
Geometric Data Structures
for

Computer Graphics

G. Zachmann
University of Bremen, Germany

cgvr.cs.uni-bremen.de

G. Zachmann 2 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Meshing

§  Wichtiger Preprocessing-Schritt in vielen Anwendungen

§  "Domain discretization" =

§  Komplexes Gebiet (2D oder 3D) wird in einfache Gebiete zerlegt
(Dreiecke, Tetraeder)

§  Anwendungen: FEM, CFD, VLSI = Simulation = Lösen von PDEs

§  PDEs lassen sich über regelmäßigem Gitter diskretisieren (über
beliebige Gebiete nicht)

G. Zachmann 3 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

U

U

Uniform
mesh, i.e.
too many
mesh
elements

Non-uniform, conforming
mesh that respect the
input; well-shaped, too:
bounded aspect ratio (e.g.,
angles ∈ [45°, 90°].
But needs so-called
"Steiner points" (additional
pts) ⟶ where/how to
place them?

Non-uniform, conforming
mesh that respect the
input.
But acute triangles.

Mesh with all
desired
properties,
based on
quadtree.

G. Zachmann 4 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Example Result of Our Meshing Algorithm

Figure 2.2: A well balanced triangulation.

x

y

h

0

w = (l, 0)(0, 0)

z

Figure 2.3: Illustration of the proof of Lemma 2.5.6.

Lemma 2.5.6 The method above gives a triangulation QT (P) withAratio(QT (P)) 4.

Proof: The right triangles used to triangulate the unwarped cells have aspect ratio 2. If a cell
with side length l is warped, we have two cases.

In the first case, the input point of P is inside the square of the original cell. Then we assume
that the diagonal touching the warped point is chosen; otherwise, the aspect ratio can only be better
than what we prove. Consider one of the two triangles formed, with corners the input point and
two other cell corners. The maximum length hypotenuse is formed when the warped point is on
its original location, and has length h =

p
2l. The minimum area is formed when the point is in

the center of the square, and has area a = l2/4. Thus, the minimum height of such a triangle 4 is
� 2a/h, andAratio(4) h/(2a/h) = h2/2a = 4.

In the second case, the input point is outside the original square. Since the quadtree is well
balanced, the new point y is somewhere inside a square of sidelength l centered at x (since we
always move the closest leaf corner to the new point). In this case, we assume that the diagonal
not touching the warped point is chosen. This divides the cell into an isosceles right triangle and
another triangle. If the chosen diagonal is the longest edge of the other triangle, then one can argue
as before, and the aspect ratio is bounded by 4. Otherwise, the longest edge touches the input
point. The altitude is minimized when the triangle is isosceles with as sharp an angle as possible;

35

G. Zachmann 5 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 6 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 7 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Point Quadtree Demo

http://www.cs.utah.edu/~croberts/courses/cs7962/project/index.html

G. Zachmann 9 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Quadtree Demo

Recursion criterion
here:
more than 4 points
in a node

G. Zachmann 10 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Logic Operations with Quadtrees

http://blog.ivank.net/quadtree-visualization.html

G. Zachmann 11 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

http://www.mikechambers.com/blog/2011/03/21/javascript-quadtree-implementation/

G. Zachmann 12 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Exact Octrees (a.k.a. SP-Octrees)

used to store the model is presented, according to
our proposal. In section 3 we describe the
construction of a model in the proposed scheme from
a B-Rep description of a solid. In section 4 we
describe some of the basic operations on solids using
the proposed scheme. Finally, the conclusions
reached and work pending are presented.

2. SP-OCTREE

When trying to extend the Octree scheme
representation, the modifications can be made in
three different points of it:

a) By modifying the information included in the
leaf nodes of the octal tree that represent the
object. To do that, we can add information of
the boundary of the object that appears in
each terminal node [Brune85][Brune87]
[Brune90].

b) By modifying the cutting planes used in the
subdivision process [Cano96][Torre96]
[Whang95].

c) By modifying the information stored in the
internal nodes of the tree.

In classical Octrees and the extensions
proposed, the internal nodes are those that are not
homogeneous with respect to the classification
criteria. So, in these nodes the only information
appearing is the references to its children.

Extended Octrees [Brune85][Brune90]
include information of the solid boundary in terminal
nodes. So, the same boundary plane can appear in
several neighbouring terminal nodes that share the
boundary faces.

The idea of the proposed scheme, that we
have called SP-Octrees (Space Partition Octrees), is
based on the inclusion of boundary information in
internal nodes that partially defines the object
represented in each node of that level. Been more
precise, we include the face planes that divide the
voxel into an empty region and a partially occupied
region. Thus, the information of the boundary faces
appears in the upper levels of the tree and it is not
necessary to repeat the information in neighbouring
nodes that share a face.

When a node is completely in or out of the
represented solid we classify it as BLACK or
WHITE in the same way as in classical Octrees.

When the intersection of the solid and the
voxel is concave, we use a CONVEX node.

Formally, a CONVEX node is the intersection of the
semi-spaces defined by the planes included in it with
its bounding box. These nodes allow the exact and
univocal representation of a convex polyhedral
object.

When the intersection of the voxel and the
solid is concave we use a CONCAVE node.
Formally, a CONCAVE node is the difference of the
bounding box of the node with the intersection of the
complement of the semi-spaces included in it.

Finally, when concavities and convexities
exist at the same voxel, we classify the node as
GREY, dividing it in the same way as in classical
Octrees, but maintaining in the node the information
of the planes that are in the convex hull of the part of
the solid in the node. Thus, in the children we only
need to represent the boundary planes that are not in
that convex hull and which form the existing
concavities.

Figure 2. CONCAVE node

Figure 1. WHITE, BLACK and CONVEX nodes

P0

P1

P1

P0

P0 P1

2

1

5

7

4

6

3

Subdivision

P0 P1 P2 P3 P4 P5

P6 P7

* restricted to the intersection of the semi-spaces in father node.

P6 P7
* * * * * * * *

Figure 3. GREY node and its tree.

P2

P4

P0

P5

P6

P7

P1

used to store the model is presented, according to
our proposal. In section 3 we describe the
construction of a model in the proposed scheme from
a B-Rep description of a solid. In section 4 we
describe some of the basic operations on solids using
the proposed scheme. Finally, the conclusions
reached and work pending are presented.

2. SP-OCTREE

When trying to extend the Octree scheme
representation, the modifications can be made in
three different points of it:

a) By modifying the information included in the
leaf nodes of the octal tree that represent the
object. To do that, we can add information of
the boundary of the object that appears in
each terminal node [Brune85][Brune87]
[Brune90].

b) By modifying the cutting planes used in the
subdivision process [Cano96][Torre96]
[Whang95].

c) By modifying the information stored in the
internal nodes of the tree.

In classical Octrees and the extensions
proposed, the internal nodes are those that are not
homogeneous with respect to the classification
criteria. So, in these nodes the only information
appearing is the references to its children.

Extended Octrees [Brune85][Brune90]
include information of the solid boundary in terminal
nodes. So, the same boundary plane can appear in
several neighbouring terminal nodes that share the
boundary faces.

The idea of the proposed scheme, that we
have called SP-Octrees (Space Partition Octrees), is
based on the inclusion of boundary information in
internal nodes that partially defines the object
represented in each node of that level. Been more
precise, we include the face planes that divide the
voxel into an empty region and a partially occupied
region. Thus, the information of the boundary faces
appears in the upper levels of the tree and it is not
necessary to repeat the information in neighbouring
nodes that share a face.

When a node is completely in or out of the
represented solid we classify it as BLACK or
WHITE in the same way as in classical Octrees.

When the intersection of the solid and the
voxel is concave, we use a CONVEX node.

Formally, a CONVEX node is the intersection of the
semi-spaces defined by the planes included in it with
its bounding box. These nodes allow the exact and
univocal representation of a convex polyhedral
object.

When the intersection of the voxel and the
solid is concave we use a CONCAVE node.
Formally, a CONCAVE node is the difference of the
bounding box of the node with the intersection of the
complement of the semi-spaces included in it.

Finally, when concavities and convexities
exist at the same voxel, we classify the node as
GREY, dividing it in the same way as in classical
Octrees, but maintaining in the node the information
of the planes that are in the convex hull of the part of
the solid in the node. Thus, in the children we only
need to represent the boundary planes that are not in
that convex hull and which form the existing
concavities.

Figure 2. CONCAVE node

Figure 1. WHITE, BLACK and CONVEX nodes

P0

P1

P1

P0

P0 P1

2

1

5

7

4

6

3

Subdivision

P0 P1 P2 P3 P4 P5

P6 P7

* restricted to the intersection of the semi-spaces in father node.

P6 P7
* * * * * * * *

Figure 3. GREY node and its tree.

