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Two planar triangulations with a correspondence between two vertex sets are compatible
(isomorphic) if they are topologically equivalent. This work presents a simple and robust
method for morphing two compatible planar triangulations with identical convex bound-
aries that locally preserves the intrinsic geometric properties of triangles throughout the
morph. The method is based on the barycentric coordinates representation of planar tri-
angulations, and thus, guarantees compatibility of all intermediate triangulations. The
intrinsic properties are preserved by interpolating angles and edge lengths components
of mean value barycentric coordinates, rather than interpolating the barycentric coor-
dinates themselves. As a result, the method generates a natural-looking and guaranteed
intersection-free morphing sequence.
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1. Introduction

Morphing, also known as metamorphosis, is the gradual and continuous transforma-

tion of one shape (the source) into another (the target). Morphing has wide practical

use in areas such as computer graphics, animation and modeling. To achieve more

spectacular, impressive and accurate results, the morphing process requires a lot of

the work to be done manually. A major research challenge is to develop techniques

that will automate this process as much as possible.

The morphing problem has been investigated in many contexts, e.g., morphing

of two-dimensional images1,2,3, polygons and polylines4,5,6,7,8,9,3, freeform curves10

and even voxel-based volumetric representations.11 The morphing process always

consists of solving two main problems. The first one is to find a correspondence
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between elements (features) of the two shapes. The second problem is to find tra-

jectories that corresponding elements traverse during the morphing process. Regret-

tably, a formal definition of a successful correspondence does not exist, as well as a

definition of a successful solution of the trajectory problem. In this work we assume

the more typical morphing scenario, namely, that the correspondence is given and

only the trajectory problem is to be solved.

The naive approach to solve the trajectory problem is to choose the trajectories

to be straight lines, where every feature of the shape travels with a constant velocity

along its line towards the corresponding feature of the target during the morph. Un-

fortunately, this simple approach can lead to undesirable results. The intermediate

shapes can vanish, i.e. degenerate into a single point, or contain self-intersections

even though the source and target are simple, namely, self-intersection-free. Even

if the linear morph is free of self-intersections and degeneracies, its intermediate

shapes may have areas or distances between features far from those of the source

and target, resulting in a “misbehaved” looking morph. Most of the research on

solving the trajectory problem for morphing concentrates on trying to eliminate

self-intersections and preserve the geometrical properties of the intermediate shapes.

Many existing methods achieve good results for many inputs, however, none is able

to guarantee any properties of the resulting morph.

Triangulations are ubiquitously used in computer graphics as a representa-

tion and a parameterization (e.g., for texture mapping) of surfaces and planar

shapes. Two triangulations with a correspondence between their vertex sets are

said to be compatible (isomorphic), if they are topologically equivalent. Floater

and Gotsman12 introduced an innovative approach for morphing compatible planar

triangulations. This approach is based on the barycentric coordinates representa-

tion of planar triangulations. The morphing interpolation procedure is done in the

space of barycentric coordinates, rather than in vertex geometry space. This ap-

proach is the only one, which applied to compatible triangulations with identical

boundaries, is able to analytically guarantee a continuous sequence of valid inter-

mediate triangulations, namely, the triangulation does not self-intersect during the

morph.

Surazhsky and Gotsman13 analyzed the basic approach for morphing compatible

triangulations,12 investigated its properties and capabilities and presented several

extensions that allow control over the properties of morphs. They showed that the

basic approach has many degrees of freedom, which can be utilized in order to

obtain morphs with various characteristics and still be free of self-intersections.

However, the schemes to obtain more natural morphs proposed by Surazhsky and

Gotsman13 are rather complicated and have problems inherent to the barycentric

coordinates used in that work.

In this work we exploit the non-uniqueness of barycentric coordinates and use

mean value barycentric coordinates that were recently introduced by Floater.14

These coordinates reflect the shapes of triangles in a way similar to coordinates
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used in harmonic or conformal mappings.15 However, the naive linear interpolation

of mean value coordinates cannot guarantee that the shapes of triangles within

intermediate triangulations transform uniformly, and thus, naturally. Mean value

coordinates depend solely on triangle angles and edge lengths within a triangulation.

