDamper3D

• ScalarChaser

• ScalarDamper

• TexCoordChaser

• TexCoordDamper

7.1.2 PositionChaser3D

This is an example about a PositionChaser3D that lets an object follow the mouse pointer. Other
damper and chaser nodes follow the same logic.

Initially only the PositionChaser’s duration - the time it takes to get to the destination value - has
to be defined.

<PositionChaser3D DEF='pc' duration='5' />

83

The mouse pointer’s position on a plane is recognized by a TouchSensor and routed to the Po-
sitionChaser3D’s destination value. By routing the PositionChaser3D’s value_changed field to a
Transform’s set_translation the objects seems to follow the mouse.

<PositionChaser DEF='pc' duration='5' />

<Transform DEF='trans_box'>

<Shape>

<Appearance>

<Material diffuseColor='0 0.329 0.706' />

</Appearance>

<Sphere radius='0.25'/>

</Shape>

</Transform>

<Transform DEF='trans_plane' translation='0 -0.25 0'>

<TouchSensor DEF='ts' />

<Shape>

<Appearance>

<Material diffuseColor='1 1 1' emissiveColor='1 1 1'/>

</Appearance>

<Box size='10 0.1 10'/>

</Shape>

</Transform>

<ROUTE fromNode='ts' fromField='hitPoint_changed' toNode='pc' toField='set_destination'/>

<ROUTE fromNode='pc' fromField='value_changed' toNode='trans_box' toField='set_translation'/>

Figure 7.1: PositionChaser3D

Files:

• PositionChaser3D.x3d

7.2 Steering behaviour basics

This section shows you how to use steering behaviours to add some life to your world.

7.2.1 What are steering behaviours?

Citing Craig Reynolds GDC 1999 paper:

Steering behaviours are a solution for one requirement of autonomous characters in ani-
mation and games: the ability to navigate around their world in a life-like and improvisa-
tional manner.

84

file:extra/PositionChaser3D.x3d

By combining predefined behaviours a variety of autonomous systems can be simulated. The
basics of steering behaviours are described in Craig Reynolds paper and there are plenty of other
resources out on the web (e.g. www.steeringbehaviors.de) - just google for “steering behaviours”.
Make sure you have read and understood the basic principles (vehicles with behaviours) as the rest
of this section focuses on how to use them with Avalon.

7.2.2 The steering sytem

We start with creating a SteeringSystem node and giving it a nice name:

<?xml version="1.0" encoding="UTF-8"?>

<X3D profile='Immersive'>

<Scene>

<SteeringSystem DEF='steerSystem'>

</SteeringSystem>

</Scene>

</X3D>

The parameters of the steering system will be discussed later. First we’ll insert some vehicles into
our system.

7.2.3 Adding vehicles

Within a steering system one or more vehicles represent autonomous agent(s) parameterized with
behaviours. The vehicle class used in Avalon is based on a point-mass approximation which allows
for a simple physically-based model (for example, a point mass has velocity (linear momentum) but
no moment of inertia (rotational momentum)).

Adding a vehicle to the steering system looks like this:

<SteeringSystem DEF='steerSystem'>

<SteeringVehicle DEF='vehicle1' maxSpeed='2' maxForce='4' />

<SteeringVehicle DEF='vehicle2' maxSpeed='6' maxForce='12' />

</SteeringSystem>

Warning
A SteeringVehicle can only be a child of exactly one SteeringSystem at a time. Re- USEing
a vehicle in another system is not supported and will lead to undefined results.

7.2.3.1 Parameterizing the vehicle

A vehicle has a few attributes, which can be read and set at any time:

mass the mass of the vehicle

radius the radius of the vehicle (used for obstacle and neighbour avoidance)

maxSpeed the maximum speed of the vehicle

maxForce the maximum force of the vehicle

There two additional inputOutput fields named useFixedY and fixedY . If useFixedY is true the
value of fixedY is used as the y-component of the vehicles position. By setting a fixed value the
vehicle can be constrained to stay on a fixed plane. If you dynamically route values to the field more
interesting effects are possible.(e.g. terrain following). If useFixedY is false the value of fixedY is
ignored.

