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Barycentric coordinates for triangles are commonly used in computer graphics, geometric modelling, and other computational

sciences for various purposes, because they provide a convenient way to linearly interpolate data that is given at the corners

of a triangle. The concept of barycentric coordinates can also be extended in several ways to convex polygons with more
than three vertices, but most of these constructions break down when used in the non-convex setting. One choice that is not

limited to convex configurations are the mean value coordinates and we show that they are well-defined for arbitrary planar
polygons without self-intersections. Besides many other important properties, these coordinate functions are smooth and allow

an efficient and robust implementation. They are particularly useful for interpolating data that is given at the vertices of

the polygons and we present several examples of their application to common problems in computer graphics and geometric
modelling.

Categories and Subject Descriptors: G.1.1 [Interpolation]: Interpolation formulas; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD); I.3.7 [Computer Graphics]:

Three-Dimensional Graphics and Realism—Color, Shading, Shadowing, and Texture

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Barycentric coordinates, interpolation

1. INTRODUCTION

It follows from Ceva’s Theorem [Ceva 1678] that for any point v inside a planar triangle [v1, v2, v3] there
exist three masses w1, w2, and w3, such that, if placed at the corresponding vertices of the triangle, their
centre of mass (or barycentre) will coincide with v, i.e.,

w1v1 + w2v2 + w3v3

w1 + w2 + w3
= v. (1)

Möbius [1827] was the first to study such mass points and he defined w1, w2, and w3 as the barycentric
coordinates of v. Evidently, these barycentric coordinates are only unique up to multiplication by a common
non-zero scalar and they are usually normalized to sum to one.

These normalized triangular barycentric coordinates are linear in v and have the additional property that
the i-th coordinate has value 1 at vi and 0 at the other vj . This is why they are commonly used to linearly
interpolate values given at the vertices of a triangle and have applications in computer graphics (e.g. Gouraud
and Phong shading, texture mapping, ray-triangle-intersection), geometric modelling (e.g. triangular Bézier
patches, splines over triangulations), and many other fields (e.g. the finite element method, terrain modelling).

Author’s address: K. Hormann, Department of Computer Science, Clausthal University of Technology, Julius-Albert-Str. 4,

38678 Clausthal-Zellerfeld, Germany; email: hormann@in.tu-clausthal.de; M. S. Floater, Department of Informatics, University
of Oslo, P.O.Box 1053 Blindern, 0316 Oslo, Norway; email: michaelf@ifi.uio.no.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that

the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to

republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY, Pages 1–18.



2 · K. Hormann and M. S. Floater

In many applications it would be useful to have a generalization of barycentric coordinates to arbitrary
n-sided polygons or even sets of polygons in the plane with vertices v1, . . . , vn. One would then like to have
smooth homogeneous barycentric coordinates wi : IR2 → IR that generalize Eq. (1),

n∑
i=1

wi(v)(vi − v) = 0, (2)

and associated normalized barycentric coordinates,

λi(v) =
wi(v)∑n

j=1 wj(v)
, (3)

so that any point v in the plane can be written as an affine combination of v1, . . . , vn with weights
λ1(v), . . . , λn(v). Furthermore, these coordinates should satisfy the Lagrange property

λi(vj) = δi,j =

{
1 if i = j,
0 if i 6= j.

(4)

We discuss a general approach to constructing such homogeneous barycentric coordinates in Section 3, but for
most choices the normalized coordinates in (3) either are not well-defined everywhere in IR2, or do not meet
the constraints in (4). We then prove in Section 4 that the mean value coordinates fulfill both conditions and
have a number of other important properties, like smoothness, linear independence, and refinability. They
further enable a very efficient and robust implementation as shown in Section 5.

The main application of these coordinates is interpolation and in Section 6 we give several examples from
computer graphics and geometric modelling that can be seen as interpolation problems and hence be solved
with this approach. In particular, we propose an improved Phong shading method for non-triangular faces,
a simple image warping technique, and interpolation of data that is specified on planar curves.

2. RELATED WORK

2.1 Barycentric Coordinates

Most of the previous work on barycentric coordinates discusses the extension to convex polygons. The first
such generalization appears in the pioneering work of Wachspress [1975] who was interested in extending the
finite element method. These Wachspress coordinates are rational polynomials and were later generalized
to convex polytopes by Warren [1996] who also showed that they have minimal degree [Warren 2003].
They can be computed with simple and local formulas in the plane [Meyer et al. 2002] as well as in higher
dimensions [Warren et al. 2004] and have many other nice properties like affine invariance. A simple geometric
construction has recently been presented by Ju et al. [2005]. Malsch and Dasgupta have also been interested in
finite element methods and extended Wachspress’ approach to weakly convex polygons [Malsch and Dasgupta
2004a] and convex polygons with interior nodes [Malsch and Dasgupta 2004b].

Other generalizations of barycentric coordinates to convex polygons and even to the kernel of a star-
shaped polygon were presented in the context of triangle mesh parameterization, for example the shape
preserving [Floater 1997], the discrete harmonic [Pinkall and Polthier 1993; Eck et al. 1995], and the mean
value coordinates [Floater 2003], where the latter have also been generalized to polyhedra of arbitrary genus
in 3D independently by Floater et al. [2005] and Ju et al. [2005].

