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Meshing 

§  Wichtiger Preprocessing-Schritt in vielen Anwendungen 

§  "Domain discretization" = 

§  Komplexes Gebiet (2D oder 3D) wird in einfache Gebiete zerlegt 
(Dreiecke, Tetraeder) 

§  Anwendungen: FEM, CFD, VLSI = Simulation = Lösen von PDEs 

§  PDEs lassen sich über regelmäßigem Gitter diskretisieren (über 
beliebige Gebiete nicht) 
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U 

U 

Uniform 
mesh, i.e. 
too many 
mesh 
elements  

Non-uniform, conforming 
mesh that respect the 
input; well-shaped, too:  
bounded aspect ratio (e.g., 
angles ∈ [45°, 90°]. 
But needs so-called 
"Steiner points" (additional 
pts)  ⟶ where/how to 
place them? 

Non-uniform, conforming 
mesh that respect the 
input. 
But acute triangles. 

Mesh with all 
desired 
properties, 
based on 
quadtree. 
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Example Result of Our Meshing Algorithm 

Figure 2.2: A well balanced triangulation.
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Figure 2.3: Illustration of the proof of Lemma 2.5.6.

Lemma 2.5.6 The method above gives a triangulation QT (P) withAratio(QT (P))  4.

Proof: The right triangles used to triangulate the unwarped cells have aspect ratio 2. If a cell
with side length l is warped, we have two cases.

In the first case, the input point of P is inside the square of the original cell. Then we assume
that the diagonal touching the warped point is chosen; otherwise, the aspect ratio can only be better
than what we prove. Consider one of the two triangles formed, with corners the input point and
two other cell corners. The maximum length hypotenuse is formed when the warped point is on
its original location, and has length h =

p
2l. The minimum area is formed when the point is in

the center of the square, and has area a = l2/4. Thus, the minimum height of such a triangle 4 is
� 2a/h, andAratio(4)  h/(2a/h) = h2/2a = 4.

In the second case, the input point is outside the original square. Since the quadtree is well
balanced, the new point y is somewhere inside a square of sidelength l centered at x (since we
always move the closest leaf corner to the new point). In this case, we assume that the diagonal
not touching the warped point is chosen. This divides the cell into an isosceles right triangle and
another triangle. If the chosen diagonal is the longest edge of the other triangle, then one can argue
as before, and the aspect ratio is bounded by 4. Otherwise, the longest edge touches the input
point. The altitude is minimized when the triangle is isosceles with as sharp an angle as possible;

35
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Point Quadtree Demo 

http://www.cs.utah.edu/~croberts/courses/cs7962/project/index.html  
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Quadtree Demo 

Recursion criterion 
here: 
more than 4 points 
in a node 
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Logic Operations with Quadtrees 

http://blog.ivank.net/quadtree-visualization.html 
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http://www.mikechambers.com/blog/2011/03/21/javascript-quadtree-implementation/  
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Exact Octrees (a.k.a. SP-Octrees) 

used to store the model is presented, according to
our proposal. In section 3 we describe the
construction of a model in the proposed scheme from
a B-Rep description of a solid. In section 4 we
describe some of the basic operations on solids using
the proposed scheme. Finally, the conclusions
reached and work pending are presented.

2. SP-OCTREE

When trying to extend the Octree scheme
representation, the modifications can be made in
three different points of it:

a) By modifying the information included in the
leaf nodes of the octal tree that represent the
object. To do that, we can add information of
the boundary of the object that appears in
each terminal node [Brune85][Brune87]
[Brune90].

b) By modifying the cutting planes used in the
subdivision process [Cano96][Torre96]
[Whang95].

c) By modifying the information stored in the
internal nodes of the tree.

In classical Octrees and the extensions
proposed, the internal nodes are those that are not
homogeneous with respect to the classification
criteria. So, in these nodes the only information
appearing is the references to its children.

Extended Octrees [Brune85][Brune90]
include information of the solid boundary in terminal
nodes. So, the same boundary plane can appear in
several neighbouring terminal nodes that share the
boundary faces.

The idea of the proposed scheme, that we
have called SP-Octrees (Space Partition Octrees), is
based on the inclusion of boundary information in
internal nodes that partially defines the object
represented in each node of that level. Been more
precise, we include the face planes that divide the
voxel into an empty region and a partially occupied
region. Thus, the information of the boundary faces
appears in the upper levels of the tree and it is not
necessary to repeat the information in neighbouring
nodes that share a face.

When a node is completely in or out of the
represented solid we classify it as BLACK or
WHITE in the same way as in classical Octrees.

When the intersection of the solid and the
voxel is concave, we use a CONVEX node.

Formally, a CONVEX node is the intersection of the
semi-spaces defined by the planes included in it with
its bounding box. These nodes allow the exact and
univocal representation of a convex polyhedral
object.

When the intersection of the voxel and the
solid is concave we use a CONCAVE node.
Formally, a CONCAVE node is the difference of the
bounding box of the node with the intersection of the
complement of the semi-spaces included in it.

Finally, when concavities and convexities
exist at the same voxel, we classify the node as
GREY, dividing it in the same way as in classical
Octrees, but maintaining in the node the information
of the planes that are in the convex hull of the part of
the solid in the node. Thus, in the children we only
need to represent the boundary planes that are not in
that convex hull and which form the existing
concavities.

Figure 2. CONCAVE node

Figure 1. WHITE, BLACK and CONVEX nodes
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Geodesic Dome 

Start with Icosahedron 
Subdivide each triangle 
by k2 smaller triangles 
(recursively) 
⟶ quadtree in each 
base triangle 
Navigation (finding 
neighbors of a node) 
in such an  
ensemble of 
quadtrees is a bit 
more complex  
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Octree Models from Images 

Drehteller Gray Code 
(zur Erkennung der 
Orientierung des 
Drehtellers) 



G. Zachmann 15 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September 
2015 

SS 

Example Models 
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Image Compression using Quadtrees 
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Die beiden Test-Bilder schlechthin 
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Resultate 
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Demo for BTC and CCC Compression 

http://ls.wim.uni-mannheim.de/de/pi4/teaching/animations/  
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S3TC Texture Compression 

§  Vergleich: 

DXT1 Uncompressed 

[Philipp Klaus Krause] 

[Sim
on Brow

n] 
D

X
T1 

U
ncom

pressed 
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§  Vorteil: größere Texturen möglich → höhere Qualität 

§  Beispiel aus der Unreal Engine: 

uncompressed mit S3TC Unreal Retexturing Project 
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Isosurfaces 

§  Beispiel zur Motivation: 

§  Gegeben ist ein 2D Höhenfeld 

§  Gesucht ist eine Visualisierung (in 
2D!), so daß man die Form / den 
Verlauf des Höhenfeldes gut 
"erkennt" 

§  Eine Möglichkeit: Höhenlinien = 
Konturen = Isolinien 
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§  Problems / challenges: 

§  Plateaus ⟶ large "jumps" of 
the location of the isosurface 
when isovalue changes by ε 

§  Singularities ⟶ isosurface 
contracts to a point, or appears 
"out of nowhere" when 
isovalue crosses that point 

§  Ambiguities during tesselation 

5 5 1 

5 6 1 

9 

9 

7 

2 

8 8 3 

8 3 2 

9 9 7 9 

Θ=6-ε 

Θ=4 

Θ=8-ε 
Θ=8+ε 
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Beispiele für Volumendatensätze 

Blunt Fin 

Chapel Hill CT Head 

Engine Block 
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§  Die 15 echt verschiedenen Fälle in 3D (module rotation & 
Spiegelung): 

4/30/09 12:44 PMhttp://upload.wikimedia.org/wikipedia/commons/a/a7/MarchingCubes.svg

Page 1 of 1
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Demo 

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html  
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Knifflige Fälle für jeden Isosurface-Algorithmus 
The asymptotic decider algorithm

2

2
-3

-3 2

4

-1 -5
36

-5

3
-4

-1

-3

-2 2
2

-2

3 2

-3 -3
-2

6

8-sided polygon 9-sided polygon 12-sided polygon

Th 8 id d l h lid i l i !The 8-sided polygon has no valid triangulation!
• either some triangles lie on faces of the cell
• or an extra vertex has to be used

Ronald Peikert SciVis 2007 - Contouring 2-27

or an extra vertex has to be used 
~/avs/networks/SciVis/AD*net
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§  Manchmal passen die Dreiecke der  
benachbarten Zellen nicht zusammen: 

§  Uneindeutiger Fall im 2D: 

§  More on that ⟶ Advanced Computer Graphics 

The marching cubes algorithm

Do the pieces fit together?
• The correct isosurfaces of the trilinear 

interpolant would fit (trilinear reduces to p (
bilinear on the cell interfaces)

• but the marching cubes polygons don't 
necessarily fitnecessarily fit.

