
Programming with OpenGL: Advanced Rendering

Lighting and Shading Techniques for Interactive Applications

Organizer:
David Blythe

Silicon Graphics

Copyright c 1999 by Tom McReynolds and David Blythe.
All rights reserved

August 8, 1999

SIGGRAPH ‘99 Course 12
Abstract

This advanced course demonstrates sophisticated and novel techniques for lighting and shading scenes in inter-
active applications using the widely available OpenGL graphics library.

The course focuses on traditional lighting and shading techniques and discusses how they are implemented
on current graphics hardware. The course then explores how these techniques can be effectively extended to
increase realism while maintaining interactive performance. The application areas include: entertainment and
visual simulation, CAD, and scientific visualization.

We use OpenGL as our rendering platform, but the theory and algorithms described in the course can be applied
to other rendering architectures and APIs.

Advanced Graphics Programming Techniques Using OpenGL

Organizer:
David Blythe

Silicon Graphics

Copyright c 1999 by Tom McReynolds and David Blythe.
All rights reserved

August 9, 1999

SIGGRAPH ‘99 Course 29
Abstract

This advanced course demonstrates sophisticated and novel computer graphics programming techniques, imple-
mented in C using the widely available OpenGL library.

By explaining the concepts and demonstrating the techniques required to generate images of greater realism and
utility, the course helps students achieve two goals: they gain a deeper insight into OpenGL functionality and
computer graphics concepts, while expanding their “toolbox” of useful OpenGL techniques.

i

Programming with OpenGL: Advanced Rendering

Speakers

David Blythe

David Blythe is a Principal Engineer in the Advanced Graphics Software group at Silicon Graphics. David joined
SGI in 1991 and has contributed to the development of the RealityEngine and InfiniteReality graphics systems. He
has worked extensively on implementations of the OpenGL graphics library and OpenGL extension specifications.
David is currently working on high-level toolkits which are built on top of OpenGL as well as contributing to the
continuing evolution of OpenGL. His other interests include large-scale system design and interactive photoreal-
ism. David has been a course presenter at SIGGRAPH ’96, ’97, and ’98 as well as other technical forums.

Prior to joining SGI, David was a visualization scientist at the Ontario Centre for Large Scale Computation and a
lecturer at the University of Toronto. David received both a B.S. and M.S. degree in computer science from the
University of Toronto.

Email: blythe@sgi.com

Brad Grantham

Brad Grantham contributes to the advancement of Linux, OpenGL, and 3D graphics at VA Research, Inc. Brad
is also an Adjunct Lecturer at Santa Clara University, where he specializes in helping students write interactive
graphics applications.

Brad was a course presenter at SIGGRAPH ’97 and ’98, and previously contributed at Silicon Graphics to the
design and implementation of high-level graphics toolkits, including the Fahrenheit Scene Graph, OpenGL Opti-
mizer, and IRIS Performer. Brad’s prior experience also includes UNIX kernel code and imaging codecs. Brad
received a B.S. in Computer Science from Virginia Tech in 1992.

Email: grantham@hadron.org

Mark J. Kilgard

Mark J. Kilgard is a Graphics Software Engineer at NVIDIA Corporation where he works on upcoming RIVA
graphics processors. Mark authored the book Programming OpenGL for the X Window System and implemented
the popular OpenGL Utility Toolkit (GLUT) for developing portable OpenGL examples and demos. Previously,
Mark worked at Silicon Graphics on the Onyx InfiniteReality graphics supercomputer and on SGI’s X Window
System implementation. Mark has taught many courses at SIGGRAPH, the Computer Game Developers Confer-
ence, and other conferences. Mark’s Karaoke rendition of Dolly Parton’s “9 to 5” can’t be beat.

Email: mjk@nvidia.com

ii

Programming with OpenGL: Advanced Rendering

Tom McReynolds

Tom McReynolds is a software engineer at Gigapixel Inc., a company developing Computer Graphics Intellectual
Property. He currently works on computer graphics hardware simulation, verification, and device driver software.

Before that, he worked in the Advanced Graphics Software group at Silicon Graphics. He has implemented
OpenGL extensions, done OpenGL performance work, and worked on IRIS Performer, a real-time visualization
library that uses OpenGL.

Prior to SGI, he worked at Sun Microsystems, where he helped develop graphics hardware support software and
graphics libraries, including XGL.

Tom also works as an adjunct professor at Santa Clara University, where he teaches courses in computer graphics
using the OpenGL library. He has also presented at the X Technical Conference, was a course organizer and
presenter at SIGGRAPH ’96, ’97, and ’98, and presented for SGI at their 1996 Developer Forum, and at SGI’s
1997 OpenGL Developer’s Workshop.

Email: tomcat@gigapixel.com

Scott R. Nelson

Scott Nelson is a Principal Engineer at Intel doing research on 3D graphics architectures in the Microcomputer Re-
search Labs. Before moving to Intel, Scott spent more than ten years at Sun Microsystems developing 3D graphics
accelerator architectures. He contributed to the development of the GT, ZX, and Elite3D graphics accelerators.
Before Sun, Scott worked for eight years at Evans & Sutherland developing graphics hardware. He received his
B.S. degree in Computer Science from the University of Utah. Scott was a course organizer and presenter at
SIGGRAPH ’91 and a course presenter at SIGGRAPH ’98.

Email: Scott.R.Nelson@intel.com

iii

Programming with OpenGL: Advanced Rendering

Other Contributers

Celeste Fowler (Author)

Celeste Fowler is a software engineer in the Advanced Systems Division at Silicon Graphics. She worked on the
OpenGL imaging pipeline for the InfiniteReality graphics system and on the OpenGL display list implementation
for InfiniteReality and RealityEngine.

Before coming to SGI, Celeste attended Princeton University where she did research on radiosity techniques and
TA’d courses in computer graphics and programming systems.

Email: celeste@sgi.com

Simon Hui (Author)

Simon Hui is a software engineer at 3Dfx Interactive, Inc. He currently works on OpenGL and other graphics
libraries for PC and consumer platforms.

Prior to joining 3Dfx, Simon worked on IRIS Performer, a realtime graphics toolkit, in the Advanced Systems
Division at Silicon Graphics. He has also worked on OpenGL implementations for the RealityEngine and Infinite-
Reality. Simon received a B.A. in Computer Science from the University of California at Berkeley.

Email: simon@3dfx.com

Paula Womack (Author)

Paula Womack is a software engineer in the Advanced Systems Division at Silicon Graphics. She has managed
the OpenGL group at Silicon Graphics, and was also a member of the OpenGL Architectural Review Board (the
OpenGL ARB) that is responsible for defining and enhancing OpenGL.

Prior to joining Silicon Graphics, Paula worked on OpenGL at Kubota and Digital Equipment. She has a B.S. in
Computer Engineering from the University of California at San Diego.

Email: womack@sgi.com

Linda Rae Sande (Production Editor)

Linda Rae Sande is a production editor in Technical Publications at Silicon Graphics. A graduate of Northern
Arizona University (B.S. in Physics-Astronomy), she has taught college algrebra and physical science courses and
worked in marketing communications and technical training. As co-author of two physics laboratory textbooks and
author of several production manuals, Linda Rae has many years of experience in book production and production
coordination.

Prior to SGI, she was a production coordinator at ESL-TRW responsible for the TravInfo and TransCal transporta-
tion project documentation and deliverables.

Email: lindarae@sgi.com

Dany Galgani (Illustrator)

Dany Galgani has provided illustrations to Technical Publications at Silicon Graphics for over 9 years. He has
illustrated hardware and software manuals, from user’s guides to programmer’s manuals.

Before that, he did commercial art for advertising agencies and book publishers, including illustrating books in
Ortho’s “Do-It-Yourself” series.

Dany received his degree in the Arts from the University of Paris as well as a CPA.

Email: danyg@sgi.com

iv

Programming with OpenGL: Advanced Rendering

Course Syllabus

Lighting and Shading Techniques for Interactive Applications

8:30 A Introduction (Blythe)

8:35 B Lighting Model Basics (Blythe)

1. Diffuse Shading

2. Specular Highlights

3. Ambient and Emissive Lighting

4. Material Properties

5. Multi-pass Lighting

6. Directional and Positional Lights

7. Spot Lights

8. Other BRDFs

9. Global Illumination

9:10 C Shading Computations (Kilgard)

1. Per-vertex and Per-pixel Shading

2. Viewer Position and Lighting

3. Lighting with Texture Maps

– Multi-texture

4. Light Maps

– Diffuse
– Specular
– Spot Lights

5. Environment Maps

– Sphere
– Cube
– Parabolic

6. Fresnel Effects

v

Programming with OpenGL: Advanced Rendering

10:00 Break

10:15 D Advanced Shading I (Grantham)

1. Bump Mapping

– Direct computation
– Tangent-space
– Other Methods

2. Anisotropic Reflection

3. Reflection and Refraction

– Planar Surfaces
– Curved Surfaces
– Environment Maps

11:00 E Advanced Shading II (Kilgard)

1. Shadows

– Projection
– Shadow Volumes
– Shadow Textures
– Shadow Maps
– Soft Shadows using Convolution

2. Transparency

– Stippling
– Blending

3. Atmospheric Effects

– Fog
– Depth-cuing
– Haze
– Non-homogeneous effects

11:45 F Summary, Questions and Answers (All)

12:00 Lunch

vi

Programming with OpenGL: Advanced Rendering

Course Syllabus

Advanced Graphics Programming Techniques Using OpenGL

8:30 A Introduction (Blythe)

8:35 B Visual Simulation (Blythe)

1. Tiling large Textures

2. Anisotropic Texturing

3. Developing LOD Models for Geometry

4. Billboarding

5. Light Points

9:20 C CAD I (Nelson)

1. Constructive Solid Geometry

2. Meshing and Tessellation

3. Improving Numerical Accuracy

4. Silhouettes

10:00 Break

10:15 D Graphics Special Effects (Nelson)

1. Stencil Dissolves

2. Compositing

3. Antialiasing

4. Motion Blur

5. Depth of Field

11:00 E Image Processing (McReynolds)

1. OpenGL Image Processing

2. Accum Buffer Convolution

3. Color Space Operations

4. Image Warping with Textures

5. Texture Synthesis using Noise

vii

Programming with OpenGL: Advanced Rendering

12:00 Lunch

1:30 F CAD II (Blythe)

1. Technical Illustration

2. Occlusion Culling Techniques

3. Depth and Transparency Cuing

4. Surface Visualization

5. Picking and Locate-highlight

2:15 G Scientific Visualization (McReynolds)

1. Scalar Field Visualization

2. Volume Rendering

3. Vector Field Visualization

3:00 Break

3:15 H Production Graphics (Blythe)

1. Character Rendering

2. Manipulating Large Images

3. 2D and Line Rendering

4. Tone-reproduction

4:00 I Simulating Natural Phenomena (Grantham)

1. Particle Systems

2. Smoke

3. Fire

4. Clouds

5. Water

6. Precipitation and Lightning

7. Fog

5:00 J Summary, Question and Answers (All)

viii

Programming with OpenGL: Advanced Rendering

Contents

1 Introduction 1
1.1 OpenGL Version . 1
1.2 Course Notes and Slide Set Organization . 1
1.3 Acknowledgments . 1
1.4 Acknowledgments for 1998 Course Notes . 2
1.5 Acknowledgments for 1997 Course Notes . 2
1.6 Course Notes Web Site . 2

2 About OpenGL 4

3 Modeling 5
3.1 Modeling Considerations . 5
3.2 Decomposition and Tessellation . 6
3.3 Generating Model Normals . 7

3.3.1 Consistent Vertex Winding . 9
3.3.2 Smooth Shading . 10

3.4 Triangle-stripping . 11
3.4.1 Greedy Tri-stripping . 13

3.5 Coplanar Polygons and Decaling with Stencil . 13
3.6 Capping Clipped Solids with the Stencil Buffer . 15
3.7 Constructive Solid Geometry with the Stencil Buffer . 15

4 Geometry and Transformations 23
4.1 Stereo Viewing . 23

4.1.1 Fusion Distance . 23
4.1.2 Computing the Transforms . 24

4.2 Depth of Field . 25
4.3 The Z Coordinate and Perspective Projection . 25

4.3.1 Depth Buffering . 27
4.4 Image Tiling . 29
4.5 Moving the Current Raster Position . 30
4.6 Preventing Clipping of Wide Lines and Points . 31
4.7 Distortion Correction . 31
4.8 Picking and Highlighting . 34

4.8.1 OpenGL Selection . 34
4.8.2 Object Tagging in the Color Buffer . 35
4.8.3 Proxy Geometry . 35
4.8.4 Other Methods . 35
4.8.5 Highlighting . 35
4.8.6 XOR Highlighting . 36

4.9 Foreground Object Manipulation . 36

5 Occlusion Culling 37
5.1 Choosing Occluders . 37
5.2 Building the Occlusion Map . 38
5.3 Building the Depth Estimation Buffer . 38
5.4 Occlusion Testing . 38
5.5 Other Methods . 39

ix

Programming with OpenGL: Advanced Rendering

6 Texture Mapping 40
6.1 Texturing Basics . 40

6.1.1 The Texture Image . 40
6.1.2 Texture Coordinates . 41
6.1.3 Texture Coordinate Generation and Transformation . 44
6.1.4 Filtering . 44
6.1.5 Texture Environment . 45
6.1.6 Texture Objects . 46

6.2 Multitexture . 47
6.2.1 Multitexture API Overview . 48
6.2.2 Multitexture Texture Environments . 49

6.3 Merging Textures with Specular Highlights . 49
6.4 Texture Borders and Tiling . 50
6.5 Mipmap Generation . 51
6.6 Texture Map Limits . 52
6.7 Anisotropic Texture Filtering . 53
6.8 Paging Textures . 55

6.8.1 Texture Subloading . 56
6.8.2 Paging Images in System Memory . 57
6.8.3 Implementing High Resolution Textured Terrain . 57

6.9 Transparency Mapping and Trimming with Alpha . 58
6.10 Billboards . 59
6.11 Rendering Text . 61
6.12 Texture Mosaicing . 62
6.13 Texture Coordinate Generation . 62
6.14 Color Coding and Contouring . 62
6.15 Visualizing Surface Orientations . 63
6.16 Projective Textures . 65

6.16.1 How to Project a Texture . 65
6.17 Environment Mapping . 67
6.18 Image Warping and Dewarping . 67
6.19 3D Textures . 67

6.19.1 Using 3D Textures . 67
6.19.2 3D Textures to Render Solid Materials . 68
6.19.3 3D Textures as Multidimensional Functions . 68

6.20 Detail Textures . 69
6.20.1 Signed Intensity Detail Textures . 70
6.20.2 Making Detail Textures . 72

6.21 Procedural Texture Generation . 72
6.21.1 Filtered Noise Functions . 72
6.21.2 Generating Noise Functions . 73
6.21.3 High Resolution Filtering . 73
6.21.4 Spectral Synthesis . 74
6.21.5 Other Noise Functions . 75
6.21.6 Turbulence . 75
6.21.7 Example: Image Warping . 76
6.21.8 Generating 3D Noise . 76
6.21.9 Generating 2D Noise to Simulate 3D Noise . 76
6.21.10 Trade-offs Between 3D and 2D Techniques . 77

x

Programming with OpenGL: Advanced Rendering

7 Line Rendering Techniques 78
7.1 Wireframe Models . 78
7.2 Hidden Lines . 78

7.2.1 glPolygonOffset . 80
7.2.2 glDepthRange . 80

7.3 Haloed Lines . 80
7.4 Silhouette Edges . 81
7.5 Preventing Smooth Wide Line Overlap . 83
7.6 End Caps On Wide Lines . 84

8 Blending and Compositing 85
8.1 Compositing . 85
8.2 Advanced Blending . 85
8.3 Painting . 86
8.4 Blending with the Accumulation Buffer . 86
8.5 Blending Transitions . 87
8.6 The Stencil Buffer . 87
8.7 Compositing Images with Depth . 89