Also the natural neighbour interpolants that were proposed by Sibson [1980; 1981] for the purpose of
scattered data interpolation provide barycentric coordinates for convex polygons, but like the coordinates
in [Farin 1990] they are not more than C1-continuous away from the data points. Hiyoshi and Sugihara
[2000] extended Sibson’s approach and presented Ck-continuous coordinates, but their computation is very
costly and involves numerical integration.
ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY.
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Except for the discrete harmonic coordinates, all these coordinates have in common that they are positive
over the interior of any convex polygon. In fact, this property has often been used in the definition of
barycentric coordinates instead of the weaker interpolation condition (4) which is in any case a consequence
of the positivity, as discussed by Floater et al. [2005]. They also proved that for a convex polygon the
Wachspress and the mean value coordinates are the only positive coordinates with uniform scaling invariance
that can be computed with a local three-point-formula.

For non-convex polygons a usual approach is to triangulate the domain and apply the standard barycentric
coordinates on each triangle, but the result depends on the particular triangulation chosen and is only
C0-continuous over the edges of the triangles. To the best of our knowledge, Malsch and Dasgupta [2005]
were the first to present smooth barycentric coordinates for non-convex polygons. Their coordinate functions
are well-defined over the convex hull of any concave polygon with possible holes and the construction requires
special treatment of the vertices on the convex hull. Based on the work of [Malsch et al. 2005], Sukumar and
Malsch [2005] recently suggested another type of smooth barycentric coordinates for non-convex polygons
that are not restricted to the convex hull, but these metric coordinates are no longer necessarily positive
over the interior of a convex polygon.

Contributions. We show that also the mean value coordinates can be used in the non-convex setting and
even more generally for sets of arbitrary planar polygons without self-intersections. In particular, they are
well-defined everywhere in the plane and can be computed with a simple and local formula. These properties
make them an ideal tool for the interpolation of data that is given at the vertices. We also show that the
mean value coordinates are smooth (i.e. C∞) except at the vertices of the polygons where they are only
C0-continuous.

2.2 Interpolation

The interpolation of data that is given at the vertices of a set of polygons can be seen as a scattered data
interpolation (SDI) problem and many different approaches exist to solve it, including radial basis func-
tions [Beatson and Newsam 1992; Beatson et al. 2000; Buhmann 2000] and bivariate splines [Lee et al. 1997;
Nürnberger and Zeilfelder 2000]. Such interpolation problems frequently occur in various fields of science
and engineering (e.g. geology, reverse engineering, numerical simulation) but also in computer graphics and
geometric modelling.

One example is image warping (see [Wolberg 1990; Glasbey and Mardia 1998; Milliron et al. 2002] for an
overview of the state-of-the-art) and radial basis functions [Arad et al. 1994; Ruprecht and Müller 1995] as
well as B-splines [Lee et al. 1995;1997] have been used in this context.

Another important problem is that of transfinite interpolation where the data to be interpolated is given
as functions over a set or network of planar curves. There exist a number of well-established methods for
some special cases, like Coons’ or Gordon surfaces [Farin 2002] for triangular- or rectangular-shaped input
curves, but very few are known for the general case. The standard approach is to either sample the data
and apply an SDI method or to solve a partial differential equation (PDE) with the given data as boundary
conditions [Chai et al. 1998; Kounchev 2001]. But like the generalization of Sibson’s interpolants that was
suggested by Gross and Farin [1999], this is usually very costly to compute.

Contributions. Due to the Lagrange property of the mean value coordinates, interpolation of data that is
given at the vertices of a set of polygons can be done directly and efficiently without solving a linear system.
In the context of transfinite interpolation, the locality of the coordinate functions further enables a simple
and progressive update of the solution if the sampling density is increased. Interestingly, the interpolating
surfaces are often strikingly similar to interpolating thin plate splines, even though they require far less
computational effort.

ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY.
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(a) (b) (c) (d)

Fig. 1. We consider convex (a), star-shaped (b), simple (c), and sets of simple polygons (d).
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Fig. 2. Notation used for angles, areas, and distances.

3. GENERAL CONSTRUCTION OF HOMOGENEOUS BARYCENTRIC COORDINATES

Let Ψ be an arbitrary simple polygon in the plane with n ≥ 3 distinct vertices v1, . . . , vn and non-intersecting
(open) edges ei = (vi, vi+1) = {(1− µ)vi + µvi+1 : 0 < µ < 1}; see Fig. 1 (a–c) for some examples. The
situation in Fig. 1 (d), where Ψ is a set of (possibly nested) simple polygons, will be discussed in Section 4.
For i = 1, . . . , n we define for any v ∈ IR2 the usual Euclidian distance to vi as ri(v) = ‖vi − v‖ and denote
by αi(v) the signed angle in the triangle [v, vi, vi+1] at the vertex v. Then

Ai(v) = ri(v)ri+1(v) sin(αi(v))/2 (5)

and

Bi(v) = ri−1(v)ri+1(v) sin(αi−1(v) + αi(v))/2 (6)

are the signed areas of the triangles [v, vi, vi+1] and [v, vi−1, vi+1], respectively1; see Fig. 2. It is now well-
known that

Ai(v), −Bi(v), Ai−1(v)

are homogeneous barycentric coordinates of v with respect to the triangle 4i = [vi−1, vi, vi+1], in other
words,

Ai(v)(vi−1 − v)−Bi(v)(vi − v) + Ai−1(v)(vi+1 − v) = 0. (7)

Often, these coordinates are divided by their sum Ci = Ai−1(v) + Ai(v)−Bi(v), the area of 4i, to give the
normalized barycentric coordinates as ratios of areas.