85

http://www.red3d.com/cwr/steer/
http://www.steeringbehaviors.de/
http://instantreality.org/documentation/nodetype/SteeringSystem/

7.2.4 Adding behaviours to the vehicles

After our steering system is equipped with some vehicles we need to add behaviour(s) to them,
otherwise they won’t do anything (which isn’t very interesting). The available behaviours are:

SeekBehaviour A Seek behaviour acts to steer the character towards a specified position in global
space.

FleeBehaviour Flee is the inverse of seek and acts to steer the character away from the target.

AvoidNeighborBehaviour Tries to keep characters which are moving in arbitrary directions from
running into each other.

AvoidObstaclesBehaviour Gives a character the ability to avoid obstacles.

EvasionBehaviour Evasion is similar to Flee except that the menace (target) is another moving
character.

PursuitBehaviour Pursuit is similar to Seek except that the quarry (target) is another moving char-
acter.

WanderBehaviour Wander is a type of random steering.

<SteeringSystem DEF='steerSystem'>

<SteeringVehicle DEF='vehicle1' maxSpeed='2' maxForce='4' mass='1.4'>

<SeekBehaviour DEF='seekBehaviour' factor='1.0' containerField='behaviours' />

<WanderBehaviour DEF='wanderBehaviour' factor='0.2' containerField='behaviours' />

</SteeringVehicle>

<SteeringVehicle DEF='vehicle2' maxSpeed='2' maxForce='4' mass='1.1' >

<PursuitBehaviour DEF='pursuitBehaviour' containerField='behaviours' >

<SteeringVehicle USE='vehicle1' containerField='quarry' />

</PursuitBehaviour>

</SteeringVehicle>

</SteeringSystem>

The example above shows a SteeringSystem that contains two vehicles. The vehicles contain
different behaviours.

The first vehicle is called vehicle1 and contains two behaviours: a SeekBehaviour and a Wan-
derBehaviour . That way vehicle1 is seeking the target while wandering a little (seek has a factor of
1.0 while wander has 0.1). The target of the SeekBehaviour is not specified explicitly so the default
value (0,0,0) will be used. This results in vehicle1 seeking around the origin.

The vehicle2 only contains a PursuitBehaviour which is parameterized to pursue vehicle1 . This
results in vehicle2 following vehicle1 .

7.2.5 Updating the vehicles

In order to run the steering behaviour simulation the vehicle’s update field has to be called con-
tinously. This could be achieved by connecting a TimeSensor .time field to the update field. In
practice the SteeringSystem does this job for you. Instead of connecting the TimeSensor to every
single vehicle, you simply connect it to the SteeringSystem .time field which calls the update field on
all it’s child vehicles.

<TimeSensor DEF='timeSensor' loop='true' />

<ROUTE fromNode='timeSensor' fromField='time' toNode='steerSystem' toField='time' />

86

http://instantreality.org/documentation/nodetype/SteeringSystem/
http://instantreality.org/documentation/nodetype/SeekBehaviour/
http://instantreality.org/documentation/nodetype/WanderBehaviour/
http://instantreality.org/documentation/nodetype/WanderBehaviour/
http://instantreality.org/documentation/nodetype/SeekBehaviour/
http://instantreality.org/documentation/nodetype/PursuitBehaviour/
http://instantreality.org/documentation/nodetype/TimeSensor/
http://instantreality.org/documentation/nodetype/SteeringSystem/
http://instantreality.org/documentation/nodetype/TimeSensor/
http://instantreality.org/documentation/nodetype/SteeringSystem/

7.2.6 I don’t see anything!?

Right. Until now we have setup a SteeringSystem , inserted some vehicles and added behaviours to
them. But there is nothing to see!

That’s because the SteeringSystem is a simulation node, that is: it has no visual output. All it
does is simulating an autonomous behaviour by calculating a new position and orientation for every
vehicle. So after each simulation step triggered by the TimeSensor connected to a SteeringSystem’s
time field the vehicles of the system contain a new position and orientation in their translation and
rotation fields.

It’s up to you what to do with these values. The most common practice is connecting the simulated
position and rotation to a ComponentTransform which is the parent of a subgraph containing the
geometry which visually represents the vehicle.

7.2.7 Moving some boxes

As an example we will add two boxes representing our vehicles.