9 Antialiasing 91
9.1 Line and Point Antialiasing . 91
9.2 Polygon Antialiasing . 92
9.3 Multisampling . 92
9.4 Antialiasing With Textures . 92
9.5 Antialiasing with Accumulation Buffer . 93

10 Lighting Techniques 95
10.1 Phong Shading . 95

10.1.1 Phong Highlights with Texture . 95
10.1.2 Improved Highlight Shape . 95
10.1.3 Spotlight Effects using Projective Textures . 96
10.1.4 Phong Shading by Adaptive Tessellation . 97

10.2 Light Maps . 98
10.2.1 2D Texture Light Maps . 98
10.2.2 3D Texture Light Maps . 100

10.3 Gloss Maps . 101
10.4 Other Lighting Models . 101
10.5 Global Illumination . 102
10.6 Bump Mapping with Textures . 103
10.7 Bump Mapped Reflections . 108
10.8 Choosing Material Properties . 108

10.8.1 Modeling Material Type . 109
10.8.2 Modeling Material Smoothness . 110

10.9 Anisotropic Lighting . 110

xi

Programming with OpenGL: Advanced Rendering

11 Scene Realism 116
11.1 Reflections and Refractions . 116

11.1.1 Techniques for Rendering Reflections . 117
11.1.2 Planar Reflectors . 117
11.1.3 Curved Reflectors . 123
11.1.4 Refraction . 128
11.1.5 Further Realism . 128

11.2 Environment Mapping . 129
11.2.1 Sphere Mapping . 131
11.2.2 Dual-Paraboloid Environment Mapping . 141
11.2.3 Cube Environment Mapping . 148

11.3 Impact of Complexity on Choice of Reflection Technique . 148
11.4 Creating Shadows . 148

11.4.1 Projection Shadows . 149
11.4.2 Shadow Volumes . 150
11.4.3 Shadow Maps . 152
11.4.4 Soft Shadows by Jittering Lights . 153
11.4.5 Soft Shadows Using Textures . 154

12 Transparency 156
12.1 Screen-Door Transparency . 156
12.2 Alpha Blending . 156
12.3 Sorting . 157
12.4 Using the Alpha Function . 157
12.5 Using Multisampling . 158

13 Image Processing 159
13.1 Introduction . 159

13.1.1 The Pixel Transfer Pipeline . 159
13.1.2 Geometric Drawing and Texturing . 160
13.1.3 The Framebuffer and Per-Fragment Operations . 160
13.1.4 The Imaging Subset in OpenGL 1.2 . 160
13.1.5 Pixel Buffers . 161

13.2 Colors and Color Spaces . 162
13.2.1 The Accumulation Buffer: Interpolation and Extrapolation 162
13.2.2 Pixel Scale and Bias Operations . 163
13.2.3 Look-Up Tables . 163
13.2.4 The Color Matrix Extension . 165

13.3 Convolutions . 168
13.3.1 Introduction . 168
13.3.2 The Convolution Operation . 168
13.3.3 Convolutions Using the Accumulation Buffer . 169
13.3.4 The Convolution Extension . 171
13.3.5 Useful Convolution Filters . 171
13.3.6 Correlation and Feature Detection . 174

13.4 Image Warping . 175
13.4.1 The Pixel Zoom Operation . 175
13.4.2 Warps Using Texture Mapping . 176

xii

Programming with OpenGL: Advanced Rendering

14 Special Effects 177
14.1 Dissolves with Stencil . 177
14.2 Motion Blur . 178
14.3 Depth of Field . 179

15 Illustration and Artistic Techniques 181
15.1 Non-photorealistic Lighting Models . 181
15.2 Edge Lines . 182
15.3 Gradual Cutaway Views . 182

15.3.1 Steps to Generating a Cutaway Shell . 183
15.3.2 Refinements . 184
15.3.3 Rendering a Surface Textured Shell . 184

15.4 Depth Cuing . 185
15.5 Cross Hatching and 3D Halftones . 185
15.6 2D Drawing Techniques . 187

15.6.1 Line Joins . 187
15.7 Painting on Images . 188

16 Scientific Visualization Techniques 189
16.1 Scalar Field Visualization . 189

16.1.1 Definition of a Scalar Field . 189
16.1.2 Representing Data Values . 189
16.1.3 Interpolating Data Values . 190
16.1.4 Rendering Data Values . 190
16.1.5 Regular vs. Irregular Data Sampling . 192
16.1.6 3D Scalar Fields . 192
16.1.7 Multiple Scalar Fields . 192
16.1.8 Manipulating Scalar Fields . 193

16.2 Volume Visualization with Texture . 193
16.2.1 Overview of the Technique . 193
16.2.2 3D Texture Volume Rendering . 194
16.2.3 2D Texture Volume Rendering . 195
16.2.4 Blending Operators . 196
16.2.5 Sampling Frequency . 196
16.2.6 Shrinking the Volume Image . 197
16.2.7 Virtualizing Texture Memory . 197
16.2.8 Mixing Volumetric and Geometric Objects . 198
16.2.9 Transfer Functions . 198
16.2.10 Volume Cutting Planes . 198
16.2.11 Shading the Volume . 198
16.2.12 Warped Volumes . 199

16.3 Vector Field Visualization . 199
16.4 Line Integral Convolution (LIC) with Texture . 200

16.4.1 Sampling . 201
16.4.2 Using OpenGL to Create Line Integral Convolution (LIC) Images 201
16.4.3 Line Integral Convolution Procedure . 201
16.4.4 Details . 202
16.4.5 Maximizing Contrast . 202
16.4.6 Going Farther . 203

16.5 Illuminated Stream Lines . 203

xiii

Programming with OpenGL: Advanced Rendering

17 Natural Phenomena 205
17.1 Smoke . 205
17.2 Vapor Trails . 205
17.3 Fire . 206
17.4 Explosions . 206
17.5 Clouds . 207
17.6 Water . 208
17.7 Light Points . 208
17.8 Other Atmospheric Effects . 209
17.9 Particle Systems . 210

17.9.1 Representing Particles . 210
17.9.2 Particle Sizes . 211
17.9.3 Large and Small Points . 212
17.9.4 Antialiasing . 212
17.9.5 “Fat” Particles . 212
17.9.6 Particle Systems in a Scene . 213

17.10Precipitation . 213

18 Tuning Your OpenGL Application 215
18.1 What Is Pipeline Tuning? . 215

18.1.1 Three-Stage Model of the Graphics Pipeline . 215
18.1.2 Finding Bottlenecks in Your Application . 216
18.1.3 Measuring Depth Complexity . 217

18.2 Optimizing Your Application Code . 218
18.2.1 Optimize Cache and Memory Usage . 218
18.2.2 Store Data in a Format That is Efficient for Rendering 218
18.2.3 Per-Platform Tuning . 219

18.3 Tuning the Geometry Subsystem . 219
18.3.1 Use Expensive Modes Efficiently . 219
18.3.2 Optimizing Transformations . 220
18.3.3 Optimizing Lighting Performance . 220
18.3.4 Advanced Geometry-Limited Tuning Techniques . 222

18.4 Tuning the Raster Subsystem . 222
18.4.1 Using Backface/Frontface Removal . 222
18.4.2 Minimizing Per-Pixel Calculations . 222
18.4.3 Optimizing Texture Mapping . 223
18.4.4 Clearing the Color and Depth Buffers Simultaneously 224

18.5 Rendering Geometry Efficiently . 224
18.5.1 Using Peak-Performance Primitives . 224
18.5.2 Using Vertex Arrays . 225
18.5.3 Using Display Lists . 225
18.5.4 Balancing Polygon Size and Pixel Operations . 226

18.6 Rendering Images Efficiently . 226
18.7 Tuning Animation . 227

18.7.1 Factors Contributing to Animation Speed . 227
18.7.2 Optimizing Frame Rate Performance . 227

18.8 Taking Timing Measurements . 228
18.8.1 Benchmarking Basics . 228
18.8.2 Achieving Accurate Timing Measurements . 229
18.8.3 Achieving Accurate Benchmarking Results . 229

xiv

Programming with OpenGL: Advanced Rendering

19 Portability Considerations 231
19.1 General Concerns . 231

19.1.1 Handle Runtime Feature Availability Carefully . 231
19.1.2 Extensions and OpenGL Versioning . 232
19.1.3 Source Compatibility Across OpenGL SDKs . 232
19.1.4 Characterize Platform Performance . 232

19.2 Windows and UNIX Portability . 233
19.3 3D Texture Portability . 235

20 Using OpenGL Extensions 236
20.1 How OpenGL Extensions are Documented . 236
20.2 Finding OpenGL extension specifications . 236
20.3 How to Read an OpenGL Extension Specification . 236
20.4 Portably Using OpenGL Extensions . 239
20.5 Win32’s Scheme for Getting Extension Function Pointers . 241

A List of Demo Programs 244

B GLUT, the OpenGL Utility Toolkit 249

C Equations 250
C.1 Projection Matrices . 250

C.1.1 Perspective Projection . 250
C.1.2 Orthographic Projection . 250
C.1.3 Perspective z-Coordinate Transformations . 250

C.2 Lighting Equations . 250
C.2.1 Attenuation Factor . 250
C.2.2 Spotlight Effect . 251
C.2.3 Ambient Term . 251
C.2.4 Diffuse Term . 251
C.2.5 Specular Term . 252
C.2.6 Putting It All Together . 252

xv

Programming with OpenGL: Advanced Rendering

List of Figures

1 T-intersection . 5
2 Quadrilateral Decomposition . 7
3 Octahedron with Triangle Subdivision . 7
4 Computing a Surface Normal from Edges’ Cross Product . 8
5 Computing Quadrilateral Surface Normal from Vertex Cross Product 9
6 Proper Winding for Shared Edge of Adjoining Facets . 10
7 Splitting Normals for Hard Edges . 10
8 Triangle Strip Winding . 11
9 Triangle Fan Winding . 11
10 A Mesh Made up of Multiple Triangle Strips . 11
11 “Greedy” Triangle Strip Generation . 13
12 Using Stencil to Render Co-planar Polygons . 14
13 An Example Of Constructive Solid Geometry . 16
14 A CSG Tree in Normal Form . 16
15 Thinking of a CSG Tree as a Sum of Products . 18
16 Examples of n-convex Solids . 19
17 Stereo Viewing Geometry . 24
18 Window to Eye Relationship for near/far Ratios . 26
19 Available Window Depth Values near/far Ratios . 26
20 Polygon and Outline Slopes . 28
21 Clipped Wide Primitives Can Still be Visible . 31
22 A Complex Display Configuration . 31
23 A Configuration with Off-Center Projector and Viewer . 32
24 Distortion Correction Using Texture Mapping . 32
25 Occluded Torus: Front and Top Views . 37
26 Occlusion Map and Depth Estimation Buffer . 38
27 Vertices with Texture Coordinates . 41
28 Multiple Levels of Texture Detail using Mipmaps . 44
29 Cascading Multitexture Texture Environments . 49
30 Texture Tiling . 50
31 Footprint in Anisotropically Scaled Texture . 53
32 Creating a Set of Anisotropically Filtered Images . 53
33 Geometry Orientation and Texture Aspect Ratio . 54
34 Non Power-of-2 Aspect Ratio Using Texture Matrix . 55
35 2D Image Roam . 57
36 Billboard with Cylindrical Symmetry . 59
37 Texture Containing Font Glyphs and Rendering Example . 61
38 Contour Generation Using TexGen . 62
39 3D Textures as 2D Textures Varying with R . 69
40 Detail Textures . 69
41 Special Case Texture Magnification . 70
42 Subtracting out Low Frequencies . 71
43 Input Image . 74
44 Output Image . 74

xvi

Programming with OpenGL: Advanced Rendering

45 Haloed Line . 81
46 Shaded Solid Image, Silhouette Edges, Silhouette and Boundary Edges 82
47 Tangent Space Defined at Polygon Vertices . 104
48 Bump Mapping: Shift and Subtract Image . 105
49 Shifting a Bump Map to Perform Forward Differencing . 106
50 Normals to a Fiber . 110
51 Projecting Light Vector to Maximize Lighting Contribution . 110
52 Reflection and Refraction: Medium Below has Higher Index of Refraction 116
53 Total Internal Reflection . 116
54 Mirror Reflection of the Viewpoint . 117
55 Mirror Reflection of the Scene . 117
56 Virtual Reflected Vertices . 117
57 Stencil Reflection Steps . 121
58 Masking Reflections Using Projective Texture . 122
59 Virtual Reflected Vertices from a Curved Reflector . 123
60 Checkerboard reflected in Curved Patch . 123
61 Mapping Reflection Vectors into Explosion Map Coordinates . 124
62 Triangle IDs Stored in an Explosion Map as Color . 124
63 Using An Explosion Map to determine the Reflecting Triangle 126
64 Combining the Results of Near and Far Explosion Map Evaluation 126
65 Problems with Cylindrical Environment Mapping . 130
66 Creating a Sphere Map . 131
67 Sphere Map Coordinate Generation . 131
68 Reflection Map Created Using a Reflective Sphere . 134
69 Image Cube Faces Captured at Cafe Verona in Palo Alto, California 135
70 Sphere Map Generated from Image Cube Faces in Figure 69 . 135
71 Meshes for Warping Six Cube Views into a Sphere Map . 137
72 The Source of Sphere Mapping Sparkles . 140
73 Example Showing Sparkle Artifacts . 140
74 Two Paraboliods Shown in 2D as Parabolas . 141
75 Example Dual-Paraboloid Texture Map Images . 142
76 The Sweet Circles of a Dual-Paraboloid Map . 144
77 How Cube Map Faces Map to a Dual-Paraboloid Map . 145
78 The Texture Warping Mesh for Constructing a Dual-Paraboloid Map 145
79 Shadow Volume . 150
80 Using Stencil to Dissolve Between Images . 177
81 Jittered Eye Points . 179
82 Opposing Lights Approximating Warm to Cool Shift . 181
83 Simulation of Anisotropic Lighting . 182
84 Gradual Cutaway Using a 1D Texture . 183
85 3D Cross Hatching . 186
86 Line Join Styles: None, Round, Miter, Bevel . 188
87 Slicing a 3D Texture to Render Volume . 193
88 Slicing a 3D Texture with Spherical Shells . 194
89 Line Integral Convolution . 200
90 Line Integral Convolution with OpenGL . 201
91 Dilating, Fading Smoke . 205
92 Vapor Trail . 206
93 Water Modeled as a Height Field . 208
94 Particle System Block Diagram . 211

xvii

Programming with OpenGL: Advanced Rendering

List of Tables

1 OpenGL Internal Texture Formats . 42
2 glAccum Operations . 86
3 Stencil Buffer Comparisons . 88
4 Stencil Buffer Operations . 88
5 Stencil Bits Supported by Selected OpenGL Implementations . 89
6 Sample Jittering Values . 94
7 Parameters for Common Materials . 111
8 Factors Influencing Performance . 217

xviii

Programming with OpenGL: Advanced Rendering

1 Introduction

Since its first release in 1992, OpenGL has been rapidly adopted as the graphics API of choice for real-time
interactive 3D graphics applications. The OpenGL state machine is easy to understand, but its simplicity and
orthogonality enable a multitude of interesting effects. The goal of this course is to demonstrate how to generate
more satisfying images using OpenGL. There are three general areas of discussion: generating aesthetically pleas-
ing or realistic looking basic images, computing interesting effects, and generating more sophisticated images.

1.1 OpenGL Version

We have assumed that the attendees have a strong working knowledge of OpenGL. As much as possible we
have tried to include interesting examples involving only those commands in the most readily available version
of OpenGL, version 1.1, but we have not restricted ourselves to this version. At the time of this writing, the
OpenGL 1.2 specification has been approved as well as the ARB multitexture extension and implementations
are just starting to become available. Consequently, we’ve used those features when it seemed sensible, but
mention that we’re doing so.