Let us now consider the homogeneous coordinates of v with respect to all triangles 41, . . . ,4n. Then we
have for any vertex vi of Ψ three coordinates that correspond to vi, one in each of the three triangles 4i−1,
4i, and 4i+1. If we now take a weighted average of these three coordinates and define

wi(v) = bi−1(v)Ai−2(v)− bi(v)Bi(v) + bi+1(v)Ai+1(v), (8)

1Note that we always treat indices cyclically with respect to n, so that en = (vn, v1) and B1(v) = Area[v, vn, v2], for example.
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Fig. 3. Zero-set of the denominator W (v) for the Wachspress (green) and the discrete harmonic coordinates (red) for a concave

polygon (left) and contour plots of the normalized Wachspress (middle) and the discrete harmonic (right) coordinate function
λi that corresponds to the topmost vertex.

where the weight functions bi : IR2 → IR can be chosen arbitrarily, then it follows from (7) that the functions
wi are homogeneous barycentric coordinates with respect to Ψ, because

n∑
i=1

wi(v)(vi − v) =
n∑

i=1

bi(v)
(
Ai(v)(vi−1 − v)−Bi(v)(vi − v) + Ai−1(v)(vi+1 − v)

)
= 0.

The critical part now is the normalization of these homogeneous coordinates, i.e. to guarantee that the
denominator in (3) is non-zero for every v ∈ IR2. For convex polygons this is relatively easy to achieve.
Indeed, it follows from (8) that

W (v) =
n∑

i=1

wi(v) =
n∑

i=1

bi(v)Ci (9)

and since all Ci have the same sign if Ψ is convex, W (v) can never be zero as long as all the weight functions bi

are positive (or negative). But in the general case it is more difficult to avoid dividing by zero. Consider, for
example, the Wachspress and discrete harmonic coordinates that can be generated by the weight functions

bW
i =

1
Ai−1Ai

and bD
i =

ri
2

Ai−1Ai
.

Both coordinates are well-defined for v inside any convex polygon. However, inside a non-convex polygon,
W (v) can be zero, and the normalized coordinates λi(v) may have non-removable poles, as illustrated for a
concave quadrilateral in Fig. 3.

To avoid this problem, Eq. (9) suggests taking weight functions like bi = 1/Ci so that W ≡ n. But
although this particular choice gives well-defined (and linear) normalized coordinates λi as long as no three
consecutive vertices of Ψ are collinear, they unfortunately do not satisfy Eq. (4). Another option that gives
the metric coordinates [Sukumar and Malsch 2005] is

bM
i =

1
Ciqi−1qi

,

where the positivity of the functions qi = ri + ri+1 − ‖vi+1 − vi‖ guarantees a non-vanishing denominator
W (v). The corresponding normalized coordinates satisfy the Lagrange property, but like the discrete har-
monic coordinates, they are not necessarily bounded between 0 and 1 inside a convex polygon. Thus, an
interpolating function may take on values outside the convex hull of the given data, which can be undesirable
in some applications.

ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY.
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Fig. 4. Notation used in Lemma 4.1 for the refinement of Ψ to Ψ̂.

In this paper we want to study the mean value coordinates which are generated by the weight functions

bMV
i =

ri

Ai−1Ai
.

With this particular choice of bi, Eq. (8) becomes

wi =
ri−1Ai − riBi + ri+1Ai−1

Ai−1Ai
, (10)

which is the formula given by Floater et al. [2005]. By using (5), (6), and some trigonometric identities this
simplifies to

wi = 2
tan(αi−1/2) + tan(αi/2)

ri
, (11)

which (up to the factor 2) is the formula that originally appeared in [Floater 2003]. Note that these wi are
three-point coordinates [Floater et al. 2005] in the sense that wi depends only on vi and its two neighbours
vi−1 and vi+1. The same holds for the Wachspress and the discrete harmonic coordinates, but not for the
metric coordinates which depend on vi−2, . . . , vi+2 and therefore are five-point coordinates.

4. PROPERTIES OF MEAN VALUE COORDINATES

To study the behaviour of the mean value coordinates wi from (11) let us first assume v ∈ IR2 \ Ψ where
Ψ is a simple polygon or a set of (possibly nested) simple polygons. Then it follows that −π < αi(v) < π
and ri(v) > 0 for i = 1, . . . , n, so that all homogeneous coordinate functions wi from (11) are well-defined.
Under these conditions we can show the following refinement rule.

Lemma 4.1. Let v̂ = (1 − µ)vj + µvj+1 with 0 < µ < 1 be some point on the edge ej. If we refine the
polygon Ψ to Ψ̂ by adding v̂ between vj and vj+1 (see Fig. 4) and denote the homogeneous coordinates with
respect to Ψ̂ by ŵ1, . . . , ŵn and ŵ, then we have wj = ŵj + (1 − µ)ŵ, wj+1 = ŵj+1 + µŵ, and wi = ŵi for
i 6= j, j + 1.

Proof. For i 6= j, j + 1, the statement follows directly from the fact that the mean value coordinates are
three-point coordinates. According to Eq. (11), the remaining three homogeneous coordinates of Ψ̂ are

ŵj = 2
(
tan(αj−1/2) + tan(α̂−/2)

)
/rj ,

ŵ = 2
(
tan(α̂−/2) + tan(α̂+/2)

)
/r̂,

ŵj+1 = 2
(
tan(α̂+/2) + tan(αj+1/2)

)
/rj+1.
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Fig. 5. Partitioning into sectors with exit (solid) and entry edges (dashed).