Example
case 10

• case 10, on top of
• case 3 (rotated, signs changed)
have matching signs at nodes but polygonshave matching signs at nodes but polygons 

don't fit. 

case 3

Ronald Peikert SciVis 2007 - Contouring 2-19

case 3

The asymptotic decider algorithm

Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topologyMarching cubes can produce bad  topology.
2D example (marching squares):

Asymptotic decider algorithm (Nielson and Hamann 1991) :Asymptotic decider algorithm (Nielson and Hamann 1991) :
• generate topologically correct contours (as oriented straight line 

segments) on the cell interfaces
• connect these around the cell, resulting in one or more polygons
• triangulate the polygons

~/avs/networks/SciVis/MCandAD*.net

Ronald Peikert SciVis 2007 - Contouring 2-25
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§  Output eines einfachen Marching-Cube-Algorithmus': 
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Beispiel aus einer Wetter-Simulation 
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Another Metaballs Demo 

http://threejs.org/  
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Pivot-Strategien beim Aufbau von kd-Trees 

Median along the dimension  
with the widest spread of the points 

The point closest to the center along the  
dimension with longest side of the region 
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Animation of Nearest-Neighbor using kd-Trees 

Andrew Moore, CMU 
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Animation of NN search with large data set 
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A Worst-Case for NN-Search Using kd-Trees 

Gutartiger Fall Bösartiger Fall 

Alle weißen Blätter muß der NN-Algorithmus besuchen! 

In a few moments, it will get worse … 
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Artistic Application of k-NN Algorithm 
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Flatland (Edwin A. Abbott, presented by Carl Sagan) 
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§  Denksportaufgabe: wie sieht ein Würfel aus, der langsam duch 
Flatland hindurch "schwebt", beginnend mit einer Ecke? 

§  Was kann ein höher-dimensionales Wesen mit niedriger-
dimensionalen Wesen machen: 
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4-Dimensional Tetrahedron by the Slicing Method 

http://www.dimensions-math.org  

1-simplex 

2-simplex 

3-simplex 

4-simplex 
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The 4-Dimensional Hypercube (Tesseract) 

§  Construction by analogy: number of points, edges, faces, cells 

§  Projection  
eines  
Tesseract  
nach 3D: 
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Unwrapping a Hypercube 

Crucifixion  
(Corpus Hypercubus), 

1954, Salvador Dali 

Matt Parker 

The unfolding method: 
The projection of a 3D cube unfolding into its 2D net 
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Projection of 3D cube 
unfolding into its 2D net 

Projection of 4D cube 
unfolding into its 3D net 

The "lid" of the 4D cube (what is it?) does not deform, of course; that is just an artefact of the projection into 3D,  
just like the lid of the 3D cube when projected into 2D. 
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Zum Verhalten von logd(n) 

70 

0 
1 10 100 

2500 
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70000 

Der Algorithmus für die ANN-Suche 
ist also besser (asymptotisch) 
als brute-force-mäßig alle n Punkte 
zu besuchen und deren Abstand zum 
Query-Punkt q zu berechnen. 
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Texture Synthesis 

Wei & Levoy 

T I 
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original synthesized 
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original synthesized 
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Experiments and Results Regarding Surflet-Pair Histograms 

A10 Ape Buffalo Bull Bunny

Cannon Cat Cube Cylinder Dragon

Gumby Heart Horse Kangaroo Missile

Shark Sphere Tetrahedron Triceratops X-Wing

Figure 2. The 20 objects of the database.

face mesh is not included. Almost perfect classification has
been achieved by the and criteria. Interestingly, the
criterion performs dramatically weaker than the crite-
rion. Apparently, the weighting of histogram differences by
the reciprocal of the trained histogram value alone is much
more reliable than taking also the estimate from the small
test sample into account [cf. Equations (13), (14)].

Correct classification and confusion rates between all
pairs of objects are shown in Figure 3. All classifiers work
well for simple shapes like cube or sphere. Interestingly, the
objects that are difficult to classify differ drastically across
the criteria. On the other hand, the and criteria exhibit
a strikingly similar pattern of classification performance.
This similarity will also be retained in all the other tests of
the classifiers we report below. The same similarity holds
for the best, the and criteria.

5.2 Noisy data

If the point cloud is obtained from real sensors like laser
range-scanners, laser profilers, or stereo cameras, the data
will be corrupted in various ways. Therefore, in a second set
of experiments, sensitivity of the feature histograms to noise
is evaluated. Uniformly distributed noise is simulated by
randomly translating vertices from a surface mesh inward or
outward along the local surface normal. The level of noise is
defined as the range of translations, measured in percent of
the maximal object diameter2. As an example, Figure 4(b)
shows a surface mesh corrupted by the maximal level of
noise we have tested (20%).
In Figure 5(a), we present plots of recognition rates for

the six classifiers as a function of noise level. For the ,
, , and criteria, classification performance degrades

rapidly with increasing noise. This is explained by the fact
2Remember that the diameter was scaled to the same value for all ob-

jects.

Test Objects 
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Figure 5. Plots of recognition rates for the 20
objects shown in Figure 2 using the six differ-
ent criteria defined in Section 4. The condi-
tions for the test data are varied; (a) varying
level of noise (in percent of maximal object
diameter); (b) varying visibility (in percent of
complete surface area); (c) varying mesh res-
olution (in percent of training resolution). The
curves for the and criteria nearly coincide
in all three graphs.

that the angular attributes , , are very sensitive to noise
such that surface information is largely lost. Interestingly,
these criteria reach a rather stable rate of between 10% and

15% correct classification. Some residual performancemay
be expected, as the distance attribute remains informative
up to much higher noise levels. The and criteria, on
the other hand, are a lot less sensitive to noise, exhibiting
significantly lower performance at low noise and higher per-
formance at high noise levels. Under realistic conditions of
measurement (noise ), however, the and criteria
yield a reasonable recognition rate above 80%.

5.3 Partial visibility

In real applications, objects to be recognized are often
just partially visible. Reasons are self-occlusion in single-
view data or occlusions by other objects. Partial objects
yield incomplete surface meshes. Therefore, in this set of
experiments, each test object is meshed and classified with
varying fraction of visible surface. Visible parts are deter-
mined by intersecting point clouds by a random plane. Sub-
sequently, data on one side of the plane are processed by
the mesh generator. Visibility is defined as the sum of re-
maining triangle areas in percent of the complete surface
area. Figure 4(c) gives an example of a partially visible
mesh (33%).
Results on recognition rates for various visibilities are

plotted in Figure 5(b). Performance can be seen to drop off
more gradually with occlusion than with data corruption by
noise [cf. Figure 5(a)]. Correct classification by the and
criteria remains above 80% down to roughly 65% visibility.
We note that recognition with partial visibility depends

in fact heavily on the particular section of the object that
remains visible.

5.4 Generalization across mesh resolution

Since we have relied upon surface meshes as the input
representation, it is interesting to ask how recognition per-
formance is affected by changes to the mesh procedure.
The most demanding scenario is generalization across mesh
procedures, that is, being confronted at recognition time
with a mesh of a type essentially different from what train-
ing has been based on.
In a final set of experiments, we thus have investigated

the effect of varying the mesh resolution for the test objects.
Figure 5(c) shows plots of correct-classification rates under
such conditions, where mesh resolution is given in percent
of the (constant) resolution in the training phase. Appar-
ently, recognition performance does not critically depend
on test-mesh resolution. Only below 50% of the training
resolution, recognition performance drops off. In part, this
can be ascribed to the low absolute number of feature sam-
ples drawn. In particular, the and criteria exhibit a high
degree of generalization across meshes.
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Figure 5. Plots of recognition rates for the 20
objects shown in Figure 2 using the six differ-
ent criteria defined in Section 4. The condi-
tions for the test data are varied; (a) varying
level of noise (in percent of maximal object
diameter); (b) varying visibility (in percent of
complete surface area); (c) varying mesh res-
olution (in percent of training resolution). The
curves for the and criteria nearly coincide
in all three graphs.

that the angular attributes , , are very sensitive to noise
such that surface information is largely lost. Interestingly,
these criteria reach a rather stable rate of between 10% and

15% correct classification. Some residual performancemay
be expected, as the distance attribute remains informative
up to much higher noise levels. The and criteria, on
the other hand, are a lot less sensitive to noise, exhibiting
significantly lower performance at low noise and higher per-
formance at high noise levels. Under realistic conditions of
measurement (noise ), however, the and criteria
yield a reasonable recognition rate above 80%.