P2

P4

P0

P5

P6

P7

P1

Boundary leaf nodes
Other leaf nodes are black or white

G. Zachmann 13 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Geodesic Dome

Start with Icosahedron
Subdivide each triangle
by k2 smaller triangles
(recursively)
⟶ quadtree in each
base triangle
Navigation (finding
neighbors of a node)
in such an
ensemble of
quadtrees is a bit
more complex

G. Zachmann 14 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Octree Models from Images

Drehteller Gray Code
(zur Erkennung der
Orientierung des
Drehtellers)

G. Zachmann 15 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Example Models

G. Zachmann 16 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Image Compression using Quadtrees

G. Zachmann 17 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Die beiden Test-Bilder schlechthin

G. Zachmann 18 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Resultate

G. Zachmann 19 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Demo for BTC and CCC Compression

http://ls.wim.uni-mannheim.de/de/pi4/teaching/animations/

G. Zachmann 20 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

S3TC Texture Compression

§  Vergleich:

DXT1 Uncompressed

[Philipp Klaus Krause]

[Sim
on Brow

n]
D

X
T1

U
ncom

pressed

G. Zachmann 21 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Vorteil: größere Texturen möglich → höhere Qualität

§  Beispiel aus der Unreal Engine:

uncompressed mit S3TC Unreal Retexturing Project

G. Zachmann 27 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Isosurfaces

§  Beispiel zur Motivation:

§  Gegeben ist ein 2D Höhenfeld

§  Gesucht ist eine Visualisierung (in
2D!), so daß man die Form / den
Verlauf des Höhenfeldes gut
"erkennt"

§  Eine Möglichkeit: Höhenlinien =
Konturen = Isolinien

G. Zachmann 28 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Problems / challenges:

§  Plateaus ⟶ large "jumps" of
the location of the isosurface
when isovalue changes by ε

§  Singularities ⟶ isosurface
contracts to a point, or appears
"out of nowhere" when
isovalue crosses that point

§  Ambiguities during tesselation

5 5 1

5 6 1

9

9

7

2

8 8 3

8 3 2

9 9 7 9

Θ=6-ε

Θ=4

Θ=8-ε
Θ=8+ε

G. Zachmann 29 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Beispiele für Volumendatensätze

Blunt Fin

Chapel Hill CT Head

Engine Block

G. Zachmann 30 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Die 15 echt verschiedenen Fälle in 3D (module rotation &
Spiegelung):

4/30/09 12:44 PMhttp://upload.wikimedia.org/wikipedia/commons/a/a7/MarchingCubes.svg

Page 1 of 1

G. Zachmann 31 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Demo

http://users.polytech.unice.fr/~lingrand/MarchingCubes/applet.html

G. Zachmann 32 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Knifflige Fälle für jeden Isosurface-Algorithmus
The asymptotic decider algorithm

2

2
-3

-3 2

4

-1 -5
36

-5

3
-4

-1

-3

-2 2
2

-2

3 2

-3 -3
-2

6

8-sided polygon 9-sided polygon 12-sided polygon

Th 8 id d l h lid i l i !The 8-sided polygon has no valid triangulation!
• either some triangles lie on faces of the cell
• or an extra vertex has to be used

Ronald Peikert SciVis 2007 - Contouring 2-27

or an extra vertex has to be used
~/avs/networks/SciVis/AD*net

G. Zachmann 33 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Manchmal passen die Dreiecke der
benachbarten Zellen nicht zusammen:

§  Uneindeutiger Fall im 2D:

§  More on that ⟶ Advanced Computer Graphics

The marching cubes algorithm

Do the pieces fit together?
• The correct isosurfaces of the trilinear

interpolant would fit (trilinear reduces to p (
bilinear on the cell interfaces)

• but the marching cubes polygons don't
necessarily fitnecessarily fit.

Example
case 10

• case 10, on top of
• case 3 (rotated, signs changed)
have matching signs at nodes but polygonshave matching signs at nodes but polygons

don't fit.

case 3

Ronald Peikert SciVis 2007 - Contouring 2-19

case 3

The asymptotic decider algorithm

Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topologyMarching cubes can produce bad topology.
2D example (marching squares):

Asymptotic decider algorithm (Nielson and Hamann 1991) :Asymptotic decider algorithm (Nielson and Hamann 1991) :
• generate topologically correct contours (as oriented straight line

segments) on the cell interfaces
• connect these around the cell, resulting in one or more polygons
• triangulate the polygons

~/avs/networks/SciVis/MCandAD*.net

Ronald Peikert SciVis 2007 - Contouring 2-25

G. Zachmann 34 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Output eines einfachen Marching-Cube-Algorithmus':

G. Zachmann 35 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Beispiel aus einer Wetter-Simulation

G. Zachmann 36 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Another Metaballs Demo

http://threejs.org/

G. Zachmann 38 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Pivot-Strategien beim Aufbau von kd-Trees

Median along the dimension
with the widest spread of the points

The point closest to the center along the
dimension with longest side of the region

G. Zachmann 39 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Animation of Nearest-Neighbor using kd-Trees

Andrew Moore, CMU

G. Zachmann 40 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 41 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 42 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 43 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 44 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 45 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 46 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 47 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 48 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 49 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 50 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 51 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 52 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 53 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 54 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 55 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 56 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 57 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 58 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 59 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 60 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 61 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 62 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 63 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 64 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 65 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 66 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 67 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 68 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 69 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 70 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 71 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Animation of NN search with large data set

G. Zachmann 72 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 73 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 74 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 75 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 76 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 77 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 78 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 79 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 80 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 81 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 82 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 83 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 84 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 85 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 86 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 87 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 88 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 89 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 90 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 91 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 92 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 93 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 94 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 95 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 96 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 97 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 98 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 99 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 100 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 101 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 102 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 103 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 104 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 105 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

A Worst-Case for NN-Search Using kd-Trees

Gutartiger Fall Bösartiger Fall

Alle weißen Blätter muß der NN-Algorithmus besuchen!

In a few moments, it will get worse …

G. Zachmann 106 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Artistic Application of k-NN Algorithm

G. Zachmann 107 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Flatland (Edwin A. Abbott, presented by Carl Sagan)

G. Zachmann 108 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Denksportaufgabe: wie sieht ein Würfel aus, der langsam duch
Flatland hindurch "schwebt", beginnend mit einer Ecke?

§  Was kann ein höher-dimensionales Wesen mit niedriger-
dimensionalen Wesen machen:

G. Zachmann 109 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

4-Dimensional Tetrahedron by the Slicing Method

http://www.dimensions-math.org

1-simplex

2-simplex

3-simplex

4-simplex

G. Zachmann 110 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The 4-Dimensional Hypercube (Tesseract)

§  Construction by analogy: number of points, edges, faces, cells

§  Projection
eines
Tesseract
nach 3D:

G. Zachmann 111 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Unwrapping a Hypercube

Crucifixion
(Corpus Hypercubus),

1954, Salvador Dali

Matt Parker

The unfolding method:
The projection of a 3D cube unfolding into its 2D net

G. Zachmann 112 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Projection of 3D cube
unfolding into its 2D net

Projection of 4D cube
unfolding into its 3D net

The "lid" of the 4D cube (what is it?) does not deform, of course; that is just an artefact of the projection into 3D,
just like the lid of the 3D cube when projected into 2D.

G. Zachmann 113 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Zum Verhalten von logd(n)

70

0
1 10 100

2500

10000

70000

Der Algorithmus für die ANN-Suche
ist also besser (asymptotisch)
als brute-force-mäßig alle n Punkte
zu besuchen und deren Abstand zum
Query-Punkt q zu berechnen.

log

5
(n) log

5
(n)

log

5
(n)

G. Zachmann 114 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Texture Synthesis

Wei & Levoy

T I

G. Zachmann 115 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

W
ei

 &
 L

ev
oy

G. Zachmann 116 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

original synthesized

G. Zachmann 117 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

original synthesized

G. Zachmann 118 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Experiments and Results Regarding Surflet-Pair Histograms

A10 Ape Buffalo Bull Bunny

Cannon Cat Cube Cylinder Dragon

Gumby Heart Horse Kangaroo Missile

Shark Sphere Tetrahedron Triceratops X-Wing

Figure 2. The 20 objects of the database.

face mesh is not included. Almost perfect classification has
been achieved by the and criteria. Interestingly, the
criterion performs dramatically weaker than the crite-
rion. Apparently, the weighting of histogram differences by
the reciprocal of the trained histogram value alone is much
more reliable than taking also the estimate from the small
test sample into account [cf. Equations (13), (14)].

Correct classification and confusion rates between all
pairs of objects are shown in Figure 3. All classifiers work
well for simple shapes like cube or sphere. Interestingly, the
objects that are difficult to classify differ drastically across
the criteria. On the other hand, the and criteria exhibit
a strikingly similar pattern of classification performance.
This similarity will also be retained in all the other tests of
the classifiers we report below. The same similarity holds
for the best, the and criteria.

5.2 Noisy data

If the point cloud is obtained from real sensors like laser
range-scanners, laser profilers, or stereo cameras, the data
will be corrupted in various ways. Therefore, in a second set
of experiments, sensitivity of the feature histograms to noise
is evaluated. Uniformly distributed noise is simulated by
randomly translating vertices from a surface mesh inward or
outward along the local surface normal. The level of noise is
defined as the range of translations, measured in percent of
the maximal object diameter2. As an example, Figure 4(b)
shows a surface mesh corrupted by the maximal level of
noise we have tested (20%).
In Figure 5(a), we present plots of recognition rates for

the six classifiers as a function of noise level. For the ,
, , and criteria, classification performance degrades

rapidly with increasing noise. This is explained by the fact
2Remember that the diameter was scaled to the same value for all ob-

jects.

Test Objects

G. Zachmann 119 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

5 10 15 20

noise in
% of max.
diameter

20

40

60

80

100

recognition
in %

(a)

20 40 60 80 100

visibility
in % of
complete
surface
area

20

40

60

80

100

recognition
in %

(b)

50 100 150 200 250 300

resolution
in % of
training
resolution

20

40

60

80

100

recognition
in %

(c)

Figure 5. Plots of recognition rates for the 20
objects shown in Figure 2 using the six differ-
ent criteria defined in Section 4. The condi-
tions for the test data are varied; (a) varying
level of noise (in percent of maximal object
diameter); (b) varying visibility (in percent of
complete surface area); (c) varying mesh res-
olution (in percent of training resolution). The
curves for the and criteria nearly coincide
in all three graphs.

that the angular attributes , , are very sensitive to noise
such that surface information is largely lost. Interestingly,
these criteria reach a rather stable rate of between 10% and

15% correct classification. Some residual performancemay
be expected, as the distance attribute remains informative
up to much higher noise levels. The and criteria, on
the other hand, are a lot less sensitive to noise, exhibiting
significantly lower performance at low noise and higher per-
formance at high noise levels. Under realistic conditions of
measurement (noise), however, the and criteria
yield a reasonable recognition rate above 80%.