If v, vj , and vj+1 are collinear, then αj = α̂− = α̂+ = 0 and it is easy to verify that ŵj = wj , ŵ = 0, and
ŵj+1 = wj+1. Otherwise, all three angles are non-zero and we can write (1− µ) and µ as ratios of areas,

1− µ =
Area[v, v̂, vj+1]
Area[v, vj , vj+1]

=
r̂ sin α̂+

rj sinαj
and µ =

Area[v, vj , v̂]
Area[v, vj , vj+1]

=
r̂ sin α̂−

rj+1 sinαj
.

We then find
rj

2
(wj − ŵj − (1− µ)ŵ) = tan(αj/2)− tan(α̂−/2)− sin α̂+

sinαj

(
tan(α̂−/2) + tan(α̂+/2)

)
,

and

rj+1

2
(wj+1 − ŵj+1 − µŵ) = tan(αj/2)− tan(α̂+/2)− sin α̂−

sinαj

(
tan(α̂−/2) + tan(α̂+/2)

)
,

where both right hand sides simplify to zero after using first the identity tan(x/2) = (1 − cos x)/ sinx and
then the sine and cosine addition formulas for αj = α̂− + α̂+.

An immediate consequence of this refinement rule is that the sum of homogeneous coordinates does not
change under this kind of refinement.

Corollary 4.2. If Ψ is refined to Ψ̂ as in Lemma 4.1, then W = Ŵ .

But it is even more important that this sum never vanishes.

Theorem 4.3. The sum W (v) of the homogeneous mean value coordinates (11) is non-zero for all v /∈ Ψ.

Proof. Let us first assume that Ψ is a single simple polygon with positive orientation and that v lies in
the interior of Ψ. We then consider the rays from v through the vertices vi and add all intersection points
of the rays with the edges of the polygon to Ψ as shown in Fig. 5. According to Corollary 4.2 this does not
change W (v). Next we consider for any of the radial sectors between two neighbouring rays all edges inside
the sector and classify them as exit edges (solid) or entry edges (dashed), depending on whether a traveller
coming from v exits or enters the interior of Ψ at the edge. If we define for each edge ei = (vi, vi+1) the
value

κi =
(

1
ri

+
1

ri+1

)
tan(αi/2),

then it follows from the orientation of Ψ that κi is positive if ei is an exit edge and negative if ei is an entry
edge. And for edges ei that lie on one of the rays, we have κi = 0.

ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY.
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Fig. 6. Orientation (arrows), interior (grey), and sign of W (+/−) for a set of simple polygons.

Now let ei be one of the entry edges. Then there always exists an exit edge ej in the same sector that is
closer to v; see Fig. 5. But as αi = −αj and at least one of the inequalities rj ≤ ri+1 and rj+1 ≤ ri is strict,
we have

κj =
(

1
rj

+
1

rj+1

)
tan(αj/2) >

(
1
ri

+
1

ri+1

)
tan(−αi/2) = −κi.

This means that the negative κi of the entry edge ei is counterbalanced by the positive κj of the exit edge
ej . As this holds for all entry edges (without using any exit edge twice), we conclude that

n∑
i=1

κi > 0.

But the sum of the κi can be rearranged, by a change of summation index, to be half the sum of the wi from
Eq. (11) and therefore W (v) is positive for any v inside Ψ. Likewise one can show that W is negative over
the exterior of Ψ and vice versa if Ψ is negatively oriented.

If Ψ is a set of (possibly nested) simple polygons, then the same line of arguments holds as long as entry
and exit edges keep alternating in each radial sector. But this can easily be guaranteed by requiring the
orientation of the single polygons to alternate as shown in Fig. 6. If we further define the interior of such a
set of polygons to be the regions “left” of the polygons (marked grey in Fig. 6), then it follows that W is
positive over the interior of Ψ and negative otherwise.

A consequence of Theorem 4.3 is that the normalization in Eq. (3) is well-defined for arbitrary planar
polygons without self-intersections. And as the normalized mean value coordinates λi are a composition of
analytic functions it follows that they are C∞ over the open set IR2 \Ψ. But the question remains whether
the λi have a continuous extension to the whole plane and satisfy the Lagrange property (4). In the case of
convex polygons, the answer to both questions is positive and moreover, the λi are linear along the edges of
Ψ [Floater et al. 2005]. We will now show that this also holds for arbitrary polygons.

Theorem 4.4. Let v? = (1− µ)vj + µvj+1 with 0 < µ < 1 be some point on the edge ej of Ψ. Then the
normalized mean value coordinates λi converge to (1− µ)δi,j + µδi,j+1 at v?.