Hence, in order to achieve a uniform transformation of the triangles shapes we

interpolate angles and edge lengths of the corresponding triangles, and then use

the intermediate values to generate intermediate mean value coordinates.

Guaranteed intersection-free morphing of compatible planar triangulations al-

lows morphing of any compatible piecewise linear objects such as polygons, poly-

lines, tilings and so called stick figures in general. Formally, stick figures are de-

fined as connected straight-line plane graphs. Guaranteed intersection-free mor-

phing of stick figures is achieved by embedding them as a subset of edges within

compatible triangulations with identical boundaries. This embedding technique was

introduced3 for polygons and later extended16 for stick figures.

Constructing compatible triangulations for embedding stick figures is a difficult

problem and most of the existing algorithms17,18,19,16 produce triangulations that

may have long, skinny and close to degenerate triangles together with many ad-

ditional (Steiner) vertices. Moreover, the resulting compatible triangulations must

usually be refined in order to create more natural morphing sequences.4 The refine-

ment increases the number of vertices by a factor of 10–100 on the average, and this

leads to very high computational cost of morphing sequences that can easily reach

hours of CPU time even on modern 2-3GHz computers. Surazhsky and Gotsman20

presented a novel algorithm, which is able to construct compatible triangulations

with a very small (close to optimal) number of Steiner vertices. However, having

many of the triangles close to degenerate, the resulting compatible triangulation

must be refined in order to be used with existing morphing algorithms.

The contribution of this paper is a relatively simple method to generate natural

morph sequences between two planar compatible triangulations. It is also suitable

for generating a natural morph between two stick figures. Our method is robust

because the quality of the embedding triangulations used to morph two stick figures

does not significantly affect the generated morphing sequence. Thus, our method

can be applied to compatible triangulations with a very small number of Steiner

vertices to obtain natural morphs in real time.

The paper is organized as follows: Section 2 introduces the notions of compat-

ible triangulations and barycentric coordinates and define barycentric coordinates

representation for triangulations. Section 3 shows how to produce a self-intersection

free morph between compatible triangulations and then extends it to generate the

intrinsic morph. Experimental results generated by our algorithm are shown in

Section 4, and we conclude in Section 5.
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Fig. 1. (a) Triangulation of 9 points in the plane. (b) Triangulation not compatible with (a).
Vertex correspondence coded in digits. (c) Triangulation compatible with (a).

2. Background

A simple graph G = G(V, E) is a set of vertices V = {1, . . . , |V |} and a set of edges

E, such that E is a subset of all unordered pairs of vertices {i, j}, when i 6= j.

Two graphs G0 and G1 are isomorphic if there is a 1–1 correspondence between

their vertices and edges in such a way that corresponding edges link corresponding

vertices. A simple graph G is said to be planar if it can be drawn in the plane

using simple curves for edges and the only intersections between the curves are at

common endpoints standing for vertices. This representation of a planar graph G is

called a plane graph, denoted by an ordered pair (G, ℘). A mapping ℘: V → R
2 is a

point sequence {i 7→ (xi, yi) | i: 1, . . . , |V |}. The following notations are equivalent

and denote the coordinates of vertex i: ℘(i), pi, (xi, yi).

A plane graph partitions the plane into connected regions called faces. Obvi-

ously, a plane graph has a single unbounded face, denoted by the outer face. A

plane graph is said to be triangulated if all its bounded faces have exactly three

edges. A planar triangulation T = T (G, ℘) is a simple triangulated plane graph

such that its edges are represented by straight lines. We call a triangulation valid

if it satisfies the above definition, in particular, the only intersections between its

edges are at common endpoints.

Two (valid) triangulations are isomorphic if their planar graphs are isomorphic

and the corresponding faces have the same orientation. To be consistent with other

works, we also call isomorphic triangulations compatible triangulations. In this pa-

per we will deal with compatible triangulations whose corresponding vertices have

the same indices, namely, their planar graphs are identical. Thus, if T0 = T (G0, ℘0)

and T1 = T (G1, ℘1) are compatible then G0 = G1. Fig. 1 shows some compatible

and non-compatible triangulations.