5.3 Partial visibility

In real applications, objects to be recognized are often
just partially visible. Reasons are self-occlusion in single-
view data or occlusions by other objects. Partial objects
yield incomplete surface meshes. Therefore, in this set of
experiments, each test object is meshed and classified with
varying fraction of visible surface. Visible parts are deter-
mined by intersecting point clouds by a random plane. Sub-
sequently, data on one side of the plane are processed by
the mesh generator. Visibility is defined as the sum of re-
maining triangle areas in percent of the complete surface
area. Figure 4(c) gives an example of a partially visible
mesh (33%).
Results on recognition rates for various visibilities are

plotted in Figure 5(b). Performance can be seen to drop off
more gradually with occlusion than with data corruption by
noise [cf. Figure 5(a)]. Correct classification by the and
criteria remains above 80% down to roughly 65% visibility.
We note that recognition with partial visibility depends

in fact heavily on the particular section of the object that
remains visible.

5.4 Generalization across mesh resolution

Since we have relied upon surface meshes as the input
representation, it is interesting to ask how recognition per-
formance is affected by changes to the mesh procedure.
The most demanding scenario is generalization across mesh
procedures, that is, being confronted at recognition time
with a mesh of a type essentially different from what train-
ing has been based on.
In a final set of experiments, we thus have investigated

the effect of varying the mesh resolution for the test objects.
Figure 5(c) shows plots of correct-classification rates under
such conditions, where mesh resolution is given in percent
of the (constant) resolution in the training phase. Appar-
ently, recognition performance does not critically depend
on test-mesh resolution. Only below 50% of the training
resolution, recognition performance drops off. In part, this
can be ascribed to the low absolute number of feature sam-
ples drawn. In particular, the and criteria exhibit a high
degree of generalization across meshes.

5 10

Noise in %
of max.
diameter

Recognition rate / %
100

50

0

K / L

𝜒2

5 10 15 20

noise in
% of max.
diameter

20

40

60

80

100

recognition
in %

(a)

20 40 60 80 100

visibility
in % of
complete
surface
area

20

40

60

80

100

recognition
in %

(b)

50 100 150 200 250 300

resolution
in % of
training
resolution

20

40

60

80

100

recognition
in %

(c)

Figure 5. Plots of recognition rates for the 20
objects shown in Figure 2 using the six differ-
ent criteria defined in Section 4. The condi-
tions for the test data are varied; (a) varying
level of noise (in percent of maximal object
diameter); (b) varying visibility (in percent of
complete surface area); (c) varying mesh res-
olution (in percent of training resolution). The
curves for the and criteria nearly coincide
in all three graphs.

that the angular attributes , , are very sensitive to noise
such that surface information is largely lost. Interestingly,
these criteria reach a rather stable rate of between 10% and

15% correct classification. Some residual performancemay
be expected, as the distance attribute remains informative
up to much higher noise levels. The and criteria, on
the other hand, are a lot less sensitive to noise, exhibiting
significantly lower performance at low noise and higher per-
formance at high noise levels. Under realistic conditions of
measurement (noise), however, the and criteria
yield a reasonable recognition rate above 80%.

5.3 Partial visibility

In real applications, objects to be recognized are often
just partially visible. Reasons are self-occlusion in single-
view data or occlusions by other objects. Partial objects
yield incomplete surface meshes. Therefore, in this set of
experiments, each test object is meshed and classified with
varying fraction of visible surface. Visible parts are deter-
mined by intersecting point clouds by a random plane. Sub-
sequently, data on one side of the plane are processed by
the mesh generator. Visibility is defined as the sum of re-
maining triangle areas in percent of the complete surface
area. Figure 4(c) gives an example of a partially visible
mesh (33%).
Results on recognition rates for various visibilities are

plotted in Figure 5(b). Performance can be seen to drop off
more gradually with occlusion than with data corruption by
noise [cf. Figure 5(a)]. Correct classification by the and
criteria remains above 80% down to roughly 65% visibility.
We note that recognition with partial visibility depends

in fact heavily on the particular section of the object that
remains visible.

5.4 Generalization across mesh resolution

Since we have relied upon surface meshes as the input
representation, it is interesting to ask how recognition per-
formance is affected by changes to the mesh procedure.
The most demanding scenario is generalization across mesh
procedures, that is, being confronted at recognition time
with a mesh of a type essentially different from what train-
ing has been based on.
In a final set of experiments, we thus have investigated

the effect of varying the mesh resolution for the test objects.
Figure 5(c) shows plots of correct-classification rates under
such conditions, where mesh resolution is given in percent
of the (constant) resolution in the training phase. Appar-
ently, recognition performance does not critically depend
on test-mesh resolution. Only below 50% of the training
resolution, recognition performance drops off. In part, this
can be ascribed to the low absolute number of feature sam-
ples drawn. In particular, the and criteria exhibit a high
degree of generalization across meshes.

Visibility in %
of surface

Recognition rate / %

100

50

0

K / L

𝜒2

50 100

G. Zachmann 120 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Point Cloud Surfaces

§  Increasingly popular geometry
representation

§  Lots of sources of point clouds (laser
scanners, Kinect et al., …)

§  Goal: surface definition that is ..

§ Quick to evaluate

§  Robust against noise

§  Smooth

§  Applications:

§  Ray tracing (rendering)

§  Collision detection (physics)

G. Zachmann 121 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Approach

§  Consider a point cloud P as noisy sampling of a
smooth surface

§  Consequence: surface should not interpolate the
points

§  Define the surface as an implicit surface over a
smooth distance function f, determined by the
point cloud P:

where f is the distance to the yet unknown
surface S

S = {x|f (x) = 0}

S
pi∈P

G. Zachmann 122 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Define f using
weighted moving
least squares

§  The surface is
approximated locally
by a plane with

where θ is an appropriate weight function based on "distance"

§  Overall:

original surface

x

f (x)
n(x)

a(x)

θ

a(x) =

PN
i=1 ✓(kx� pik)piPN
i=1 ✓(kx� pik)

f (x) = n(x)·(a(x)� x)

G. Zachmann 123 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Choose n as

§  Reminder: n happens to be the
smallest eigenvector of the weighted
covariance matrix B = (bij) with

§  For the weight function , use (for now) a Gaussian kernel

with Euclidean distance (for now), where h is called bandwidth

min
n,knk=1

NX

i=1

�
n·(a(x)� pi)

�2
✓(kx� pik)

x

n(x)

θ

✓(d) = e�d2/h2 , d = kx� pk

bi j =
NX

k=1

✓(kx� pkk)(pk,i � ai)(pk,j � aj)

G. Zachmann 124 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Possible weight functions (kernels):

§  Gauß kernel

§  The cubic polynomial

§  The tricube function

§  The Wendland function ✓(d) =
⇣
1� d

h

⌘4�
4d
h + 1

�

✓(d) = 2
⇣

d
h

⌘3
� 3

⇣
d
h

⌘2
+ 1

✓(d) =
⇣
1�

��d
h

��3
⌘3

Wendland

tricube

cubic

Gauss

h

1

0.8

0.6

0.4

0.2

0

Figure 1. Our method is independent of the mapping
from distances to weights, so di↵erent weight func-
tions can be used.

3. Implicit Surface Model

In this section, we will first give a quick recap
and then explain the problem of the conventional
WLS method. For sake of clarity, all illustrations
are in 2D, but the methods work, of course, in any
dimension.

3.1. Surface Definition

Let a point cloud P with N points p

i

2 R3 be
given. Then, an appealing definition of the surface
from P is the zero set S = {x|f(x) = 0} of an
implicit function [19]

f(x) = n(x) · (a(x)� x) (1)

where a(x) is the weighted average of all points P

a(x) =
P

N

i=1 ✓(kx� p

i

k)p
iP

N

i=1 ✓(kx� p

i

k)
. (2)

Usually, a Gaussian kernel (weight function)

✓(d) = e�d

2
/h

2
, d = kx� pk, (3)

is used, but other kernels work as well (see below).
The bandwidth of the kernel, h, allows us to tune

the decay of the influence of the points. It should
be chosen such that no holes appear [5].

Theoretically, ✓’s support is unbounded. How-
ever, it can be safely limited to the extent where
it falls below the machine’s precision, or some
other, suitably small threshold ✓

"

. Alternatively,
one could use the cubic polynomial [25]

✓(d) = 2
⇣d

h

⌘3
� 3

⇣d

h

⌘2
+ 1,

or the tricube weight function [26]

✓(d) =
⇣
1�

��d
h

��3
⌘3

,

or the Wendland function [27]

✓(d) =
⇣
1� d

h

⌘4�
4
d

h
+ 1

�
,

all of which are set to 0 for d > h and, thus, have
compact support (see Figure 1 for a comparison).
However, the choice of kernel function is not critical
[28].