<ComponentTransform DEF='trans1'>

<Shape>

<Box containerField='geometry' size='0.1 0.1 0.1' />

<Appearance><Material diffuseColor='1 0 0' /></Appearance>

</Shape>

</ComponentTransform>

<ComponentTransform DEF='trans2'>

<Shape>

<Box containerField='geometry' size='0.1 0.1 0.1' />

<Appearance><Material diffuseColor='0 0 1' /></Appearance>

</Shape>

</ComponentTransform>

<ROUTE fromNode='vehicle1' fromField='translation_changed' toNode='trans1' toField='translation' />

<ROUTE fromNode='vehicle2' fromField='translation_changed' toNode='trans2' toField='translation' />

<ROUTE fromNode='vehicle1' fromField='rotation_changed' toNode='trans1' toField='rotation' />

<ROUTE fromNode='vehicle2' fromField='rotation_changed' toNode='trans2' toField='rotation' />

7.2.8 Debugging vehicles and behaviours

A vehicle offers more attributes which are read-only and can be used for displaying the internal state
of the vehicle in the case of debugging.

7.2.8.1 Vehicle’s outputOnly fields

speed The current speed of the vehicle (which is the length of the velocity vector).

velocity The current velocity vector of the vehicle.

forward The current forward vector of the vehicle.

seekForce The current seek force of the vehicle (a null vector if no SeekBehaviour is used).

avoidObstaclesForce The current avoid obstacle force of the vehicle (a null vector if no AvoidOb-
stacles behaviour is used).

Files:

• steeringBasics.x3d

7.3 Humanoid animation

This section shows how to animate virtual characters with H-Anim.

87

http://instantreality.org/documentation/nodetype/SteeringSystem/
http://instantreality.org/documentation/nodetype/SteeringSystem/
http://instantreality.org/documentation/nodetype/TimeSensor/
http://instantreality.org/documentation/nodetype/ComponentTransform/
file:extra/steeringBasics.x3d

7.3.1 Overview

H-Anim figures are articulated 3D representations that depict animated characters. A single H-Anim
figure is called a humanoid. While H-Anim figures are intended to represent human-like characters,
they are a general concept that is not limited to human beings. Below two links on H-Anim are
listed. The first one holds a good introducery overview on the concepts of H-Anim in general, and
the second one contains the X3D specification for H-Anim nodes.

• Description of humanoid animation component

• X3D H-Anim component specification

Currently there exist two types of H-Anim figures: Skeletal body geometry describes the body as
separate geometric pieces and therefore can lead to artifacts. Skinned body geometry in contrast
regards the body as a continuous piece of geometry. Therefore all point and normal vector data
sets are defined in one place, in the ’skinCoord’ and ’skinNormal’ fields of the HAnimHumanoid ,
for allowing smooth mesh animations. In this section only the latter, more natural looking type is
described.

The ’skin’ field of the HAnimHumanoid node contains the real mesh information, i.e. the Shape
nodes, which define appearance and geometry of certain body parts like face or legs. As can be
seen in the next code fragment, the Geometry’s ’coord’ and ’normal’ fields only hold references
to the Coordinates and Normals already defined in the ’skinCoord’ and ’skinNormal’ fields of the
HAnimHumanoid. This way a seemless animation is achieved both for the vertices and the normals
without the need to recalculate the latter.

Figure 7.2: Overview of the HAnim component.

7.3.2 Animation

The HAnimJoint node is used to describe the articulations of the humanoid figure. Each articulation is
represented by an HAnimJoint node. These joints are organized into a hierarchy of transformations
that describes the parent-child relationship of joints of the skeleton and provides a container for
information that is specific to each joint. This transformation hierarchy is listed in the ’skeleton’ field
of the HAnimHumanoid node. An additional field ’joints’ holds references to all used HAnimJoint
nodes.

An HAnimJoint has two fields that allow it to manipulate individual vertices defined within the skin-
Coord field of the HAnimHumanoid node. Incoming rotation or translation events of the joint affect
the vertices indicated by the ’skinCoordIndex’ field by a factor that is described by the corresponding
values within the ’skinCoordWeight’ field. The MFFloat field ’skinCoordWeight’ contains a list of val-
ues that describe the amount of weighting to be used to affect the appropriate vertices, as indicated
by the skinCoordIndex field, of the humanoid’s ’skinCoord’ and ’skinNormal’ fields.