2.1. Barycentric Coordinates

Given a polygon with k vertices p1, p2, . . ., pk, k ≥ 3, any point p in the plane can

be expressed as:

p =

k
∑

i=1

λi · pi,

k
∑

i=1

λi = 1. (1)
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Fig. 2. Elements of mean value coordinates.

The coefficients λ1, . . . , λk in these equations are said to be barycentric coordinates

of p relative to p1, . . . , pk. When p lies in the convex hull of a polygon, it can be

expressed as a convex combination of the polygon vertices, namely, all barycentric

coordinates have positive values. In this paper we consider the case when p lies in

the kernel of a star-shaped polygon.

In the special case when the polygon has three vertices, namely, p lies in a

triangle △(p1, p2, p3), the barycentric coordinates of p with respect to p1, p2, p3 are

uniquely determined by (1). Barycentric coordinates of p with respect to polygons

with k > 3 vertices are not unique. A simple solution is to choose any triangle

containing p whose vertices are vertices of the polygon. Barycentric coordinates of

p may now be defined as non-zero coordinates with respect to the triangle vertices,

and zeros for all other vertices. However, it has long been a challenging problem to

find strictly positive barycentric coordinates that continuously and smoothly depend

on p and the polygon vertices. Methods proposed by various works21,22,13,15 failed to

satisfy at least one of the above requirements, and only recently Floater14 solved this

problem. He introduced the following simple formula for barycentric coordinates:

λi =
wi

∑k

j=1
wk

, wi =
tan

(

αi

2

)

+ tan
(

αi−1

2

)

ℓi

. (2)

αi is the angle at p of the triangle △(p, pi, pi+1) and ℓi is the length of edge (p, pi),

namely, ℓi = ‖p − pi‖. See Fig. 2(a). Since 0 < αi < π being a triangle angle, it is

easy to see that resulting barycentric coordinates are strictly positive. The barycen-

tric coordinates defined in (2) are called mean value coordinates inspired by the

Mean Value theorem for harmonic functions. Mean value coordinates approximate

harmonic maps by piecewise linear maps over triangulations. This important ca-

pability of mean value coordinates to preserve angles is expoited by our morphing

scheme to produce natural morphs.

2.2. Drawing Triangulated Graphs

It has been shown by Fáry23 that every planar graph has a straight line represen-

tation. Hence, for every planar triangulated graph G, there exists a point sequence
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℘ such that T = T (G, ℘) is a (valid) triangulation. Tutte24 described the following

method to generate ℘: The boundary vertices of G are mapped to an arbitrary

convex polygon with the same number of vertices and the same vertex order. Then,

the interior vertices are placed such that every vertex is the centroid of its neigh-

boring vertices. This scheme was extended by Floater.21 Each interior vertex can

be any convex combination of its neighbors. In terms of barycentric coordinates,

any positive barycentric coordinates for each interior vertex may be chosen with

respect to its neighbors.

To compute ℘, we use the following method. Let G = G(V, E) be a simple

triangulated graph, with |V | = N . We assume that boundary vertices of G have

been identified. Let VI be the set of the interior vertices and VB be the set of the

boundary vertices such that |VI | = n and |VB | = N − n = k. Without loss of

generality assume VI = {1, . . . , n} and VB = {n+1, . . . , N}.

Now we wish to find coordinates of the graph vertices, namely, for each vertex

i ∈ V to find ℘(i) = pi = (xi, yi). We define ℘ for each vertex i ∈ VB to be

coordinates of the vertices of a k-sided convex polygon.