The normal n(x) is determined by weighted least
squares. It is defined as the direction of smallest
weighted covariance, i.e., it minimizes

NX

i=1

�
n(x) · (a(x)� p

i

)
�2

✓(kx� p

i

k) (4)

for fixed x and under the constraint kn(x)k = 1.
Note that, unlike [19], we use a(x) as the center

of the PCA, which seems to make f(x) much more
well-behaved (see Figure 2). Also, we do not solve
a minimization problem like [15, 16], because we
are aiming at an extremely fast method.

The normal n(x) defined by (4) is the smallest
eigenvector of the centered covariance matrix B =
(b

ij

) with

b
ij

=
NX

k=1

✓(kx� p

k

k)(p
ki � a(x)

i

)(p
kj � a(x)

j

).

(5)
There are several variations of this simple defi-

nition, but for sake of clarity, we will stay with this
basic one. Our new method can be applied to more
elaborated ones as well.

3.2. Euclidean Kernel

The above definition can produce artifacts in the
surface S (see Figure 2); two typical cases are as
follows. First, assume x is halfway between two
(possibly unconnected) components of the point
cloud; then it is still influenced by both parts of the
point cloud, which have similar weights in Equ. 2
and 4. This can lead to an artificial zero subset⇢ S

3

G. Zachmann 125 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Whatever kernel you use, it is fine to consider only "close
neighbors" around x in the computation of a(x) and n(x)
⟶ need lots of k-NN searches in P

§  More important: what distance measure to use in ?

§  Euclidean distance produces artefacts like this:

✓(kx� pik)

G. Zachmann 126 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Solution: use topology-based distance measure

§  Try to mimic the the geodesic distance on the surface

§  Except without knowing the surface yet

§  Use proximity graph over point cloud

§  Define

with
and = length of shortest path through proximity graph

§  Note: don't add

original surface

p1*

x p
kx� pkp2*

p0

d
geo

(x,p) = (1� a)·
�
d(p⇤

1

,p) + kp0 � p

⇤
1

k
�

+ a ·
�
d(p⇤

2

,p) + kp0 � p

⇤
2

k
�

d(p⇤
i ,p)

kp0 � xk

a = kp0 � p⇤
1k

d
geo

(x,p)

G. Zachmann 127 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Which Proximity Graph to Use

§  Many kinds of proximity graphs

§  Delaunay graph (explained later)

-  Needs kind of a "pruning" because of "long" edges; still has problems

§ Most other proximity graphs are subgraphs of the Delaunay graph

§  Sphere-of-Influence graph (SIG; is not a subgraph of the DG)

§  Definition of the SIG:

§  For each point pi∈P define

§  Connect pi and pj by an edge iff

§  Extension: k-SIG

§  Define

ri = kpi � NN(pi)k
kpi � pjk ri + rj

ri = kpi � kNN(pi)k

G. Zachmann 128 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Results

1-SIG 2-SIG 3-SIG

Example sphere-of-
influence graph

Weighted MLS surfaces using different k-SIGs
for the geodesic distance

DG w/ pruning

G. Zachmann 129 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Weighted MLS surface
with Euclidean distance

and fixed bandwidth in kernel

Weighted MLS surface
with proximity graph-based distance

and automatic bandwidth estimation in kernel M
ore info in [Klein &

 Zachm
ann, 2004] on cgvr.cs.uni-brem

en.de ⟶
 Publications

G. Zachmann 130 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Kurzer Exkurs über Quaternionen [Hamilton, 1843]

§  Erweiterung der komplexen Zahlen (geht leider nicht kommutativ):

§  Alternative Schreibweise:

§  Axiome für die 3 imaginären Einheiten:

§  Daraus folgen sofort diese Rechengesetze:

H =
�
q | q = w + a·i+ b ·j+ c ·k , w , a, b, c 2 R

q = (w , v)

i2 = j2 = k2 = ijk = �1

ij = �ji = k jk = �kj = i jk = �kj = i

(ij)k = i(jk)

G. Zachmann 131 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Rechenregeln für Quaternionen

§  Addition:

§  Multiplikation:

§  Konjugation:

§  Betrag (Norm):

§  Inverse eines Einheitsquaternions:

q1 + q2 = (w1 + w2) + (a1 + a2)i+ (b1 + b2)j+ (c1 + c2)k

q1 ·q2 = (w1 + a1i+ b1j+ c1k)·(w2 + a2i+ b2j+ c2k)

= (w1w2 � a1a2 � b1b2 � c1c2) +

(w1a2 + w2a1 + b1c2 � c1b2) i+

(.) j+

(.) k

q⇤ = w � ai� bj� ck

|q|2 = w 2 + a2 + b2 + c2 = q ·q⇤

|q| = 1) q�1 = q⇤

G. Zachmann 132 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Bemerkung: manchmal ist es zweckmäßig, die Multiplikation
zweier Quaternionen auch mit Hilfe einer Matrix-Multiplikation
darzustellen

§  Außerdem gilt:

q1 ·q2 =

0

BB@

w1 �a1 �b1 �c1
a1 w1 �c1 b1
b1 c1 w1 �a1
c1 �b1 a1 w1

1

CCA q2 =

0

BB@

w2 �a2 �b2 �c2
a2 w2 c2 �b2
b2 �c2 w2 a2
c2 b2 �a2 w2

1

CCA q1

Als Spaltenvektor geschrieben! Spaltenvektor! Quaternionen-Mult. –
nicht Skalarmult.!

Q1 Q2

q1 ·q⇤
2 = Q⇤

2q1 = QT
2 q1

Matrix zum Quaternion q⇤
2

G. Zachmann 133 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Einbettung des 3D-Vektorraumes in

§  Den Vektorraum kann man in so einbetten:

§  Definition:
Quaternionen der Form heißen reine Quaternionen (pure
quaternions)

H

R3 H

(0, v)

v 2 R3 7! qv = (0, v) 2 H

G. Zachmann 134 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Darstellung von Rotationen mittels Quaternionen

§  Gegeben sei Axis & Angle mit

§  Definiere das dazu gehörige Quaternion als

§  Beobachtung: |q| = 1

§  Satz: Rotation mittels eines Quaternions
Sei ein pures Quaternion (= Vektor in 3D) und ein
Einheitsquaternion. Dann beschreibt die Abbildung

eine (rechtshändige) Rotation von v um den Winkel 𝜑 und
Achse r bestimmt sind, bei der das reine Quaternion v' entsteht.

(', r) krk = 1

q = (cos

'

2

, sin

'

2

r) = (cos

'

2

, sin

'

2

r
x

, sin

'

2

r
y

, sin

'

2

r
z

)

v 2 H q 2 H

v 7! q ·v·q⇤ = v0

G. Zachmann 135 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Alignment / Registration of Shapes

§  Siehe Manuskript

G. Zachmann 136 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The Iterative Closest Point Algorithm

§  Task:

§  Given two shapes (point clouds) A and B that partially overlap

§  Find a registration = rigid transformation (R, t) such that the squared
distance between A and B is minimized

(R, t)

A B

G. Zachmann 137 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Motivation

§  Registration of point clouds

G. Zachmann 138 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  We know: if correct
correspondences are known, we
can find correct relative rotation/
translation

§  How to find correspondences: User
input? Feature detection?

§  Alternative: assume closest points
correspond

§  Converges (provably) provided
initial position is "close enough"

G. Zachmann 139 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The Iterative Closest Point Algorithm (ICP)

§  Optimization:

§ When starting the kd-tree traversal, initialize the candidate NN with the
NN as of last iteration of the ICP

§ Makes the initial ball for the "ball overlaps bounds" test (hopefully)
relatively small

§  The traversal does not descend into subtrees way off of the true NN

repeat
 forall bi in B: find NN in A ⟶ Y ⊆ A
 compute optimal alignment transformation (R,t) from B and Y
 B := R(B) + t
until error E2 < threshold

G. Zachmann 140 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Variants / Optimizations

§  Select only a sample of the points (of one or both shapes):

§  Uniform subsampling [Turk 94]

§  Random sampling in each iteration [Masuda 96]

§  Ensure that samples have normals distributed as uniformly as possible
[Rusinkiewicz 01]

§  Use other ways to establish correspondences:

§  Restrict matches to compatible points (color, intensity , normals ,
curvature, …) [Pulli 99]

G. Zachmann 141 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Weight correspondences: replace the old least squares error
measure by

§  As weight, you could consider:

-  Distance between corresponding points

-  Scanner uncertainty

E 002 = qT
⇣X

i

wiB
T
i Ai

⌘
q

wi = 1� kbi � aik
max dist

G. Zachmann 142 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Reject "bad" point pairs:

§  Reject pairs whose distance is in the top x% of all
distances

§  Points on end vertices

§  Reject pairs that are not consistent with their
neighboring pairs [Dorai 98]:

-  Two pairs (a1,b1) and (a2,b2) are not consistent if ���ka1 � a2k � kb1 � b2k
��� > ✓

A B

G. Zachmann 143 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Video

Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly: "Sparse Iterative Closest Point"
Symposium on Geometry Processing 2013

G. Zachmann 144 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Stackless kd-tree traversal for ray-tracing

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek.
Nvidia GeForce 8800GTX, CUDA, 2007.

