
Prof. G. Zachmann
C. Schröder (schroeder.c@cs.uni-bremen.de)

University of Bremen
School of Computer Science

CGVR Group
January 17, 2018

Winter Semester 2017/18

Assignment on Virtual Reality and Physically-Based
Simulation - Sheet 6

Due Date January, 28 2018

Figure 1: Final mass-spring system.

Exercise 1 (Mass-Spring-Systems, 8 Credits)

The goal of this exercise is to implement a mass-spring system. On our website, you can find an
Unreal project with most parts already implemented.1 When you recall the definition of a mass-spring
system from the lecture slides, you will recognize the two main components in the Spring.{h,cpp}
and MassPoint.{h,cpp} files. The SpringMassActor.cpp glues the system together. It initializes the
mass points and springs, calls the update methods, and further creates a mesh to visualize our system
(ASpringMassActor::initSpringSystem). In the provided level, you can press F to apply a force
to the center of the mesh. The logic behind it is implemented in the ASpringMassActor::Touch

function. By pressing the keys F1 and F3, you can switch the rendering between wire-frame and lit
mode.

1 http://cgvr.cs.uni-bremen.de/teaching/vr_1718/uebungen/spring_mass_v4.18.zip

1

http://cgvr.cs.uni-bremen.de/teaching/vr_1718/uebungen/spring_mass_v4.18.zip


a) Implement the force calculation for each spring and add it to the mass points (Spring::Tick).
You can access the members of the connected mass points (m_m1, m_m2) directly, as class Spring

is a friend of class MassPoint.

b) Add a gravitational force to each mass point in MassPoint::updateGravity.

c) Implement a perturbed gravitation vector2 instead of a constant one to each mass point.

d) Change the integration method in MassPoint::updateCurPos to use the approximate midpoint
method from the particle system slides.

2 You can add a small, random vector offset to the gravitation vector.

2