For each interior vertex we may choose arbitrary non-negative barycentric co-

ordinates relative to its neighbors, namely, for each vertex i ∈ VI a set of scalars

λi,j for j = 1, . . . , N such that

λi,j = 0, {i, j} /∈ E,

λi,j ≥ 0, {i, j} ∈ E,
barycentric coordinate

of i relatively to j.
(3)

Next we define p1, . . . , pn to be the solution of the following system of linear equa-

tions

pi =
N

∑

i=1

λi,j pj , i = 1, . . . , n. (4)

This system contains n linear equations with n variables. It was shown by Floater21

that the corresponding matrix of these equations is non-singular. Therefore, a

unique solution always exists. Thus, barycentric coordinates defined in (1) together

with the locations of the triangulation boundary vertices uniquely determine the lo-

cations of the interior vertices. This representation is called barycentric coordinates

representation of the triangulation.

Bi-conjugate gradient methods can be efficiently used to numerically solve the

non-symmetric linear system (4). For even more efficient multilevel solvers see the

recent work of Aksoylu et al.25

3. Morphing Triangulations

A morph between two compatible triangulations T0 = T (G, ℘0) and T1 = T (G, ℘1)

is a gradual transformation of T0 into T1. This transformation may be viewed as a

continuous function T (t), t ∈ [0, 1] and T (0) = T0, T (1) = T1. A morph between T0



March 31, 2004 9:0 WSPC/INSTRUCTION FILE paper

Intrinsic Morphing of Compatible Triangulations 197

and T1 is valid if for all t ∈ [0, 1], T (t) is a valid triangulation compatible with T0

(and T1). In this work we consider triangulations T0 and T1 such that the boundaries

of the triangulations coincide. The boundaries of T (t) for 0 ≤ t ≤ 1 will naturally

also coincide, namely, pi(t) = pi(0) = pi(1) for n < i ≤ N and 0 ≤ t ≤ 1. To find

T (t) means to find pi(t) for 1 ≤ i ≤ n such that T (G, ℘t) is compatible with T0.

Floater and Gotsman12 proposed to interpolate barycentric coordinates of the

interior vertices of T0 and T1 rather than the interior vertex locations. Barycen-

tric coordinates of T0 and T1 can be any valid positive barycentric coordinates,

but strictly positive mean value coordinates defined in (2) are currently the best

choice due to their properties. The linear interpolation of strictly positive barycen-

tric coordinates yields strictly positive intermediate barycentric coordinates as well.

The intermediate barycentric coordinates uniquely define valid intermediate trian-

gulations, resulting in a valid morph. Formally, we denote barycentric coordinates

defined in (3) for T0 and T1 as λi,j(0) and λi,j(1), respectively. Intermediate barycen-

tric coordinates are denoted by λi,j(t) for 0 < t < 1 and defined as the simple linear

interpolations:

λi,j(t) = (1 − t) · λi,j(0) + t · λi,j(1). (5)

Note that we need to solve the linear system (4) for every t of the morphing se-

quence. As an initial guess, one could use the solution of the previous t in the

morphing sequence.

3.1. Intrinsic Morphing

In this work we go one step further and linearly interpolate components of the mean

value coordinates formula. In other words, we interpolate the triangle angles and

the edge lengths, rather than just the mean value coordinates themselves.

Formally, instead of (5) we use:

αi,j(t) = (1 − t) · αi,j(0) + t · αi,j(1)

ℓi,j(t) = (1 − t) · ℓi,j(0) + t · ℓi,j(1) (6)

and substitute them into (2) to obtain λi,j(t). ℓi,j is the length of edge (i, j) and

αi,j is the angle at vertex i adjacent from the left to edge {i, j}. See Fig. 2(b).

αi,j(0), αi,j(1) and ℓi,j(0), ℓi,j(1) for all (i, j) such that {i, j} ∈ E are taken from

T0 and T1, respectively.

The motivation behind this was an attempt to obtain as uniform as possible

transformations of intrinsic properties of triangulations throughout the morphing

process. Since the mean value coordinates formula (2) is not linear in the angles and

the edge lengths, the linear interpolation of mean value coordinates corresponds to

some strictly nonlinear transformations of the angles and the edge lengths. This

may result in transformations of the triangle angles and the edge lengths that are

significantly far from uniform, even though the intermediate triangulations are still

valid.
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Note that the linear interpolation of the angles and the edge lengths does not

guarantee that all intermediate triangulations will have these exact angles and

edge lengths. Usually, such triangulations simply do not exist. If they did exist,

there would be no need to construct intermediate triangulations using mean value

barycentric coordinates. One could construct intermediate triangulations directly

using the angles and edge lengths. Thus, our morphing method, being based on

the angle-preserving property of mean value coordinates, produces intermediate

triangulations that approximate as close as possible linearly interpolated angles.