5.3 Partial visibility

In real applications, objects to be recognized are often
just partially visible. Reasons are self-occlusion in single-
view data or occlusions by other objects. Partial objects
yield incomplete surface meshes. Therefore, in this set of
experiments, each test object is meshed and classified with
varying fraction of visible surface. Visible parts are deter-
mined by intersecting point clouds by a random plane. Sub-
sequently, data on one side of the plane are processed by
the mesh generator. Visibility is defined as the sum of re-
maining triangle areas in percent of the complete surface
area. Figure 4(c) gives an example of a partially visible
mesh (33%).
Results on recognition rates for various visibilities are

plotted in Figure 5(b). Performance can be seen to drop off
more gradually with occlusion than with data corruption by
noise [cf. Figure 5(a)]. Correct classification by the and
criteria remains above 80% down to roughly 65% visibility.
We note that recognition with partial visibility depends

in fact heavily on the particular section of the object that
remains visible.

5.4 Generalization across mesh resolution

Since we have relied upon surface meshes as the input
representation, it is interesting to ask how recognition per-
formance is affected by changes to the mesh procedure.
The most demanding scenario is generalization across mesh
procedures, that is, being confronted at recognition time
with a mesh of a type essentially different from what train-
ing has been based on.
In a final set of experiments, we thus have investigated

the effect of varying the mesh resolution for the test objects.
Figure 5(c) shows plots of correct-classification rates under
such conditions, where mesh resolution is given in percent
of the (constant) resolution in the training phase. Appar-
ently, recognition performance does not critically depend
on test-mesh resolution. Only below 50% of the training
resolution, recognition performance drops off. In part, this
can be ascribed to the low absolute number of feature sam-
ples drawn. In particular, the and criteria exhibit a high
degree of generalization across meshes.
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Point Cloud Surfaces 

§  Increasingly popular geometry 
representation 

§  Lots of sources of point clouds (laser 
scanners, Kinect et al., …) 

§  Goal: surface definition that is .. 

§ Quick to evaluate 

§  Robust against noise 

§  Smooth 

§  Applications: 

§  Ray tracing (rendering) 

§  Collision detection (physics) 
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Approach 

§  Consider a point cloud P as noisy  sampling of a 
smooth surface 

§  Consequence: surface should not interpolate the 
points  

§  Define the surface as an implicit surface over a 
smooth distance function f, determined by the 
point cloud P: 

 
where f  is the distance to the yet unknown 
surface S 

S = {x|f (x) = 0}

S 
pi∈P 
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§  Define f  using 
weighted moving  
least squares 

§  The surface is  
approximated locally  
by a plane with 
 
 
 
where θ is an appropriate  weight function based on "distance" 

§  Overall: 

original surface 

x 

f (x)
n(x)

a(x)

θ 

a(x) =

PN
i=1 ✓(kx� pik)piPN
i=1 ✓(kx� pik)

f (x) = n(x)·(a(x)� x)
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§  Choose n as 

§  Reminder: n happens to be the  
smallest eigenvector of the weighted 
covariance matrix B = (bij) with 

§  For the weight function , use (for now) a Gaussian kernel 

 
with Euclidean distance (for now), where h  is called bandwidth 

min
n,knk=1

NX

i=1

�
n·(a(x)� pi)

�2
✓(kx� pik)

x 

n(x)

θ 

✓(d) = e�d2/h2 , d = kx� pk

bi j =
NX

k=1

✓(kx� pkk)(pk,i � ai)(pk,j � aj)
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§  Possible weight functions (kernels): 

§  Gauß kernel 

§  The cubic polynomial 

§  The tricube function 

§  The Wendland function ✓(d) =
⇣
1� d

h

⌘4�
4d
h + 1

�

✓(d) = 2
⇣

d
h

⌘3
� 3

⇣
d
h

⌘2
+ 1

✓(d) =
⇣
1�

��d
h

��3
⌘3

Wendland

tricube

cubic

Gauss

h

1

0.8

0.6

0.4

0.2

0

Figure 1. Our method is independent of the mapping
from distances to weights, so di↵erent weight func-
tions can be used.

3. Implicit Surface Model

In this section, we will first give a quick recap
and then explain the problem of the conventional
WLS method. For sake of clarity, all illustrations
are in 2D, but the methods work, of course, in any
dimension.

3.1. Surface Definition

Let a point cloud P with N points p

i

2 R3 be
given. Then, an appealing definition of the surface
from P is the zero set S = {x|f(x) = 0} of an
implicit function [19]

f(x) = n(x) · (a(x)� x) (1)

where a(x) is the weighted average of all points P

a(x) =
P

N

i=1 ✓(kx� p

i

k)p
iP

N

i=1 ✓(kx� p

i

k)
. (2)

Usually, a Gaussian kernel (weight function)

✓(d) = e�d

2
/h

2
, d = kx� pk, (3)

is used, but other kernels work as well (see below).
The bandwidth of the kernel, h, allows us to tune

the decay of the influence of the points. It should
be chosen such that no holes appear [5].

Theoretically, ✓’s support is unbounded. How-
ever, it can be safely limited to the extent where
it falls below the machine’s precision, or some
other, suitably small threshold ✓

"

. Alternatively,
one could use the cubic polynomial [25]

✓(d) = 2
⇣d

h

⌘3
� 3

⇣d

h

⌘2
+ 1,

or the tricube weight function [26]

✓(d) =
⇣
1�

��d
h

��3
⌘3

,

or the Wendland function [27]

✓(d) =
⇣
1� d

h

⌘4�
4
d

h
+ 1

�
,

all of which are set to 0 for d > h and, thus, have
compact support (see Figure 1 for a comparison).
However, the choice of kernel function is not critical
[28].

The normal n(x) is determined by weighted least
squares. It is defined as the direction of smallest
weighted covariance, i.e., it minimizes

NX

i=1

�
n(x) · (a(x)� p

i

)
�2

✓(kx� p

i

k) (4)

for fixed x and under the constraint kn(x)k = 1.
Note that, unlike [19], we use a(x) as the center

of the PCA, which seems to make f(x) much more
well-behaved (see Figure 2). Also, we do not solve
a minimization problem like [15, 16], because we
are aiming at an extremely fast method.

The normal n(x) defined by (4) is the smallest
eigenvector of the centered covariance matrix B =
(b

ij

) with

b
ij

=
NX

k=1

✓(kx� p

k

k)(p
ki � a(x)

i

)(p
kj � a(x)

j

).

(5)
There are several variations of this simple defi-

nition, but for sake of clarity, we will stay with this
basic one. Our new method can be applied to more
elaborated ones as well.

3.2. Euclidean Kernel

The above definition can produce artifacts in the
surface S (see Figure 2); two typical cases are as
follows. First, assume x is halfway between two
(possibly unconnected) components of the point
cloud; then it is still influenced by both parts of the
point cloud, which have similar weights in Equ. 2
and 4. This can lead to an artificial zero subset⇢ S

3
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§  Whatever kernel you use, it is fine to consider only "close 
neighbors" around x in the computation of a(x) and n(x) 
⟶ need lots of k-NN searches in P 

§  More important: what distance measure to use in                       ? 

§  Euclidean distance produces artefacts like this: 

✓(kx� pik)
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§  Solution: use topology-based distance measure 

§  Try to mimic the the geodesic distance on the surface 

§  Except without knowing the surface yet 

§  Use proximity graph over point cloud 

§  Define 
 
 
 
with  
and               = length of shortest path through proximity graph 

§  Note: don't add                 

original surface 

p1* 

x p 
kx� pkp2* 

p0 

d
geo

(x,p) = (1� a)·
�
d(p⇤

1

,p) + kp0 � p

⇤
1

k
�

+ a ·
�
d(p⇤

2

,p) + kp0 � p

⇤
2

k
�

d(p⇤
i ,p)

kp0 � xk

a = kp0 � p⇤
1k

d
geo

(x,p)
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Which Proximity Graph to Use 

§  Many kinds of proximity graphs 

§  Delaunay graph (explained later) 

-  Needs kind of a "pruning" because of "long" edges; still has problems 

§ Most other proximity graphs are subgraphs of the Delaunay graph 

§  Sphere-of-Influence graph (SIG; is not a subgraph of the DG) 

§  Definition of the SIG: 