DEF HUMANOID HAnimHumanoid {

name "Charles"

88

http://www.web3d.org/x3d/specifications/ISO-IEC-19774-HumanoidAnimation/
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification_Revision1_to_Part1/
http://instantreality.org/documentation/nodetype/HAnimHumanoid/
http://instantreality.org/documentation/nodetype/Shape/
http://instantreality.org/documentation/nodetype/HAnimJoint/

skeleton [

DEF hanim_HumanoidRoot HAnimJoint {

name "HumanoidRoot"

center 0 .9723 -.0728

skinCoordIndex [

0 1 2 3 4 5 6 7 8 9 10 11

]

skinCoordWeight [

1 1 1 1 1 1 1 1 1 1 1 1

]

children [

DEF hanim_l_hip HAnimJoint {

name "l_hip"

center .0956 .9364 0

skinCoordIndex [

#...

]

skinCoordWeight [

#...

]

children [

#...

]

}

DEF hanim_r_hip HAnimJoint {

name "r_hip"

#...

}

#...

]

}

]

joints [

USE hanim_HumanoidRoot

USE hanim_r_hip

USE hanim_l_hip

#...

]

skinCoord DEF hanim_skin_coord Coordinate {

point [

#...

]

}

skinNormal DEF hanim_skin_normal Normal {

vector [

#...

]

}

skin [

DEF faceShape Shape {

appearance Appearance {

texture ImageTexture {

url "headTexture.jpg"

}

}

geometry IndexedFaceSet {

coord USE hanim_skin_coord

normal USE hanim_skin_normal

89

normalUpdateMode "none"

coordIndex [

#...

]

normalIndex [

#...

]

}

}

#...

]

}

DEF TIMER TimeSensor {

loop TRUE

cycleInterval 5

}

DEF HUMANOIDROOT_POS_ANIMATOR PositionInterpolator {

key []

keyValue []

}

DEF HUMANOIDROOT_ANIMATOR OrientationInterpolator {

key []

keyValue []

}

DEF L_HIP_ANIMATOR OrientationInterpolator {

key []

keyValue []

}

DEF R_HIP_ANIMATOR OrientationInterpolator {

key []

keyValue []

}

#...

ROUTE TIMER.fraction_changed TO HUMANOIDROOT_POSITION_ANIMATOR.set_fraction

ROUTE TIMER.fraction_changed TO HUMANOIDROOT_ANIMATOR.set_fraction

ROUTE TIMER.fraction_changed TO L_HIP_ANIMATOR.set_fraction

ROUTE TIMER.fraction_changed TO R_HIP_ANIMATOR.set_fraction

#...

ROUTE HUMANOIDROOT_POS_ANIMATOR.value_changed TO hanim_HumanoidRoot.set_translation

ROUTE HUMANOIDROOT_ANIMATOR.value_changed TO hanim_HumanoidRoot.set_rotation

ROUTE L_HIP_ANIMATOR.value_changed TO hanim_l_hip.set_rotation

ROUTE R_HIP_ANIMATOR.value_changed TO hanim_r_hip.set_rotation

#...

The HAnimSegment node is a specialized grouping node that can only be defined as a child
of an HAnimJoint node. It represents body parts of the humanoid figure and is organized in the
skeletal hierarchy of the humanoid. The HAnimSite node can be used to define an attachment point
for accessories such as jewelry and clothing on the one hand and an end effecter location for an
inverse kinematics system on the other hand. Both nodes usually are not needed for skinned body
animation.

The HAnimDisplacer nodes are usually used to control the shape of the face. Each HAnimDis-
placer node specifies a location, called a morph target, that can be used to modify the displacement
properties of the corresponding vertices defined by the ’coordIndex’ field. The scalar magnitude of
the displacement is given by the ’weight’ field and can be dynamically driven by an interpolator or a
script. The next code fragment shows an example. The mesh therefore can be morphed smoothly us-
ing the base mesh and a linear combination of all sets of displacement vectors, given by the MFVec3f

90

http://instantreality.org/documentation/nodetype/HAnimSegment/
http://instantreality.org/documentation/nodetype/HAnimSite/
http://instantreality.org/documentation/nodetype/HAnimDisplacer/

Figure 7.3: Talking and gesticulating virtual characters.

