
X3DOM
A DOM-based HTML5/ X3D Integration Model

3. Feb. 2010, Clausthal University

Johannes Behr
Peter Eschler, Y. Jung, M. Zöllner,

Virtual and Augmented Reality Group,
Darmstadt
johannes.behr@igd.fraunhofer.de

Overview

Introduction and Motivation
Current State of 3D on the net
X3DOM Model

 System Architecture
 Web Profile
 DOM integration aspects
 Implementation
 Native/Extension
 SAI/object based
 O3D based
 WebGL based
 Multi-backend Hyprid

Conclusion and Future Work

Introduction & Motivation

15 years of Web3D technology
Initial hardware and network limitations are gone

 phones render millions of polygons per second

 broadband connection in almost every home
X3D established and solid technology

 Successfully used in various application areas

 But: Very view web application today!

Increasing interest in 3D web technology

 Fat-client based: Second-Life, GoogleEarth, Games (e.g. WOW), …
 Browser based: X3D, O3D, WebGL/Khronos, …

HTML5 group shows interest in 3D technology

 OpenGL (ES) as programming interface

 X3D for declarative content

Current State of 3D on the net
Browser solution – plugin based

General issues:
 Installation, security and browser/OS incompatibility
 System specific interfaces to access/manipulate the content

Flash (Adobe)
 < Version 10: 2D pipeline used for 3D (e.g. Papervision)
 >= Version 10: Minimal 3D transformation for 2D elements

Silverlight (Microsoft)
 < Version 3: 2D pipeline (there was a 3D pipeline in Avalon/WFC!)
 >= Version 3: Minimal 3D transformation for 2D elements

Java, Java3D, JOGL and JavaFX (SUN)
O3D (Google): Javascript based scene-graph API
X3D (ISO, web3d consortium): plugins with SAI interface
MPEG-4 & MPEG-4 Part 11 (ISO, Moving Picture Experts Group)

Current State of 3D on the net
Browser solution – Rendering without plugins

General advantage:
 No plugin installation issues
 Vis./Runtime can be part of the content

SVG Renderer :

 3D rendering with 2D pipeline

 Google chrome experiments / pre3d

CSS Renderer:

 3D transformation for 2D elements
 WebKit/Opera extensions

OpenGL based:

 WebGL (plus scene-graph, e.g. C3DL)

 Canvas3D / Opera GL Canvas

Current State of 3D on the net
Native HTML5

Object/plugin based
 Model is separated from DOM model

 Separate data/event model

 plugin specific scripting interface (e.g. SAI for X3D)
WebGL

 Based on Canvas3D (Mozilla)

 Developed with Khronos group

 Exposes the OpenGL layer to JavasScript

3D scenes (HTML5 specification)
 12.2 Declarative 3D scenes
Embedding 3D imagery into XHTML documents is the domain of X3D, or
technologies bases on X3D that are namespace aware.

Allows to embed XML-X3D content inside of every XHTML & HTML page
Uses XML-namespaces to separate X3D content from XHTML content

 => Follows HTML5 declaration
Works with HTML without namespaces but encoding restrictions
X3D content represents a live scene-graph

 Not a single import like the SAI document-import
Provides a single in-place rendering architecture (like e.g. SVG)
Supports updates in both direction

 X3D and DOM events
Presents a declarative interface but no API

 Not a small plugin API but wide content interface
Declaration is independent of runtime implementation style

 Supports native, plugin, or JS+WebGL/O3D implementation
Supports content specific runtime or runtime-extension

X3DOM
A DOM-based HTML5/X3D Integration Model

DOM Integration Issues
XHTML namespaces: xmlns defines namespace

 <?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
 <h1>X3D DOM integration and manipulation</h1>
 <x3d:x3d xmlns:x3d="http://www.web3d.org/specifications/

x3d-3.0.xsd">
 <x3d:Scene>
 <x3d:Shape><x3d:Box x3d:size="4 4 4" /></x3d:Shape>
 </x3d:Scene>
 </x3d:x3d>
</body>
</html>

DOM Integration Issues
XHTML namespaces: Default namespaces

 <?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<body>
<!-- All elements within the x3d elements belong to the x3d namespace -->

 <x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
 <Scene>

 <Shape><Box size="4 4 4" /></Shape>

 </Scene>
 </x3d>

</body>

</html>

DOM Integration Issues
Accessing elements in x3d namespace

<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
 <Scene> <Shape><Box size="4 4 4" /></Shape> </Scene>