OpenGL is an evolving standard and we have taken the liberty of incorporating material that uses some multi-
vendor extensions and, in some cases, vendor specific extensions. We do this to help make you aware of extensions
that we think have general usefulness and should be more widely available.

The course notes include reprints of selected papers describing rendering techniques relevant to OpenGL, but may
refer to other APIs such as OpenGL’s predecessor, Silicon Graphics’ IRIS GL. For new material developed for the
course notes, we use terminology and notation consistent with other OpenGL documentation.

1.2 Course Notes and Slide Set Organization

For a number of reasons, these course notes do not have a one-to-one correspondence with what we present at
the SIGGRAPH course. There is just too much material to present in a one-day course (in fact, we have broken
out a separate half day course from the same notes to cover the large amount of material on lighting and shading
alone), but we want to provide you with as much material as possible. The organization of the course presentation
is constrained by presentation and time restrictions, and isn’t necessarily the optimal way to organize the material.
As a result, the slides and the course notes go their separate ways, and unfortunately, it is impossible to track the
presenter’s lectures using these notes.

We’ve tried to make up for this by making the slide set available on our web site, described in Section 1.6. We
intend to get an accurate copy of the course materials on the web site as early as possible prior to the presentation.

1.3 Acknowledgments

This year we have tried to keep pace with a growing number of innovative techniques using OpenGL and have
added a significant amount of new material as well as improvements and corrections to the old material. As usual,
we’ve tried to do a lot in a short period of time and are grateful for the enthusiastic assistance we have received:

Some cool new ideas were contributed by Kurt Akeley, Brian Cabral, Amy Gooch, Wolfgang Heidrich, Detlev
Stalling, and Hansong Zhang.

Our reviewers this year included Dave Shreiner, Paul Strauss, David Yu, and Hansong Zhang. Dany Galgani,
Bob Brown, and Linda Rae Sande helped with the production. Bowen ’Cheetah’ Goletz helped with the logistics
of sharing the source material over the internet. We are also indebted to those who have made tools such as
TeX/LaTeX, GhostScript/Ghostview, and cvs freely available on the three different computing platforms that we
used for preparing the notes.

1

Programming with OpenGL: Advanced Rendering

We would also like to thank John Airey, Amy Gooch, Paul Heckbert, Wolfgang Heidrich, Mark Segal, Detlev
Stalling, Michael Teschner, Bruce Walter, and Tim Wiegand for providing material for inclusion in the reprints
section.

Permission to reproduce [101] has been granted by Computer Graphics Forum. Permission to reproduce [92] has
been granted by the IEEE.

1.4 Acknowledgments for 1998 Course Notes

Once again this year, we tried to improve the quality of our existing course notes, add a significant amount of new
material, and still do our real jobs in a short amount of time. As before, we’ve had a lot of great help:

For still more cool ideas and demos, we’d like to thank Kurt Akeley, Luis Barcena, Brian Cabral, Angus Dorbie,
Bob Drebin, Mark Peercy, Nacho Sanz-Pastor Revorio, Chris Tanner, and David Yu.

Our reviewers should also get credit for helping us fix up our mistakes: Sharon Clay, Robert Grzeszczuk, Phil
Lacroute, Mark Peercy, Lena Petrovic, Allan Schaffer, and Mark Stadler.

We have a production team! Linda Rae Sande performed invaluable production editing on the entire set of course
notes, improving them immensely. Dany Galgani managed to plow through nearly all of our illustrations, bringing
them up to an entirely new level of quality. Chris Everett has once again helped us with the mysteries of PDF
documents.

As before, we would also like to thank John Airey, Paul Heckbert, Phil Lacroute, Mark Segal, Michael Teschner,
Bruce Walter, and Tim Wiegand for providing material for inclusion in the reprints section.

Permission to reproduce [101] has been granted by Computer Graphics Forum.

1.5 Acknowledgments for 1997 Course Notes

The authors have tried to compile together more than a decade worth of experience, tricks, hacks and wisdom
that has often been communicated by word of mouth, code fragments or the occasional magazine or journal
article. We are indebted to our colleagues at Silicon Graphics for providing us with interesting material, references,
suggestions for improvement, sample programs and cool hardware.

We’d like to thank some of our more fruitful and patient sources of material: John Airey, Remi Arnaud, Brian
Cabral, Bob Drebin, Phil Lacroute, Mark Peercy, and David Yu.

Credit should also be given to our army of reviewers: John Airey, Allen Akin, Brian Cabral, Tom Davis, Bob
Drebin, Ben Garlick, Michael Gold, Robert Grzeszczuk, Paul Haeberli, Michael Jones, Phil Keslin, Phil Lacroute,
Erik Lindholm, Mark Peercy, Mark Young, David Yu, and particularly Mark Segal for having the endurance to
review for us two years in a row.

We would like to acknowledge Atul Narkhede and Rob Wheeler for coding prototype algorithms, and Chris Everett
for once again providing his invaluable production expertise and assistance this year, and Dany Galgani for some
really nice illustrations.

We would also like to thank John Airey, Paul Heckbert, Phil Lacroute, Mark Segal, Michael Teschner, and Tim
Wiegand for providing material for inclusion in the reprints section.

Permission to reproduce [101] has been granted by Computer Graphics Forum.

1.6 Course Notes Web Site

We’ve created a webpage for the 1999 course and previous year’s courses on SGI’s OpenGL web site. It contains
an HTML version of the course notes and downloadable source code for the demo programs mentioned in the text.
The web address is:

2

Programming with OpenGL: Advanced Rendering

http://www.sgi.com/software/opengl/courses.html

Additional pointers to the course web site are also available from the site http://www.opengl.org.

3

Programming with OpenGL: Advanced Rendering

2 About OpenGL

Before getting into the intricacies of using OpenGL, we begin with a few comments about the philosophy behind
the OpenGL API and some of the caveats that come with it.

OpenGL is a procedural rather than descriptive interface. In order to generate a rendering of a red sphere the
programmer must specify the appropriate sequence of commands to set up the camera view and modeling trans-
formations, draw the geometry for a sphere with a red color, etc. Other systems such as VRML [18] are descriptive;
one simply specifies that a red sphere should be drawn at certain coordinates. The disadvantage of using a pro-
cedural interface is that the application must specify all of the operations in exacting detail and in the correct
sequence to get the desired result. The advantage of this approach is that it allows great flexibility in the process of
generating the image. The application is free to trade-off rendering speed and image quality by changing the steps
through which the image is drawn. The easiest way to demonstrate the power of the procedural interface is to note
that a descriptive interface can be built on top of a procedural interface, but not vice-versa. Think of OpenGL as a
“graphics assembly language”: the pieces of OpenGL functionality can be combined as building blocks to create
innovative techniques and produce new graphics capabilities.

A second aspect of OpenGL is that the specification is not pixel exact. This means that two different OpenGL
implementations are very unlikely to render exactly the same image. This allows OpenGL to be implemented
across a range of hardware platforms [56]. If the specification were too exact, it would limit the kinds of hardware
acceleration that could be used; limiting its usefulness as a standard. In practice, the lack of exactness need not be
a burden — unless you plan to build a rendering farm from a diverse set of machines.

The lack of pixel exactness shows up even within a single implementation, in that different paths through the
implementation may not generate the same set of fragments, although the specification does mandate a set of
invariance rules to guarantee repeatable behavior across a variety of circumstances. A concrete example that one
might encounter is an implementation that does not accelerate texture mapping operations, but accelerates all
other operations. When texture mapping is enabled the fragment generation is performed on the host and as a
consequence all other steps that precede texturing likely also occur on the host. This may result in either the use
of different algorithms or arithmetic with different precision than that used in the hardware accelerator. In such a
case, when texturing is enabled, a slightly different set of pixels in the window may be written compared to when
texturing is disabled. For some of the algorithms presented in this course such variability can cause problems, so
it is important to understand a little about the underlying details of the OpenGL implementation you are using.

4

Programming with OpenGL: Advanced Rendering

A

T-intersection at A

Figure 1. T-intersection

3 Modeling

Rendering is only half the story. Great computer graphics starts with great images and geometric models. This
section describes some modeling rules and describes a high-performance method of performing Constructive Solid
Geometry (CSG) operations.

3.1 Modeling Considerations

OpenGL is a renderer not a modeler. There are utility libraries such as the OpenGL Utility Library (GLU) that can
assist with modeling tasks, but for all practical purposes modeling is the application’s responsibility. Attention
to modeling considerations is important; the image quality is directly related to the quality of the modeling. For
example, undertessellated geometry produces poor silhouette edges. Other artifacts result from a combination
of the model and OpenGL’s ordering scheme. For example, interpolation of colors determined as a result of
evaluation of a lighting equation at the vertices can result in a less than pleasing specular highlight if the geometry
is not sufficiently sampled. We include a short list of modeling considerations with which OpenGL programmers
should be familiar:

Consider using triangles, triangle strips and triangle fans. Primitives such as polygons and quads are usually
decomposed by OpenGL into triangles before rasterization. OpenGL does not provide controls over how this
decomposition is done, so for more predictable results, the application should do the tessellation directly.
Application tessellation is also more efficient if the same model is to be drawn multiple times (e.g., multiple
instances per frame, as part of a multipass algorithm, or for multiple frames). The second release of the
GLU library (version 1.1) includes a very good general polygon tessellator; it is highly recommended.

Avoid T-intersections (also called T-vertices). T-intersections occur when one or more triangles share (or
attempt to share) a partial edge with another triangle (Figure 1).

Even though the geometry may be perfectly aligned when defined, after transformation it is no longer
guaranteed to be an exact match. Since finite-precision algorithms are used to rasterize triangles, the edges
will not always be perfectly aligned when they are drawn unless both edges share common vertices. This
problem typically manifests itself during animations when the model is moved and cracks along the polygon
edges appear and disappear. In order to avoid the problem, shared edges should share the same vertex
positions so that the edge equations are the same.

Note that this requirement must be satisfied when seemingly separate models are sharing an edge. For
example, an application may have modeled the walls and ceiling of the interior of a room independently,
but they do share common edges where they meet. In order to avoid cracking when the room is rendered
from different viewpoints, the walls and ceilings should use the same vertex coordinates for any triangles

5

Programming with OpenGL: Advanced Rendering

along the shared edges. This often requires adding edges and creating new triangles to “stitch” the edges of
abutting objects together seamlessly.

The T-intersection problem has consequences for view-dependent tessellation. Imagine drawing an object
in extreme perspective so that some part of the object maps to a large part of the screen and an equally large
part of the object (in object coordinates) maps to a small portion of the screen. To minimize the rendering
time for this object, applications tessellate the object to varying degrees depending on the area of the screen
that it covers. This ensures that time is not wasted drawing many triangles that cover only a few pixels on
the screen. This is a difficult mechanism to implement correctly; if the view of the object is changing, the
changes in tessellation from frame to frame may result in noticeable motion artifacts. Often it is best to
either undertessellate and live with those artifacts or overtessellate and accept reduced performance. The
GLU NURBS library is an example of a package that implements view-dependent tessellation and provides
substantial control over the sampling method and tolerances for the tessellation.

Another problem related to T-intersections occurs with careless specification of surface boundaries. If a
surface is intended to be closed, it should share the same vertex coordinates where the surface specification
starts and ends. A simple example of this would be drawing a sphere by subdividing the interval
to generate the vertex coordinates. The vertex at must be the same as the one at . Note that the
OpenGL specification is very strict in this regard as even the glMapGrid routine must evaluate exactly at
the boundaries to ensure that evaluated surfaces can be properly stitched together.

Another consideration is the quality of the attributes that are specified with the vertex coordinates, in par-
ticular, the vertex (or face) normals and texture coordinates. When computing normals for an object, sharp
edges should have separate normals at common vertices, while smooth edges should have common normals.
For example, a cube is made up of six quadrilaterals where each vertex is shared by three polygons, but a
different normal should be used for each of the three instances of each vertex, but a sphere is made up of
many polygons where all vertices have common normals. Failure to properly set these attributes can result
in unnatural lighting effects or shading techniques such as environment mapping will exaggerate the errors
resulting in unacceptable artifacts.

The final suggestion is to be consistent about the orientation of polygons. That is, ensure that all polygons on
a surface are oriented in the same direction (clockwise or counterclockwise) when viewed from the outside.
The OpenGL face culling method is an efficient form of hidden surface elimination for closed surfaces.

3.2 Decomposition and Tessellation

Tessellation refers to the process of decomposing a complex surface such as a sphere into simpler primitives such
as triangles or quadrilaterals. Most OpenGL implementations are tuned to process triangle strips and triangle
fans efficiently. Triangles are desirable because they are planar, easy to rasterize, and can always be interpolated
unambiguously. When an implementation is optimized for processing triangles, more complex primitives such as
quad strips, quads, and polygons are decomposed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is a performance benefit in performing
this decomposition a priori, either when the database is created or at application initialization time, rather than
each time the primitive is issued. A second advantage of performing this decomposition under the control of the
application is that the decomposition can be done consistently and independently of the OpenGL implementation.
Since OpenGL does not specify its decomposition algorithm, different implementations may decompose a given
quadrilateral along different diagonals. This can result in an image that is shaded differently and has different
silhouette edges when drawn on two different OpenGL implementations.

Quadrilaterals may be decomposed by finding the diagonal that creates two triangles with the least difference in
orientation. A good way to find this diagonal is to compute the angles between the normals at opposing vertices,
compute the dot product, then choose the pair with the smallest angle (largest dot product) as shown in Figure 2.
The normals for a vertex can be computed by taking the cross products of the the two vectors with origins at that

6

Programming with OpenGL: Advanced Rendering

A = a x b
A

B

B = c x d

a

b

c

d

Figure 2. Quadrilateral Decomposition

vertex. An alternative decomposition method is to split the quadrilateral into triangles that are closest to equal in
size.

Tessellation of simple surfaces such as spheres and cylinders is not difficult. Most implementations of the GLU
library use a simple latitude-longitude tessellation for a sphere. While the algorithm is simple to implement, it has
the disadvantage that the triangles produced from the tessellation have widely varying sizes. These widely varying
sizes can cause noticeable artifacts, particularly if the object is lit and rotating.

A better algorithm generates triangles with sizes that are more consistent. Octahedral and icosahedral tessellations
work well and are not very difficult to implement. An octahedral tessellation approximates a sphere with an
octahedron whose vertices are all on the unit sphere. Since the faces of the octahedron are triangles they can easily
be split into four triangles, as shown in Figure 3.

Each triangle is split by creating a new vertex in the middle of each edge and adding three new edges. These
vertices are scaled onto the unit sphere by dividing them by their distance from the origin (normalizing them).
This process can be repeated as desired, recursively dividing all of the triangles generated in each iteration.

The same algorithm can be applied using an icosahedron as the base object, recursively dividing all 20 sides.
In both cases the algorithms can be coded so that triangle strips are generated instead of independent triangles,
maximizing rendering performance. It is not necessary to split the triangle edges in half, since tessellating the
triangle by other amounts, such as by thirds, or even any arbitrary number, may produce a more desirable final
uniform triangle size.

3.3 Generating Model Normals

Given an arbitrary polygonal model without precomputed normals, it is fairly easy to generate polygon normals
for faceted shading, but quite a bit more difficult to create correct vertex normals for smooth shading. A simple
cross product of two edges followed by a normalization of the result to obtain a unit-length vector generates a facet
normal. Computing a correct vertex normal must take into account all facets that share that normal and whether or
not all facets should contribute to the normal. For best results, compute all normals before converting to triangle

7

Programming with OpenGL: Advanced Rendering

Figure 3. Octahedron with Triangle Subdivision

Vector V12

Vector V10

V1

V2

V0

Figure 4. Computing a Surface Normal from Edges’ Cross Product

strips.

