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Abstract: We derive a generalization of barycentric coordinates which allows a vertex in
a planar triangulation to be expressed as a convex combination of its neighbouring vertices.
The coordinates are motivated by the Mean Value Theorem for harmonic functions and
can be used to simplify and improve methods for parameterization and morphing.
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1. Introduction

Let v0, v1, . . . , vk be points in the plane with v1, . . . , vk arranged in an anticlockwise order-
ing around v0, as in Figure 1. The points v1, . . . , vk form a star-shaped polygon with v0
in its kernel. Our aim is to study sets of weights λ1, . . . , λk ≥ 0 such that

k
∑

i=1

λivi = v0, (1.1)

k
∑

i=1

λi = 1. (1.2)

Equation (1.1) expresses v0 as a convex combination of the neighbouring points v1, . . . , vk.
In the simplest case k = 3, the weights λ1, λ2, λ3 are uniquely determined by (1.1) and (1.2)
alone; they are the barycentric coordinates of v0 with respect to the triangle [v1, v2, v3],
and they are positive. This motivates calling any set of non-negative weights satisfying
(1.1–1.2) for general k, a set of coordinates for v0 with respect to v1, . . . , vk.

There has long been an interest in generalizing barycentric coordinates to k-sided
polygons with a view to possible multisided extensions of Bézier surfaces; see for example
[8 ]. In this setting, one would normally be free to choose v1, . . . , vk to form a convex
polygon but would need to allow v0 to be any point inside the polygon or on the polygon,
i.e. on an edge or equal to a vertex.

More recently, the need for such coordinates arose in methods for parameterization
[2 ] and morphing [5 ], [6 ] of triangulations. Here the points v0, v1, . . . , vk will be vertices
of a (planar) triangulation and so the point v0 will never lie on an edge of the polygon
formed by v1, . . . , vk.

If we require no particular properties of the coordinates, the problem is easily solved.
Because v0 lies in the convex hull of v1, . . . , vk, there must exist at least one triangle
T = [vi1 , vi2 , vi3 ] which contains v0, and so we can take λi1 , λi2 , λi3 to be the three
barycentric coordinates of v0 with respect to T , and make the remaining coordinates zero.
However, these coordinates depend randomly on the choice of triangle. An improvement is
to take an average of such coordinates over certain covering triangles, as proposed in [2 ].
The resulting coordinates depend continuously on v0, v1, . . . , vk, yet still not smoothly. The
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Figure 1. Star-shaped polygon.

main purpose of this paper is to address this latter problem. We derive coordinates which
depend (infinitely) smoothly on the data points v0, v1, . . . , vk through a simple algebraic
formula.

Several researchers have studied closely related problems [9,11,14,15 ]. In the special
case that the polygon v1, . . . , vk is convex, Wachspress [14 ] found a solution in which the
coordinates can be expressed in terms of rational polynomials,

λi =
wi

∑k
j=1 wj

, wi =
A(vi−1, vi, vi+1)

A(vi−1, vi, v0)A(vi, vi+1, v0)
=

cot γi−1 + cotβi
||vi − v0||2

, (1.3)

where A(a, b, c) is the signed area of triangle [a, b, c] and γi−1 and βi are the angles shown in
Figure 1. The latter formulation in terms of angles is due to Meyer, Lee, Barr, and Desbrun
[9 ]. Of course these coordinates depend smoothly on the data points v0, v1, . . . , vk and
are therefore suitable when the polygon is convex. However, for star-shaped polygons the
coordinate λi in (1.3) can be negative, and, in fact, will be so precisely when γi−1+βi > π.

Another set of previously found weights can be expressed as

λi =
wi

∑k
j=1 wj

, wi = cotβi−1 + cot γi. (1.4)

These weights arise from the standard piecewise linear finite element approximation to
the Laplace equation and appear in several books on numerical analysis, e.g. [7 ], and
probably go back to the work of Courant. They have since been used in the computer
graphics literature [10 ], [1 ]. However, for our purposes these weights suffer from the
same problem as the last ones, namely that they might be negative. The weight λi is
negative if and only if βi−1 + γi > π.