G. Zachmann 145 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Daniel Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan
ATI X1900XTX, PixelShader 3.0, 2007

G. Zachmann 146 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Real-Time KD-Tree Construction on Graphics Hardware

Kun Zhou, Qiming Hou, Rui Wang, Baining Guo; SIGGRAPH Asia 2008

G. Zachmann 147 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

BSP Demo

G. Zachmann 148 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Applications of the BSP

Boolen Operations Painter's Algorithm

Stan Melax Paton J. Lewis

G. Zachmann 149 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

With BSPs one can do CSG quite easily

http://evanw.github.io/csg.js/

G. Zachmann 150 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Shadow Volume Checking with BSPs

Q 	 	 Quit	
1 	 	 Load	 1st	 scene	 (simple	 room,	 1	 light	 source)	
2 	 	 Load	 2nd	 scene	 (random	 objects	 1)	
3 	 	 Load	 3rd	 scene	 (simple	 room,	 4	 light	 sources)	
4 	 	 Load	 4th	 scene	 (cubes,	 1	 light	 source)	
5 	 	 Load	 5th	 scene	 (random	 objects	 2)	
W,	 A,	 S,	 D 	 Translate	 viewpoint	
Cursor	 keys 	 Rotate	 viewpoint	
+/-‐ 	 	 Pan	 up/down	
R 	 	 Reset	 current	 scene	 and	 rebuild	 BSP	 tree	
L 	 	 Toggle	 labels	
T 	 	 Toggle	 usage	 of	 BSP	 tree	
U 	 	 Toggle	 depth	 buffer	
E 	 	 Toggle	 shadows	

http://bastian.rieck.ru/uni/bsp/

G. Zachmann 151 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Kinetic Data Structures – Motivation

Brute force update of bbox Kinetic update of bbox

G. Zachmann 152 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Kinetic Data Structures (in General)

§  Given:

§  A number of objects (points, lines, polygons, boxes, …)

§  A flight path for each of these objects,
given by an algebraic function

-  Mostly assume linear motion

§  Attribute = the task / purpose of a KDS

§  Examples: convex hull over a number of points, bbox of a number of
points, kd-tree over a number of points, …

G. Zachmann 153 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Combinatorial structure = "everything that descriibes the
attribute except concrete coordinates"

§  Examples:

-  Convex hull: those points that form the corners of the convex hull

-  Bbox: those points that realize the min/max at least on one of the coord axes

-  Kd-tree: all the pointers that make up the tree, and pointers to points

G. Zachmann 154 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 155 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Combinatorial
change

Combinatorial
change

G. Zachmann 156 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 157 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 158 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 159 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 160 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Combinatorial
change

G. Zachmann 161 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Combinatorial
change

Combinatorial
change

G. Zachmann 162 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Combinatorial
change

G. Zachmann 163 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Combinatorial
change

Combinatorial
change

G. Zachmann 164 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Certificate = simple geometric relation (a.k.a. geometric predicate)
involving a few of the objects

§  Example: p.n < 0, where p is an input point and n is a normal

§  Event: a specific point in the future where one of the certificates fails,
i.e., its truth value is false, due to the motion of the objects

§  External event = event where the combinatorial structure of the attribute
changes

§  Internal event = event where the combinatorial structure remains the same,
but the set of certificates changes

§  Kinetic data structure (KDS) for a geometric attribute =

1.  A set of certificates that a true whenever the combinatorial structure of the
attribute is valid, as well as

2.  A set of rules for repairing the attribute and the set of certificates in case of
an event

G. Zachmann 165 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Main Loop of a KDS

Initialize the attribute for the input objects
Initialise the set of certificates for the attribute
Compute all events (failure times) of all certificates
 (usually only up to some time in the future)
Initialize the p-queue for all events, sorted by failure time
Loop forever
 get front event from the event queue
 if external event:
 change the attribute
 update the set of certificates:
 some failure times of later events might change
 some certificates may need to be deleted
 maybe, some new certificates need to be created

G. Zachmann 166 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

In reality, of course, a KDS does not have its own main loop usually …

initialization ...
while simulation runs
 determine time t of next rendering
 get nearest event from the event queue
 while timestamp(event) < t:
 update KDS
 get next event from the event
 use the attribute of the KDS (e.g., bbox, kd-tree, BVH, …)
 render scene

G. Zachmann 167 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Performance Measures for KDS

1.  Responsiveness:
A KDS is responsive, if the cost to update the set of certificates and
the attribute in case of an event is "small"

§  Usually, "small" = O(logs n) or O(nε)

2.  Efficiency:
A KDS is efficient, if the ratio of #(total events) / #(external events)
is small

§  I.e., the #(internal events), where the attribute's combinatorial structure
does not change, is small

§  I.e., the #events is comparable to the #(attribute changes) over time

3.  Compactness:
A KDS is compact, if the number of certificates is close to linear in
the number of input objects

G. Zachmann 168 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

4.  Locality:
A KDS is local, if all objects participate only in a small number of
certificates

§  Advantage: if an object changes its flight path, then the cost for
updating all events affected by it is not too high

G. Zachmann 169 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

A Simple Example

§  Maintain the topmost among points moving
along the y-axis

§  Look at the ty-plane (flight paths)

t

y

G. Zachmann 170 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  We are interested in the upper envelope

§  Theorem (Sharir, Hart, Agarwal and others):
If any pair of flight paths intersect at most s times, then the
complexity of computing the upper envelope is in O(n log n)

t

y

G. Zachmann 171 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Problem: change of flight path ⟶ recomputation of the envelope

§  Takes O(n log n)

§  Can we update the envelope / topmost point faster?

§  Solution: the tournament tree (kinetic heap)

§  Leaves = points

§  Inner node = topmost of its two children

ab cd

d c

d

a

b

c

d

G. Zachmann 172 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Certificate (for inner nodes) = left point is below right point

§  Event = left/right point flip order along y axis

§  Processing an event:

§  Replace the winner and replace O(log n) events in the event queue

§  Takes O(log2 n) time ⟶ responsive

§  Number of certificates (inner nodes) = O(n) ⟶ compact

§  Each point participates in O(log n) events ⟶ local

ab cd

d c

d

a

b

c

d

t

y

G. Zachmann 173 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The

§  Problem with deformable objects:
BVH becomes invalid

§  Brute-force, bottom-up, i.e.,
for every query / anim. step

§  O(n · #anim. steps)
where n = #pgons

§  Event-based (do work only, if
something essential changed)

§  O(n log n) → independent of
query/sim. frequency!

Classic BVH update: Kinetic BVH update:

G. Zachmann 174 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

0
2
4
6
8

10
12
14
16
18

20 80 160 320

Av
g

tim
e

pe
r B

VH
 u

pd
at

e
/

m
se

c

Number of in-between frames

Shirt Scene (~ 100,000 triangles)

Kinetic AABB

Bottom-Up

G. Zachmann 175 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Problems of KDS

§  Too many events for many KDS

§  Computing event times is expensive

§  Querying moving objects

§  No need to maintain the structure at all times

G. Zachmann 176 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

One Possible Approach by Way of an Example

§  Definition: directional width
Let S = set of moving points.
Define the width in direction u
at time t as .

§  Definition: ε-kernel
Let Q⊆S.
Q is called an ε-kernel of S iff

§  Theorem [Agarwal, Har-Peled, Varadarajan]:
For n points moving with fixed velocity in 2D, and any ε> 0, one
can compute an ε-kernel of size in time .

!(S(t),u)

u

!
(S

(t),u
)

8t : !(S(t),u) (1 + ")!(Q(t),u)

O
⇣

1

"
3
2

⌘
O
�
n + 1

"3

�

!
(S

(t),u
)

!
(Q

(t),u
)

G. Zachmann 177 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Results for BBox Maintained by E-Approximate KDS

Linear Motion of Moving Points Quadratic Motion of Moving Points

10,000 moving points
Error < 0.02 for kernel of size 32

G. Zachmann 178 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Exact Algorithm Approximation Algorithm

G. Zachmann 179 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Kinetic Quadtree Demo

G. Zachmann 180 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Examples of Bounding Volumes

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

k-DOPs / Slabs
[Zachmann, 1998] Spherical shell

[...]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

Cylinder
[Weghorst et al., 1985]

Convex hull
[Lin et. al., 2001]

Intersection of
several, other BVs

G. Zachmann 181 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Some ideas for several

§  Research questions:

§  Fast intersection of two BVs for collision detection?

-  Compute is cheap, memory transfer is expensive ⟶ BV compression?

-  Exact / approximate (biased) intersection tests?

§  Fast intersection test for rays against such BVs?

§  Efficient BVH construction? (for fast queries at runtime)

Master's theses …

Lunes Generalized Lunes Quadric Shells
Oriented
Ellipsoids

G. Zachmann 182 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

BVH with k-DOPs

26-DOPs

14-DOPs 6-DOPs

18-DOPs

Level 0

G. Zachmann 183 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

26-DOPs

14-DOPs 6-DOPs

18-DOPs

Level 1

G. Zachmann 184 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

26-DOPs

14-DOPs 6-DOPs

18-DOPs

Level 2

G. Zachmann 185 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

26-DOPs

14-DOPs 6-DOPs

18-DOPs

Level 5

G. Zachmann 186 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

26-DOPs

14-DOPs 6-DOPs

18-DOPs

Level 8

G. Zachmann 187 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

BVH with AABBs

G. Zachmann 188 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Wrapped vs Layered BVH

Wrapped BVH:
a BV bounds its associated primitives,

but not necessarily its child BVs

Layered BVH:
a BV must bound its child BVs

G. Zachmann 189 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Hierarchical Collision Detection using BVHs

traverse(X, Y)

if X,Y do not overlap then
 return

if X,Y are leaves then
 check polygons

else
 for all children pairs do
 traverse(Xi, Yj)

BP

BQ

BP
1

BP
2

BQ
1

BQ
2

E F G D

C B
A

5 6 7 4

3 2
1

G. Zachmann 190 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Applications using Distance Fields

G. Zachmann 191 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Convex Hull Demos in 2D

Alejo Hausner - http://www.cs.princeton.edu/~ah/alg_anim/version1/GrahamScan.html

Rubber band metaphor Graham's scan (with slightly
different sorting order)

G. Zachmann 192 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Jarvis' March QuickHull

G. Zachmann 193 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Convex Hull in 3D

§  Ein Schritt des inkrementellen Algorithmus':

G. Zachmann 194 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Michael Horn - http://www.eecs.tufts.edu/~mhorn01/comp163/

Clarkson-Shor-Algorithm (randomized incremental)

G. Zachmann 195 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Tim Lambert - http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

Different algorithms, e.g., gift wrapping

G. Zachmann 196 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Simplification of Urban Models

Remco Chang, Thomas Butkiewicz, Caroline Ziemkiewicz, Zachary Wartell, Nancy Pollard, William Ribarsky

G. Zachmann 197 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Convex Collision Detection

Achtung: der hier demonstrierte Algo ist in Wahrheit
etwas komplexer als der in der Vorlesung dargestellte!
(aber möglicherweise nicht schneller ...)