To compute the facet normal of a triangle, select one vertex, compute the vectors from that vertex to the other two
vertices, then compute the cross product of those two vectors. Figure 4 shows which vectors to use to compute
a cross product for a triangle. The following code fragment generates a facet normal for a triangle, assuming a
clockwise polygon winding when viewed from the front:

/* Compute edge vectors */
x10 = x1 - x0;
y10 = y1 - y0;
z10 = z1 - z0;
x12 = x1 - x2;
y12 = y1 - y2;
z12 = z1 - z2;

/* Compute the cross product */
cpx = (z10 * y12) - (y10 * z12);
cpy = (x10 * z12) - (z10 * x12);
cpz = (y10 * x12) - (x10 * y12);

8

Programming with OpenGL: Advanced Rendering

V
e

ct
o

r
V

2
0

Vector V13
V1

V2

V3

V0

Figure 5. Computing Quadrilateral Surface Normal from Vertex Cross Product

/* Normalize the result to get the unit-length facet normal */
r = sqrt(cpx * cpx + cpy * cpy + cpz * cpz);
nx = cpx / r;
ny = cpy / r;
nz = cpz / r;

Computing the facet normal of a polygon with more than three vertices is a bit trickier. Often such polygons are
not perfectly planar, so you may get a different result depending on which three vertices are chosen. If the polygon
is a quadrilateral one good method is to take the cross product of the vectors between opposing vertices as shown
in Figure 5. The following code fragment computes the cross product for a quadrilateral:

/* Compute vectors */
x20 = x2 - x0;
y20 = y2 - y0;
z20 = z2 - z0;
x13 = x1 - x3;
y13 = y1 - y3;
z13 = z1 - z3;

/* Compute the cross product */
cpx = (z20 * y13) - (y20 * z13);
cpy = (x20 * z13) - (z20 * x13);
cpz = (y20 * x13) - (x20 * y13);

For polygons with more than four vertices it can be difficult to choose the best vertices to use for computing the
cross product. It is best to attempt to choose vertices that are the furthest apart from each other, if possible, or
average the result of several vertex cross products.

3.3.1 Consistent Vertex Winding

Some 3D models come with polygons that are not all wound in a clockwise or counterclockwise direction, but are
a mixture of both. Those polygons that are wound inconsistently should have the vertex order reversed. A good

9

Programming with OpenGL: Advanced Rendering

0

1

2 2

3
0

1

Figure 6. Proper Winding for Shared Edge of Adjoining Facets

way to accomplish this is to find all common edges and verify that neighboring polygon edges are drawn in the
opposite order (see Figure 6).

To begin rewinding polygons, one polygon must be chosen as “correct.” All neighboring polygons must then be
found and made consistent with the “correct” polygon. This repeats recursively for each new “correct” polygon
until no more neighboring polygons can be found. If the model is a single closed object, all polygons will now be
consistent. However, if the model has multiple unconnected pieces, another polygon that has not yet been tested
must be found and the process must be repeated until all polygons have been tested and made consistent.

The above method still leaves a 50-50 chance that the entire object is now wound backwards (assuming an object
with half of the facets wound clockwise and half wound counterclockwise). Short of getting a human involved
to look at the model, there are ways to check that the normals are pointing outwards. One way is to find the
geometric center of the object by computing the object bounding box by finding the maximum and minimum X,
Y and Z values, then computing the mid-point of the bounding box. Next, select a vertex that is the maximum
distance from this center point and compute the (normalized) vector from the center point to this vertex. Then
take the normal of one of the facets that shares the distant vertex and compute the dot product of the two vectors.
A positive result indicates that the normals are all correct while a negative result indicates that the normals are all
backwards. If the normals are backwards, negate them all and reverse the windings of all facets.

There are still a few pathological cases that may not come out right, such as a model of a room where it is desirable
to view the inside walls, but the above method works for most cases.

3.3.2 Smooth Shading

To smoothly shade an object, the same normal should be used on a given vertex for all polygons that share the
vertex. The simplest way to do this is to add all (normalized) normals from the common facets then renormalize
the result [38]. This provides reasonable results for surfaces that are fairly smooth, but does not look good for
surfaces with sharp edges.

An object with a sharp corner, such as a cube, should look like it has a hard edge, rather than a soft edge. The
angle between polygons that should produce a hard edge can vary from model to model. It is fairly clear that a
90 degree edge should always be considered a hard edge, but some models look better with hard edges at angles
less than 45 degrees while others look better with soft edges for angles greater than 45 degrees. This particular
parameter should generally be left under user control with a good default probably right around 45 degrees.

To determine the angle between polygons, take the dot product of the facet normals (which must be unit length).
A dot product returns the cosine of the angle between the vectors. So, if the dot product of the two normals is
greater than the cosine of the desired hard edge angle, the edge should be considered soft, otherwise it should be
considered hard. To create a hard edge, a different normal is generated for each side. Be sure to keep common
normals for any remaining soft edges of the surface.

10

Programming with OpenGL: Advanced Rendering

poly00

poly01

poly02

poly03

poly04

poly05

poly10

poly11

poly12

poly13

poly14

poly15

v0

v1

v2

v3

v4

v5

v6

H a r d e d g e

Figure 7. Splitting Normals for Hard Edges

Figure 7 shows an example of a mesh with two hard edges in it. The three vertices making up these hard edges,
v2, v3, and v4, need to be split using two separate normals. In the case of vertex v2, one normal would apply
to poly01 and poly02 and a different normal would apply to poly11 and poly12. This makes sure that the edge
between poly01 and poly02 still looks smooth while the edge between poly02 and poly12 has a nice crease and
looks like a sharp edge. Since v1 is not split, the edge between poly01 and poly11 will look sharper near v2 and
will become smoother as it gets closer to v1. The edge between v1 and v0 would then be completely smooth. This
is the desired effect.

For an object such as a cube, three hard edges will share one common vertex. In this case the edge splitting
algorithm needs to be repeated for the third edge to achieve the correct results.

3.4 Triangle-stripping

One of the simplest ways to speed up an OpenGL program while simultaneously saving storage space is to convert
independent triangles or polygons into triangle strips. If the model is generated directly from NURBS data or from
some other regular geometry, it is quite straightforward to connect the triangles together into longer strips. You
must keep in mind whether you want the first triangle to start off with a clockwise or counterclockwise winding,
then all subsequent triangles in the list will alternate winding (see Figure 8). Triangle fans must also be started
with the correct winding, but all subsequent triangles are wound in the same direction (see Figure 9).

Because OpenGL does not have a way to specify generalized triangle strips, the user must choose between
GL TRIANGLE STRIP and GL TRIANGLE FAN. In general, more triangles can be placed into a strip than a fan.
Triangle fans are great when a large convex polygon needs to be converted to triangles or for geometry that is
cone-shaped. Most other cases are best converted to triangle strips.

For regular meshes, triangle strips should be lined up side by side as shown in Figure 10. The goal here is to
minimize the number of total strips and try to avoid “orphan” triangles (also known as singleton strips) that ca not
be made part of a longer strip. It is possible to turn a corner in a triangle strip by using redundant vertices and
degenerate triangles as described in [26].

11

Programming with OpenGL: Advanced Rendering

0

1

2

3 5
7

4 6

8

9

Figure 8. Triangle Strip Winding

0

1

4

2
5

6

3

Figure 9. Triangle Fan Winding

Start of first strip

Start of second strip

Start of third strip

Figure 10. A Mesh Made up of Multiple Triangle Strips

12

Programming with OpenGL: Advanced Rendering

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 11. “Greedy” Triangle Strip Generation

3.4.1 Greedy Tri-stripping

A fairly simple method of converting a model into triangle strips is sometimes known as greedy tri-stripping. One
of the early greedy algorithms was developed for IRIS GL that allowed swapping of vertices to create direction
changes to the facet with the least neighbors. However, with OpenGL the only way to get the equivalent behavior
of swapping vertices is to repeat a vertex and create a degenerate triangle, which is more expensive than the
original vertex swap operation.

For OpenGL a better algorithm is to choose a polygon, convert it to triangles, then continue onto the neighboring
polygon from the last edge of the previous polygon. For a given starting polygon beginning at a given edge, there
are no choices as to which polygon is the best to choose next since there is only one choice. The strip is continued
until the triangle strip runs off the edge of the model or runs into a polygon that is already a part of another strip
(see Figure 11). For best results, pick a polygon and go both directions as far as possible, then start the triangle
strip from one end.

A triangle strip should not cross a hard edge, unless the vertices on that edge are repeated redundantly, since you
will want different normals for the two triangles on either side of that edge. Once one strip is complete, the best
polygon to choose for the next strip is often a neighbor to the polygon at one end or the other of the previous strip.
More advanced triangulation methods do not try to keep all triangles of a polygon together. For more information
on such a method refer to [26].

3.5 Coplanar Polygons and Decaling with Stencil

Using stenciling to control pixels drawn from a particular primitive can help solve a number of important problems:

1. Drawing depth-buffered, co-planar polygons without z-buffering artifacts.

2. Decaling multiple textures on a primitive.

Values are written to the stencil buffer to create a mask for area to be decaled. Then this stencil mask is used to
control two separate draw steps; one for the decaled region, one for the rest of the polygon.

A useful example that illustrates the technique is rendering co-planar polygons. If one polygon is to be rendered
directly on top of another (runway markings, for example), the depth buffer ca not be relied upon to produce a
clean separation between the two. This is due to the quantization of the depth buffer. Since the polygons have
different vertices, the rendering algorithms can produce values that are rounded to the wrong depth buffer value,
so some pixels of the back polygon may show through the front polygon. In an application with a high frame rate,

13

Programming with OpenGL: Advanced Rendering

Rendered Directly Decaled Using Stencil

Figure 12. Using Stencil to Render Co-planar Polygons

this results in a shimmering mixture of pixels from both polygons (commonly called “Z fighting” or “flimmering”).
An example is shown in in Figure 12.

To solve this problem, the closer polygons are drawn with the depth test disabled, on the same pixels covered by
the farthest polygons. It appears that the closer polygons are “decaled” on the farther polygons.

Decaled polygons can be drawn with the following steps:

1. Turn on stenciling; glEnable(GL STENCIL TEST).

2. Set stencil function to always pass; glStencilFunc(GL ALWAYS, 1, 1).

3. Set stencil op to set 1 if depth passes, 0 if it fails; glStencilOp(GL KEEP, GL ZERO, GL REPLACE).

4. Draw the base polygon.

5. Set stencil function to pass when stencil is 1; glStencilFunc(GL EQUAL, 1, 1).

6. Disable writes to stencil buffer; glStencilMask(GL FALSE).

7. Turn off depth buffering; glDisable(GL DEPTH TEST).

8. Render the decal polygon.

The stencil buffer does not have to be cleared to an initial value; the stencil values are initialized as a side effect
of writing the base polygon. Stencil values will be one where the base polygon was successfully written into the
framebuffer, and zero where the base polygon generated fragments that failed the depth test. The stencil buffer
becomes a mask, ensuring that the decal polygon can only affect the pixels that were touched by the base polygon.
This is important if there are other primitives partially obscuring the base polygon and decal polygons.

There are a few limitations to this technique. First, it assumes that the decal polygon does not extend beyond
the edge of the base polygon. If it does, you will have to clear the entire stencil buffer before drawing the base
polygon, which is expensive on some machines. If you are careful to redraw the base polygon with the stencil
operations set to zero the stencil after you’ve drawn each decaled polygon, you will only have to clear the entire
stencil buffer once, for any number of decaled polygons.

14

Programming with OpenGL: Advanced Rendering

Second, if the screen extents of the base polygons you’re decaling overlap, you will have to perform the decal
process for one base polygon and its decals before you move on to another base and decals. This is an important
consideration if your application collects and then sorts geometry based on its graphics state, where the rendering
order of geometry may be changed by the sort.

This process can be extended to allow a number of overlapping decal polygons, the number of decals limited by
the number of stencil bits available for the visual. The decals do not have to be sorted. The procedure is the similar
to the previous algorithm, with the following extensions.

Assign a stencil bit for each decal and the base polygon. The lower the number, the higher the priority of the
polygon. Render the base polygon as before, except instead of setting its stencil value to one, set it to the largest
priority number. For example, if there were three decal layers, the base polygon would have a value of 8.

When you render a decal polygon, only draw it if the decal’s priority number is lower than the pixels it is trying
to change. For example, if the decal’s priority number was 1, it would be able to draw over every other de-
cal and the base polygon; glStencilFunc(GL LESS, 1, 0) and glStencilOp(GL KEEP, GL REPLACE,
GL REPLACE).

Decals with the lower priority numbers will be drawn on top of decals with higher ones. Since the region not
covered by the base polygon is zero, no decals can write to it. You can draw multiple decals at the same priority
level. If you overlap them, however, the last one drawn will overlap the previous ones at the same priority level.

Multiple textures can be drawn onto a polygon with a similar technique. Instead of writing decal polygons, the
same polygon is drawn with each subsequent texture and an alpha value to blend the old pixel color and the new
pixel color together.

3.6 Capping Clipped Solids with the Stencil Buffer

When dealing with solid objects it is often useful to clip the object against a plane and observe the cross section.
OpenGL’s user-defined clipping planes allow an application to clip the scene by a plane. The stencil buffer provides
an easy method for adding a “cap” to objects that are intersected by the clipping plane. A capping polygon is
embedded in the clipping plane and the stencil buffer is used to trim the polygon to the interior of the solid.

The stencil buffer is described in more detail in Section 8.6.

If some care is taken when constructing the object, solids that have a depth complexity greater than 2 (concave or
shelled objects) and less than the maximum value of the stencil buffer can be rendered. Object surface polygons
must have their vertices ordered so that they face away from the interior for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer writes are disabled. The capping
polygon is rendered into the depth buffer, then depth buffer writes are disabled. The stencil operation is set to
increment the stencil value where the depth test passes, and the model is drawn with glCullFace(GL BACK).
The stencil operation is then set to decrement the stencil value where the depth test passes, and the model is drawn
with glCullFace(GL FRONT).

At this point, the stencil buffer is 1 wherever the clipping plane is enclosed by the frontfacing and backfacing
surfaces of the object. The depth buffer is cleared, color buffer writes are enabled, and the polygon representing
the clipping plane is now drawn using whatever material properties are desired, with the stencil function set to
GL EQUAL and the reference value set to 1. This draws the color and depth values of the cap into the framebuffer
only where the stencil values equal 1.

Finally, stenciling is disabled, the OpenGL clipping plane is applied, and the clipped object is drawn with color
and depth enabled.

3.7 Constructive Solid Geometry with the Stencil Buffer

Before continuing, the it may help for the reader to be familiar with the concepts of stencil buffer usage presented
in Section 8.6.

15

Programming with OpenGL: Advanced Rendering

CGS tree

Resulting
solid

Figure 13. An Example Of Constructive Solid Geometry

Constructive solid geometry (CSG) models are constructed through the intersection (), union (), and subtraction
() of solid objects, some of which may be CSG objects themselves[33]. The tree formed by the binary CSG
operators and their operands is known as the CSG tree. Figure 13 shows an example of a CSG tree and the
resulting model.

The representation used in CSG for solid objects varies, but we will consider a solid to be a collection of polygons
forming a closed volume. “Solid,” “primitive,” and “object” are used here to mean the same thing.

CSG objects have traditionally been rendered through the use of ray-casting, which is slow, or through the con-
struction of a boundary representation (B-rep).

B-reps vary in construction, but are generally defined as a set of polygons that form the surface of the result of
the CSG tree. One method of generating a B-rep is to take the polygons forming the surface of each primitive and
trim away the polygons (or portions thereof) that do not satisfy the CSG operations. B-rep models are typically
generated once and then manipulated as a static model because they are slow to generate.

Drawing a CSG model using stencil usually means drawing more polygons than a B-rep would contain for the
same model. Enabling stencil also may reduce performance. Nonetheless, some portions of a CSG tree may be
interactively manipulated using stencil if the remainder of the tree is cached as a B-rep.

The algorithm presented here is from a paper by Tim F. Wiegand describing a GL-independent method for using
stencil in a CSG modeling system for fast interactive updates. The technique can also process concave solids, the
complexity of which is limited by the number of stencil planes available. A reprint of Wiegand’s paper is included
in the Appendix.