Another possible set of coordinates might be Sibson’s natural neighbour coordinates
[11 ], if we treated the points v1, . . . , vk as a set of scattered data points. However, despite
various other good properties, Sibson’s coordinates, like those of [2 ], suffer from being
defined piecewise, and have in general only C1 dependence on the point v0. Moreover,
several of Sibson’s coordinates might be zero, since the only non-zero ones would correspond
to Voronoi neighbours of v0.
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2. Mean Value Coordinates

We now describe a set of coordinates which satisfy all the properties we would like. Let αi,
0 < αi < π, be the angle at v0 in the triangle [v0, vi, vi+1], defined cyclically; see Figure 1.

Proposition 1. The weights

λi =
wi

∑k
j=1 wj

, wi =
tan(αi−1/2) + tan(αi/2)

||vi − v0||
, (2.1)

are coordinates for v0 with respect to v1, . . . , vk.

As will be explained in Section 3, these weights can be derived from an application of
the mean value theorem for harmonic functions, which suggests calling them mean value
coordinates. They obviously depend smoothly on the points v0, v1, . . . , vk.

Proof: Since 0 < αi < π, we see that tan(αi/2) is defined and positive, and therefore λi is
well-defined and positive for i = 1, . . . , k, and by definition the λi sum to one. It remains
to prove (1.1). From (2.1), equation (1.1) is equivalent to

k
∑

i=1

wi(vi − v0) = 0. (2.2)

We next use polar coordinates, centred at v0, so that

vi = v0 + ri(cos θi, sin θi).

Then we have

vi − v0
||vi − v0||

= (cos θi, sin θi), and αi = θi+1 − θi,

and equation (2.2) becomes

k
∑

i=1

(tan(αi−1/2) + tan(αi/2))(cos θi, sin θi) = 0,

or equivalently

k
∑

i=1

tan(αi/2)((cos θi, sin θi) + (cos θi+1, sin θi+1)) = 0. (2.3)

To establish this latter identity, observe that

0 =

∫ 2π

0

(cos θ, sin θ) dθ

=

k
∑

i=1

∫ θi+1

θi

(cos θ, sin θ) dθ

=
k
∑

i=1

∫ θi+1

θi

sin(θi+1 − θ)

sinαi
(cos θi, sin θi) +

sin(θ − θi)

sinαi
(cos θi+1, sin θi+1) dθ,

(2.4)
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the last line following from the addition formula for sines. Since also

∫ θi+1

θi

sin(θi+1 − θ) dθ =

∫ θi+1

θi

sin(θ − θi) dθ = 1− cosαi, (2.5)

and

tan(αi/2) =
1− cosαi
sinαi

, (2.6)

equation (2.4) reduces to equation (2.3).

Not only are these coordinates positive, but we can bound them away from zero. This
might be useful when considering the conditioning of the linear systems used in [2,5,6 ].
If L? = maxi ||vi − v0||, L? = mini ||vi − v0|| and α? = maxi αi, α? = mini αi, then from
(2.1) we have

2 tan(α?/2)

L?
≤ wi ≤

2 tan(α?/2)

L?
,

and
1

Ck
≤ λi ≤

C

k
, (2.7)

where

C =
L? tan(α?/2)

L? tan(α?/2)
≥ 1.

The inequality (2.7) becomes an equality when C = 1 which occurs when v1, . . . , vk is a
regular polygon and v0 is its centre.

3. Motivation

The motivation behind the coordinates was an attempt to approximate harmonic maps
by piecewise linear maps over triangulations, in such a way that injectivity is preserved.
Recall that a C2 function u defined over a planar region Ω is harmonic if it satisfies the
Laplace equation

uxx + uyy = 0.