§  For each point pi∈P define 

§  Connect pi and pj by an edge iff 

§  Extension: k-SIG 

§  Define  

ri = kpi � NN(pi)k
kpi � pjk  ri + rj

ri = kpi � kNN(pi)k
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Results 

1-SIG 2-SIG 3-SIG 

Example sphere-of-
influence graph 

Weighted MLS surfaces using different k-SIGs  
for the geodesic distance 

DG w/ pruning 
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Weighted MLS surface 
with Euclidean distance  

and fixed bandwidth in kernel  

Weighted MLS surface 
with proximity graph-based distance  

and automatic bandwidth estimation in kernel  M
ore info in [Klein &

 Zachm
ann, 2004] on cgvr.cs.uni-brem

en.de ⟶
 Publications 
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Kurzer Exkurs über Quaternionen         [Hamilton, 1843] 

§  Erweiterung der komplexen Zahlen (geht leider nicht kommutativ): 

§  Alternative Schreibweise: 

§  Axiome für die 3 imaginären Einheiten: 

§  Daraus folgen sofort diese Rechengesetze: 

H =
�
q | q = w + a·i+ b ·j+ c ·k , w , a, b, c 2 R

 

q = (w , v )

i2 = j2 = k2 = ijk = �1

ij = �ji = k jk = �kj = i jk = �kj = i

(ij)k = i(jk)
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Rechenregeln für Quaternionen 

§  Addition: 

§  Multiplikation: 

§  Konjugation:  

§  Betrag (Norm): 

§  Inverse eines Einheitsquaternions: 

q1 + q2 = (w1 + w2) + (a1 + a2)i+ (b1 + b2)j+ (c1 + c2)k

q1 ·q2 = (w1 + a1i+ b1j+ c1k)·(w2 + a2i+ b2j+ c2k)

= (w1w2 � a1a2 � b1b2 � c1c2) +

(w1a2 + w2a1 + b1c2 � c1b2) i+

( . . . . . . ) j+

( . . . . . . ) k

q⇤ = w � ai� bj� ck

|q|2 = w 2 + a2 + b2 + c2 = q ·q⇤

|q| = 1 ) q�1 = q⇤
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§  Bemerkung: manchmal ist es zweckmäßig, die Multiplikation 
zweier Quaternionen auch mit Hilfe einer Matrix-Multiplikation 
darzustellen 

§  Außerdem gilt: 

q1 ·q2 =

0

BB@

w1 �a1 �b1 �c1
a1 w1 �c1 b1
b1 c1 w1 �a1
c1 �b1 a1 w1

1

CCA q2 =

0

BB@

w2 �a2 �b2 �c2
a2 w2 c2 �b2
b2 �c2 w2 a2
c2 b2 �a2 w2

1

CCA q1

Als Spaltenvektor geschrieben! Spaltenvektor! Quaternionen-Mult. – 
nicht Skalarmult.! 

Q1 Q2 

q1 ·q⇤
2 = Q⇤

2q1 = QT
2 q1

Matrix zum Quaternion q⇤
2
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Einbettung des 3D-Vektorraumes in  

§  Den Vektorraum       kann man in      so einbetten: 

§  Definition:  
Quaternionen der Form            heißen reine Quaternionen (pure 
quaternions) 

H

R3 H

(0, v)

v 2 R3 7! qv = (0, v) 2 H
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Darstellung von Rotationen mittels Quaternionen 

§  Gegeben sei Axis & Angle             mit  

§  Definiere das dazu gehörige Quaternion als 

§  Beobachtung: |q| = 1 

§  Satz: Rotation mittels eines Quaternions 
Sei              ein pures Quaternion (= Vektor in 3D) und             ein 
Einheitsquaternion.  Dann beschreibt die Abbildung 

 
eine (rechtshändige) Rotation von v um den Winkel 𝜑 und  
Achse r bestimmt sind, bei der das reine Quaternion v' entsteht. 

(', r) krk = 1

q = ( cos

'

2

, sin

'

2

r ) = ( cos

'

2

, sin

'

2

r
x

, sin

'

2

r
y

, sin

'

2

r
z

)

v 2 H q 2 H

v 7! q ·v·q⇤ = v0
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Alignment / Registration of Shapes 

§  Siehe Manuskript 
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The Iterative Closest Point Algorithm 

§  Task: 

§  Given two shapes (point clouds) A and B that partially overlap 

§  Find a registration = rigid transformation (R, t) such that the squared 
distance between A and B is minimized 

(R, t) 

A B 
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Motivation 

§  Registration of point clouds 
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§  We know: if correct 
correspondences are known, we 
can find correct relative rotation/
translation 

 

§  How to find correspondences:  User 
input? Feature detection? 

§  Alternative: assume closest points 
correspond 

§  Converges (provably) provided 
initial position is "close enough" 
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The Iterative Closest Point Algorithm (ICP) 

§  Optimization:  

§ When starting the kd-tree traversal, initialize the candidate NN with the 
NN as of last iteration of the ICP 

§ Makes the initial ball for the "ball overlaps bounds" test (hopefully) 
relatively small 

§  The traversal does not descend into subtrees way off of the true NN 

repeat 
  forall bi in B: find NN in A  ⟶  Y ⊆ A 
  compute optimal alignment transformation (R,t) from B and Y 
  B := R(B) + t 
until error E2 < threshold 
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Variants / Optimizations 

§  Select only a sample of the points (of one or both shapes): 

§  Uniform subsampling [Turk 94] 

§  Random sampling in each iteration [Masuda 96] 

§  Ensure that samples have normals distributed as uniformly as possible 
[Rusinkiewicz 01] 

§  Use other ways to establish correspondences: 

§  Restrict matches to compatible points (color, intensity , normals , 
curvature, …) [Pulli 99] 
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§  Weight correspondences: replace the old least squares error 
measure by 

§  As weight, you could consider: 

-  Distance between corresponding points 

-  Scanner uncertainty 

E 002 = qT
⇣X

i

wiB
T
i Ai

⌘
q

wi = 1� kbi � aik
max dist
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§  Reject "bad" point pairs: 

§  Reject pairs whose distance is in the top x% of all 
distances 

§  Points on end vertices 

§  Reject pairs that are not consistent with their 
neighboring pairs [Dorai 98]: 

-  Two pairs (a1,b1) and (a2,b2) are not consistent if ���ka1 � a2k � kb1 � b2k
��� > ✓

A B 
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Video 

Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly: "Sparse Iterative Closest Point" 
Symposium on Geometry Processing 2013 
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Stackless kd-tree traversal for ray-tracing 

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. 
Nvidia GeForce 8800GTX, CUDA, 2007. 
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Daniel Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan 
ATI X1900XTX, PixelShader 3.0, 2007 



G. Zachmann 146 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September 
2015 

SS 

Real-Time KD-Tree Construction on Graphics Hardware 

Kun Zhou, Qiming Hou, Rui Wang, Baining Guo; SIGGRAPH Asia 2008 
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BSP Demo 
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Applications of the BSP  

Boolen Operations Painter's Algorithm 

Stan Melax Paton J. Lewis 
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With BSPs one can do CSG quite easily 

http://evanw.github.io/csg.js/  
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Shadow Volume Checking with BSPs 

Q 	   	  Quit	  
1 	   	  Load	  1st	  scene	  (simple	  room,	  1	  light	  source)	  
2 	   	  Load	  2nd	  scene	  (random	  objects	  1)	  
3 	   	  Load	  3rd	  scene	  (simple	  room,	  4	  light	  sources)	  
4 	   	  Load	  4th	  scene	  (cubes,	  1	  light	  source)	  
5 	   	  Load	  5th	  scene	  (random	  objects	  2)	  
W,	  A,	  S,	  D 	  Translate	  viewpoint	  
Cursor	  keys 	  Rotate	  viewpoint	  
+/-‐ 	   	  Pan	  up/down	  
R 	   	  Reset	  current	  scene	  and	  rebuild	  BSP	  tree	  
L 	   	  Toggle	  labels	  
T 	   	  Toggle	  usage	  of	  BSP	  tree	  
U 	   	  Toggle	  depth	  buffer	  
E 	   	  Toggle	  shadows	  

http://bastian.rieck.ru/uni/bsp/  
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Kinetic Data Structures – Motivation  

Brute force update of bbox Kinetic update of bbox 
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Kinetic Data Structures (in General) 

§  Given: 

§  A number of objects (points, lines, polygons, boxes, …) 

§  A flight path for each of these objects,  
given by an algebraic function 

-  Mostly assume linear motion 

§  Attribute = the task / purpose of a KDS 

§  Examples: convex hull over a number of points, bbox of a number of 
points, kd-tree over a number of points, … 
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§  Combinatorial structure = "everything that descriibes the 
attribute except concrete coordinates" 

§  Examples: 

-  Convex hull: those points that form the corners of the convex hull 

-  Bbox: those points that realize the min/max at least on one of the coord axes 

-  Kd-tree: all the pointers that make up the tree, and pointers to points 
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Combinatorial  
change 