The algorithm presented here assumes that the CSG tree is in “normal” form. A tree is in normal form when
all intersection and subtraction operators have a left subtree that contains no union operators and a right subtree
that is simply a primitive (a set of polygons representing a single solid object). All union operators are pushed
towards the root, and all intersection and subtraction operators are pushed towards the leaves. For example,

is in normal form; Figure 14 illustrates the structure of that tree
and the characteristics of a tree in normal form.

A CSG tree can be converted to normal form by repeatedly applying the following set of production rules to the
tree and then its subtrees:

1.

2.

3.

16

Programming with OpenGL: Advanced Rendering

A

H

F

G

ED

C

BA

Union

intersection

Subtraction

Primitive

Key

Union at top of tree

Left child of intersection
or subtraction is never
union

Right child of intersection
or subtraction always
a primitive

((((A B) - C) (((D E) G) - F)) H)

Figure 14. A CSG Tree in Normal Form

4.

5.

6.

7.

8.

9.

X, Y, and Z here match either primitives or subtrees. Here is the algorithm used to apply the production rules to
the CSG tree:

normalize(tree *t)
{

if (isPrimitive(t))
return;

do {
while (matchesRule(t)) /* Using rules given above */

applyFirstMatchingRule(t);
normalize(t->left);

} while (!(isUnionOperation(t) ||
(isPrimitive(t->right) &&
! isUnionOperation(T->left))));

normalize(t->right);
}

Normalization may increase the size of the tree and add primitives that do not contribute to the final image. The
bounding volume of each CSG subtree can be used to prune the tree as it is normalized. Bounding volumes for
the tree may be calculated using the following algorithm:

17

Programming with OpenGL: Advanced Rendering

findBounds(tree *t)
{

if (isPrimitive(t))
return;

findBounds(t->left);
findBounds(t->right);

switch (t->operation){
case UNION:
t->bounds = unionOfBounds(t->left->bounds,

t->right->bounds);
case INTERSECTION:
t->bounds = intersectionOfBounds(t->left->bounds,

t->right->bounds);
case SUBTRACTION:
t->bounds = t->left->bounds;

}
}

CSG subtrees rooted by the intersection or subtraction operators may be pruned at each step in the normalization
process using the following two rules:

1. If T is an intersection and not intersects(T->left->bounds, T->right->bounds), delete T.

2. If T is a subtraction and not intersects(T->left->bounds, T->right->bounds), replace T with
T->left.

The normalized CSG tree is a binary tree, but it is important to think of the tree rather as a “sum of products” to
understand the stencil CSG procedure.

Consider all the unions as sums. Next, consider all the intersections and subtractions as products. (Subtraction is
equivalent to intersection with the complement of the term to the right. For example, .) Imagine
all the unions flattened out into a single union with multiple children; that union is the “sum.” The resulting
subtrees of that union are all composed of subtractions and intersections, the right branch of those operations is
always a single primitive, and the left branch is another operation or a single primitive. You should read each
child subtree of the imaginary multiple union as a single expression containing all the intersection and subtraction
operations concatenated from the bottom up. These expressions are the “products.” For example, you should think
of as meaning . Figure 15
illustrates this process.

At this time, redundant terms can be removed from each product. Where a term subtracts itself (), the entire
product can be deleted. Where a term intersects itself (), that intersection operation can be replaced with the
term itself.

All unions can be rendered simply by finding the visible surfaces of the left and right subtrees and letting the depth
test determine the visible surface. All products can be rendered by drawing the visible surfaces of each primitive
in the product and trimming those surfaces with the volumes of the other primitives in the product. For example,
to render , the visible surfaces of A are trimmed by the complement of the volume of B, and the visible
surfaces of B are trimmed by the volume of A.

The visible surfaces of a product are the front facing surfaces of the operands of intersections and the back facing
surfaces of the right operands of subtraction. For example, in , the visible surfaces are the front facing
surfaces of A and C, and the back facing surfaces of B.

Concave solids are processed as sets of front or back facing surfaces. The “convexity” of a solid is defined as the
maximum number of pairs of front and back surfaces that can be drawn from the viewing direction. Figure 16

18

Programming with OpenGL: Advanced Rendering

H

H

D E
 G

 - F

A B
 - C

F

G

ED

C

BA

((((A B) - C) (((D E) G) - F)) H) (A B - C) (D E G - F) H

Figure 15. Thinking of a CSG Tree as a Sum of Products

shows some examples of the convexity of objects. The nth front surface of a k-convex primitive is denoted ,
and the nth back surface is . Because a solid may vary in convexity when viewed from different directions,
accurately representing the convexity of a primitive may be difficult and may also involve reevaluating the CSG
tree at each new view. Instead, the algorithm must be given the maximum possible convexity of a primitive, and
draws the nth visible surface by using a counter in the stencil planes.

The CSG tree must be further reduced to a “sum of partial products” by converting each product to a union of
products, each consisting of the product of the visible surfaces of the target primitive with the remaining terms in
the product.

For example, if A, B, and D are 1-convex and C is 2-convex:

Because the target term in each product has been reduced to a single front or back facing surface, the bounding
volumes of that term will be a subset of the bounding volume of the original complete primitive. Once the tree is
converted to partial products, the pruning process may be applied again with these subset volumes.

In each resulting child subtree representing a partial product, the leftmost term is called the “target” surface, and
the remaining terms on the right branches are called “trimming” primitives.

The resulting sum of partial products reduces the rendering problem to rendering each partial product correctly
before drawing the union of the results. Each partial product is rendered by drawing the target surface of the partial
product and then “classifying” the pixels generated by that surface with the depth values generated by each of the

19

Programming with OpenGL: Advanced Rendering

1

2

1
2

3
4

1-Convex 2-Convex 3-Convex

1

2

3

4

5

6

Figure 16. Examples of n-convex Solids

trimming primitives in the partial product. If pixels drawn by the trimming primitives pass the depth test an even
number of times, that pixel in the target primitive is “out,” and discarded. If the count is odd, the target primitive
pixel is “in,” and kept.

Because the algorithm saves depth buffer contents between each object, we optimize for depth saves and restores
by drawing as many of target and trimming primitives for each pass as we can fit in the stencil buffer.

The algorithm uses one stencil bit () as a toggle for trimming primitive depth test passes (parity), n stencil
bits for counting to the nth surface (), where n is the smallest number for which is larger than the
maximum convexity of a current object, and as many bits are available () to accumulate whether target pixels
have to be discarded. Because will require the GL INCR operation, it must be stored contiguously in the
least-significant bits of the stencil buffer. and are used in two separate steps, and so may share stencil
bits.

For example, drawing two 5-convex primitives requires one bit, three bits, and two bits. Because
and are independent, the total number of stencil bits required is 5.

Once the tree is converted to a sum of partial products, the individual products are rendered. Products are grouped
together so that as many partial products can be rendered between depth buffer saves and restores as the stencil
buffer has capacity.

For each group, writes to the color buffer are disabled, the contents of the depth buffer are saved, and the depth
buffer is cleared. Then, every target in the group is classified against its trimming primitives. The depth buffer is
then restored, and every target in the group is rendered against the trimming mask. The depth buffer save/restore
can be optimized by saving and restoring only the region containing the screen-projected bounding volumes of the
target surfaces.

for each group
glReadPixels(...);
<classify the group>
glStencilMask(0); /* so DrawPixels won’t affect Stencil */
glDrawPixels(...);
<render the group>

Classification consists of drawing each target primitive’s depth value and then clearing those depth values where
the target primitive is determined to be outside the trimming primitives.

glClearDepth(far);

20

Programming with OpenGL: Advanced Rendering

glClear(GL_DEPTH_BUFFER_BIT);
a = 0;
for (each target surface in the group)

for (each partial product targeting that surface)
<render the depth values for the surface>
for (each trimming primitive in that partial product)

<trim the depth values against that primitive>
<set Sa to 1 where Sa = 0 and Z < Zfar>
a++;

The depth values for the surface are rendered by drawing the primitive containing the the target surface with color
and stencil writes disabled. () is used to mask out all but the target surface. In practice, most CSG primitives
are convex, so the algorithm is optimized for that case.

if (the target surface is front facing)
glCullFace(GL_BACK);

else
glCullFace(GL_FRONT);

if (the surface is 1-convex)
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(0);
<draw the primitive containing the target surface>

else
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(Scount);
glStencilFunc(GL_EQUAL, index of surface, Scount);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
<draw the primitive containing the target surface>
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);

Then each trimming primitive for that target surface is drawn in turn. Depth testing is enabled and writes to
the depth buffer are disabled. Stencil operations are masked to and the bit in the stencil is cleared to 0.
The stencil function and operation are set so that is toggled every time the depth test for a fragment from the
trimming primitive succeeds. After drawing the trimming primitive, if this bit is 0 for uncomplemented primitives
(or 1 for complemented primitives), the target pixel is “out,” and must be marked “discard,” by enabling writes
to the depth buffer and storing the far depth value () into the depth buffer everywhere that the indicates
“discard.”

glDepthMask(0);
glColorMask(0, 0, 0, 0);
glStencilMask(mask for Sp);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
<draw the trimming primitive>
glDepthMask(1);

Once all the trimming primitives are rendered, the values in the depth buffer are for all target pixels classified
as “out.” The bit for that primitive is set to 1 everywhere that the depth value for a pixel is not equal to , and
0 otherwise.

21

Programming with OpenGL: Advanced Rendering

Each target primitive in the group is finally rendered into the framebuffer with depth testing and depth writes
enabled, the color buffer enabled, and the stencil function and operation set to write depth and color only where
the depth test succeeds and is 1. Only the pixels inside the volumes of all the trimming primitives are drawn.

glDepthMask(1);
glColorMask(1, 1, 1, 1);
a = 0;
for (each target primitive in the group)

glStencilMask(0);
glStencilFunc(GL_EQUAL, 1, Sa);
glCullFace(GL_BACK);
<draw the target primitive>
glStencilMask(Sa);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
a++;

Further techniques are available for adding clipping planes (half-spaces), including more normalization rules and
pruning opportunities [101]. This is especially important in the case of the near clipping plane in the viewing
frustum.

Source code for dynamically loadable Inventor objects implementing this technique is available at the Martin
Center at Cambridge web site [102].

22

Programming with OpenGL: Advanced Rendering

4 Geometry and Transformations

OpenGL has a simple and powerful transformation model. Since the transformation machinery in OpenGL is
exposed in the form of the modelview and projection matrices, it is possible to develop novel uses for the trans-
formation pipeline. This section describes some useful transformation techniques, and provides some additional
insight into the OpenGL graphics pipeline.

4.1 Stereo Viewing

Stereo viewing is a common technique to increase visual realism or enhance user interaction with 3D scenes.
Two views of a scene are created, one for the left eye, one for the right. Some sort of viewing hardware is used
with the display, so each eye only sees the view created for it. The apparent depth of objects is a function of the
difference in their positions from the left and right eye views. When done properly, objects appear to have actual
depth, especially with respect to each other. When animating, the left and right back buffers are used, and must be
updated each frame.

OpenGL supports stereo viewing, with left and right versions of the front and back buffers. In normal, non-stereo
viewing, when not using both buffers, the default buffer is the left one for both front and back buffers. Since
OpenGL is window system independent, there are no interfaces in OpenGL for stereo glasses, or other stereo
viewing devices. This functionality is part of the OpenGL/Window system interface library; the style of support
varies widely.

In order to render a frame in stereo:

The display must be configured to run in stereo mode.

The left eye view for each frame must be generated in the left back buffer.

The right eye view for each frame must be generated in the right back buffer.

The back buffers must be displayed properly, according to the needs of the stereo viewing hardware.

Computing the left and right eye views is fairly straightforward. The distance separating the two eyes, called the
interocular distance (IOD), must be determined. Choose this value to give the proper spacing of the viewer’s eyes
relative to the scene being viewed. Whether the scene is microscopic or galaxy-wide is irrelevant. What matters
is the size of the imaginary viewer relative to the objects in the scene. This distance should be correlated with the
degree of perspective distortion present in the scene to produce a realistic effect.

4.1.1 Fusion Distance

The other parameter is the distance from the eyes where the lines of sight for each eye converge. This distance is
called the fusion distance. At this distance objects in the scene will appear to be on the front surface of the display
(“in the glass”). Objects farther than the fusion distance from the viewer will appear to be “behind the glass”
while objects in front will appear to float in front of the display. The latter illusion is harder to maintain, since real
objects visible to the viewer beyond the edge of the display tend to destroy the illusion.

Although it is possible to create good looking stereo scenes using dimensionless quantities, the best behavior
occurs when everything is measured carefully. This is easy to do if the glFrustum call is used rather than
the gluPerspective call. Pick a unit of measurement, then use those units for screen size, distance from
viewer to screen, interocular distance, and so forth. It is a good idea to keep the code that computes the screen
parameters separate from the rest of the application, to make it easier to port the program to different screen sizes
or arrangements.

23

Programming with OpenGL: Advanced Rendering

Fusion distance
Angle

IOD

Figure 17. Stereo Viewing Geometry

The view direction vector and the vector separating the left and right eye position are perpendicular to each other.
The two view points are located along a line perpendicular to the direction of view and the “up” direction. The
fusion distance is measured along the view direction. The position of the viewer can be defined to be at one of the
eye points, or halfway between them. In either case, the left and right eye locations are positioned relative to it.

If the viewer is taken to be halfway between the stereo eye positions, and assuming gluLookAt has been called
to put the viewer position at the origin in eye space, then the fusion distance is measured along the negative axis
(like the near and far clipping planes), and the two viewpoints are on either side of the origin along the axis, at
(-IOD/2, 0, 0) and (IOD/2, 0, 0).

4.1.2 Computing the Transforms

The transformations needed for correct stereo viewing are simple translations and off-axis projections [22]. Com-
putationally, the stereo viewing transforms happen last, after the viewing transform has been applied to put the
viewer at the origin. Since the matrix order is the reverse of the order of operations, the viewing matrices should
be applied to the modelview matrix first.

The order of matrix operations should be:

1. Transform from viewer position to left eye view.

2. Apply viewing operation to get to viewer position (gluLookAt or equivalent).

3. Apply modeling operations.

4. Change buffers, repeat for right eye.

Assuming that the identity matrix is on the modelview stack and that we want to look at the origin from a distance
of EYE BACK:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity(); /* the default matrix */
glPushMatrix()
glDrawBuffer(GL_BACK_LEFT)
gluLookAt(-IOD/2.0, 0.0, EYE_BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

24

Programming with OpenGL: Advanced Rendering

<viewing transforms>
<modeling transforms>
draw()
glPopMatrix();
glPushMatrix()
glDrawBuffer(GL_BACK_RIGHT)
gluLookAt(IOD/2.0, 0.0, EYE_BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

<viewing transforms>
<modeling transforms>
draw()
glPopMatrix()

This method of implementing stereo transforms changes the viewing transform directly using a separate call to
gluLookAt for each eye view. Move fusion distance along the viewing direction from the viewer position, and
use that point for the center of interest of both eyes. Translate the eye position to the appropriate eye, then render
the stereo view for the corresponding buffer. This method is quite simple when real-world measurements are used.

An alternative, but less correct, method of implementing stereo transforms is to translate the views left and right by
half of the interocular distance, then rotate by the inverse tangent of the ratio between the fusion distance and half
of the interocular distance: With this method, each viewpoint is rotated towards

the centerline halfway between the two viewpoints.

4.2 Depth of Field

Normal viewing transforms act like a perfect pinhole camera; everything visible is in focus, regardless of how
close or how far the objects are from the viewer. To increase realism, a scene can be rendered to vary sharpness as
a function of viewer distance, more accurately simulating a camera with a finite depth of field.