Proof. Let us consider the open disk Dε = Dε(v?) = {x ∈ IR2 : ‖x− v?‖ < ε} around v? with ε > 0 such
that Dε does not contain vj and vj+1 and does not intersect any other edges of Ψ than ej (see Fig. 7). Then
wi(v) with i 6= j, j + 1 is well-defined for any v ∈ Dε and only wj and wj+1 have poles for v ∈ Dε ∩ ej . To
remove these poles we consider the slightly modified functions w̃i = wiAj/2. For i 6= j, j + 1 these are still
well-defined functions over Dε with w̃i(v) = 0 for v ∈ Dε ∩ ej . Furthermore we have

w̃j = 2
tan(αj−1/2) + tan(αj/2)

rj

rjrj+1 sinαj

4
=

rj+1

2
(
tan(αj−1/2) sinαj + (1− cos αj)

)
ACM Transactions on Graphics, Vol. V, No. N, Mmmm 20YY.
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Fig. 7. Notation used in the proofs of Theorem 4.4 (left) and Theorem 4.6 (right).

and likewise

w̃j+1 =
rj

2
(
tan(αj+1/2) sinαj + (1− cos αj)

)
,

which are also both well-defined everywhere in Dε. In particular, for any v ∈ Dε ∩ ej we have sinαj(v) = 0
and cos αj(v) = −1 so that w̃j(v) = rj+1(v) and w̃j+1(v) = rj(v).

When we normalize the functions w̃i as in (3), then the common factor Aj/2 cancels out and we get
functions λ̃i that agree with λi for any v ∈ Dε \ ej ,

λ̃i(v) =
w̃i(v)∑n

k=1 w̃k(v)
=

wi(v)Aj(v)/2∑n
k=1 wk(v)Aj(v)/2

=
wi(v)∑n

k=1 wk(v)
= λi(v).

The advantage of the λ̃i is that they are also well-defined over Dε ∩ ej so that we have

lim
v→v?

λi(v) = λ̃i(v?) =
w̃i(v?)∑n

k=1 w̃k(v?)
=

δi,jrj+1(v?) + δi,j+1rj(v?)
rj+1(v?) + rj(v?)

and the proof is completed by noting that rj(v?) = µ‖vj − vj+1‖ and rj+1(v?) = (1− µ)‖vj − vj+1‖.

Remark 4.5. Note that the functions λ̃i are composed of analytic functions and thus are C∞ over Dε(v?).

Theorem 4.6. The normalized mean value coordinates λi converge to δi,j at vj.

Proof. Let us consider again a small open disk Dε around vj that intersects only the edges ej−1 and
ej of Ψ so that Dε \ Ψ decomposes into the two open sets D+

ε and D−ε (see Fig. 7). We further choose ε
small enough such that Dε does not intersect the infinite straight line through vj−1 and vj+1, which in turn
guarantees wj(v) 6= 0 for all v ∈ Dε \Ψ. Dividing both the numerator and the denominator of λi by wj then
gives

λi =
(wi/wj)

1 +
∑

k 6=j(wk/wj)
for i 6= j and λj =

1
1 +

∑
k 6=j(wk/wj)

,

and so it is sufficient to show that wi(v)/wj(v) converges to 0 at vj for all i 6= j. Using the identity
tanx + tan y = sin(x + y)/(cos x cos y) we have wi/wj = (rj/ri)Rij with

Rij =
sin((αi−1 + αi)/2) cos(αj−1/2) cos(αj/2)
sin((αj−1 + αj)/2) cos(αi−1/2) cos(αi/2)

(12)

and since limv→vj
rj(v) = 0 and limv→vj

ri(v) = ‖vi − vj‖ > 0 for i 6= j, it is sufficient to show that Rij

is bounded in absolute value over Dε \ Ψ for i 6= j. As the numerator in this quotient is clearly bounded
in absolute value by 1, even though not all terms necessarily converge at vj , it remains to show that the
denominator is bounded away from zero.
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For i 6= j − 1, j, the angle functions αi are clearly continuous over Dε with −π < αi(v) < π and thus
cos(αi(v)/2) > 0 for all v ∈ Dε. The remaining two angle functions αj−1 and αj , on the other hand, are
continuous over Dε\Ψ but not well-defined at vj . However, by considering the quadrilateral (vj−1, vj , vj+1, v)
and noting that the angles of this quadrilateral at vj−1 and vj+1 vanish as v converges to vj it is easy to see
that the sum α(v) = αj−1(v) + αj(v) converges to 2π − β for v ∈ D+

ε and to −β for v ∈ D−ε with β as in
Fig. 7. Therefore, the function | sin((αj−1 + αj)/2)| is continuous over D+

ε ∪D−ε ∪ {vj} with

lim
v→vj

| sin((αj−1(v) + αj(v))/2)| = | sin(β/2)| > 0,

so that the term sin((αj−1 + αj)/2) is guaranteed to be bounded away from zero over Dε \ Ψ. The two
observations together immediately show that the denominator of Rij in (12) is bounded away from zero for
i 6= j−1, j+1. However, the same arguments also hold if i = j−1 because Rij then simplifies by cancellation
to

Rj−1,j =
sin((αj−2 + αj−1)/2) cos(αj/2)
sin((αj−1 + αj)/2) cos(αj−2/2)

and similarly in the remaining case i = j + 1.

With these results we can now give a precise definition of the normalized mean value coordinates for
arbitrary planar polygons and summarize their properties.

Definition 4.7. For any set of simple polygons Ψ we call the functions λi : IR2 → IR for i = 1, . . . , n with

λi(v) =


wi(v)Pn

j=1 wj(v) if v /∈ Ψ with wi as defined in Eq. (11),

(1− µ)δi,j + µδi,j+1 if v = (1− µ)vj + µvj+1 ∈ ej ,

δi,j if v = vj

(13)

the mean value coordinates of Ψ.