G. Zachmann 198 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Convex Surface Decomposition

Zerlegung in
konvexe Surface-Patches

Konvexe Stücke auf einem
mittleren Level der Hierarchie

(grün = orig. Fläche, rot = freie Fläche,
gelb = "contained")

G. Zachmann 199 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Zum Vergleich: Triangulation in 3D (="Tetraedrisierung")

§  Verschiedene Triangulierung → verschiedene Anzahl Tetraeder:

§  Ein untriangulierbares ("un-tetraedrisierbares") Polyeder:

Subhash Suri UC Santa Barbara

Triangulation in 3D

5 Tetrahedra 6 Tetrahedra

• Di�erent triangulations can have di�erent
number of tetrahedra (3D triangles).

Subhash Suri UC Santa Barbara

Untriangulable Polyhedron

a b

c

a’ b’

c’

a

b

c

a’ b’

c’

• Smallest example of a polyhedron that
cannot be triangulated without adding
new vertices. (Schoenhardt [1928]).

• It is NP-Complete to determine if a
polyhedron requires Steiner vertices for
triangulation.

• Every 3D polyhedron with N vertices can
be triangulated with O(N2) tetrahedra.

5 Tetraeder 6 Tetraeder

G. Zachmann 200 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Untetrahedralizable Objects

Schönhardt's
Polyeder
(1928)

Thurston-
Polyeder
(1971)

Chazelle's
Polyeder
(1984)

G. Zachmann 201 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Schönhardt Polyhedron Thurston Polyhedron Chazelle Polyhedron

24th Canadian Conference on Computational Geometry, 2012

Figure 2: Schönhardt’s twisted triangular prism

twisted triangular prism (Figure 2) by rotating the top
face of a triangular prism so that a set of cyclic diagonals
became edges with interior dihedral angles greater than
180o.

Claim: Schönhardt’s Twisted Triangular Prism cannot
be triangulated.

Proof. Every diagonal of the polyhedron lies outside
the polyhedron. Therefore any tetrahedron containing
four vertices of the twisted triangular prism will contain
at least one edge lying outside the polyhedron. ⇤

Example 2 (Bagemihl)

Figure 3: Bagemihl’s generalization

In 1948, Bagemihl [1] modified Schönhardt’s idea to
construct a nonconvex polyhedron on n � 6 vertices
by replacing one of the twisted vertical edges with a
concave curve and placing n�6 vertices along the curve
so that the interior dihedral angles of the edges to these
vertices are greater than 180o.

Claim: Bagemihl’s Generalization cannot be triangu-
lated.

Proof. If a triangulation exists, then the top triangular
face must be a face of some tetrahedron. For every
vertex v, not on the top face, there is a diagonal from
v to some vertex on the top face which lies outside the
polyhedron. Therefore there is no tetrahedron from the
vertex set which has the top face as a boundary lying
inside the polyhedron. ⇤

Example 3 (Ruppert and Seidel)
Another method of creating non-triangulable poly-

hedra with large number of vertices was presented by
Ruppert and Seidel [9]. They attached a copy of a non-
triangulable polyhedron to another polyhedron. Fig-
ure 4 shows a polyhedron where a copy of Schönhardt’s

Figure 4: Attaching a niche to a cube

non-convex twisted triangular prism, called a niche, is
attached to a face of a cube along a base of the twisted
triangular prism.

Claim: If a niche is attached properly, the union of the
polyhedron and the niche cannot be triangulated.

Proof. It can be arranged that the vertices of the
Schöhardt prism which do not lie on the face of the cube
do not see any vertex of the cube. Since each diago-
nal to the non-attached base of the triangular prism lies
outside the polyhedron, then there must exist a tetrahe-
dron contained inside the non-convex twisted triangular
prism. We know from Example 1 this is not possible, so
no set of tetrahedra triangulates the union. ⇤

Example 4 (Thurston et al.)

Figure 5: Thurston polyhedron

Figure 5 was attributed to Thurston by Paterson and
Yao [7], where 18 non-intersecting square prisms, six
from each pair of parallel faces, are removed from the
cube. It is important to note that this polyhedron was
independently discovered by several people includingW.
Kuperberg, Holden, and Seidel.

Claim: Thurston’s polyhedron cannot be triangulated.

Proof. A point in a polyhedron “sees” another point
in the polyhedron if the line segment between the two
points is contained inside the polyhedron. We observe
that each point of a tetrahedron can see each of the
tetrahedron’s vertices. If a polyhedron contains a point
which does not see at least four non-coplanar vertices of
the polyhedron, then it cannot be contained in a tetra-
hedron from the triangulation. In Thurston’s polyhe-
dron, the center of the cube does not see any vertex of
the polyhedron, so it is obviously not in the interior of
a tetrahedron of a triangulation. ⇤

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Example 5: (Rambau)

Figure 6: Twisted prism SC6

Rambau [8] provided another generalization of the
Schönhardt twisted triangular prism. To construct the
Nonconvex Twisted Prism we will first define a right
prism over a convex polygon with n vertices, Cn. Label
the vertices of Cn clockwise as v1, v2, ..., vn. He defines
the right prism over Cn as PCn = conv{(Cn ⇥ {0}) [
(Cn ⇥ {1})}.

Now pick a point O in the interior of Cn and rotate
Cn clockwise about O by ✏, and label the vertices of
Cn(✏), v1(✏), v2(✏), ..., vn(✏), corresponding to the ver-
tices of Cn.The convex twisted prism over Cn is
PCn(✏) = conv{(Cn ⇥ {0}) [(Cn(✏)⇥ {1})}.
The non-convex twisted prism over Cn (Fig-
ure 6) is SCn = PCn(✏) - conv{(vi,0),(vi+1,0),
(vi(✏),1),(vi+1(✏),1)}, for all i 2 (1, n) taken modulo n.

In [8] Rambau proves:

Theorem 1 For all n � 3, no prism PCn admits a

triangulation without new vertices that uses the cyclic

diagonals {(vi,0), (vi+1,1)}.

Which implies

Corollary 2 For all n � 3 and all su�ciently small

✏ > 0, the non-convex twisted prism SCn cannot be tri-

angulated without new vertices.

The proof of Theorem 1 is too long to discuss here,
but we will provide a shorter proof in the following sec-
tion for Corollary 2.

3 Tilling by Tetrahedra

Notice that Rambau’s results do not imply that SCn

cannot be tiled with tetrahedra. Rambau uses Theorem
1 to conclude that no triangulation of SCn exist, but
Figure 1 clearly shows that a tiling by tetrahedra exists
for PC4 , which is not a triangulation. Furthermore, this
shows that there exists such a tiling which uses the cyclic
diagonals of the cube. We prove that:

Theorem 3 There exist a polyhedron which is not tri-

angulable, but can be tiled by tetrahedra.

E F

A
B

CD
E0

F 0

O

Figure 7: A non-triangulable polyhedron which can be
tiled with tetrahedra

Proof. Example 6 will provide this result.
Example 6

Start with a horizontal unit square Q. Let A,B,C
and D be the vertices of Q in counterclockwise order
when we look down at the square from above. Choose
the point O over Q at unit distance from its vertices.
Next add to this arrangement a segment EF , whose
midpoint is O, has length 4, and which is parallel to
AB (assume E is closer to A than to B). Rotate this
segment clockwise (i.e. opposite to the order of the ver-
tices A,B,C and D) around the vertical line through O
by a small angle ✏. Let P be a non-convex polyhedron
bounded by Q and by six triangles EAB, EBF , BFC,
CDF , EFC, and EDA.

Finally let P 0 be the image of P under the reflection
around the plane of Q followed by a 90� rotation around
the vertical line containing O. Label the images of E
and F as E0 and F 0 respectively.

First notice that P is triangulable as it is the union of
the tetrahedra EABD,EBDF and DBCF . Since the
same holds for P 0 we have that the union of P and P 0

can be tiled by tetrahedra.
Next we show that the union of P and P 0 is not tri-

angulable. Since neither E nor F can see the vertices
E0 and F 0, we have that any triangulation of the union
is the union of triangulations of P and P 0. The poly-
hedron P was constructed so that the dihedral angles
corresponding to the edges EB and FD are concave,
therefore the diagonals AF and EC lie outside of P . It
is easy to see that the triangles ABC and ACD cannot
be faces of disjoint tetrahedra contained in P , thus di-
agonal BD must be an edge of at least one tetrahedron
in any triangulation of P . A similar argument applied
for P 0 gives that the diagonal AC is an edge of at least
one tetrahedron in any triangulation of P 0. Thus the
union of P and P 0 is not triangulable. ⇤

Observation 1 A non-triangulable polyhedron is

tilable only if it contains at least four coplanar vertices

where no three are incident with a common face.