’displacements’ field of the HAnimDisplacer nodes.

DEF Head HAnimJoint {

name "Head"

center 0 1.58 0.03

skinCoordIndex [

0 1 2 3 4 5 6 7 8 9 10 #...

]

skinCoordWeight [

1 1 1 1 1 1 1 1 1 1 #...

]

displacers [

DEF Phon_AShape HAnimDisplacer {

name "Phon_AShape"

weight 0.0

coordIndex [

0 1 2 3 4 5 6 7 8 9 10 #...

]

displacements [

0.000000 0.000000 0.000500,

-0.002130 -0.002270 0.006110,

#...

]

}

DEF Idle_Blink_bothShape HAnimDisplacer {

#...

}

]

}

DEF Timer TimeSensor {

loop TRUE

cycleInterval 5

}

DEF Interpol ScalarInterpolator {

key [0.0, 0.25, 0.5, 0.75, 1.0]

keyValue [0.0, 0.25, 0.5, 0.25, 0.0]

}

ROUTE Timer.fraction_changed TO Interpol.set_fraction

91

ROUTE Interpol.value_changed TO Idle_Blink_bothShape.weight

ROUTE Interpol.value_changed TO Phon_AShape.weight

Figure 7.4: A woman getting a bit astonished...

7.3.3 Morphing

Quite similar to the already described Displacer node is the CoordinateMorpher node. Assume you
want to animate a face, and you have given, say n , target states of your modelled face, a neutral one,
and n-1 other ones, e.g. a smiling one, one with open eyes, one with closed eyes, one with raised
eyebrows, one saying ’a’, and so on.

The Morpher node regards each of these states as a base vector of an n dimensional space
spanning all possible combinations of point sets. In order to get valid linear combinations be careful
that the coefficients (weights) of your data points (i.e. sets of expressions, which are also called
morph targets) sum up to 1 (which is called a convex combination).

In the code fragment shown below we want to interpolate between a neutral state (the first one or
’keyValue’ No 0 respectively) and state No 10. Therefore additionally a VectorInterpolator is needed.
For each key time a vector of n keyValues is needed, defining the maximum weight for all morph
targets (please note, that all lines sum up to 1). Another important thing to keep in mind, is that the
sequence of points must not change, because they all belong to the same index field.

Shape {

appearance Appearance {}

geometry IndexedFaceSet {

coord DEF coords Coordinate {

point [

0.086, 0.050, 0.431, 0.089, 0.044, 0.434,

#...

]

}

coordIndex [

0, 1, 2, -1, 3, 4, 5, -1,

#...

]

}

}

DEF morph CoordinateMorpher {

keyValue [

15 sets of coordinates; one set for each state:

92

http://instantreality.org/documentation/nodetype/CoordinateMorpher/
http://instantreality.org/documentation/nodetype/VectorInterpolator/

0.086, 0.050, 0.431, 0.089, 0.044, 0.434,

#...

]

}

DEF vipol VectorInterpolator {

key [0.0, 0.1, 0.75, 1.0]

keyValue [

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0.4 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0,

0.6 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0,

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

]

}

DEF ts TimeSensor {

loop TRUE

cycleInterval 5

}

ROUTE ts.fraction_changed TO vipol.set_fraction

ROUTE vipol.value_changed TO morph.set_weights

ROUTE morph.value_changed TO coords.set_point

The first of the attached files shows a simple but skinned walking character whereas the second
file shows the morpher in action for doing simple facial animation.

Files:

• The famous boxman

• A morphed face

93

file:extra/hanim.wrl
file:extra/face.wrl

Chapter 8

Conclusion

The goal of this course was to demonstarte howeasy it is to go beyond simple Windows and Mouse/Pointer
interaction. Using freely available tools and COTS hardware it is possible to create and interact with
compelling Virtual and Augmented Environments without blowing the budget of a small lab or even
an interested individual. So don’t be a WIMP!

Go to the http://www.not-for-wimps.org to find the latest updates and links to further tutorals and
code. Check out the http://www.instantreality.org and http://www.opensg.org projects to get more
information and help to start your project.

94

Bibliography

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point set surfaces. IEEE
Visualization 2001, pages 21–28, October 2001. ISBN 0-7803-7200-x.