Depth-of-field and stereo viewing are similar. In both cases, there is more than one viewpoint, with all view
directions converging at a fixed distance along the direction of view. When computing depth of field transforms,
however, we only use shear instead of rotation, and sample a number of viewpoints, not just two, along an axis
perpendicular to the view direction. The resulting images are blended together.

This process creates images where the objects in front of and behind the fusion distance shift position as a function
of viewpoint. In the blended image, these objects appear blurry. The closer an object is to the fusion distance, the
less it shifts, and the sharper it appears.

The field of view can be expanded by increasing the ratio between the viewpoint shift and fusion distance. This
way objects have to be farther from the fusion distance to shift significantly.

For details on rendering scenes featuring a limited field of view see Section 14.3.

4.3 The Z Coordinate and Perspective Projection

The coordinates are transformed in the same fashion as the and coordinates. After transformation, clipping
and perspective division, they occupy the range -1.0 through 1.0. The glDepthRange mapping specifies a trans-
formation for the coordinate similar to the viewport transformation used to map and to window coordinates.
The glDepthRange mapping is somewhat different from the viewport mapping in that the hardware resolution of
the depth buffer is hidden from the application. The parameters to the glDepthRange call are in the range [0.0,
1.0]. The or depth associated with a fragment represents the distance to the eye. By default the fragments nearest
the eye (the ones at the near clip plane) are mapped to 0.0 and the fragments farthest from the eye (those at the far
clip plane) are mapped to 1.0. Fragments can be mapped to a subset of the depth buffer range by using smaller

25

Programming with OpenGL: Advanced Rendering

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w
in

do
w

 Z

eye Z

1:1
10:1

100:1
1000:1

Figure 18. Window to Eye Relationship for near/far Ratios

values in the glDepthRange call. The mapping may be reversed so that fragments furthest from the eye are at
0.0 and fragments closest to the eye are at 1.0 simply by calling glDepthRange(1.0,0.0). While this reversal
is possible, it may not be well-suited for some depth buffer implementations. Parts of the underlying architecture
may have been tuned for the forward mapping and may not produce results of the same quality when the mapping
is reversed.

To understand why there might be this disparity in the rendering quality, it is important to understand the charac-
teristics of the window coordinate. The value specifies the distance from the fragment to the plane of the eye.
The relationship between distance and is linear in an orthographic projection, but not in a perspective projection.
In the case of a perspective projection, the amount of the non-linearity is proportional to the ratio of far to near
in the glFrustum call (or zFar to zNear in the gluPerspective call). Figure 18 plots the window coordinate

value as a function of the eye-to-pixel distance for several ratios of far to near. The non-linearity increases the
resolution of the -values when they are close to the near clipping plane, increasing the resolving power of the
depth buffer, but decreasing the precision throughout the rest of the viewing frustum, thus decreasing the accuracy
of the depth buffer in the back part of the viewing volume.

For objects a given distance from the eye, however, the depth precision is not as bad as it looks in Figure 18. No
matter how far back the far clip plane is, at least half of the available depth range is present in the first “unit” of
distance. In other words, if the distance from the eye to the near clip plane is one unit, at least half of the range
is used up in the first “unit” from the near clip plane towards the far clip plane. Figure 19 plots the range for the
first unit distance for various ranges. With a million to one ratio, the value is approximately 0.5 at one unit of
distance. As long as the data is mostly drawn close to the near plane, the precision is good. The far plane could
be set to infinity without significantly changing the accuracy of the depth buffer near the viewer.

To achieve the best depth buffer precision, the near plane should be moved as far from the eye as possible without
touching the object, which would cause part or all of it to be clipped away. The position of the near clipping plane
has no effect on the projection of the and coordinates and therefore has minimal effect on the image.

Putting the near clip plane closer to the eye than to the object results in loss of depth buffer precision.

In addition to depth buffering, the coordinate is also used for fog computations. Some implementations may

26

Programming with OpenGL: Advanced Rendering

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w
in

do
w

 Z

Distance from the near clip plane

1:1
10:1

100:1
1000000:1

Figure 19. Available Window Depth Values near/far Ratios

perform the fog computation on a per-vertex basis using eye and then interpolate the resulting colors whereas
other implementations may perform the computation for each fragment. In this case, the implementation may use
the window to perform the fog computation. Implementations may also choose to convert the computation into
a cheaper table lookup operation which can also cause difficulties with the non-linear nature of window under
perspective projections. If the implementation uses a linearly indexed table, large far to near ratios will leave few
table entries for the large eye values. This can cause noticeable Mach bands in fogged scenes.

4.3.1 Depth Buffering

We have discussed some of the caveats of using depth buffering, but there are several other aspects of OpenGL
rasterization and depth buffering that are worth mentioning [2]. One big problem is that the rasterization process
uses inexact arithmetic so it is exceedingly difficult to handle primitives that are coplanar unless they share the
same plane equation. This problem is exacerbated by the finite precision of depth buffer implementations. Many
solutions have been proposed to handle this class of problems, which involve coplanar primitives:

1. Decaling

2. Hidden line elimination

3. Outlined polygons

4. Shadows

Many of these problems have elegant solutions involving the stencil buffer (Section 7.2, Section 3.5), but it is still
worth describing alternative methods to get more insight into the uses of the depth buffer.

The problem of decaling one coplanar polygon into another can be solved rather simply by using the painter’s
algorithm (i.e., drawing from back to front) combined with color buffer and depth buffer masking, assuming the
decal is contained entirely within the underlying polygon. The steps are:

27

Programming with OpenGL: Advanced Rendering

y

z

More
offset with more slope

Base offset

Figure 20. Polygon and Outline Slopes

1. Draw the underlying polygon with depth testing enabled but depth buffer updates disabled.

2. Draw the top layer polygon (decal) also with depth testing enabled and depth buffer updates still disabled.

3. Draw the underlying polygon one more time with depth testing and depth buffer updates enabled, but color
buffer updates disabled.

4. Enable color buffer updates and continue on.

Outlining a polygon and drawing hidden lines are similar problems. If we have an algorithm to outline polygons,
hidden lines can be removed by outlining polygons with one color and drawing the filled polygons with the back-
ground color. Ideally a polygon could be outlined by simply connecting the vertices together with line primitives.
This seems similar to the decaling problem except that edges of the polygon being outlined may be shared with
other polygons and those polygons may not be coplanar with the outlined polygon, so the decaling algorithm can
not be used, since it relies on the coplanar decal being fully contained within the base polygon.

The solution most frequently suggested for this problem is to draw the outline as a series of lines and translate the
outline a small amount towards the eye. Alternately, the polygon could be translated away from the eye instead.
Besides not being a particularly elegant solution, there is a problem in determining the amount to translate the
polygon (or outline). In fact, in the general case there is no constant amount that can be expressed as a simple
translation of the object coordinate that will work for all polygons in a scene.

Figure 20 shows two polygons (solid) with outlines (dashed) in the screen space - plane. One of the primitive
pairs has a 45-degree slope in the - plane and the other has a very steep slope. During the rasterization process
the depth value for a given fragment may be derived from a sample point nearly an entire pixel away from the
edge of the polygon. Therefore the translation must be as large as the maximum absolute change in depth for
any single pixel step on the face of the polygon. The figure shows that the steeper the depth slope, the larger the
required translation. If an unduly large constant value is used to deal with steep depth slopes, then for polygons
which have a shallower slope there is an increased likelihood that another neighboring polygon might end up
interposed between the outline and the polygon. So it seems that a translation proportional to the depth slope is
necessary. However, a translation proportional to slope is not sufficient for a polygon that has constant depth (zero
slope) since it would not be translated at all. Therefore a bias is also needed. Many vendors have implemented
the EXT polygon offset extension that provides a scaled slope plus bias capability for solving outline problems
such as these and for other applications. A modified version of this polygon offset extension has been added to the
core of OpenGL 1.1 as well.

28

Programming with OpenGL: Advanced Rendering

4.4 Image Tiling

When rendering a scene in OpenGL, the resolution of the image is normally limited to the workstation screen
size. For interactive applications this is usually sufficient, but there may be times when a higher resolution image
is needed. Examples include color printing applications and computer graphics recorded for film. In these cases,
higher resolution images can be divided into tiles that fit on the workstation’s framebuffer. The image is rendered
tile by tile, with the results saved into off screen memory, or perhaps a file. The image can then be sent to a printer
or film recorder, or undergo further processing, such has downsampling to produce an antialiased image.

One straightforward way to tile an image is to manipulate the glFrustum call’s arguments. The scene can be ren-
dered repeatedly, one tile at a time, by changing the left, right, bottom and top arguments arguments of glFrustum
for each tile.

Computing the argument values is straightforward. Divide the original width and height range by the number of
tiles horizontally and vertically, and use those values to parametrically find the left, right, top, and bottom values
for each tile.

In the equations above, each value of and corresponds to a tile in the scene. If the original scene is divided into
by tiles, then iterating through the combinations of and generate the left, right top, and

bottom values for glFrustum to create the tile.

Since glFrustum has a shearing component in the matrix, the tiles stitch together seamlessly to form the scene.
Unfortunately, this technique would have to be modified for use with gluPerspective or glOrtho. There is
a better approach, however. Instead of modifying the perspective transform call directly, apply transforms to the
results. The area of normalized device coordinate (NDC) space corresponding to the tile of interest is translated
and scaled so it fills the NDC cube. Working in NDC space instead of eye space makes finding the tiling transforms
easier, and is independent of the type of projective transform.

Even though it is easy to visualize the operations happening in NDC space, conceptually, you can “push” the
transforms back into eye space, and the technique maps into the glFrustum approach described above.

For the transform operations to happen after the projection transform, the OpenGL calls must happen before it.
Here is the sequence of operations:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glScalef(xScale, yScale);
glTranslatef(xOffset, yOffset, 0.f);
setProjection();

The scale factors xScale and yScale scale the tile of interest to fill the the entire scene:

29

Programming with OpenGL: Advanced Rendering

The offsets xOffset and yOffset are used to offset the tile so it is centered about the axis. In this example,
the tiles are specified by their lower left corner relative to their position in the scene, but the translation needs to
move the center of the tile into the origin of the - plane in NDC space:

As before is the number of tiles that span the scene horizontally, while is the number of
tiles that span the scene vertically.

Some care should be taken when computing , , and values. It is important that
each tile is abutted properly with its neighbors. Ensure this by guarding against round-off errors. Some code that
properly computes these values is given below:

/* tileWidth and tileHeight are GLfloats */
GLint bottom, top;
GLint left, right;
GLint width, height;
for(j = 0; j < num_vertical_tiles; j++) {

for(i = 0; i < num_horizontal_tiles; i++) {
left = i * tileWidth;
right = (i + 1) * tileWidth;
bottom = j * tileHeight;
top = (j + 1) * tileHeight;
width = right - left;
height = top - bottom;
/* compute xScale, yScale, xOffset, yOffset */

}
}

Note that the parameter values are computed so that is guaranteed to be equal to and
equal to of the next tile over, even if has a fractional component. If the frustum technique is used,
similar precautions should be taken with the , , , and parameters to glFrustum.

4.5 Moving the Current Raster Position

Using the glRasterPos command, the raster position will be invalid if the specified position was culled. Since
glDrawPixels and glCopyPixels operations applied when the raster position is invalid do not draw anything,
it may seem that the lower left corner of a pixel rectangle must be inside the clip rectangle. This problem may be
overcome by using the glBitmap command. The glBitmap command takes arguments xoff and yoff which
specify an increment to be added to the current raster position. Assuming the raster position is valid, it may be
moved outside the clipping rectangle by a glBitmap command. glBitmap is often used with a zero size rectangle
to move the raster position.

30

Programming with OpenGL: Advanced Rendering

Outside
viewport

Inside
viewport

Outside
viewport

Inside
viewport

Scissor
region

Figure 21. Clipped Wide Primitives Can Still be Visible

4.6 Preventing Clipping of Wide Lines and Points

It is important to note that OpenGL points are clipped if their projected position is beyond the viewport. If a point
size other than 1 is specified with glPointSize, the object will appear to “pop” out of view when the center of
the wide point exits the viewport. This is because the point itself has no area, and as such is clipped based solely
on its position. An example scenario is shown in Figure 21.

Wide lines have the same problem. The line is clipped to the viewport, and thus some pixels contributed by the
original line are no longer drawn, as shown in Figure 21.

This problem is more significant in a multiple-display setting, such as a three-monitor flight simulator, or in a
multiple-viewport setting such as a cylindrical projection.

These missing pixels can be restored by setting the scissor region to the visible area and then enlarging the viewport
so that points and lines are clipped beyond the region in which they could contribute pixels. For -pixel wide points
and lines, this margin is pixels. The viewing frustum has to be enlarged based on the new viewport so that
points are rasterized to the same pixels within the larger viewport and scissor region as they were in the smaller
viewport.

4.7 Distortion Correction

A workstation user with a single monitor and a monoptic visual will usually sit in a location relative to his or her
screen that closely approximates the single symmetric frustum typically supplied to OpenGL as the view model.

In visual simulation applications with curved screens (“domes”), virtual reality “caves” and the like, and any
situation where the projection unit, projection surface, and viewing parameters don’t correspond to a symmetric
static frustum, some correction will be required to make the visible image seem accurate and visibly consistent.

Visual inaccuracy is caused by the difference between the observer’s view of the surface and the video projector’s
view of the surface, and is exacerbated by a non-planar screen surface, such as a spherical shell.

If the display surface has no skew component to it, like an ordinary computer monitor or a video projector which
is aligned perpendicular to the screen, but the observer’s view direction is not perpendicular to the screen, use an
asymmetric frustum. This can be accomplished by providing appropriate , , , and parameters
to glFrustum that form a near plane which is not centered on the axis.

31

Programming with OpenGL: Advanced Rendering

View
projection

Texture
projection

Off-center
projector

Off-center
viewer

Curved
projection
surface

Figure 22. A Complex Display Configuration

If the display surface is askew, as it is if the projector is located above the observer as in a movie theatre, the
perspective distortion in the projection must be corrected. This can be accomplished by rendering the scene using
an asymmetric frustum as above, storing the rendered scene as a texture, and then drawing a quad textured scene
with a projective texture matrix corresponding to the off-center video projector frustum.

Finally, if the display surface itself is non-planar, like the spherical and cylindrical screens used in some flight
simulators, a combination of the above technique and image warping is required to produce an accurate image.

Create a uniform grid as viewed by the observer.

Project the vertices of the grid onto the screen surface.

Project the vertices from the screen surface onto a plane perpendicular to the display direction of the video
projector.

Store the projected vertices’ normalized viewing coordinates on that plane as texture coordinates for
the original grid.

Render the scene normally from the viewpoint of the observer.

Transfer the image into a texture.

Render the image textured onto the uniform grid with the warped texture vertices.

You may have to render a larger image than will finally be viewed so that the warped image does not contain any
blank areas.

For further information on imagewarping and dewarping, see Section 6.18.

32

Programming with OpenGL: Advanced Rendering

View
projection

Texture
projection

Off-center
projector

Off-center
viewer

Planar
projection
surface

Figure 23. A Configuration with Off-Center Projector and Viewer

Off-center
projector

Off-center
viewer

Curved
projection
surface

Distorted grid locations
used as texture coordinates

Projections of
uniform grid onto
curved surface

Uniform grid

Figure 24. Distortion Correction Using Texture Mapping

33

Programming with OpenGL: Advanced Rendering

4.8 Picking and Highlighting

Interactive selection of objects with feedback is an important part of modeling applications. OpenGL provides
several mechanisms which can be used to do the perform the object selection and the highlighting tasks.

4.8.1 OpenGL Selection

OpenGL supports an object selection mechanism in which the object geometry is transformed and compared
against a selection subregion of a window. The mechanism uses the transformation pipeline to compare object
vertices against the view volume. To reduce the view volume to a screen-space subregion (window coordinates),
the projected coordinates of the object are transformed by the following matrix

where , , , and are the and origin and width and height of the viewport, and , , , and are
the origin and width and height of the pick region.