Suppose we want to approximate the solution u with respect to Dirichlet boundary con-
ditions, u|∂Ω = u0, by a piecewise linear function uT over some triangulation T of Ω.
Thus uT will be an element of the spline space S01(T ). The finite element approach to this
problem is to take uT to be the unique element of S01(T ) which minimizes

∫

Ω

|∇uT |
2dx

subject to the boundary conditions. As is well known, this leads to a sparse linear system
in the values of uT at the interior vertices of the triangulation T . To be precise, suppose
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v0 in Figure 1 is an interior vertex of the triangulation. As described in several books on
numerical analysis, the equation associated with v0 can be expressed as

uT (v0) =
k
∑

i=1

λiuT (vi), (3.1)

where λi is given by equation (1.4).
Suppose now that we use this method component-wise to approximate a harmonic

map φ : Ω → lR2, that is a map φ = (φ1, φ2) for which both φ1 and φ2 are harmonic
functions, by a piecewise linear map φT : Ω → lR2. We would like the map φT to be
injective and a sufficient condition has been derived in [13 ] and [4 ]: if φT is a convex
combination map, i.e. at every interior vertex v0 of T , we have

φT (v0) =

k
∑

i=1

λiφT (vi), (3.2)

for some positive weights λ1, . . . , λk which sum to one, and if φT maps the boundary ∂T
homeomorphically to the boundary of a convex region, then φT is one-to-one.

From this point of view, the standard finite element approximation φT has a drawback:
the theory of [13 ] and [4 ] cannot be applied. The map φT will not in general be a
convex combination map because the weights λi in (1.4) can be negative which can lead
to “foldover” in the map (an example is given in [3 ]).

This motivates, if possible, approximating a harmonic map φ by a convex combina-
tion map φT , i.e., one with positive weights in (3.2). Consider the following alternative
discretization of a harmonic function u. Recall that harmonic functions satisfy the mean
value theorem. The mean value theorem comes in two forms.

Circumferential Mean Value Theorem. For a disc B = B(v0, r) ⊂ Ω with bound-
ary Γ,

u(v0) =
1

2πr

∫

Γ

u(v) ds.

Solid Mean Value Theorem.

u(v0) =
1

πr2

∫

B

u(v) dx dy.

This suggests finding the element uT of S01(T ) which satisfies one of the two mean value
theorems locally at every interior vertex v0 of T . We will concentrate on the first version
and demand that

uT (v0) =
1

2πr

∫

Γ

uT (v) ds, (3.3)

for r sufficiently small that the disc B(v0, r) is entirely contained in the union of the
triangles containing v0; see Figure 2. It turns out that this equation can be expressed in
the form of (3.1) where the weights λi are those of (2.1), independent of the choice of r.

To see this, consider the triangle Ti = [v0, vi, vi+1] in Figure 2 and let Γi be the part
of Γ contained in Ti.
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Figure 2. Circle for the Mean Value Theorem.

Lemma 1. If f : Ti → lR is any linear function then

∫

Γi

f(v) ds = rαif(v0) + r2 tan(αi/2)

(

f(vi)− f(v0)

||vi − v0||
+
f(vi+1)− f(v0)

||vi+1 − v0||

)

. (3.4)

Proof: We represent any point v ∈ Γi in polar coordinates with respect to v0, i.e.,

v = v0 + r(cos θ, sin θ),

and we let
vj = v0 + rj(cos θj , sin θj), j = i, i+ 1.

Then
∫

Γi

f(v) ds = r

∫ θi+1

θi

f(v) dθ. (3.5)

Since f is linear, and using barycentric coordinates, we have

f(v) = f(v0) + λ1(f(vi)− f(v0)) + λ2(f(vi+1)− f(v0)), (3.6)

where λ1 = A1/A and λ2 = A2/A and A1 and A2 are the areas of the two triangles
[v0, v, vi+1], [v0, vi, v] and A the area of the the whole triangle Ti. Using trigonometry we
have

A =
1

2
riri+1 sinαi, A1 =

1

2
rri+1 sin(θi+1 − θ), A2 =

1

2
rri sin(θ − θi),

and

λ1 =
r sin(θi+1 − θ)

ri sinαi
, λ2 =

r sin(θ − θi)

ri+1 sinαi
. (3.7)

It follows that the substitution of the expression for f(v) in (3.6) into equation (3.5) and
applying the identities (2.5–2.6) leads to equation (3.4).