[2] Marc Alexa. Linear geometry interpolation in opensg, 2002.

[3] Marc Alexa and Johannes Behr. Cooperative VR enviroment. brasil, 2000.

[4] Marc Alexa and Johannes Behr. Volume Rendering in VRML. Web3D - VRML 2001 Proceed-
ings, 2001.

[5] Marc Alexa and Johannes Behr. Fast and Effective Striping. 1. OpenSG Symposium OpenSG,
2002, Darmstadt, 2002.

[6] Marc Alexa and Johannes Behr. Linear Geometry Interpolation in OpenSG. 1. OpenSG Sym-
posium OpenSG, 2002.

[7] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T.
Silva. Computing and rendering point set surfaces.

[8] Marc Alexa, Johannes Behr, and Wolfgang Müller. The morph node. Web3D - VRML 2000
Proceedings, pages 29–34, 2000. ISBN 1-58113-211-5.

[9] Althoff, Stocker, and McGlaun. A Generic Approach for Interfacing VRML Browsers to Various
Input Devices and Creating Customizable 3D Applications. Web3D, 2002.

[10] Y. Araki. A High-level Multi-user Extension Library For Interactive VRML Worlds. VRML, 1998.

[11] Avalon. Avalon. http://www.zgdv.de/avalon, 1998.

[12] J. Behr, SM. Choi, S. Großkopf, MH, and G. Sakas. Modelling, visualization, and interaction
techniques for diagnosis and treatment planning in cardiology. Computers & Graphics, Vol
24.5:741–753, 2000. ISSN 0097-8493.

[13] Johannes Behr and Marc Alexa. Fast and effective striping. 1. OpenSG Symposium, Darmstadt,
2002.

[14] Johannes Behr and Patrik Dähne. AVALON: Ein komponentenorientiertes Rahmensystem für
dynamische Mixed-Reality Anwendungen. TUD thema Forschung, 2003.

[15] Johannes Behr, Jorge A. Diz, and Marcelo G. Malheiros. An Extensible Interactive Image Syn-
thesis Environment. echnical report DCA-006/97 - DCA, FEEC, Unicamp, 1997.

[16] Johannes Behr and Andreas Froehlich. AVALON, an Open VRML VR/AR system for Dynamic
Application. Topics, 1(1):28, 1998.

[17] Johannes Behr, Torsten Froehlich, Christian Knoepfle, Bernd Lutz, Dirk Reiners, Frank Schoef-
fel, and Wolfram Kresse. The Digital Cathedral of Siena - Innovative Concepts for Interactive
and Immersive Presentation of Cultural Heritage Sites. ICCHIM Conference Proceedings, Milan,
2001.

[18] Johannes Behr and Axel Hildebrand. Sanare – VR Med enviroment. Topics, 1998.

[19] Johannes Behr and Marc Niemann. Interactive Volume Data Rendering for Medical VR Appli-
cations. 1998.

95

[20] Johannes Behr, Choi Soo-Mi, and Stefan Großkopf. 3D Modellierung zur Diagnose und Be-
handlungsplanung in der Kardiologie. Der Radiologe, 40(3):256–261, 2000.

[21] Allan Bierbaum, Albert Baker, Carolina Cruz-Neira, Patrick Hartling, Christopher Just, and Kevin
Meinert. VR Juggler: A Virtual Platform for Virtual Reality Application Development. Master’s
thesis, Iowa State University, 2000.

[22] Roland Blach, Juergen Landauer, Angela Roesch, and Andreas Simon. A flexible prototyping
tool for 3d realtime user-interaction. 1998.

[23] Roland Blach, Jürgen Landauer, Angela Rösch, and Andreas Simon. A Highly FlexibleVirtual
Reality System. Future Generation Computer Systems, 14(3–4):167–178, 1998.

[24] X3D Consortium. X3d standard. http://www.web3d.org/x3d/, 2008.

[25] Matthew Conway, Randy Pausch, Rich Gossweiler, and Tommy Burnette. Alice: A rapid proto-
typing system for building virtual environments. 2:295–296, April 1994.

[26] Carolina Cruz-Neira and Daniel J. Sandin. Surround-Screen Projection-Based Virtual Reality:
The Design and Implementation of the CAVE. ACM Computer Graphics, SIGGRAPH 93, 1993.