</x3d>

<script type="text/javascript">
 // The namespace URIs

 var x3d_ns = "http://www.web3d.org/specifications/x3d-3.0.xsd";

 // Get elements using namespaces

 var box = document.getElementsByTagNameNS(x3d_ns, "Box")[0];

 // Edit an attribute of the <Box /> element
 alert(box.getAttributeNS(null, "size"));

 box.setAttributeNS(null, "size", "2 2 2");

 alert(box.getAttributeNS(null, "size"));

</script>

DOM Integration Issues
Events from the X3D subsystem

<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
 <Scene>

 <Shape><Box size="4 4 4" /></Shape>
 <VisibilitySensor id=”vs" DEF=”vs" size=“4 4 4” />

 </Scene>
</x3d>
<script type="text/javascript">

 var x3d_ns = "http://www.web3d.org/specifications/x3d-3.0.xsd";
 // Get elements using namespaces

 var x3d = document.getElementsByTagNameNS(x3d_ns, "x3d")[0];
 var vs = x3d.getElementsByTagName(”VisiblitySensor")[0];
 vs.addEventListener(”enterTime",

 function() { alert(”There is a Box!"); }, false);
</script>

DOM Integration Issues
User Interaction through DOM Events

<x3d xmlns="http://www.web3d.org/specifications/x3d-3.0.xsd">
<Scene>

 <Shape>

 <Appearance>
 <Material diffuseColor=‘1 0 0’ DEF=‘mat’ id=‘mat’ />

 </Appearance>

 <Box size="4 4 4” onclick=“document.getElementById
(‘mat’).diffuseColor=‘0 1 0’” />

 </Shape>

</Scene>
</x3d>

DOM Integration Issues
HTML5: no ns, lower-case tags and no self-closing tags

<!DOCTYPE html >
<html xmlns="http://www.w3.org/1999/xhtml">
<body>

 <h1>X3D DOM integration and manipulation</h1>
 <x3d>

 <scene>

 <shape><box size="4 4 4” ></box></shape>

 </scene>

 </x3d>
</body>

</html>

DOM Integration Issues
Open issues

How should we handle HTML5 events and event attributes in general
 e.g. events in X3D and/or node elements ?

Identifying elements
 X3D DEF vs. XML id and class
 id and class already defined in x3d xsd

Multi-parent x3d-scene-graph relation
 <Group USE=‘foo’ /> replaces the element with a link to ‘foo’
 Introduce explicit < USE /> element ?

X3D elements
 Specific attributes e.g. x, y, width and height, …
 Scene access interface (SAI) on X3D elements

X3D specific JavaScript objects (e.g. to access a specific triangle)
CSS integration: Separation of content and presentation style ?
Content partitioning: X3D-Inlines and X3D-Protos vs. XML href ?

 Alternative: PHP includes: […] include “someCode.php";

X3DOM
Specific Profile: Subset for valid HTML/XHTML tags

Specific X3D-profile for DOM content
 No Script nodes
 No Proto types
 No PointingSensor types
 Inline from network component

Supports animation for per-frame updates
 TimeSensor
 Interpolator
 Follower (Damper and Chaser)

Reduces complexity
 Eases implementation
 Utilizes xhtml for scripting and distribution

Reduces X3DOM to visualisation component for 3D
like SVG or canvas for 2D

X3DOM
System Architecture / IUA/X3D runtime

Implementation
X3D Runtime for DOM Content

Needs to run the X3D content in-place
Needs to monitor creation/deletion of X3D elements

Needs read/write ACCESS to DOM elements

 Update the X3D graph on DOM changes (e.g. script set)
 Update the DOM element on X3D changes (e.g. animation)

Needs to fetch “Inlined” content

Needs to fetch and download AV-media

 Images, Movie and Sound

Needs to feed the rendered back to browser
Needs to render asynchronously

Implementation
Native/extension based implementation

Needs to monitor creation/deletion of X3D elements
 C/C++ access to DOM elements browser specific (e.g. Mozilla ext.)