Combinatorial  
change 
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§  Certificate = simple geometric relation (a.k.a. geometric predicate) 
involving a few of the objects 

§  Example: p.n < 0, where p is an input point and n is a normal 

§  Event: a specific point in the future where one of the certificates fails, 
i.e., its truth value is false, due to the motion of the objects 

§  External event = event where the combinatorial structure of the attribute 
changes 

§  Internal event = event where the combinatorial structure remains the same, 
but the set of certificates changes 

§  Kinetic data structure (KDS) for a geometric attribute =  

1.  A set of certificates that a true whenever the combinatorial structure of the 
attribute is valid, as well as  

2.  A set of rules for repairing the attribute and the set of certificates in case of 
an event 
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Main Loop of a KDS 

Initialize the attribute for the input objects 
Initialise the set of certificates for the attribute 
Compute all events (failure times) of all certificates 
   (usually only up to some time in the future) 
Initialize the p-queue for all events, sorted by failure time 
Loop forever 
  get front event from the event queue  
  if external event:  
    change the attribute  
  update the set of certificates: 
    some failure times of later events might change 
    some certificates may need to be deleted 
    maybe, some new certificates need to be created 
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In reality, of course, a KDS does not have its own main loop usually … 

initialization ... 
while simulation runs 
  determine time t of next rendering  
  get nearest event from the event queue  
  while timestamp(event) < t: 
    update KDS 
    get next event from the event 
  use the attribute of the KDS (e.g., bbox, kd-tree, BVH, …) 
  render scene 
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Performance Measures for KDS 

1.  Responsiveness: 
A KDS is responsive, if the cost to update the set of certificates and 
the attribute in case of an event is "small" 

§  Usually, "small" = O( logs n)  or O( nε) 

2.  Efficiency: 
A KDS is efficient, if the ratio of #(total events) / #(external events) 
is small 

§  I.e., the #(internal events), where the attribute's combinatorial structure 
does not change, is small 

§  I.e., the #events is comparable to the #(attribute changes) over time 

3.  Compactness: 
A KDS is compact, if the number of certificates is close to linear in 
the number of input objects 
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4.  Locality: 
A KDS is local, if all objects participate only in a small number of 
certificates 

§  Advantage: if an object changes its flight path, then the cost for 
updating all events affected by it is not too high 
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A Simple Example 

§  Maintain the topmost among points moving 
along the y-axis 

§  Look at the ty-plane (flight paths) 

t 

y 
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§  We are interested in the upper envelope 

§  Theorem (Sharir, Hart, Agarwal and others): 
If any pair of flight paths intersect at most s times, then the 
complexity of computing the upper envelope is in O(n log n) 

t 

y 
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§  Problem: change of flight path ⟶ recomputation of the envelope 

§  Takes O(n log n) 

§  Can we update the envelope / topmost point faster? 

§  Solution: the tournament tree (kinetic heap) 

§  Leaves = points 

§  Inner node = topmost of its two children 

ab cd

d c

d

a

b

c

d
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§  Certificate (for inner nodes) = left point is below right point 

§  Event = left/right point flip order along y axis 

§  Processing an event: 

§  Replace the winner and replace O(log n) events in the event queue 

§  Takes O(log2 n) time ⟶ responsive 

§  Number of certificates (inner nodes) = O(n) ⟶ compact 

§  Each point participates in O(log n) events ⟶ local 

ab cd

d c

d

a

b

c

d

t

y
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The  

§  Problem with deformable objects:  
BVH becomes invalid 

§  Brute-force, bottom-up, i.e., 
for every query / anim. step 

§  O(n · #anim. steps) 
where n = #pgons 

§  Event-based (do work only, if 
something essential changed) 

§  O(n log n) → independent of 
query/sim. frequency! 

Classic BVH update: Kinetic BVH update: 
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Problems of KDS 

§  Too many events for many KDS 

§  Computing event times is expensive 

§  Querying moving objects 

§  No need to maintain the structure at all times 
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One Possible Approach by Way of an Example 

§  Definition: directional width 
Let S = set of moving points.  
Define the width in direction u  
at time t as                    . 

§  Definition: ε-kernel 
Let Q⊆S. 
Q is called an ε-kernel of S iff 

§  Theorem [Agarwal, Har-Peled, Varadarajan]: 
For n points moving with fixed velocity in 2D, and any ε> 0, one 
can compute an ε-kernel of size               in time                     . 
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u 
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Results for BBox Maintained by E-Approximate KDS 

Linear Motion of Moving Points Quadratic Motion of Moving Points 

10,000 moving points 
Error < 0.02 for kernel of size 32 
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Exact Algorithm Approximation Algorithm 
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Kinetic Quadtree Demo 
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Examples of Bounding Volumes 

Box, AABB (R*-trees) 
[Beckmann, Kriegel, et al., 1990] 

Sphere 
[Hubbard, 1996] 

k-DOPs / Slabs 
[Zachmann, 1998] Spherical  shell 

[...] 

Prism 
[Barequet, et al., 1996] 

OBB (oriented  bounding box) 
[Gottschalk, et al., 1996] 

Cylinder 
[Weghorst et al., 1985] 

Convex hull 
[Lin et. al., 2001] 

Intersection of  
several, other BVs 
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§  Some ideas for several  

 

§  Research questions: 

§  Fast intersection of two BVs for collision detection? 

-  Compute is cheap, memory transfer is expensive ⟶ BV compression? 

-  Exact / approximate (biased) intersection tests? 

§  Fast intersection test for rays against such BVs? 

§  Efficient BVH construction? (for fast queries at runtime) 

Master's theses … 

Lunes Generalized Lunes Quadric Shells 
Oriented 
Ellipsoids 
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BVH with k-DOPs 

26-DOPs 

14-DOPs 6-DOPs 

18-DOPs 

Level 0 
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26-DOPs 

14-DOPs 6-DOPs 

18-DOPs 

Level 1 
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26-DOPs 

14-DOPs 6-DOPs 

18-DOPs 

Level 2 
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26-DOPs 

14-DOPs 6-DOPs 

18-DOPs 

Level 5 
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26-DOPs 

14-DOPs 6-DOPs 

18-DOPs 

Level 8 
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BVH with AABBs 
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Wrapped vs Layered BVH 

Wrapped BVH: 
a BV bounds its associated primitives, 

but not necessarily its child BVs 

Layered BVH: 
a BV must bound its child BVs 
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Hierarchical Collision Detection using BVHs 

traverse( X, Y ) 

if X,Y do not overlap then 
 return 

if X,Y are leaves then 
 check polygons 

else 
 for all children pairs do 
  traverse( Xi, Yj ) 

BP 

BQ 

BP
1 

BP
2 

BQ
1 

BQ
2 

E F G D 

C B 
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5 6 7 4 

3 2 
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Applications using Distance Fields 
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Convex Hull Demos in 2D 

Alejo Hausner - http://www.cs.princeton.edu/~ah/alg_anim/version1/GrahamScan.html  

Rubber band metaphor Graham's scan (with slightly 
different sorting order) 
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Jarvis' March QuickHull 
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Convex Hull in 3D 

§  Ein Schritt des inkrementellen Algorithmus': 
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Michael Horn - http://www.eecs.tufts.edu/~mhorn01/comp163/ 
 

Clarkson-Shor-Algorithm (randomized incremental) 
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Tim Lambert - http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html  

Different algorithms, e.g., gift wrapping 
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Simplification of Urban Models 

Remco Chang, Thomas Butkiewicz, Caroline Ziemkiewicz, Zachary Wartell, Nancy Pollard, William Ribarsky 
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Convex Collision Detection 

Achtung: der hier demonstrierte Algo ist in Wahrheit  
etwas komplexer als der in der Vorlesung dargestellte! 
(aber möglicherweise nicht schneller ...) 
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Convex Surface Decomposition  

Zerlegung in  
konvexe Surface-Patches 

Konvexe Stücke auf einem 
mittleren Level der Hierarchie 

(grün = orig. Fläche, rot = freie Fläche, 
gelb = "contained") 
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Zum Vergleich: Triangulation in 3D (="Tetraedrisierung") 

§  Verschiedene Triangulierung → verschiedene Anzahl Tetraeder: 

§  Ein untriangulierbares ("un-tetraedrisierbares") Polyeder: 

Subhash Suri UC Santa Barbara

Triangulation in 3D

5 Tetrahedra 6 Tetrahedra

• Di�erent triangulations can have di�erent
number of tetrahedra (3D triangles).