This approximation is similar to the local area-preserving properties of conformal

mapping of 3D triangulations, which aims to preserve the angle between any two

edges with a common endpoint. Note that having this angle-preserving property,

our method guarantees, at the same time, that all intermediate triangulations are

still valid.

It is important to emphasize the principal factor that makes it possible to obtain

guaranteed intersection-free morphing of compatible triangulations and then to

extend it to intrinsic morphing. The key lies in changing representation of the

triangulation such that the space where we perform the linear interpolation (to

generate a morphing sequence) is extended. This means that we interpolate more

elements in order to obtain better morphs. The straightforward representation of

the triangulation geometry, namely, the vertex locations gives 2n (x’s and y’s)

degrees of freedom. The barycentric coordinates representation involves
∑n

i=1
di >

3n elements (λi,j ’s, ≈ 6n for large triangulations), where di is the degree of vertex

i. The intrinsic morph interpolates
∑n

i=1
di angles (αi,j ’s) and |E|−k edges (ℓi,j ’s),

in total approximately 9n elements for large triangulations. Thus, every time the

interpolation space is enlarged, morphs with better characteristics may be obtained.

4. Experimental Results

In practice, morphing is performed more frequently on stick figures than on planar

triangulations. Thus, the problem of morphing planar figures is reduced to that of

morphing triangulations, and the edges that are not part of the figure are ignored

in the resulting morph. Figures 3 and 4 show morphs between two polylines, the

shapes of the two letters U and S, and two stick figures, the shapes of a scorpion and

a dragonfly. These examples have been embedded within compatible triangulations

using techniques developed in 20. Note that the triangulations in Fig. 3(a)–(b) and

Fig. 4(a)–(b) have many long and skinny triangles, since the number of Steiner ver-

tices is close to minimal. On the other hand, the triangulations in Fig. 3(c)–(d) do

not contain long and skinny triangles, but have many Steiner vertices. The exam-

ples show that applying interpolation of barycentric coordinates on triangulations

with long, skinny triangles generates strange-looking morphs, see Fig. 3(f),(g) and

Fig. 4(d). Using the same technique on high quality triangulations produces rather

natural morphs, see Fig. 3(h),(i). However, while the given polylines can be viewed

as an approximation of smooth curves, the intermediate polylines are no longer
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smooth, no matter what barycentric coordinates were used. On the other hand,

the intrinsic morph produces natural morphs for high quality triangulations—see

Fig. 3(j)—as well as for triangulations with long and skinny triangles, see Fig. 3(k).

Moreover, for both these morphs the polylines stay smooth throughout the mor-

phing sequences due to the angle-preserving property of our method. This shows

that that the intrinsic morphing scheme is robust with respect to the triangulations

used to perform morphing.

5. Discussion and Conclusion

We have presented a simple, robust and efficient method for morphing compatible

triangulations that can be used to produce very natural and guaranteed inter-

section-free morphing sequences between stick figures. The quality and behavior of

the resulting morphs is not affected by the quality of the embedding triangulations.

Even triangulations containing many triangles which are close to degenerate may

be used to obtain natural morphs. This allows the use of compatible triangulations

with a very small number of Steiner vertices, obtaining intersection-free natural

morphs in almost real time.
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Fig. 4. Morphing between figures of a scorpion and a dragonfly embedded into compatible trian-
gulations: (a)–(b) Compatible embedding triangulations with only 11 Steiner vertices. (c) The
linear interpolation of vertex positions results in an invalid morph. (d) The linear interpolation
of mean value coordinates results in a valid but unnatural morph having a strange behavior of
the tail components. (e) The intrinsic morph behaves naturally and the tail components evolve
smoothly in the intermediate triangulations.
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