 ActiveX and NSAPI do not allow to monitor DOM elements

Needs read/write ACCESS to DOM elements
 X3D updates: C++ Observer

 DOM updates: C++ Observer

Fetch “Inlined” content

 Uses browser infrastructure to download DOM document

Needs to fetch and download AV-media
 Uses browser libs to fetch/process Images, Movies and Sound

Pro: Performance, very flexible (e.g. remote rendering)
Con: Browser specific

Implementation
SAI-plugin based implementation

Needs to monitor creation/deletion of X3D elements
 DOM not accessible through plugin-interface

 Needs additional JavaScript wrapper/extension (e.g. jetpack)

 => creates one plugin/object for every x3d element
Needs read/write ACCESS to DOM elements

 X3D updates: DOM Mutation Events
 DOM updates: SAI callbacks

Needs to fetch “Inlined” content and AV-media

 Works through X3D runtime

Pro: Uses standard SAI plugin; high availability
Con: Plugin installation issues

Implementation
O3D based implementation

Needs to monitor creation/deletion of X3D elements
 Needs additional JavaScript wrapper/extension (e.g. jetpack)

 => creates one O3D context for every x3d element

Needs read/write ACCESS to DOM elements
 X3D/O3D updates: DOM Mutation Events
 DOM updates: javascript callbacks

Needs to fetch “Inlined” content

 Uses browser infrastructure to download DOM document

Needs to fetch and download AV-media
 Images: O3D-textures; Sound: O3D-Layer; Movie: still open

Pro: No extra plugin (just O3D), allows content specific runtime
Con: Complexity, Needs O3D plugin

Implementation
WebGL based implementation

Needs to monitor creation/deletion of X3D elements
 Needs additional JavaScript wrapper/extension (e.g. jetpack)

 => creates one canvas for every x3d element

Needs read/write ACCESS to DOM elements
 X3D updates: DOM Mutation Events
 DOM updates: javascript callbacks

Needs to fetch “Inlined” content

 Uses browser infrastructure to download DOM document

Needs to fetch and download AV-media
 Images: easy, Movie: easy, 3D-Sound: impossible

Pro: No plugin, allows content specific runtime
Con: Performance

X3D
Element
detected

Do nothing
UA

supports
X3D ?

X3D/SAI
plugin

installed ?

initiate plugin &
bidirectional

update-system
for SAI

O3D
plugin

installed ?

build & update
X3D/js -

scenegraph on
top of O3D

yes

yes

no

no

UA
supports
WebGL ?

yes no

Show
alternative

non-interactive
image/video

build & update
X3D/js -

scenegraph on
top of WebGL

yes

Current implementation state
Implemented

Not implemented

Partially implemented

X3D/HTML5 intermediated fallback model
(provided by X3DOM.org right now)

no

Fraunhofer IGD / Autor / Abteilung

Implementation
Multi-Backend Hybrid: x3dom.org

Open-Source (MIT/GPL)
JavaScript (JS 5-setter for field-updates)
Needs single line per X(HTML)-Page

 <script type="text/javascript" src=”http://
x3om.org/x3dom/release/x3dom.js” />

WebGL-Backend
 Simple - JavaScript – Scenegraph
 Simplified State Model (e.g. field-types)
 One SG-Node-Type per X3D-Node-Type
 N-1 Node relation (DEF/USE)
 OpenGL ES 2.0 Render:
 No FFP, glsl-shader based
 Modern shading (e.g. Pixel-lighting)

Implementation
x3dom.org

Conclusion

DOM-based integration model for X3D and HTML5
Exploits the current X3D and HTML5 standard

DOM represents a live X3D scene

 Read/Write access on scene data
 Event from/to the X3D runtime

X3DOM specific X3D-profile

 Reduces X3D subset to rendering system

 Eases implementation

Architecture supports various implementation models
 Native/Browser, SAI-plugin, O3D or WebGL

x3dom.org implementation

 Open-source, JS, WebGL-Backend

Future Work

Standardisation:
 Architecture was presented to the web3d working group
 Accepted as one model to be presented to W3C working group
 Architecture was presented to the W3c/HTML working group (TPAC)
 Official HTML5 “bug” to integrate X3D
 Developed further through the X3D/HTML5 wiki
 (http://www.web3d.org/x3d/wiki/index.php/X3D_and_HTML5)

Implementation:
 JS-Scenegraph
 Components and nodes
 (Follower, Geo-Spatial, Environment-Sensor, CommonShader)
 Navigation types (e.g fly, walk, look-at)
 SAI-Field-access
 SAI-Plugin support
 O3D-Backend

Thank you!
Questions?

X3DOM