Subhash Suri UC Santa Barbara

Untriangulable Polyhedron

a b

c

a’ b’

c’

a

b

c

a’ b’

c’

• Smallest example of a polyhedron that
cannot be triangulated without adding
new vertices. (Schoenhardt [1928]).

• It is NP-Complete to determine if a
polyhedron requires Steiner vertices for
triangulation.

• Every 3D polyhedron with N vertices can
be triangulated with O(N2) tetrahedra.

5 Tetraeder 6 Tetraeder 
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Untetrahedralizable Objects 

Schönhardt's 
Polyeder 
(1928) 

Thurston- 
Polyeder 
(1971) 

Chazelle's 
Polyeder 
(1984) 
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Schönhardt Polyhedron Thurston Polyhedron Chazelle Polyhedron 

24th Canadian Conference on Computational Geometry, 2012

Figure 2: Schönhardt’s twisted triangular prism

twisted triangular prism (Figure 2) by rotating the top
face of a triangular prism so that a set of cyclic diagonals
became edges with interior dihedral angles greater than
180o.

Claim: Schönhardt’s Twisted Triangular Prism cannot
be triangulated.

Proof. Every diagonal of the polyhedron lies outside
the polyhedron. Therefore any tetrahedron containing
four vertices of the twisted triangular prism will contain
at least one edge lying outside the polyhedron. ⇤

Example 2 (Bagemihl)

Figure 3: Bagemihl’s generalization

In 1948, Bagemihl [1] modified Schönhardt’s idea to
construct a nonconvex polyhedron on n � 6 vertices
by replacing one of the twisted vertical edges with a
concave curve and placing n�6 vertices along the curve
so that the interior dihedral angles of the edges to these
vertices are greater than 180o.

Claim: Bagemihl’s Generalization cannot be triangu-
lated.

Proof. If a triangulation exists, then the top triangular
face must be a face of some tetrahedron. For every
vertex v, not on the top face, there is a diagonal from
v to some vertex on the top face which lies outside the
polyhedron. Therefore there is no tetrahedron from the
vertex set which has the top face as a boundary lying
inside the polyhedron. ⇤

Example 3 (Ruppert and Seidel)
Another method of creating non-triangulable poly-

hedra with large number of vertices was presented by
Ruppert and Seidel [9]. They attached a copy of a non-
triangulable polyhedron to another polyhedron. Fig-
ure 4 shows a polyhedron where a copy of Schönhardt’s

Figure 4: Attaching a niche to a cube

non-convex twisted triangular prism, called a niche, is
attached to a face of a cube along a base of the twisted
triangular prism.

Claim: If a niche is attached properly, the union of the
polyhedron and the niche cannot be triangulated.

Proof. It can be arranged that the vertices of the
Schöhardt prism which do not lie on the face of the cube
do not see any vertex of the cube. Since each diago-
nal to the non-attached base of the triangular prism lies
outside the polyhedron, then there must exist a tetrahe-
dron contained inside the non-convex twisted triangular
prism. We know from Example 1 this is not possible, so
no set of tetrahedra triangulates the union. ⇤

Example 4 (Thurston et al.)

Figure 5: Thurston polyhedron

Figure 5 was attributed to Thurston by Paterson and
Yao [7], where 18 non-intersecting square prisms, six
from each pair of parallel faces, are removed from the
cube. It is important to note that this polyhedron was
independently discovered by several people includingW.
Kuperberg, Holden, and Seidel.

Claim: Thurston’s polyhedron cannot be triangulated.

Proof. A point in a polyhedron “sees” another point
in the polyhedron if the line segment between the two
points is contained inside the polyhedron. We observe
that each point of a tetrahedron can see each of the
tetrahedron’s vertices. If a polyhedron contains a point
which does not see at least four non-coplanar vertices of
the polyhedron, then it cannot be contained in a tetra-
hedron from the triangulation. In Thurston’s polyhe-
dron, the center of the cube does not see any vertex of
the polyhedron, so it is obviously not in the interior of
a tetrahedron of a triangulation. ⇤

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Example 5: (Rambau)

Figure 6: Twisted prism SC6

Rambau [8] provided another generalization of the
Schönhardt twisted triangular prism. To construct the
Nonconvex Twisted Prism we will first define a right
prism over a convex polygon with n vertices, Cn. Label
the vertices of Cn clockwise as v1, v2, ..., vn. He defines
the right prism over Cn as PCn = conv{(Cn ⇥ {0}) [
(Cn ⇥ {1})}.

Now pick a point O in the interior of Cn and rotate
Cn clockwise about O by ✏, and label the vertices of
Cn(✏), v1(✏), v2(✏), ..., vn(✏), corresponding to the ver-
tices of Cn.The convex twisted prism over Cn is
PCn(✏) = conv{(Cn ⇥ {0}) [ (Cn(✏)⇥ {1})}.
The non-convex twisted prism over Cn (Fig-
ure 6) is SCn = PCn(✏) - conv{(vi,0),(vi+1,0),
(vi(✏),1),(vi+1(✏),1)}, for all i 2 (1, n) taken modulo n.

In [8] Rambau proves:

Theorem 1 For all n � 3, no prism PCn admits a

triangulation without new vertices that uses the cyclic

diagonals {(vi,0), (vi+1,1)}.

Which implies

Corollary 2 For all n � 3 and all su�ciently small

✏ > 0, the non-convex twisted prism SCn cannot be tri-

angulated without new vertices.

The proof of Theorem 1 is too long to discuss here,
but we will provide a shorter proof in the following sec-
tion for Corollary 2.

3 Tilling by Tetrahedra

Notice that Rambau’s results do not imply that SCn

cannot be tiled with tetrahedra. Rambau uses Theorem
1 to conclude that no triangulation of SCn exist, but
Figure 1 clearly shows that a tiling by tetrahedra exists
for PC4 , which is not a triangulation. Furthermore, this
shows that there exists such a tiling which uses the cyclic
diagonals of the cube. We prove that:

Theorem 3 There exist a polyhedron which is not tri-

angulable, but can be tiled by tetrahedra.

E F

A
B

CD
E0

F 0

O

Figure 7: A non-triangulable polyhedron which can be
tiled with tetrahedra

Proof. Example 6 will provide this result.
Example 6

Start with a horizontal unit square Q. Let A,B,C
and D be the vertices of Q in counterclockwise order
when we look down at the square from above. Choose
the point O over Q at unit distance from its vertices.
Next add to this arrangement a segment EF , whose
midpoint is O, has length 4, and which is parallel to
AB (assume E is closer to A than to B). Rotate this
segment clockwise (i.e. opposite to the order of the ver-
tices A,B,C and D) around the vertical line through O
by a small angle ✏. Let P be a non-convex polyhedron
bounded by Q and by six triangles EAB, EBF , BFC,
CDF , EFC, and EDA.

Finally let P 0 be the image of P under the reflection
around the plane of Q followed by a 90� rotation around
the vertical line containing O. Label the images of E
and F as E0 and F 0 respectively.

First notice that P is triangulable as it is the union of
the tetrahedra EABD,EBDF and DBCF . Since the
same holds for P 0 we have that the union of P and P 0

can be tiled by tetrahedra.
Next we show that the union of P and P 0 is not tri-

angulable. Since neither E nor F can see the vertices
E0 and F 0, we have that any triangulation of the union
is the union of triangulations of P and P 0. The poly-
hedron P was constructed so that the dihedral angles
corresponding to the edges EB and FD are concave,
therefore the diagonals AF and EC lie outside of P . It
is easy to see that the triangles ABC and ACD cannot
be faces of disjoint tetrahedra contained in P , thus di-
agonal BD must be an edge of at least one tetrahedron
in any triangulation of P . A similar argument applied
for P 0 gives that the diagonal AC is an edge of at least
one tetrahedron in any triangulation of P 0. Thus the
union of P and P 0 is not triangulable. ⇤

Observation 1 A non-triangulable polyhedron is

tilable only if it contains at least four coplanar vertices

where no three are incident with a common face.