Corollary 4.8. The mean value coordinates λi have the following properties:

(1 ) Affine precision:
∑n

i=1 λiϕ(vi) = ϕ for any affine function ϕ : IR2 → IRd.
(2 ) Lagrange property: λi(vj) = δi,j.
(3 ) Smoothness: λi is C∞ everywhere except at the vertices vj where it is only C0.
(4 ) Partition of unity:

∑n
i=1 λi ≡ 1.

(5 ) Similarity invariance: if ϕ : IR2 → IR2 is a similarity2 and Ψ̂ = ϕ(Ψ), then λi(v) = λ̂i(ϕ(v)).
(6 ) Linear independence: if

∑n
i=1 ciλi(v) = 0 for all v ∈ IR2 then all ci must be zero.

(7 ) Refinability: if we refine Ψ to Ψ̂ by splitting ej at v̂ = (1 − µ)vj + µvj+1, then λj = λ̂j + (1 − µ)λ̂,
λj+1 = λ̂j+1 + µλ̂, and λi = λ̂i for i 6= j, j + 1.

(8 ) Edge property: λi is linear along the edges ej of Ψ.
(9 ) Positivity: λi is positive inside the kernel of star-shaped polygons, in particular inside convex polygons.

Proof. (1 ) follows from Eqs. (8) and (3) and implies (4 ) with φ ≡ 1. (2 ), (8 ), and (9 ) follow directly
from the definitions in Eqs. (13) and (11) and (3 ) from Theorems 4.4 and 4.6 and Remark 4.5. We conclude
(5 ) from the fact that the wi in Eq. (11) depend only on angles and distances and that any uniform scale
factor cancels out by the normalization. (6 ) can be deduced from (2 ) and (7 ) follows from Lemma 4.1.

Fig. 8 illustrates the typical behaviour of the mean value coordinates for a set of simple polygons.

2A transformation is called a similarity if it is a translation, rotation, reflection, uniform scaling, or combination of these.
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Fig. 8. In this example, Ψ is a set of four simple polygons. The contour plots visualize the three mean value coordinates λi

that correspond to the vertices marked by fat dots.

Fig. 9. Colour interpolation with mean value coordinates (left) and metric coordinates (right) for the polygons from Fig. 8 and

regions where the interpolation of the individual colour channels has been truncated for values below 0 (dark shade) and above

255 (light shade).

Note that most of these properties (in particular the affine precision and the Lagrange property) can also
be derived from the integral construction that was used in [Ju et al. 2005] to derive mean value coordinates
in three dimensions. But proving that the coordinates are well-defined for concave shapes and smooth across
the boundary is less obvious and has not been done so far, to the best of our knowledge.

The main application of these generalized barycentric coordinates is the interpolation of values that are
given at the vertices vi of Ψ. In other words, if a data value fi ∈ IRd is specified at each vi, then we are
interested in the function F : IR2 → IRd that is defined by

F (v) =
n∑

i=1

λi(v)fi (14)

Due to the Lagrange and edge properties of the coordinates, this function interpolates fi at vi and is linear
along the edges ei of Ψ.

An example where the fi are RGB colour values is shown in Fig. 9. As the mean value coordinates are
not necessarily positive for arbitrary polygons, it can happen that the interpolated RGB values are outside
the valid range [0, 255]. In this case we simply truncate the values to 0 or 255, respectively. As a result, the
interpolation function F is only C0 along certain curves and these artefacts are noticeable in the plot. The
same holds for interpolation with the metric coordinates of Sukumar and Malsch [2005].

5. IMPLEMENTATION

For the actual computation of the interpolation function F we basically use the definition in Eq. (13), but
we suggest a slight modification for determining the homogeneous coordinates wi from Eq. (11) that avoids
the computation of the angles αi and enables an efficient handling of the special cases that can occur. If we
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function F (v)

for j = 1 to m do

for i = 1 to nj do
sj,i := vj,i − v

for j = 1 to m do

for i = 1 to nj do
i+ := (i mod nj) + 1

rj,i := ‖sj,i‖
Aj,i := det(sj,i, sj,i+ )/2

Dj,i := 〈sj,i, sj,i+ 〉
if rj,i = 0 then // v = vj,i

return fj,i

if Aj,i = 0 and Dj,i < 0 then // v ∈ ej,i

rj,i+ := ‖sj,i+‖
return (ri+fi + rifi+ )/(ri + ri+ )

f := 0
W := 0

for j = 1 to m do

for i = 1 to nj do
i+ := (i mod nj) + 1

i− := ((i − 2) mod nj) + 1

w := 0
if Aj,i− 6= 0 then

w := w + (rj,i− − Dj,i−/rj,i)/Aj,i−

if Aj,i 6= 0 then

w := w + (rj,i+ − Dj,i/rj,i)/Aj,i

f := f + wfj,i

W := W + w

return f/W

Fig. 10. Pseudo-code for evaluating the interpolation function.

let si(v) = vi − v and denote the dot product of si and si+1 by Di, then we have

tan(αi/2) =
1− cos(αi)

sin(αi)
=

riri+1 −Di

2Ai
,

and we use this formula as long as Ai(v) 6= 0. Otherwise, v lies on the line through vi and vi+1 and we
distinguish three cases. If v = vi or v = vi+1, then we do not bother to compute the wi(v) and simply set
F (v) = fi or F (v) = fi+1. Likewise, if v lies on the edge ei, then we use the linearity of F along ei to
determine F (v) directly. Note that we can easily identify this case because it implies Di(v) < 0. Finally, if
v is not on Ψ then we conclude that αi(v) = 0 and therefore tan(αi(v)/2) = 0.