It is now a simple matter to show that equation (3.3) reduces to the linear combination
(3.1) with the coordinates λi of (2.1).
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Proposition 2. Suppose the piecewise linear function uT : Ω → lR satisfies the local
mean value theorem, i.e., for each interior vertex v0, it satisfies equation (3.3) for some
r > 0 suitably small. Then uT (v0) is given by the convex combination in (3.1) with the
weights λi of (2.1).

Proof: Equation (3.3) can be written as

uT (v0) =
1

2πr

k
∑

i=1

∫

Γi

uT (v) ds,

which, after applying Lemma 1 to uT , reduces to

0 =
k
∑

i=1

tan(αi/2)

(

uT (vi)− uT (v0)

||vi − v0||
+
uT (vi+1)− uT (v0)

||vi+1 − v0||

)

,

which is equivalent to equation (3.1) with the weights of (2.1).

We now notice that Proposition 1 follows from Proposition 2 due to the simple obser-
vation that linear bivariate functions are trivially harmonic.

It is not difficult to show that Proposition 2 remains true when the solid mean value
theorem is used instead of the circumferential one, the main point being that λ1 and λ2 in
equation (3.7) are linear in r.

We remark finally that it is well known that the standard finite element approximation
uT converges to u in various norms as the mesh size of the triangulation T tends to zero,
under certain conditions on the angles of the triangles. Initial numerical tests suggest that
the mean value ‘approximation’ does not converge to u in general. An interesting question
for future research is whether it is in fact possible to approximate a harmonic map by a
convex combination map over an arbitrary triangulation with sufficiently small mesh size.

4. Applications

In the parameterization method of [2 ], the triangulation is a spatial one, so that the
vertices v0, . . . , vk are points in lR3. However, the mean value coordinates can be applied
directly to the triangulation; we simply compute the coordinates λi of equation (2.1)
directly from the vertices v0, . . . , vk ∈ lR3. The numerical example of Figure 3 shows
the result of parameterizing a triangle mesh (3a) and mapping a rectangular grid in the
parameter plane back onto the mesh. The three parameterizations used are uniform (3b)
(i.e. Tutte’s embedding), shape-preserving (3c), and mean value (3d). In this example the
mean value parameterization looks at least as good as the ‘shape-preserving’ one of [2 ].
In addition, the mean value coordinates are faster to compute than the shape-preserving
coordinates, and have the theoretical advantage that the resulting parameterization will
depend smoothly on the vertices of the triangulation.

Mean value coordinates can also be used to morph pairs of compatible planar triangu-
lations, adapting the method of [5 ]. Such a morph will depend smoothly on the vertices
of the two triangulations. Surazhsky and Gotsman found recently that mean value morphs
are visually smoother than previous morphs; see [12 ] for details.
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Figure 3. Comparisons from left to right:
(3a) Triangulation, (3b) Tutte, (3c) shape-preserving, (3d) mean value

5. Final remarks

When k = 3 the mean value coordinates, like Wachspress’s coordinates, are equal to the
three barycentric coordinates, due to uniqueness. When k = 4 the mean value coordi-
nates and Wachspress coordinates are different in general. For example, when the points
v1, v2, v3, v4 form a rectangle, the Wachspress coordinates are bilinear, while the mean
value coordinates are not.

If the points v1, . . . , vk form a convex polygon, the mean value coordinates are defined
for all points v0 inside the polygon, but due to the use of the angles αi in formula (2.1),
it is not obvious whether the coordinates can be extended to the polygon itself. Though
this paper was not intended to deal with this issue, it would be important if these co-
ordinates were to be used for generalizing Bezier surfaces, as in [8 ]. For Wachspress’s
coordinates (1.3), this is not a problem because by multiplying by the product of all areas
A(vj , vj+1, v0), they have the well-known equivalent expression

λi =
wi

∑k
j=1 wj

, wi = A(vi−1, vi, vi+1)
∏

j 6=i−1,i

A(vj , vj+1, v0).

It turns out that the mean value coordinates can also be continuously extended to the
polygon itself. Moreover, like Wachspress’s coordinates, they are linear along each edge
of the polygon and have the Lagrange property at the vertices: if v0 = vi then λi = 1
and λj = 0 for j 6= i. A proof of this as well as other properties of these coordinates will
appear in a forthcoming paper.
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