(We wish to thank one of the referees for this helpful

observation)

Generalization of 
Schönhardt by Rambau 
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Jessen's Ikosaeder 
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Voronoi-Diagramme 

§  Eine der ersten Erwähnungen von René 
Descartes (Cartesius; 1596-1650) in seiner 
Principia Philosophiae, 1644: 

§  Stellte sich vor, daß das Universium mit Materie 
gefüllt ist, die von den Sternen angezogen wird 
und um diese herumwirbelt   

§  Georgy F. Voronoy (Георгий Ф. Вороной) 
1868 – 1908 

§  Geboren in Russland, heutige Ukraine 

§  Professor in Warschau 

§  Schüler: Delaunay   
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Independent Discoveries in Other Fields 

Descartes  Astronomy  1644   “Heavens” 

Dirichlet   Math    1850   Dirichlet tesselation 

Voronoi  Math    1908   Voronoi diagram 

Boldyrev  Geology  1909   area of influence polygons 

Thiessen   Meteorology  1911  Thiessen polygons 

Niggli    Crystallography 1927  domains of action 

Wigner & Seitz  Physics    1933   Wigner-Seitz regions 

Frank & Casper Physics    1958   atom domains 

Brown    Ecology  1965   areas potentially available 

Mead    Ecology  1966   plant polygons 

Hoofd et al.  Anatomy  1985   capillary domains 
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Delaunay (1890 – 1980) 

§  Schüler von Voronoy (und Grave) 

§  Einer der 3 besten russischen Bergsteiger um 
1930 

§  Russische Schreibweise: Борис Николаевич 
Делоне 

§  Damals war Französisch (und Deutsch) die 
Wissenschaftssprache! 
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§  Nicht zu verwechseln mit dem Maler Robert Delaunay ! 

§  1885 – 1941 ; wirklich französisch 

Champs de Mars. La Tour rouge. 1911 Homage à Bleriot, 1914 
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Demos 

http://alexbeutel.com/webgl/voronoi.html  
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The "Cones Trick" to Generate Approximate 2D Voronoi Diagrams 

§  Observation: 

§  Place a cone at every Voronoi site with 90° 
angle 

§  Distance of a point X from Voronoi site = 
height of cone above X 

§  Method: 

§  For each site, render a cone with different 
color (= ID) 

§  Borders in color buffer = Voronoi edges 

§  Value in Z-buffer = distance from site 

§  Already noticed by Dirichlet & Voronoi 

Side view 

Top view 
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http://www.geometrylab.de/VoroGlide/  



G. Zachmann 211 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September 
2015 

SS 

Inkrementelle Konstruktion der Delaunay-Triangulierung 
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Verallgemeinerung des Voronoi-Diagramms 

§  Andere Distanz-Funktionen 

§  Andere Objekte als Sites 

§  Höhere Dimension 

§  Andere Äquivalenzklassen 

§  ... 
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Voronoi / Delaunay in 3D 

§  Delaunay-Tetraeder 

§  Bisektoren = Ebenen 

§  Edge-Flip: 

Voronoi-Kante 

Voronoi-Site 
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§  Slivers in 3D Delaunay Tetrahedralizations: 

§  Fazit: die max-min-Winkel-Eigenschaft gilt nur in 2D! L  

Diese beiden Ecken  
liegen etwas tiefer 

Delaunay 
Non- 
Delaunay 

Sliver 
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§  Komplexität: 
 Ein Voronoi-Diagramm über n Punkten im d-dim. Raum 
 enthält in jeder Dimension j, 0 ≤ j ≤ d-1, eine Anzahl  fj   
 von Facetten, wobei alle 

fj � O
�
n� d

2 ⇥
⇥
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Das Voronoi-Diagramm mit additiven Gewichten 

§  Distanz-Funktion zwischen Punkt x und Site pi = 
   

§  A.k.a. Appolonius-Diagramm 

§  Bisektoren = hyperbolische Bögen 

§  Beispiel: 

http://www.geometrylab.de/VoroAdd/index.html  

d(x,pi) = ⇥x� pi⇥ � ri
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Das Power-Diagram 

§  Distanzfunktion: 

§  Bisektoren = Geraden 

§  Beispiel: 

d(x,pi) = (x� pi)
2 � ri
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Andere Distanz-Funktionen 

§  Voronoi-Diagramm mit L1- und L∞-Norm: 

L∞ - Norm 
(supremum/max-norm) 

L1-Norm 
(Manhattan norm) 
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Voronoi-Diagramme auf anderen Mannigfaltigkeiten 

§  Z.B. auf der Kugel: 

§  Bisektoren = Großkreise 
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Higher-Order Voronoi Diagrams 

§  In einem Voronoi-Diagramm k-ter Ordnung Vk(S) gehören alle 
diejenigen Punkte des Raumes zur selben Voronoi-Region, die die 
selben k nächsten Nachbarn aus S haben 

§  Unterschiede zum klassischen Voronoi-Diagramm: 

§  Ein Bisektor kann zu mehreren Begrenzungskanten (-ebenen) 
beitragen 

§  Eine Voronoi-Region muß ihre Generatoren (Sites) nicht mehr 
enthalten 
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§  Beispiel: 

1-st order 2-nd order 

3-rd order 4-th order 
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Demo 

Andreas Pollack - http://www.pollak.org/en/otherstuff/informatics/voronoi/  
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Voronoi-Diagramm von Liniensegmenten 

§  Sites sind jetzt Punkte + 
Liniensegmente 

§  Bisektoren = Geraden + 
Parabeln 

§  Beispiel: 
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§  Example with weighted sites and higher-order sites: 

Weighted distances 

Higher-order sites 

2.0 

0.5 
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The "Cone Trick" for Higher-Order Sites 

§  Observation: the surface in 3D, generated by  

 
where d(x,y) = distance from the Voronoi site is a swept cone 

§  Idea: approximate distance function by a mesh 

f (x , y) = (x , y , d(x , y))
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More Example Distance Meshes 
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§  Skeleton oder Medial Axis 

§  Besonders im Fall von geschlossenen 
Objekten 

§  Alle Punkte, die gleich weit von 2 Punkten 
des Randes eines Objektes entfernt sind 

§  Problem: Stabilität 
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Äußere Voronoi-Regionen eines konvexen Polyeders 

The external  
Voronoi regions of … 
(a)  faces  
(b)  edges 
(c)  a single edge 
(d)  vertices 
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Beispiel zu NNG(S) ⊆ D(S) 
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Maximale, leere Kreise 
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Anwendungsgebiete der Voronoi-Diagramme 

•  Anthropology and Archeology -- Identify the 
parts of a region under the influence of different 
Neolithic clans, chiefdoms, ceremonial centers, or 
hill forts.  

•  Astronomy -- Identify clusters of stars and clusters 
of galaxies (Here we saw what may be the earliest 
picture of a Voronoi diagram, drawn by Descartes 
in 1644, where the regions described the regions of 
gravitational influence of the sun and other stars.)  

•  Biology, Ecology, Forestry -- Model and analyze 
plant competition ("Area potentially available to a 
tree", "Plant polygons")  

•  Cartography -- Piece together satellite 
photographs into large "mosaic" maps  

•  Crystallography and Chemistry -- Study 
chemical properties of metallic sodium ("Wigner-
Seitz regions"); Modelling alloy structures as 
sphere packings ("Domain of an atom")  

•  Finite Element Analysis -- Generating finite 
element meshes which avoid small angles  

•  Geography -- Analyzing patterns of urban 
settlements  

•  Geology -- Estimation of ore reserves in a deposit 
using information obtained from bore holes; 
modelling crack patterns in basalt due to 
contraction on cooling  

•  Geometric Modeling -- Finding "good" 
triangulations of 3D surfaces  

•  Marketing -- Model market of US metropolitan 
areas; market area extending down to individual 
retail stores  

•  Mathematics -- Study of positive definite 
quadratic forms ("Dirichlet tessellation", "Voronoi 
diagram")  

•  Metallurgy -- Modelling "grain growth" in metal 
films  

•  Meteorology -- Estimate regional rainfall 
averages, given data at discrete rain gauges 
("Thiessen polygons")  

•  Pattern Recognition -- Find simple descriptors 
for shapes that extract 1D characterizations from 
2D shapes ("Medial axis" or "skeleton" of a 
contour)  

•  Physiology -- Analysis of capillary distribution in 
cross-sections of muscle tissue to compute oxygen 
transport ("Capillary domains")  

•  Robotics -- Path planning in the presence of 
obstacles  

•  Statistics and Data Analysis -- Analyze statistical 
clustering ("Natural neighbors" interpolation)  

•  Zoology -- Model and analyze the territories of 
animals  
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Anwendung: das River-Mile-Koordinatensystem 

§  Das River-Mile-Koordinatensystem: 

§ Wird gerne in großen Wasserwegesystemen angewendet 

§  Koordinaten eines Punktes in der Ebene = (l, q) wobei 
l  = gemessen entlang der Mittellinie des Flusses, 
q = Entfernung von Punkt (l, 0) senkrecht zur Tangente in (l, 0)  

§  Aufgabe:  
gegeben ein Punkt (x,y) ⟶  
welche Koord. (l, q) hat er? 
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Zerlegung der Mittellinie 
in einen fein auf- 
gelösten Polygonzug 

Voronoi-Diagramm dazu 
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Voronoi-Clustering 

§  Aufgabe: 

§  Gegeben: Menge von Punkten  

§  Gesucht: Partitionierung der Punktmenge in "Cluster" 

§  Clustering =  maximal intra-cluster similarity and  
   minimal inter-cluster similarity 

                   =  minimal intra-cluster distance and 
   maximal inter-cluster distance  
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Gute Einteilung in Wahlbezirke (Redistricting) 

§  Das Fairness-Prinzip: "one man, one vote" 

§  Ganz einfach ... oder? 