Objects are identified by assigning them integer names using glLoadName. As each object is sent to the OpenGL
pipeline and tested against the pick region, if the test succeeds a hit record is created to identify the object. The
hit record is written to the selection buffer whenever a change is made to the current object name. An application
can determine which objects intersected the pick region by scanning the selection buffer and examining the names
present in the buffer.

The OpenGL selection method determines that an object has been hit if it intersects the view volume. Bitmap and
pixel image primitives will generate a hit record only if a raster positioning command is sent to the pipeline and the
transformed position lies within the viewing volume. To generate hit records for any point within a pixel image or
bitmap, a bounding rectangle should be sent rather than the image, and selection testing performed on the interior
of the rectangle. Similarly, wide lines and points will be selected only if the equivalent infinitely thin line or small
point would be selected. To facilitate selection testing of wide lines and points, proxy geometry representing the
true footprint of the primitive should be used instead.

Many applications take advantage of instancing of geometric data to reduce the memory footprint. Instancing
allows an application to create a single representation of the geometric data for each type of object used in the
scene. If the application is modeling a car, the four wheels of the car may be represented as instances of a single
geometric description of a wheel combined with a modeling transformation to place the wheel in the correct
location in the scene. Instancing introduces extra complexity into the picking operation. If a single name is
associated with the wheel geometry, the application can not determine which of the four instances of the wheel
has been picked. OpenGL solves this problem by maintaining a stack of object names. This allows an application
that represents a model hierarchically to associate a name at each stage in the hierarchy. As the hierarchical model
is drawn new names are pushed onto the stack as the hierarchy is descended and old names are popped as the
hierarchy is ascended. When a hit record is created, it contains all of the names currently in the name stack. The
application can determine which instance of an object is selected by looking at the contents of the name stack and
comparing them to the names stored in the hierarchical representation of the model.

Using the car model example, the application associates an object name with the wheel representation and another
object name with each of the transformations used to position the wheel in the car model. The application de-
termines that a wheel is selected if the selection buffer contains the object name for the wheel, and it determines
which instance of the wheel by examining the object name of the transformation.

When the OpenGL pipeline is in selection mode, the primitives sent to the pipeline do not generate fragments to
the framebuffer. Since only the result of the transformation pipeline is of interest, there is no need to send texture
coordinates, normals, etc. or to enable lighting.

34

Programming with OpenGL: Advanced Rendering

4.8.2 Object Tagging in the Color Buffer

An alternative method for locating objects is to write integer object names as color values into the framebuffer
and read back the framebuffer data within the pick region to reconstruct the object names. In order for this to
work correctly, the application needs to be able to predictably write and read color values. Texturing, blending,
dithering, lighting and smooth shading should be disabled so that fragment color values are not altered during
rasterization or fragment processing. The unsigned integer forms of the color commands (glColor3ub, etc)
should be used to pass in the object names, as the unsigned forms are specified to convert the values in such a
way as to preserve the most significant bits of the color value, where is the number of bits in the color buffer.
To limit selection to visible surfaces, depth testing should be enabled. The back color buffer can be used for the
drawing operations to keep the drawing operations invisible to the user.

A typical RGB color buffer storing 8-bit components can represent 24-bit object names. However, since the color
must uniquely identify the object, instancing information must be available directly in the color. That is, the
functionality provided by the name stack in the OpenGL selection mechanism is not available, so the application
may need to partition the representable name space to hold hierarchy information. For example a 4 level hierarchy
can be allocated a 24-bit color as 4,4,6 and 10 bits allowing more object names for leaf parts of the hierarchy.

One disadvantage of using the color buffer is that the color buffer can only hold a single identifier at each pixel.
If depth buffering is used, then the pixel will hold the object name corresponding to a visible surface. If depth
buffering is not used, then a pixel hold the name of the last surface drawn. The OpenGL selection mechanism
can return a hit record for all objects that intersect a given region. The application is free to choose one of the
intersecting objects using a separate policy, e.g. the object closest to the viewer, iterate through all of the objects
one at a time, etc.

4.8.3 Proxy Geometry

One method to reduce the amount of work done by the OpenGL pipeline during picking operations (for color
buffer tagging or OpenGL selection) is to use a simplified form of the object in the picking computations. For
example, individual objects can be replaced by geometry representing their bounding boxes. The accuracy of the
picking operation is traded for increased speed. Some of the accuracy can be improved by adding a second pass
in which the objects which are selected using their simplified geometry are reprocessed using their real geometry.

4.8.4 Other Methods

For many applications it may prove advantageous to not use the OpenGL pipeline at all to implement picking.
For example, an application may choose to organize its geometric data spatially and use a hierarchy of bounding
volumes to efficiently prune portions of the scene without testing each individual object [83, 93].

4.8.5 Highlighting

Once the selected object has been identified, an application will typically modify the appearance of the object
to indicate that it has been selected. A simple way to accomplish this is to redraw the entire scene, drawing the
selected object with a different appearance (wireframe, different color, etc).

In applications manipulating complex models, the cost of redrawing the entire scene to indicate a selection may
be prohibitive. This is particularly true for applications which implement locate-highlight in which each object is
highlighted as the cursor passes over or near it to indicate that this is the candidate object for manipulation by the
application. An extension of this problem exists for painting applications that need to track the location of a brush
over an object and make changes to the appearance of the object based on the current painting parameters [46].

An alternative to redrawing the entire scene is to use overlay color buffers to draw highlights on top of the ex-
isting scene. One difficulty with this strategy is that it may be difficult to modify only the visible surfaces of the

35

Programming with OpenGL: Advanced Rendering

selected object since the depth information is present in the depth buffer associated with the main color buffer.
For applications in which the visible surface information is not required, overlay buffers are an efficient solution.
If visible surface information is important, then it may be better to modify the color buffer directly. A selected
object that has been depth buffered can be overdrawn directly by changing the depth test function to GL LEQUAL
and redrawing the object geometry with different attributes.

4.8.6 XOR Highlighting

Another efficient highlighting technique is to overdraw with an XOR logic operation. An advantage of using XOR
is that the highlighting and restoration operations can be done independently of the original object color. The most
significant bit of each of the color components can be XORed to produce a large difference between the highlight
color and the original color. Drawing a second time restores the original color.

A second advantage of the XOR method is that depth testing can be disabled to allow the non-visible surfaces to
poke through occluding objects. The highlight can be later removed without needing to redraw the occluders.

One should also be careful of interactions between the picking and highlighting methods. For example, a picking
mechanism that uses the color or depth buffer can not be mixed with a highlighting algorithm that relies on the
contents of those buffers remaining intact between highlighting operations.

A useful hybrid scheme for combining color buffer tagging with locate-highlight on visible surfaces is to share
the depth buffer between the picking and highlighting operations and to use the front color buffer for highlighting
operations and the back color buffer for locate operations. Each time the viewing or modeling transformations
change, the scene is redrawn updating both color buffers and locate-highlight operations are performed using
the same buffers until another modeling or viewing change requires a redraw. This type of algorithm can be
very effective for achieving interactive rates for complex models since very little geometry needs to be rendered
between modeling and viewing changes.

4.9 Foreground Object Manipulation

The schemes for fast redrawless highlighting can be generalized to allow a limited form of manipulation of a
selected depth buffered object (a foreground object) while avoiding full scene redraw. The main idea is that the
entire scene except for the foreground object is drawn updating the color and depth buffers and copies of the depth
and color buffers are made. Each time the foreground object is moved or modified, the back buffer and depth
buffer are initialized using the saved copies and the foreground object is drawn as normal and is depth buffered .

This image-based technique is similar to the algorithm described for compositing images with depth in Section 8.7.
In order for it to work it requires a method to efficiently save and restore the color and depth images for an
intermediate form of the scene. If aux buffers or stereo color buffers are available these can be used to store the
color buffer (using glCopyPixels) and the depth buffer can be saved to the host, or if present, to a pixel buffer
(PBuffer). Pbuffers are described in Section 13.1.5. It is particularly important that the contents of the depth buffer
be saved and restored accurately. If some of the depth buffer values are truncated or rounded during the transfer,
then the resulting image will not be the same as that produced by drawing the entire scene.

This technique works best when the geometric complexity of the scene is very large – so large that the time spent
transferring the color and depth buffers is small compared to the amount of time that would be necessary to render
the entire scene.

36

Programming with OpenGL: Advanced Rendering

Figure 25. Occluded Torus: Front and Top Views

5 Occlusion Culling

Complex models with high depth complexity render many pixels which are ultimately discarded during depth
testing. Transforming vertices and rasterizing primitives which are occluded by other polygons reduces the frame
rate of the application while adding nothing to the visual quality of the image. Occlusion culling algorithms
attempt to identify such non-visible polygons and discard them before they are sent to the rendering pipeline
[19, 106]. Occlusion culling algorithms are a form of visible surface determination algorithms that attempt to
resolve visible (or non-visible surfaces) at larger granularity than pixel-by-pixel testing.

A simple example of an occlusion culling algorithm is backface culling. The surfaces of a closed object which
are pointing away from the viewer will be occluded by the surfaces pointing towards the viewer, so there is no
need to draw them. Many occlusion culling algorithms operate in object space [19, 60] and there is little that can
be done with the standard OpenGL pipeline to accelerate such operations. However, Zhang et. al. [105] describe
an algorithm which computes a hierarchy of image-space occlusion maps to use in testing whether polygons
comprising the scene are visible.

An occlusion map is a 2D array of values, where each value measures the opacity of the image plane at that point.
An occlusion map corresponding to a set of geometry is generated by rendering the geometry with the polygon
faces colored white. The occlusion map is view dependent. In Zhang’s algorithm the occlusion map is generated
from a target set of occluders. The occlusion map is accompanied by a depth estimation buffer that provides a
conservative estimate of the maximum depth value of a set of occluders at each pixel. Together the occlusion map
and depth estimation buffer are used to determine whether a candidate object is occluded. A bounding volume for
the candidate object is projected onto the same image plane as the occlusion map and the resulting projection is
compared against the occlusion map to determine whether the occluders overlap the portion of the image where
the object would be rendered. If the object is determined to be overlapped by the occluders, the depth estimation
buffer is tested to determine whether the candidate object is behind the occluder geometry. A pyramidal hierarchy
of occlusion maps (similar to a mipmap hierarchy) can be constructed to accelerate the initial overlap tests.

5.1 Choosing Occluders

Choosing a good set of occluders can be computationally expensive as it is approximating the task of determining
the visible surfaces. Heuristic methods can be used to choose likely occluders based on an estimation of the size
of the occluder and distance from they eye. In order to maintain interactive rendering it may be useful to assign a
fixed polygon budget to the list of occluders. Temporal coherence can be exploited to reduce the number of new
occluders that need to be considered each frame.

37

Programming with OpenGL: Advanced Rendering

Figure 26. Occlusion Map and Depth Estimation Buffer

5.2 Building the Occlusion Map

Once the occluders have been selected they are rendered to the framebuffer with lighting and texturing disabled.
The polygons are colored white to produce values near or equal to 1.0 in opaque areas. OpenGL implementations
which do not support some form of antialiasing will have pixels values that are either 0.0 or 1.0. A hierarchy of
reduced resolution maps is created by copying this map to texture memory and performing bilinear texture filtering
on the image to produce an image 1/4 the size. Additional maps are created by repeating this process. The size
of the highest resolution map and the number of hierarchy levels created is a compromise between the amount
of time spent rendering, copying, and reading back the images and the accuracy of the result. Some of the lower
resolution images may be more efficiently computed on the host processor as the amount of overhead involved in
performing copies to framebuffer or pixel readback operation dominates the time spent producing the pixels.

5.3 Building the Depth Estimation Buffer

In [105], Zhang suggests building a depth estimation buffer by computing the farthest depth value in the projected
bounding box for an occluder and using this value throughout the screen-space bounding rectangle for the occluder.
The end result is a tiling of the image plane with a set of projected occluders each representing a single depth value,
as shown in Figure 26. The computation is kept simple to avoid complex scan-conversion of the occluder and to
simplify the depth comparisons against a candidate occluded object.

5.4 Occlusion Testing

The algorithm for occlusion testing consists of two steps. First the screen space bounding rectangle of the poten-
tially occluded object is computed and tested for overlap against the hierarchy of occlusion maps. If the occluders
overlap the object, then a conservative depth value (minimum depth value) is computed for the screen space
bounding rectangle of the candidate object. This depth value is tested against the the depth estimation buffer to
determine whether the candidate is behind the occluders and is therefore occluded.

Each opacity value in a level in the occlusion map hierarchy corresponds to the coverage of the corresponding
screen region. In the general case, the opacity values will range between 0.0 and 1.0 and values between the
extrema correspond to screen regions which are partially covered by the occluders. To determine whether a
candidate object is occluded, the overlap test is performed against a map level using the candidate’s bounding
rectangle. If the region corresponding to the candidate is completely opaque in the occlusion map, then the
candidate is occluded if it lies behind the occluders (using the depth estimation buffer). The occlusion map
hierarchy can be used to accelerate the testing process by starting at the low resolution maps and progressing to
higher resolution maps when there is ambiguity.

Since the opacity values provide an estimation of coverage, they can also be used to do more aggressive occlusion
culling by pruning candidate objects which are not completely occluded using a threshold opacity value. Since
opacity values are generated using simple averaging, the threshold value can be correlated to a bound on the largest
hole in the occluder set. However, the opacity value is a measure of the number of non-opaque pixels and provides

38

Programming with OpenGL: Advanced Rendering

no information on the distribution of those pixels. Aggressive culling is advantageous for scenes with a large
number of occluders that do not completely cover the candidates, e.g. a wall of trees. However, if there is a large
color discontinuity between the culled objects and the background, distracting popping artifacts may result as the
view is changed and aggressively culled objects appear and reappear.

5.5 Other Methods

Zhang’s algorithm maintains the depth estimation buffer using simplified software scan conversion and uses the
OpenGL pipeline to optimize the computation of the occlusion maps. All testing is performed on the the host,
which has the advantage that the testing can be performed asynchronously with the drawing operations and they
test results can be computed with very low latency. Another possibility is to maintain the occlusion buffer in the
hardware accelerator itself. In order to be useful, there must be a method for testing the screen-space bounding
rectangle against the map and efficiently return the result to the application.

The OpenGL depth buffer can be used to do this with some additional extensions. Occluders are selected using
the heuristics described above and rendered to the framebuffer as regular geometry. Following this, bounding
geometry for candidate objects are rendered and tested against the depth buffer without changing the contents of
the color buffer or depth buffer. The result of the depth test is then returned to the application, preferably reduced
to a single value rather than the results of the depth test for every fragment generated. The results of the tests are
used to determine whether to draw the candidate geometry or discard it. Extensions for performing the occlusion
test and returning the result have been proposed and implemented by several hardware vendors [74, 13] and more
implementations are likely in the future.

39

Programming with OpenGL: Advanced Rendering

6 Texture Mapping

Texture mapping is one of the primary techniques to improve the appearance of objects rendered with OpenGL.
Texturing is typically used to provide color detail for intricate surfaces by modifying the surface color. For ex-
ample, a woodgrain supplied by a texture can make a flat polygon appear to be made of wood. Current 3D video
games now use texture mapping extensively. Texturing can also be the basis for many more sophisticated render-
ing algorithms for improving visual realism and quality. For example, environment mapping is a view-dependent
texture mapping technique that supplies a specular reflection to the surface of objects. This makes it appear that
the environment is reflected in the object. More generally texturing can be thought of as a method of providing (or
perturbing) parameters to the shading equation such as the surface normal (bump mapping), or even the coordi-
nates of the point being shaded (displacement mapping) based on a parameterization of the surface defined by the
texture coordinates. OpenGL readily supports the first two techniques (surface color manipulation and environ-
ment mapping). Texture mapping, using bump mapping, can also solve some rendering problems in less obvious
ways. This section reviews some of the details of OpenGL texturing support, outlines some considerations when
using texturing and suggests some interesting algorithms using texturing.

