C++ Coding-Rules for efficiency:
This Paper will define and explain some coding Rules, for C++, which will increase the Performance and reduce the chance of memory-leaks. All Rules use the Vector3 class as example.

Minor Explanations:

const : this Keyword defines an Object or Reference as constant, meaning it can’t be
 changed. const always applies to the Keyword left of it, except it’s the most
 left Keyword itself, in that case it applies to the Keyword right of it.
Example:

 (const Vector3 &vec) -> const applies to Vector3

(Vector3 const &vec) -> const applies to Vector3

(Vector3& const vec) -> const applies to &(the Reference), in this case

 redundant because, a Reference is always constant.

& : this defines a Reference to an Object, meaning the Object won’t be copied,

instead you get the Memory-Address an changes will be transferred

directly to the Object. This reduces Memory usage, so use always, if
possible. Also a Reference has always a valid Value and can’t be NULL.
* : this marks a Variable as an Pointer of the given Data-Type. A Pointer will lead to
the Memory-Address of an Object, so you get the same result as with &, but a
Pointer is Kind of an Object and has the Memory-Address only as a
Destination, which also can be redirected, meaning you can change the
pointer-Direction to another Object, as long as the Pointer is not constant. This
means a Pointer can lead to NULL, so if possible use & instead of *, and use *
only if you want the possibility of NULL, meaning of course you also have to
check on NULL.
Reading Information:

void f0(const Vector3 &vec) { … }

In this case const applies to the Keyword Vector3, because it’s the most left Keyword an Vector3 is right to it. This means the Object itself is constant and therefore Information can only be read, but not changed. Use this always if you need the Information for other things, but don’t want to change them.
Writing Information:

void f1(Vector3 &vec) { … }

If possible use this to change the Information of the given Object. The Value of the Parameter will most likely be existing(meaning not NULL, no warranty for runtime errors, these are always possible), therefore it’s pretty safe, because the worst thing that can happen is, that your Results are wrong and useless, but at least the Program won’t crash or cause memory-leaks. Also you don’t get an unnecessary copy of the Object.

void f2(Vector3 *vec) { … }
In this case you get a Pointer to an Object, not a Reference. However you have no evidence that the Pointer points to a valid Object. Therefore always check on NULL and only use this if you want the possibility of NULL, otherwise avoid this Style and use f1.

void f3(Vector3 vec) { … }

In this last case you will get a copy of the given Object, which increases the memory-usage(which you always want to avoid). Use this only for primitive Data types like, int, double, bool etc., for these are no Objects. (In Visual Studio primitive Types are colored (dark-)blue and non-primitive cyan/green(may vary a bit from design and monitors)). Strictly avoid this for all non-primitive Types.
Creating Objects:
Vector3 vec = new Vector3(1,2,3);

In this case the memory will explicit allocated because of the “new” Keyword. This means you always have to delete it manually by the end the method, otherwise it will continue existing after that(if you then have no reference to it you can’t delete it anymore), if you need the object after the method(like in a init()) then save the reference in an attribute and call delete in the destructor):

delete vec;

or in destructor:

~Object() { delete vec; }
This is easily forgotten and not very dynamic, therefore try to avoid this way for local Variables and use the following good way:

Vector3 vec(1,2,3);

In this case the memory gets allocated automatically and is not explicit reserved. This makes it possible for the system to automatically free the memory and delete the object by the end of its scope. Therefore you don’t need to delete it manually. But remember if you want to return this object and use it after the method, you can’t return a reference like:
return &vec;

instead you have to return a copy:

return vec;

otherwise the reference will result in NULL, because the object is deleted after the return.