(We wish to thank one of the referees for this helpful

observation)

Generalization of
Schönhardt by Rambau

G. Zachmann 202 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Jessen's Ikosaeder

G. Zachmann 203 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Diagramme

§  Eine der ersten Erwähnungen von René
Descartes (Cartesius; 1596-1650) in seiner
Principia Philosophiae, 1644:

§  Stellte sich vor, daß das Universium mit Materie
gefüllt ist, die von den Sternen angezogen wird
und um diese herumwirbelt

§  Georgy F. Voronoy (Георгий Ф. Вороной)
1868 – 1908

§  Geboren in Russland, heutige Ukraine

§  Professor in Warschau

§  Schüler: Delaunay

G. Zachmann 204 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 205 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Independent Discoveries in Other Fields

Descartes Astronomy 1644 “Heavens”

Dirichlet Math 1850 Dirichlet tesselation

Voronoi Math 1908 Voronoi diagram

Boldyrev Geology 1909 area of influence polygons

Thiessen Meteorology 1911 Thiessen polygons

Niggli Crystallography 1927 domains of action

Wigner & Seitz Physics 1933 Wigner-Seitz regions

Frank & Casper Physics 1958 atom domains

Brown Ecology 1965 areas potentially available

Mead Ecology 1966 plant polygons

Hoofd et al. Anatomy 1985 capillary domains

G. Zachmann 206 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Delaunay (1890 – 1980)

§  Schüler von Voronoy (und Grave)

§  Einer der 3 besten russischen Bergsteiger um
1930

§  Russische Schreibweise: Борис Николаевич
Делоне

§  Damals war Französisch (und Deutsch) die
Wissenschaftssprache!

G. Zachmann 207 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Nicht zu verwechseln mit dem Maler Robert Delaunay !

§  1885 – 1941 ; wirklich französisch

Champs de Mars. La Tour rouge. 1911 Homage à Bleriot, 1914

G. Zachmann 208 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Demos

http://alexbeutel.com/webgl/voronoi.html

G. Zachmann 209 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The "Cones Trick" to Generate Approximate 2D Voronoi Diagrams

§  Observation:

§  Place a cone at every Voronoi site with 90°
angle

§  Distance of a point X from Voronoi site =
height of cone above X

§  Method:

§  For each site, render a cone with different
color (= ID)

§  Borders in color buffer = Voronoi edges

§  Value in Z-buffer = distance from site

§  Already noticed by Dirichlet & Voronoi

Side view

Top view

G. Zachmann 210 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

http://www.geometrylab.de/VoroGlide/

G. Zachmann 211 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Inkrementelle Konstruktion der Delaunay-Triangulierung

G. Zachmann 212 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Verallgemeinerung des Voronoi-Diagramms

§  Andere Distanz-Funktionen

§  Andere Objekte als Sites

§  Höhere Dimension

§  Andere Äquivalenzklassen

§  ...

G. Zachmann 213 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi / Delaunay in 3D

§  Delaunay-Tetraeder

§  Bisektoren = Ebenen

§  Edge-Flip:

Voronoi-Kante

Voronoi-Site

G. Zachmann 214 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Slivers in 3D Delaunay Tetrahedralizations:

§  Fazit: die max-min-Winkel-Eigenschaft gilt nur in 2D! L

Diese beiden Ecken
liegen etwas tiefer

Delaunay
Non-
Delaunay

Sliver

G. Zachmann 215 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Komplexität:
 Ein Voronoi-Diagramm über n Punkten im d-dim. Raum
 enthält in jeder Dimension j, 0 ≤ j ≤ d-1, eine Anzahl fj
 von Facetten, wobei alle

fj � O
�
n� d

2 ⇥
⇥

G. Zachmann 216 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Das Voronoi-Diagramm mit additiven Gewichten

§  Distanz-Funktion zwischen Punkt x und Site pi =

§  A.k.a. Appolonius-Diagramm

§  Bisektoren = hyperbolische Bögen

§  Beispiel:

http://www.geometrylab.de/VoroAdd/index.html

d(x,pi) = ⇥x� pi⇥ � ri

G. Zachmann 217 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Das Power-Diagram

§  Distanzfunktion:

§  Bisektoren = Geraden

§  Beispiel:

d(x,pi) = (x� pi)
2 � ri

G. Zachmann 218 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Andere Distanz-Funktionen

§  Voronoi-Diagramm mit L1- und L∞-Norm:

L∞ - Norm
(supremum/max-norm)

L1-Norm
(Manhattan norm)

G. Zachmann 219 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Diagramme auf anderen Mannigfaltigkeiten

§  Z.B. auf der Kugel:

§  Bisektoren = Großkreise

G. Zachmann 220 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Higher-Order Voronoi Diagrams

§  In einem Voronoi-Diagramm k-ter Ordnung Vk(S) gehören alle
diejenigen Punkte des Raumes zur selben Voronoi-Region, die die
selben k nächsten Nachbarn aus S haben

§  Unterschiede zum klassischen Voronoi-Diagramm:

§  Ein Bisektor kann zu mehreren Begrenzungskanten (-ebenen)
beitragen

§  Eine Voronoi-Region muß ihre Generatoren (Sites) nicht mehr
enthalten

G. Zachmann 221 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Beispiel:

1-st order 2-nd order

3-rd order 4-th order

G. Zachmann 222 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Demo

Andreas Pollack - http://www.pollak.org/en/otherstuff/informatics/voronoi/

G. Zachmann 223 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Diagramm von Liniensegmenten

§  Sites sind jetzt Punkte +
Liniensegmente

§  Bisektoren = Geraden +
Parabeln

§  Beispiel:

G. Zachmann 224 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Example with weighted sites and higher-order sites:

Weighted distances

Higher-order sites

2.0

0.5

G. Zachmann 225 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

The "Cone Trick" for Higher-Order Sites

§  Observation: the surface in 3D, generated by

where d(x,y) = distance from the Voronoi site is a swept cone

§  Idea: approximate distance function by a mesh

f (x , y) = (x , y , d(x , y))

G. Zachmann 226 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

More Example Distance Meshes

G. Zachmann 227 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Skeleton oder Medial Axis

§  Besonders im Fall von geschlossenen
Objekten

§  Alle Punkte, die gleich weit von 2 Punkten
des Randes eines Objektes entfernt sind

§  Problem: Stabilität

G. Zachmann 228 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Äußere Voronoi-Regionen eines konvexen Polyeders

The external
Voronoi regions of …
(a)  faces
(b)  edges
(c)  a single edge
(d)  vertices

G. Zachmann 229 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Beispiel zu NNG(S) ⊆ D(S)

G. Zachmann 230 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Maximale, leere Kreise

G. Zachmann 231 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Anwendungsgebiete der Voronoi-Diagramme

•  Anthropology and Archeology -- Identify the
parts of a region under the influence of different
Neolithic clans, chiefdoms, ceremonial centers, or
hill forts.

•  Astronomy -- Identify clusters of stars and clusters
of galaxies (Here we saw what may be the earliest
picture of a Voronoi diagram, drawn by Descartes
in 1644, where the regions described the regions of
gravitational influence of the sun and other stars.)

•  Biology, Ecology, Forestry -- Model and analyze
plant competition ("Area potentially available to a
tree", "Plant polygons")

•  Cartography -- Piece together satellite
photographs into large "mosaic" maps

•  Crystallography and Chemistry -- Study
chemical properties of metallic sodium ("Wigner-
Seitz regions"); Modelling alloy structures as
sphere packings ("Domain of an atom")

•  Finite Element Analysis -- Generating finite
element meshes which avoid small angles

•  Geography -- Analyzing patterns of urban
settlements

•  Geology -- Estimation of ore reserves in a deposit
using information obtained from bore holes;
modelling crack patterns in basalt due to
contraction on cooling

•  Geometric Modeling -- Finding "good"
triangulations of 3D surfaces

•  Marketing -- Model market of US metropolitan
areas; market area extending down to individual
retail stores

•  Mathematics -- Study of positive definite
quadratic forms ("Dirichlet tessellation", "Voronoi
diagram")

•  Metallurgy -- Modelling "grain growth" in metal
films

•  Meteorology -- Estimate regional rainfall
averages, given data at discrete rain gauges
("Thiessen polygons")

•  Pattern Recognition -- Find simple descriptors
for shapes that extract 1D characterizations from
2D shapes ("Medial axis" or "skeleton" of a
contour)

•  Physiology -- Analysis of capillary distribution in
cross-sections of muscle tissue to compute oxygen
transport ("Capillary domains")

•  Robotics -- Path planning in the presence of
obstacles

•  Statistics and Data Analysis -- Analyze statistical
clustering ("Natural neighbors" interpolation)

•  Zoology -- Model and analyze the territories of
animals

G. Zachmann 232 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Anwendung: das River-Mile-Koordinatensystem

§  Das River-Mile-Koordinatensystem:

§ Wird gerne in großen Wasserwegesystemen angewendet

§  Koordinaten eines Punktes in der Ebene = (l, q) wobei
l = gemessen entlang der Mittellinie des Flusses,
q = Entfernung von Punkt (l, 0) senkrecht zur Tangente in (l, 0)

§  Aufgabe:
gegeben ein Punkt (x,y) ⟶
welche Koord. (l, q) hat er?

