


What is UML?
UML is a graphical language for visualizing, specifying, 
constructing, and documenting the artifacts of a software-intensive 
system.

It can be used with all processes, throughout the software 
development life cycle, and across different implementation 
technologies.



How can UML help a project?
Unified Modeling Language (UML) combines techniques 
from data modeling (entity relationship diagrams), business 
modeling (workflows), object modeling, and component 
modeling. It can be used with all processes, throughout the 
software development life cycle, and across different 
implementation technologies.[1]



How can UML help a project?
The Unified Modeling Language (UML) offers a standard way to 
visualize a system's architectural blueprints, including elements such 
as:
● Activities
● Actors
● Business processes
● Database schemas
● (logical) components
● Programming language statements
● Reusable software components



UML and technologies
UML has synthesized the notations of the Booch method, the Object-
modeling technique (OMT) and Object-oriented software engineering 
(OOSE) by fusing them into a single, common and widely usable 
modeling language.[2] UML aims to be a standard modeling language 
which can model concurrent and distributed systems.

UML models may be automatically transformed to other representations 
(e.g. Java) by means of QVT-like transformation languages. UML is 
extensible, with two mechanisms for customization: profiles and 
stereotypes.



The UML specification
There are four parts to the UML 2.x specification:

● The Superstructure that defines the notation and semantics for 
diagrams and their model elements

● The Infrastructure that defines the core metamodel on which the 
Superstructure is based

● The Object Constraint Language (OCL) for defining rules for 
model elements

● The UML Diagram Interchange that defines how UML 2 diagram 
layouts are exchanged



Models
It is important to distinguish between the UML model and the set of diagrams of 
a system. A diagram is a partial graphic representation of a system's model. 
The model also contains documentation that drives the model elements and 
diagrams (such as written use cases).



Models
UML diagrams represent two different views of a system model:[3]

● Static (or structural) view: emphasizes the static structure of the system 
using objects, attributes, operations and relationships. The structural view 
includes class diagrams and composite structure diagrams.

● Dynamic (or behavioral) view: emphasizes the dynamic behavior of the 
system by showing collaborations among objects and changes to the 
internal states of objects. This view includes sequence diagrams, activity 
diagrams and state machine diagrams.



Diagrams
UML 2.2 has 14 types of 
diagrams divided into two 
categories. Seven diagram 
types represent structural 
information, and the other 
seven represent general 
types of behavior, including 
four that represent different 
aspects of interactions.



Structure diagrams
Structure diagrams emphasize the things that must be present in the 
system being modeled. Since structure diagrams represent the structure, 
they are used extensively in documenting the software architecture of 
software systems.
● Class diagram
● Component diagram
● Composite structure diagram
● Deployment diagram
● Object diagram
● Package diagram
● Profile diagram



Structure diagrams
Class diagram



Behavior diagrams
Behavior diagrams emphasize what must happen in the system being 
modeled. Since behavior diagrams illustrate the behavior of a system, 
they are used extensively to describe the functionality of software 
systems.
● Activity diagram
● UML state machine diagram
● Use Case Diagram
● Communication diagram*
● Interaction overview diagram*
● Sequence diagram*
● Timing diagrams*

*Interaction diagrams, a subset of behavior diagrams



Behavior diagrams
Use case diagram

Activity diagram



References
1 Satish Mishra (1997). "Visual Modeling & Unified Modeling Language (UML) : Introduction to UML". 
Rational Software Corporation. Accessed 9 November 2008.
2 "OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1". Object Management 
Group. Retrieved 2013-03-28.
3 Jon Holt Institution of Electrical Engineers (2004). UML for Systems Engineering: Watching the 
Wheels IET, 2004, ISBN 0-86341-354-4. p.58