[27] Paul J. Diefenbach, Daniel Hunt, and Prakash Mahesh. Building openworlds. Web3D - VRML
1998 Proceedings, 1998.

[28] N.I. Durlach and .A.S. Mavor. Virtual Reality: Scientific and Technological Challenges. National
Academy Press., 1995.

[29] Thorsten Fröhlich, Johannes Behr, and Peter Eschler. Cybernarium Days 2002 - A Public Expe-
rience of Virtual and Augmented Worlds. First International Symposium on Cyber Worlds 2002,
2002.

[30] Philippe Coiffet Grigore C. Burdea. Designing Virtual Reality Systems: The Structured Ap-
proach. Wiley-IEEE Press, 2003.

[31] H-Anim. ISO/IEC FCD 19774; Humanoid animation Specification. http://www.h-anim.org, 2001.

[32] Roger Hubbold, Jon Cook, Martin Keates, Simon Gibson, Toby Howard, Alan Murta, and Adrian
West. Gnu/maverik a micro-kernel for large-scale virtual environments, 1999.

[33] John Kelso, Lance E. Arsenault, Ronald D. Kriz, and Steven G. Satterfield. DIVERSE: A Frame-
work for Building Extensible and Reconfigurable Device Independent Virtual Environments.
IEEE Virtual Reality Conference, 2002.

[34] Gerard Kim. Designing Virtual Reality Systems: The Structured Approach. SpringerVerlag,
2005.

[35] Blair MacIntyre. A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for
Exploring the Urban Environment. ISWC, 1997.

[36] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classification of parallel
rendering. Technical Report TR94-023, 8, 1994.

[37] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A Sorting Classification of
Parallel Rendering. IEEE Computer Graphics and Applications, 1994.

[38] OpenAL. OpenAL Specification and Documentation. http://www.openal.org/, 1999.

[39] OpenSceneGraph. OpenSceneGraph documenten. http://www.openscenegraph.org, 2003.

[40] Wayne Piekarski, Bruce Thomas, David Hepworth, Bernard Gunther, and Victor Demczuk. An
architecture for outdoor wearable computers to support augmented reality and multimedia ap-
plications. 2000.

[41] Dirk Reiners. Opensg: Basic concepts.

96

[42] Dirk Reiners, Gerrit Voss, and Johannes Behr. A Multi-thread Safe Foundation for Scene Graphs
and its Extension to Clusters. Eurographics Workshop on Parallel Graphics and Visualisation
2002. Proceedings, 2002.

[43] Dirk Reiners, Gerrit Voss, and Johannes Behr. OpenSG - Basic Concepts. First OpenSG
Symposium OpenSG, 2002, Darmstadt, 2002.

[44] Patrick Reuter, Johannes Behr, and Marc Alexa. An improved adjacency data structure for
efficient trianglestripping. accepted for publication in the Journal of Graphics Tools, To appear.

[45] J. Rohlf and J. Helman. IRIS Performer: A high performance toolkid for real-time 3D graphics.
ACM Computer Graphics, SIGGRAPH 94, 1994.

[46] Mark Segal, Akeley Kurt, Chris Frazier, and Jon Leech. Opengl Specification.
http://www.opengl.org/, 2003.

[47] William R. Sherman and Alan B. Craig. Understanding Virtual Reality: Interface, Application,
and Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[48] R. Stiles, S. Tewari, and M. Mehta. Adapting VRML For Free-form Immersed Manipulation.
1998.

[49] R. Stiles, S. Tewari, and M. Metha. Adapting VRML 2.0 for Immersive Use. VRML 97, Second
Symposium on the Virtual Reality Modeling language, 1997.

[50] P.S. Strauss and R. Carey. An object-oriented 3D graphics toolkit. ACM Computer Graphics,
1992.

[51] C. Szyperski. Component Software, Beyond Objekt-Oriented Programming. ACM Press., 1998.

[52] H. Tramberend. Avocado – a distributed virtual environment framework.
http://www.ercim.org/publication/Ercim_News/enw38/tramberen d.htm, 1999.

[53] John Vince. Introduction to Virtual Reality. SpringerVerlag, 2004.