G. Zachmann 233 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Zerlegung der Mittellinie
in einen fein auf-
gelösten Polygonzug

Voronoi-Diagramm dazu

G. Zachmann 234 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Clustering

§  Aufgabe:

§  Gegeben: Menge von Punkten

§  Gesucht: Partitionierung der Punktmenge in "Cluster"

§  Clustering = maximal intra-cluster similarity and
 minimal inter-cluster similarity

 = minimal intra-cluster distance and
 maximal inter-cluster distance

G. Zachmann 235 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Gute Einteilung in Wahlbezirke (Redistricting)

§  Das Fairness-Prinzip: "one man, one vote"

§  Ganz einfach ... oder?

§  Einfaches Beispiel:

§  Gesetzliche Kriterien für Wahlbezirke in den USA:

§  Gleiche Anzahl Wähler

§  Jeder Bezirk soll zusammenhängend sein

§  "Kompaktheit" (ist im US-Gesetz aber nicht klar definiert)

Wählerverteilung Gleiche Anzahl
Repräsentanten

Demokraten
gewinnen

Republikaner
gewinnen

C
op

yr
ig

ht
 ©

 2
00

1
by

M

ic
ha

el
 D

. R
ob

bi
ns

, F
ra

ud
Fa

ct
or

.c
om

G. Zachmann 236 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Böses Beispiel:

"In gerrymandered
election districts, the
voters don't choose
their politicians - the
politicians choose their
voters!"

1990 (?)

G. Zachmann 237 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Ähnlicher Effekt bei Europawahlen: die Stimme eines Wählers in
Malta oder Luxembourg hat 10x mehr Gewicht als die eines
deutschen Wählers!

G. Zachmann 238 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Eine mögliche Definition von Kompaktheit:
 Sei
 eine Menge von Wahlbezirken (districts).
 Jeder Distrikt
 enthält eine Menge von Wählern pi .
 Die Kompaktheit eines Distrikts ist

 Die Gesamtkompaktheit der Einteilung in Distrikte ist

D = {D1, . . . , Dk}

Di = {pj , . . . , pl} � P = {p1, . . . , pn}

c(D) =
|D|�

i ,j=1

d(pi , pj)

c(D) =
k�

i=1

c(Di)

G. Zachmann 239 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Theorem:
 Eine optimale Aufteilung in Wahlbezirke bzgl. Kompaktheit
 geht aus einem Power-Diagramm hervor.

§  Aufgabe :
§  Konstruiere zu gegebener Menge Wähler {pi}

eine Menge von Voronoi-Sites mit Gewichten, so daß

- 

-  Voronoi-Sites = "Wahllokale"

-  Gewicht = Maß für die Populationsdichte in dem zugehörigen Distrikt
(kleines Gewicht = hohe Dichte)

§  Ansatz :
§  Starte mit zufälligen Sites und Gewichten

§  Verschiebe Sites und Gewichte, bis c(D) in lokalem Minimum

�i : |Di | = n

G. Zachmann 240 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Pfadplanung

§  Gegeben: Grundriß als Menge von Liniensegmenten

§  Gesucht: Pfad (z.B. für autonomes Vehikel = Roboter) mit
maximalem Abstand zu den Wänden

http://www.cs.columbia.edu/~pblaer/projects/path_planner/

G. Zachmann 241 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Lösung:

§  (Verallgemeinertes) Voronoi-Diagramm dazu konstruieren

§  Näheste Voronoi-Knoten zu Start- und Endpunkt suchen

§ Mit Dijkstra-Algo kürzesten Pfad von Start- zu End-Knoten durch
Voronoi-Diagramm suchen

G. Zachmann 242 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 243 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Bewertung von Samplings

§  Beispiel: Wetterstationen

§  Frage: wo ist die geringste
Dichte?

§  Ideales Sampling → jeder
Punkt würde eine Fläche
von

abdecken (A = Gesamt-
fläche)

Ā =
A

n

G. Zachmann 244 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Lösung:

§  Voronoi- und Delaunay-Diagramm berechnen

§  Relative Größe pro Zelle ist

§  Ai > 1 → zu geringe Dichte

§  Sample-Punkte "bestrafen", falls sie dicht
beieinander liegen relativ zur Größe der Zelle
→ Distanz zum nearest neighbor

Ai =
Vi

Ā

G. Zachmann 245 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 246 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Protein-Struktur-Analyse

§  Frage:

§ Wie sieht die aktive Oberfläche (= Interface) eines Moleküls aus?

§ Welche Atome interagieren mit Atomen aus der Umgebung

§  Eine Lösung:

§  Plaziere zufällig Atome um
das geg. Molekül herum

§  Berechne das Voronoi-
Diagramm alle Punkte

§  Interface = Voronoi-Facetten
zwischen Molekül und
Umgebungsatomen

G. Zachmann 247 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Verbesserungen

§  Verwende Power-Diagramm oder
Voronoi-Diagramm mit additiven
Gewichten

§  Gewicht = Atomradius

§  Berechne "Tiefe" pro Atom:

§  Atome mit einer Voronoi-Facette nach
außen = Tiefe 1

§  Traversiere Delaunay-Graph breadth-
first von außen nach innen

§  Je tiefer ein Atom, desto geringer sein
Beitrag zu Wechselwirkungen

8
F
IG

U
R

E
S

7
8
4

1

4
3

2

1

3

1

1

2

1

3

4

5

5

6

6

1

2

4

2

3

6

4

5
6

F
ig

.
1.

(a
)

an
d
(b

)

F
ig

.
2.

(a
)

an
d
(b

)

40

N
a
tu

re
 P

re
c
e
d
in

g
s
 :
 h

d
l:
1
0
1
0
1
/n

p
re

.2
0
0
8
.1

5
2
2
.2

 :
 P

o
s
te

d
 2

1
 J

u
n
 2

0
0
8

G. Zachmann 248 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Secondary Structure of Proteins

§  Lange Proteine falten sich zu Helices, Knäueln,
und Flächenstücken

§  Ergibt Wechselwirkungen zwischen Atomen
(Bindungen), die nicht in der chemischen
Formel zu sehen sind

§  Frage: gegeben die Positionen der Atome, wie
sieht die sekundäre Struktur aus?

§ Welche Atome sind "benachbart", welche nicht

§ Wie stark sind sie benachbart?

§  Lösung: Voronoi-Diagramm

§  Benachbart = gemeinsame Voronoi-Facette

§  Stärke der Nachbarschaft = Größe der Facette

Amino-
säuren

Helix Flächen-
stück

G. Zachmann 249 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Resultat: Adjazenz-Matrix (grau/schwarz = schwach/stark
benachbart)

G. Zachmann 250 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Appolonius-Diagramme in 3D

Z.B. um die Leerstellen
in einem Molekül zu
bestimmen

G. Zachmann 251 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Visibility Sorting Using Voronoi Diagrams

§  Erinnerung: BSPs für Visibility-Sortierung

§  Methode:

§  Definiere eine Visibility-Relation auf Voronoi-Regionen

jeder Punkt der Voronoi-Zelle R2 wird durch einen Punkt der Zelle R1
bzgl. des Viewpoints v verdeckt

§  Nun gilt:

-  Bew.: klar weil R1 und R2 komplett auf verschiedenen Seiten des Bisektors
zwischen R1 und R2 liegen.

R1 �v R2

R1 �v R2 , 8p1 2 R18p2 2 R2 : kv � p1k < kv � p2k

G. Zachmann 252 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Idee:

§  Zunächst alle Pgone
in Voronoi-Zellen
clustern

§  Zur Laufzeit nur noch
die Voronoi-Sites sortieren
(inkrementell)

§  Ansatz zum Voronoi-Clustering:

§  Initialisierung: eine Zelle pro Polygon mit Schwerpunkt als Site

§  Die kleinste Zelle löschen:

-  Voronoi-Diagramm lokal neu berechnen

-  Polygone der kleinsten Nachbarzelle zuordnen

§  Abbruch falls keine Zelle mehr aufgelöst werden kann, ohne daß eine
zyklische Visibility-Ordnung in einer Zelle entsteht

G. Zachmann 253 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Diagramme in der Natur

Seifenblasen in einem
Glasrahmen

Bienenwaben
(centroidal Voronoi tesselation)

G. Zachmann 254 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Libellenflügel

G. Zachmann 255 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 256 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

G. Zachmann 257 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Voronoi-Diagramm in der interaktiven Kunst

Scott Snibbe, phaeno, W
olfsburg

G. Zachmann 258 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Distance Fields

2D Shape Shape’s distance field

Outside

Boundary of shape

Inside

G. Zachmann 259 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Distance fields are C0-continuous everywhere

§  Distance fields are C1-continuous except at boundaries of
Voronoi regions

Distance field is C0 continuous C1 continuous except at Voronoi boundaries

G. Zachmann 260 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Adaptively Sampled Distance Fields (ADFs): sample at low rates
where the distance field is smooth; sample at higher rates only
where necessary (e.g., near corners)

Detail-directed ADF Boundary-limited quadtree

G. Zachmann 261 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Rendering ADF's using adaptive ray-casting:

Rendered via adaptively
ray casting

Rays cast to render part of
the image on the left

G. Zachmann 262 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

§  Point-based rendering of ADF's:

§  Seed each boundary leaf cell with randomly placed points, number of
points proportional to cell size

§  Relax the points onto the ADF surface using the distance field and
gradient

§ Optionally shade each point using the field's gradient

Original points seeded in
boundary leaf cells

Points after relaxation onto
the surface

G. Zachmann 263 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

An ADF
rendered as

points at two
different scales

G. Zachmann 265 Geometric Data Structures (and Algorithms) for Computer Graphics 16 September
2015

SS

Thanks Folks