§  Einfaches Beispiel: 

§  Gesetzliche Kriterien für Wahlbezirke in den USA: 

§  Gleiche Anzahl Wähler 

§  Jeder Bezirk soll zusammenhängend sein 

§  "Kompaktheit" (ist im US-Gesetz aber nicht klar definiert) 

Wählerverteilung Gleiche Anzahl 
Repräsentanten 

Demokraten 
gewinnen 

Republikaner 
gewinnen 
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§  Böses Beispiel: 

"In gerrymandered 
election districts, the 
voters don't choose 
their politicians - the 
politicians choose their 
voters!" 

1990 (?) 
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§  Ähnlicher Effekt bei Europawahlen: die Stimme eines Wählers in 
Malta oder Luxembourg hat 10x mehr Gewicht als die eines 
deutschen Wählers! 
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§  Eine mögliche Definition von Kompaktheit: 
     Sei  
     eine Menge von Wahlbezirken (districts). 
     Jeder Distrikt  
     enthält eine Menge von Wählern pi . 
     Die Kompaktheit eines Distrikts ist 
 
 
 

 
     Die Gesamtkompaktheit der Einteilung in Distrikte ist 

D = {D1, . . . , Dk}

Di = {pj , . . . , pl} � P = {p1, . . . , pn}

c(D) =
|D|�

i ,j=1

d(pi , pj)

c(D) =
k�

i=1

c(Di)
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§  Theorem: 
        Eine optimale Aufteilung in Wahlbezirke bzgl. Kompaktheit 
        geht aus einem Power-Diagramm hervor. 

§  Aufgabe : 
§  Konstruiere zu gegebener Menge Wähler {pi} 

eine Menge von Voronoi-Sites mit Gewichten, so daß 

-    

-  Voronoi-Sites = "Wahllokale"  

-  Gewicht = Maß für die Populationsdichte in dem zugehörigen Distrikt  
(kleines Gewicht = hohe Dichte) 

§  Ansatz : 
§  Starte mit zufälligen Sites und Gewichten 

§  Verschiebe Sites und Gewichte, bis  c(D)  in lokalem Minimum 

�i : |Di | = n
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Pfadplanung 

§  Gegeben: Grundriß als Menge von Liniensegmenten 

§  Gesucht: Pfad (z.B. für autonomes Vehikel = Roboter) mit 
maximalem Abstand zu den Wänden 

http://www.cs.columbia.edu/~pblaer/projects/path_planner/  
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§  Lösung:  

§  (Verallgemeinertes) Voronoi-Diagramm dazu konstruieren 

§  Näheste Voronoi-Knoten zu Start- und Endpunkt suchen 

§ Mit Dijkstra-Algo kürzesten Pfad von Start- zu End-Knoten durch 
Voronoi-Diagramm suchen 
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Bewertung von Samplings 

§  Beispiel: Wetterstationen 

§  Frage: wo ist die geringste 
Dichte? 

§  Ideales Sampling → jeder 
Punkt würde eine Fläche 
von 
 
 

abdecken (A = Gesamt-
fläche) 

Ā =
A

n
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§  Lösung: 

§  Voronoi- und Delaunay-Diagramm berechnen 

§  Relative Größe pro Zelle ist 

§  Ai > 1 → zu geringe Dichte 

§  Sample-Punkte "bestrafen", falls sie dicht 
beieinander liegen relativ zur Größe der Zelle 
→ Distanz zum nearest neighbor 

Ai =
Vi

Ā
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Protein-Struktur-Analyse 

§  Frage:  

§ Wie sieht die aktive Oberfläche (= Interface) eines Moleküls aus? 

§ Welche Atome interagieren mit Atomen aus der Umgebung 

§  Eine Lösung: 

§  Plaziere zufällig Atome um  
das geg. Molekül herum 

§  Berechne das Voronoi- 
Diagramm alle Punkte 

§  Interface = Voronoi-Facetten  
zwischen Molekül und  
Umgebungsatomen 
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Verbesserungen 

§  Verwende Power-Diagramm oder 
Voronoi-Diagramm mit additiven 
Gewichten 

§  Gewicht = Atomradius 

§  Berechne "Tiefe" pro Atom: 

§  Atome mit einer Voronoi-Facette nach 
außen = Tiefe 1 

§  Traversiere Delaunay-Graph breadth-
first von außen nach innen 

§  Je tiefer ein Atom, desto geringer sein 
Beitrag zu Wechselwirkungen 
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Secondary Structure of Proteins 

§  Lange Proteine falten sich zu Helices, Knäueln, 
und Flächenstücken 

§  Ergibt Wechselwirkungen zwischen Atomen 
(Bindungen), die nicht in der chemischen 
Formel zu sehen sind 

§  Frage: gegeben die Positionen der Atome, wie 
sieht die sekundäre Struktur aus? 

§ Welche Atome sind "benachbart", welche nicht 

§ Wie stark sind sie benachbart? 

§  Lösung: Voronoi-Diagramm 

§  Benachbart = gemeinsame Voronoi-Facette 

§  Stärke der Nachbarschaft = Größe der Facette 

Amino- 
säuren 

Helix Flächen- 
stück 
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§  Resultat: Adjazenz-Matrix (grau/schwarz = schwach/stark 
benachbart) 
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Appolonius-Diagramme in 3D 

Z.B. um die Leerstellen 
in einem Molekül zu 
bestimmen 
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Visibility Sorting Using Voronoi Diagrams 

§  Erinnerung: BSPs für Visibility-Sortierung 

§  Methode: 

§  Definiere eine Visibility-Relation auf Voronoi-Regionen 
 
 

jeder Punkt der Voronoi-Zelle R2 wird durch einen Punkt der Zelle R1 
bzgl. des Viewpoints v verdeckt 

§  Nun gilt: 

-  Bew.: klar weil  R1  und  R2  komplett auf verschiedenen Seiten des Bisektors 
zwischen R1  und  R2  liegen. 

R1 �v R2

R1 �v R2 , 8p1 2 R18p2 2 R2 : kv � p1k < kv � p2k
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§  Idee: 

§  Zunächst alle Pgone 
in Voronoi-Zellen 
clustern 

§  Zur Laufzeit nur noch 
die Voronoi-Sites sortieren 
(inkrementell) 

§  Ansatz zum Voronoi-Clustering: 

§  Initialisierung: eine Zelle pro Polygon mit Schwerpunkt als Site 

§  Die kleinste Zelle löschen: 

-  Voronoi-Diagramm lokal neu berechnen 

-  Polygone der kleinsten Nachbarzelle zuordnen 

§  Abbruch falls keine Zelle mehr aufgelöst werden kann, ohne  daß eine 
zyklische Visibility-Ordnung in einer Zelle entsteht 
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Voronoi-Diagramme in der Natur 

Seifenblasen in einem 
Glasrahmen 

Bienenwaben 
(centroidal Voronoi tesselation) 
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Libellenflügel 
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Voronoi-Diagramm in der interaktiven Kunst 

Scott Snibbe, phaeno, W
olfsburg 
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Distance Fields 

2D Shape Shape’s distance field 

Outside 

Boundary of shape 

Inside 
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§  Distance fields are C0-continuous everywhere 

§  Distance fields are C1-continuous except at boundaries of 
Voronoi regions 

Distance field is C0 continuous C1 continuous except at Voronoi boundaries 
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§  Adaptively Sampled Distance Fields (ADFs): sample at low rates 
where the distance field is smooth; sample at higher rates only 
where necessary (e.g., near corners) 

Detail-directed ADF Boundary-limited quadtree 
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§  Rendering ADF's using adaptive ray-casting: 

Rendered via adaptively 
ray casting 

Rays cast to render part of 
the image on the left 
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§  Point-based rendering of ADF's: 

§  Seed each boundary leaf cell with randomly placed points, number of 
points proportional to cell size 

§  Relax the points onto the ADF surface using the distance field and 
gradient 

§ Optionally shade each point using the field's gradient 

Original points seeded in 
boundary leaf cells 

Points after relaxation onto 
the surface 
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An ADF 
rendered as 

points at two 
different scales 
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Thanks Folks 