The pseudo-code for computing F (v) is given in Fig. 10. To clarify the situation with multiple polygons,
we assume that Ψ is a set of m simple polygons Ψ1, . . . ,Ψm where each Ψj has nj vertices vj,1, . . . , vj,nj .
Note that indices (j, i + 1) = (j, i+) and (j, i− 1) = (j, i−) are treated cyclically with respect to Ψj .

6. APPLICATIONS AND RESULTS

We now present three applications of the mean value coordinates that demonstrate their potential impact
on computer graphics and geometric modelling.
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(a) (b) (c) (d)

Fig. 11. Rendering of three pentagons with flat (a), Gouraud (b), Phong (c), and generalized Phong shading (d).

6.1 Phong Shading for Arbitrary Polygons

The standard approach to treating an arbitrary polygon in the rendering pipeline is to first tessellate it into
triangles and then process each triangle in turn. For example, OpenGL automatically splits a pentagonal
face into three triangles (possibly depending on the choice of the first vertex). This gives the expected result
if flat shading is used, but the splits become visible as soon as Gouraud shading or Phong shading is turned
on; see Fig. 11 (a–c).

Phong shading uses triangular barycentric coordinates to linearly interpolate the normals that are given
at the vertices of the face over each generated triangle. This can be seen for the two triangles that are
marked by the red and blue spots in the Phong-shaded result. Since the lower two vertices of both triangles
have identical normals, the interpolated normal as well as the resulting colour value vary linearly inside the
triangles. Instead, we can improve the idea of Phong shading and use mean value coordinates to smoothly
interpolate the normals over the whole polygon, giving a much more pleasant rendering result; see Fig. 11 (d).

Note that the polygons in this example are flat and extending the mean value interpolation to general 3D
polygons would require to use a two-dimensional reference polygon. This may become difficult to handle for
complex polygons but for the special case of 3D quadrilaterals, Hormann and Tarini [2004] have shown how
to effectively use mean value coordinates for rendering and rasterization.

6.2 Image Warping

Another potential application of the generalized barycentric coordinates is image warping as they offer a
particularly simple solution to this problem that can briefly be stated as follows.

Given a rectangular region Ω, a set of source polygons Ψ with vertices vi ∈ Ω, and a topologically
equivalent3 set of target polygons Ψ̂ with vertices v̂i ∈ Ω, we would like to construct a smooth warp function
f : Ω → Ω that maps each vi to v̂i. This warp function can then be used to deform a source image I : Ω → C
that maps Ω to some colour space C into a target image Î : Ω → C by simply setting Î = I ◦ f−1. For
practical reasons, the inverse mapping g = f−1 is often constructed instead of f .

Such an inverse warp function can easily be defined with the mean value coordinates λ̂i of Ψ̂. It follows
immediately from the Lagrange property that the function

g(x) =
n∑

i=1

λ̂i(x)vi (15)

maps each v̂i to vi and thus defines a proper inverse warp function. The warped image can now be generated
by simply setting the colour of each target pixel x in Î to the colour of the source point g(x) in I. In our
examples we used a simple bilinear interpolation to determine I(g(x)) from the 2×2 grid of pixels surrounding
g(x).

3Ψ and Ψ̂ must have the same number of components and vertices per component.
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(a) (b) (c) (d)

Fig. 12. Warping an image (a) with mean value coordinates (b) and radial basis functions (c,d) by moving the vertices of two

nested polygons (blue).

(b)

(a) (c) (d) (e)

Fig. 13. The Leaning Tower of Pisa (a) can be straightened by a barycentric warp function which maps the two source polygons

in (b) to the target polygons in (c). The Straight Tower of Pisa is shown in (d) and the difference between the pictures in (e).

Like warping with B-splines and radial basis functions with linear precision, this barycentric warp repro-
duces affine transformations. In other words, if ϕ : IR2 → IR2 is an affine transformation and Ψ̂ = ϕ(Ψ) then
Î = I ◦ ϕ−1. Indeed, since vi = ϕ−1(v̂i) it follows from the affine precision of the mean value coordinates
that g(x) = ϕ−1(x) in (15).

Another property of the barycentric warp is that it is linear along the edges of the polygons. Fig. 12 (b)
shows the result of warping the image in (a) after moving the vertices of two nested polygons. The exterior
polygon with 14 vertices controls the global shape of the warp, while the interior polygon with 10 vertices is
used to deform the star. The result is smooth and the star is clearly mapped to a star with straight edges.

For comparison, we also generated the thin plate spline warp (c) using radial basis interpolation with
basis function φ(r) = r2 log r (see [Arad et al. 1994] for details). This warp does not reproduce the straight
edges of the star, but a common trick to overcome this drawback is to sample the edges with additional
vertices. For example, by taking 20 samples per edge, we obtained the result in (d). It is very similar to
the barycentric warp, but takes considerably longer to compute; 20 seconds for a 600×600 image on a 2.8
Ghz Pentium, while the barycentric warp took less than one second. This is due to the large linear system
that needs to be solved and the large number of basis functions that have to be evaluated. In general, if n is
the number of vertices in Ψ and k is the number of samples per edge, then solving the linear system with a
standard method is an O(k3 ·n3) operation and evaluating the m pixels of Î is of order O(m ·k ·n). Of course
there exist specialized solvers that can reduce the cost for solving the linear system, but the advantage of
the barycentric warp is that it does not require any system to be solved and the whole computation is of
order O(m · n) only.
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Fig. 14. Three curves with normal vectors (left) and a LIC visualization of the interpolated vector field (right). The colour

refers to the length ` of the vectors (white: ` = 1, blue: ` > 1, red: ` < 1).