[54] W3C. Xml Protocol Working Group, sOAP Version 1.2 Specification.
http://www.w3.org/2000/xp/Group/, 2000.

[55] Wikipedia. Virtual reality. http://en.wikipedia.org/wiki/Virtual_reality, 2008.

[56] Wikipedia. Virtual reality. http://en.wikipedia.org/wiki/Augmented_reality, 2008.

[57] WorldToolKit. Sense8 Corporation; WorldToolKit: Virtual Reality Support Software. 4000 Bridge-
way Suite 101, Sausalito, CA 94965, telephone : (415) 331-6318., 1994.

[58] S. Ting Wu and Johannes Behr. An Extensible Interactive Image Synthesis Environment. XXIV
Semish proceedings, 1997.

97

	Introduction
	What is VR/AR
	 Building VR/AR Applications

	X3D as a Basic Technolgy
	Utilizing X3D for VR/AR Development
	Related Work
	Hello world in X3D
	What we need
	How we do it
	Understanding the code

	Show the words

	Creating X3D Applications
	Relation to X3D
	X3D Sources to read
	X3D Conformance
	Growing number of Nodes and Components
	Mimetypes and encodings

	Get your engine right
	Scene
	Engine
	ContextSetup
	The Scene node in classic encoding

	MultipleViews and Stereo
	 Rendering
	Stereo Basics
	Depth perception of human eyes
	Monocular depth perception
	Binocular depth perception

	Depth generation in VR
	Eye separation

	Multiple Windows and Views
	Engine configuration
	Multiple view areas
	Multiple windows

	Active Stereo
	Hardware
	Stereo modifier
	Quad Buffer Stereo

	Passive Stereo
	Stereo modifier
	Stereo by overlapping view areas
	Stereo by separate view areas

	Interaction and Devices
	Interaction
	Low-Level Sensors
	High-Level Sensors

	Input/Output streams
	Introduction
	IOSensor basics
	Implicit Service definition
	Explicit Service definitions
	Parameter of Services
	IO Slots of Services

	Conclusion

	Connecting Devices
	Introduction
	Finding your slots
	Connect your device to the local machine
	Start the correct Device-handler
	Get a list of all out-slots

	Use the information to start an IOSensor
	Conclusion

	Space-Mouse/Navigator/Pilot Device
	Introduction
	Start the correct device Handler
	USB Device on Windows
	USB Device on OSX
	Serial-Device on all Systems

	Controlling the Application

	Navigator
	Introduction
	Getting the data - the IOSensor
	Moving around - the Navigator3D

	Immersive PointingSensor Interaction
	Desktop based interaction
	Fully immersive interaction

	Vision Marker Tracking
	Introduction
	IOSensor

	Vision Tracking Device
	Introduction
	Tracking in General
	The Example
	Modifications
	VideoSource
	Marker

	Apple Sudden Motion Sensor
	Introduction
	Shaking
	Tilt

	Serial Communication
	Introduction
	Setting up the serial port
	Sending Data to the Serial Port
	Receiving Data from the Serial Port
	Example Scene

	Clustering
	Cluster Basics and Load Balancing
	Topologies
	Load balancing
	Image space balancing (Sort-First)
	Geometry based balancing (Sort-Last)

	Network configuration
	InstantPlayer and InstantCluster
	Technical Details

	CAVE cluster
	Aspects of a CAVE
	Assumptions
	Setting up the views
	Load balancing
	Head tracking

	Single display cluster
	Single Display cluster

	Multiple display cluster
	Multi display cluster
	Different concepts
	Using ClusterWindow
	Using TiledClusterWindow

	Load balancing
	Multi display stereo configuration

	Scripting
	Scripting: Java
	Introduction
	Setting up the Scene and the Script
	Setting up a Java Class
	Getting Values from the Scene
	Writing back Values to the Scene

	Animation
	Followers
	Introduction
	PositionChaser3D

	Steering behaviour basics
	What are steering behaviours?
	The steering sytem
	Adding vehicles
	Parameterizing the vehicle

	Adding behaviours to the vehicles
	Updating the vehicles
	I don't see anything!?
	Moving some boxes
	Debugging vehicles and behaviours
	Vehicle's outputOnly fields

	Humanoid animation
	Overview
	Animation
	Morphing

	Conclusion