We conclude that the barycentric warp is particularly useful whenever straight edges need to be preserved.
For example, making the boundary of the rectangular image one of the source and the target polygons
guarantees that the warped image will be rectangular too; see Fig. 13.

6.3 Transfinite Interpolation

The mean value coordinates also provide an efficient solution to the following interpolation problem. Given
a set of closed planar curves cj and some d-dimensional data over these curves dj : cj → IRd we would like
to have a function F : IR2 → IRd that interpolates the given data, i.e. F (v) = dj(v) for any v ∈ cj .

The obvious approach is to approximate the given curves cj with a set of polygons Ψ whose vertices vi lie
on the curves cj . Then the function F in Eq. (14) with fi = dj(vi) clearly is an approximate solution of the
stated interpolation problem. And as the polygons Ψ converge to the curves cj by increasing the sampling
density, so does the function F converge to the desired solution.

The interesting fact now is that the structure of the mean value coordinates allows an efficient update of
the solution if the sampling density is increased. Assume that we computed F (v) and also W (v) for some
point v /∈ Ψ and then refine Ψ to Ψ̂ by adding a vertex v̂ with data value f̂ = dj(v̂) between vj and vj+1.
Then it follows by a consideration very similar to the one in the proof of Lemma 4.1 that

wj = ŵj + σŵ, wj+1 = ŵj+1 + τŵ,

and

Ŵ = W + ρŵ, (16)

where ρ(v), σ(v), τ(v) are the normalized barycentric coordinates4 of v̂ with respect to the triangle [v, vj , vj+1]
and ŵ is the new homogeneous coordinate function corresponding to v̂. We can then write the value of the
refined interpolation function F̂ at v as

F̂ = F +
ŵ

Ŵ
(f̂ − ρF − σfj − τfj+1). (17)

4Note that ρ(v), σ(v), and τ(v) are not well-defined if v, vj , and vj+1 are collinear. In this special case we conclude ŵ = 0,

wj = ŵj − 2 tan(α̂−/2)/rj , and wj+1 = ŵj+1 − 2 tan(α̂+/2)/rj+1, leading to slightly different update formulas for F̂ and Ŵ .
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(a) (b) (c) (d)

Fig. 15. Interpolation of height values (red) that are given as smooth functions over the four curves in (a) with mean value

coordinates (b) and with a thin plate spline (c). The difference of both surfaces is shown in (d).

Fig. 16. Discrete curvature plots with histograms of the mean (left) and the Gaussian curvature (right) of the mean value

interpolant and the thin plate spline.

Therefore, both F (v) and W (v) can be updated by a computation with constant cost for v /∈ Ψ. If v ∈ Ψ
and v is either a vertex of Ψ or lies on an edge ek with k 6= j, then we simply have F̂ (v) = F (v) by definition.
Only if v ∈ ej it is required to compute F̂ (v) (and possibly Ŵ (v)) from scratch.

In the example in Fig. 14, we exploited this recurrence relation as follows. We first sampled the three
given curves uniformly with 100 vertices vi and computed the curve normals ni at vi. Then we evaluated the
interpolating function F and the sum of homogeneous coordinates W on a regular 512×512 grid, yielding
values Fkl and Wkl with 0 ≤ k, l ≤ 511. We finally refined Ψ successively by splitting the edge with the
largest approximation error to the curve and updated Fkl and Wkl according to (17) and (16). We stopped
the refinement process as soon as maxk,l ‖F̂kl−Fkl‖ < 0.001, i.e. when the maximum update went below 1‰
of the length of the given vectors. The final polygon consisted of 357 vertices and it took about 10 seconds
to compute the final values Fkl.

Another example where we interpolated height data is shown in Fig. 15. We uniformly sampled the
four curves with 2,500 vertices and evaluated the interpolating function over a regular 500×500 grid, which
took about 62 seconds. A comparison to the interpolating thin plate spline5 showed the height difference
between both surfaces to be less than 10% of the maximum value. Using standard finite differencing, we
also computed discrete curvature plots of both surfaces (see Fig. 16) which reveal a very similar behaviour,
but it is hard to judge which one is to be preferred.

5We thank Rick Beatson for providing us with the thin plate solution.
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7. CONCLUSIONS

We have shown that the mean value coordinates naturally generalize the concept of triangular barycentric
coordinates to arbitrary polygons without intersections and even to sets of such polygons. The mean value
coordinates have a number of important properties and are particularly useful for the interpolation of data
that is given at the vertices of the polygons. As shown in Figs. 12, 15, and 16, the behaviour of the interpolant
is similar to that of thin plate splines, but it can be evaluated directly in O(n) operations without having to
solve the fitting problem first. In our implementation we have typically seen around 10,000,000 evaluations
of the coordinates λi per second.

We note that, in contrast to Sibson’s coordinates for scattered data, the mean value coordinates have
global support and are not everywhere positive in the case of arbitrary polygons. On the other hand it is
probably due to these properties that the interpolants behave so nicely. In the context of image warping,
this lack of positivity means that the barycentric warp function is not guaranteed to be one-to-one, except if
both the source and the target polygon are convex. But nevertheless the method appears to work very well
in practice.
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