6.1 Texturing Basics

6.1.1 The Texture Image

The meat of a texture is the texture’s image. This is a array of color values. The color values of a texture are
referred to as texels (short for texture elements and a pun on the word pixel). The texture image array is typically
1D or 2D, however OpenGL 1.2 adds support for 3D texture images as well.1 The OpenGL SGIS texture4D
extension even provides the option for 4D texture images.

The glTexImage1D, glTexImage2D, and glTexImage3D commands specify a complete texture image. The
commands copy the texture image data from the application’s address space into texture memory. OpenGL’s pixel
store unpack state determines how the texture image is arranged in memory. Other OpenGL commands update
rectangular subregions of an existing texture image (subtexture loads). Still other texture commands copy color
data from the frame buffer into texture memory.

Typically, texture images are loaded from image files stored using a standard 2D image file format such as TIFF
or JPEG. To make an image file into a texture for use by OpenGL, the OpenGL application is responsible for
reading and decompressing as necessary the image file. Once the image is in memory as an uncompressed array,
glTexImage2D can be passed the size, format, and pointer to the image in memory. The OpenGL API limits
itself to rendering functionality and therefore has no support for loading image files. You can either write an
image loader yourself or use one of the numerous image loading libraries that are widely available. In addition
to loading image files, applications are free to compute or otherwise procedurally generate texture images. Some
techniques for procedural texture generation are discussed in Section 6.20.2. Rendering the image using OpenGL
and then copying the image from the framebuffer with glCopyTexImage2D is yet another option.

OpenGL’s pixel transfer pipeline can process the texture image data when texture images are specified. While
typically the pixel transfer pipeline is configured to pass texture image data through unchanged, operations such
as color space conversions can be performed during texture image download. When optimized by your OpenGL
implementation, the pixel transfer operations can significantly accelerate various common processing operations
applied to texture image data. The pixel transfer pipeline is further described in Sections 13.1.1 and 13.1.4.

1The phrase 3D texturing is often used in touting new graphics hardware and software products. The common usage of the phrase is to
indicate support for applying a 2D texture to 3D geometry. OpenGL’s specification would call that merely 2D texturing. OpenGL assumes
that any type of texturing can be applied to arbitrary 3D geometry so the dimensionality of texture mapping (1D, 2D, or 3D) is based on
the dimensionality of the texture image. A 2D texture image (one with width and height) is used for 2D texturing. A 3D image (one with
width, height, and depth) is required for 3D texturing in the OpenGL technical sense of the phrase. Unfortunately, the market continues to
use the phrase 3D texturing to mean just GL TEXTURE 2D. To avoid confusion, the phrase volumetric texturing unambiguously refers to
what OpenGL technically calls 3D texturing. Be aware that the phrases solid texture and hypertexture are also used in the graphics literature
to denote 3D texture images. One more bit of trivia: the term voxel is often used to denote the texels of a 3D texture image.

40

Programming with OpenGL: Advanced Rendering

The width, height, and depth of a texture image without a border must be powers of two. A texture with a border
has an additional one pixel border around the edge of the texture image proper. Since the border is on each side, the
border adds two texels in each texture dimension. The rationale for texture images with borders will be discussed
in Section 6.4. The texels that make up the texture image have a particular color format. The color format options
are RGB, RGBA, luminance, intensity, and luminance-alpha. Sized versions of the texture color formats permit
applications a means to hint to the OpenGL implementation for trading off texture memory requirements with
texture color quality.

Internal Texture Formats If you care about the quality of your textures or want to conserve the amount of
texture memory your application requires (and often conserving texture memory helps improve performance), you
should definitely use appropriate internal formats. Internal texture formats were introduced in OpenGL 1.1. Table
1 lists the available internal texture formats. If your texture is known to be only gray-scale or luminance values,
choosing the GL LUMINANCE format instead of GL RGB typically cuts your texture memory usage by one third.
Requesting more efficient internal format sizes can also help. The GL RGB8 internal texture format requests 8
bits of red, green, and blue precision for each texel. The more space efficient GL RGB4 internal texture format
uses only 4 bits per component making it require only half the texture memory of the GL RGB8 format. Of
course, the GL RGB4 format only has 16 distinct values per component instead of 256 values for the GL RGB8
format. However, if minimizing texture memory usage (and often improving texturing performance too) is more
important than better texture quality, the GL RGB4 format is a better choice. In the case where the source image for
your texture only has 4 bits of color resolution per component, there is absolutely no reason to request a format
with more than 4 bits of color resolution.

Some words of advice about internal texture formats: If you do not request a specific internal resolution for your
texture image because you requested a GL RGBA internal format instead of a size-specific internal format such
as GL RGBA8 or GL RGBA4, your OpenGL implementation is free to pick the “most appropriate” format for the
particular implementation. If a smaller texture format has better texturing performance, the implementation is
free to choose the smaller format. This means if you care about maintaining a particular level of internal format
resolution, selecting a size-specific texture format is strongly recommended.

Some words of warning about internal texture formats: Not all OpenGL implementations are expected to support
all the available internal texture formats. This means just because you request a GL LUMIANCE12 ALPHA4 format
(to pick a format that is likely to be obscure) does not mean that your texture is guaranteed to be stored in this
format. The size-specific internal texture formats are merely hints. If the best the OpenGL implementation can
provide is GL LUMINANCE8 ALPHA8, this will be the format you get, even though is provides less luminance
precision and more alpha precision than you requested.

6.1.2 Texture Coordinates

Texture coordinates are the means by which texture image positions are assigned to vertices. The per-vertex assign-
ment of texture coordinates is the key to mapping a texture image to rendered geometry. During rasterization, the
texture coordinates of a primitive’s vertices are interpolated across the primitive so that each rasterized fragment
making up the primitive has an appropriately interpolated texture coordinate. A fragment’s texture coordinates
are translated into the addresses of one or more texels within the current texture. The texels are fetched and their
color values are then filtered into a single texture color value for the fragment. The fragment’s texture color is then
combined with the fragments color.

The vertices of all primitives (including the raster position of pixel images) have associated texture coordinates.
Figure 27 shows how object coordinates have associated texture coordinates that is used to map into a texture
image when texture mapping is enabled. The texture coordinates are part of a three-dimensional homogeneous
coordinate system (, , ,). Applications often only assign the 2D and coordinates, but OpenGL treats this as
a special case of the more general 3D homogeneous texture coordinate space. The and texture coordinates are
vital to techniques that utilize volumetric and projective texturing. When , , or are not explicitly assigned a

41

Programming with OpenGL: Advanced Rendering

Sized Base R G B A L I
Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4
LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6
LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8
LUMINANCE12 ALPHA4 LUMINANCE ALPHA 12 4
LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5 A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10 A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16

Table 1: OpenGL Internal Texture Formats. Each internal texture format has a corresponding base internal format
and its desired component resolutions.

42

Programming with OpenGL: Advanced Rendering

Texture coodinates

Object coordinates

Figure 27. Vertices with Texture Coordinates. Texture coordinates determine how texels in the texture are mapped
to the surface of a triangle in object space.

value (as when glTexCoord1f is called), their assumed values are 0, 0, and 1 respectively. If the concept of 3D
homogeneous texture coordinates is unfamiliar to your, the topic will be revisited in Section 6.16.

OpenGL’s interpolation of texture coordinates across a primitive compensates for the appearance of a textured
surface when viewed in perspective. While so-called perspective correct texture coordinate interpolation is more
expensive, failing to account for perspective results in incorrect and unsightly distortion of the texture image across
the textured primitive’s surface.

Each texture coordinate is assumed to be floating-point value. Each set of texture coordinates must be mapped
to a position within the texture image. The coordinates of the texture map range from [0..1] in each dimension.
OpenGL can treat coordinate values outside the range [0,1] in one of two ways: clamp or repeat. In the case of
clamp, the coordinates are simply clamped to [0,1] causing the edge values of the texture to be stretched across the
remaining parts of the polygon. In the case of repeat the integer part of the coordinate is discarded so the texture
image becomes an infinitely repeated tile pattern. In the case of clamping, proper filtering may require accounting
for border texels or, when no border is specified, the texture border color. OpenGL 1.2 adds a variation on clamping
known as clamp to edge that clamps such that the border is never sampled.2 The filtered color value that results
from texturing can be used to modify the original surface color value in one of several ways as determined by the
texture environment. The simplest way replaces the surface color with texel color, either by modulating a white
polygon or simply replacing the color value. Simple replacement was added as an extension by some vendors to
OpenGL 1.0 and is now part of OpenGL 1.1.

Assigning Texture Coordinates A common question is how texture coordinates are assigned to the vertices
of an object. There is no single answer. Sometimes the texture coordinates are some mathematical function of
the object coordinates. In other cases, the texture coordinates are manually assigned by the artist that created
a given 3D model. Most common 3D object file formats such as VRML or the Wavefront OBJ format contain
accompanying texture coordinates. Keep in mind that the assignment of texture coordinates for a particular 3D
model is not something that can be done independent of the intended texture to be mapped onto the object.

Optimizing Texture Coordinate Assignment Sloan, Weinstein, and Brederson [90] have explored optimizing
the assignment of texture coordinates based on an “importance map” that can encode both intrinsic texture proper-

2The clamp to edge functionality is also available through the SGIS texture edge clamp extension.

43

Programming with OpenGL: Advanced Rendering

ties as well as user-guided highlights. Such importance driven texture coordinate optimization techniques highlight
the fact that textured detail is very likely not uniformly distributed for a particular texture image and a particu-
lar texture coordinate assignment. Warping the texture image and changing the texture coordinate assignment
provides opportunities for improving texture appearance without increasing the texture size.

6.1.3 Texture Coordinate Generation and Transformation

An alternative to assigning texture coordinate explicitly to every vertex is to have OpenGL generate texture co-
ordinates for you. OpenGL’s texture coordinate generation (often called texgen for short) can generate texture
coordinates automatically as a linear function of the eye-space or object-space coordinates or using a special
sphere map formula designed for environment mapping.

OpenGL also provides a 4 by 4 texture matrix that can be used to transform the per-vertex texture coordinates,
whether supplied explicitly or implicitly through texture coordinate generation. The texture matrix provides a
means to rescale, translate, or even project texture coordinates before the texture is applied during rasterization.

6.1.4 Filtering

The texture image is a discrete array of texels, but the texture coordinates vary continuously (at least conceptually).
This creates a sampling problem. In addition, a fragment can really be thought of as covering some region of the
texture image (the fragment’s footprint). Filtering also tries to account for a fragment’s footprint within the texture
image.

OpenGL provides a number of filtering methods to compute the texel value. There are separate filters for magnifi-
cation (many pixel fragment values map to one texel value) and minification (many texel values map to one pixel
fragment). The simplest of the filters is point sampling, in which the texel value nearest the texture coordinates is
selected. Point sampling seldom gives satisfactory results, so most applications choose some filter which interpo-
lates. For magnification, OpenGL only supports linear interpolation between four texel values. For minification,
OpenGL supports various types of mipmapping [103], with the most useful (and computationally expensive) being
tri-linear mipmapping (four samples taken from each of the nearest two mipmap levels and then interpolating the
two sets of samples). Some vendors have also added an extension called SGIS texture filter4 that provides
a larger filter kernel in which the weighted sum of a 4x4 array of texels is used.

With mipmapping, a texture consists of multiple levels-of-detail (LODs). Each mipmap level is a distinct texture
image. The base mipmap level has the highest resolution and is called mipmap level zero. Each subsequent level
is half the dimensions (height, width, and depth) until each dimension goes to one and finally all the dimensions
reduce to one. For mipmap filtering to work reasonably, each subsequent mipmap level is down-sampled version
of the previous mipmap level texture image. Figure 28 shows how texture mipmap levels provide multiple LODs
for a base texture image. OpenGL does not provide any built-in commands for generating mipmaps, but the GLU
provides some simple routines (gluBuild1DMipmaps, gluBuild2DMipmaps, and gluBuild3DMipmaps3) for
generating mipmaps using a simple box filter.

During texturing, OpenGL automatically computes (or more likely, approximates) each fragment’s LOD parameter
based on the partial derivatives of the primitive’s mapping of texture coordinates to window coordinates. This
LOD parameter is often called lambda (). The integer portion of the lambda value determines which mipmap
levels to use for mipmap filtering and the fractional portion of the lambda value determines the weighting for
selecting or blending mipmaps levels. Because OpenGL handles mipmapping automatically, the details of LOD
computation are most interesting to OpenGL implementors, but it is important that users of OpenGL understand
the interpolation math so that they will not be surprised by unexpected results.

Additional Control of Texture Level of Detail In OpenGL 1.0 and 1.1, all the mipmap levels of a texture must
be specified and consistent. To be consistent, every mipmap level of a texture must be half the dimensions (until

3Introduced in GLU version 1.3.

44

Programming with OpenGL: Advanced Rendering

Original texture

Pre filtered mipmap
textures

1/4

1/16

1/64
1/256

Figure 28. Multiple Levels of Texture Detail using Mipmaps

reaching a dimension of one and excluding border texels) of the previous mipmap LOD, and all the mipmaps must
shared the same internal format and borders.

If mipmap filtering is requested for a texture, but all the mipmap levels of a texture are not present or not consistent,
OpenGL silently disables texturing. A common pitfall for OpenGL programmers is supplying an inconsistent or
incomplete set of mipmap levels and then wondering why texturing does not work. Be sure to specify all the
mipmap levels of a texture consistently. If you use the GLU routines for building mipmaps, this is guaranteed.

OpenGL 1.2 relaxes the texture consistency requirement by allowing the application to specify a contiguous range
of mipmap levels that must be consistent. This permits an application to still use mipmapping if only the 1x1
through 256x256 mipmap levels of a texture with a 1024x1024 level 0 texture, but not supply the 512x512 and
1024x1024 levels by managing the texture’s GL TEXTURE BASE LEVEL and GL TEXTURE MAX LEVEL parameters.
If an application is designed to guarantee a constant frame-rate, one reason the application might constrain the
base and maximum LODs in this way is that the application does not have the time to read the 512x512 and
1024x1024 mipmap levels from disk. In this case, the application makes the choice to settle for lower resolution
LODs, possibly resulting in blurry textured surfaces, rather than of dropping a frame. Hopefully on subsequent
frames, the application can manage to load the full set of mipmap levels for the texture and continue with full
texture quality. The OpenGL implementation implements this feature by simply clamping the LOD value to the
range of available mipmap levels.

Additionally, even when all the mipmap levels are present and consistent, some of the texture images for some
levels may be out-of-date if the texture is being dynamically updated using subtexture loads. OpenGL 1.2’s
GL TEXTURE MIN LOD and GL TEXTURE MAX LOD texture parameters provide a further means to clamp the LOD
value to a contiguous range of mipmap levels.4 Section 6.8 applies this functionality to the task of texture paging.

6.1.5 Texture Environment

The process by which the final fragment color value is derived is called the texture environment function (glTex-
Env) Several methods exist for computing the final color, each capable of producing a particular effect. One of the
most commonly used is the GL MODULATE environment function. The modulate function multiplies or modulates
the original fragment color with the texel color. Typically, applications generate polygons with per-vertex lighting

4This same functionality for controlling texture level of detail is also available through the SGIS texture lod extension.

45

Programming with OpenGL: Advanced Rendering

enabled and then modulate the texture image with the fragment’s interpolated lit color value to produce a lit, tex-
tured surface. The GL REPLACE texture environment5 is even simpler. The replace function simply replaces the
fragment’s color with the color from the texture. The same effect as replace can be accomplished in OpenGL 1.1
by using the modulate environment with a constant white current color, though the replace function has a lower
computational cost.

The GL DECAL environment function performs simple alpha-blending between the fragment color and an RGBA
texture; for RGB textures it simply replaces the fragment color. Decal mode is undefined for other texture formats
(luminance, alpha, intensity). The GL BLEND environment function uses the texture value to control the mix of the
incoming fragment color and a constant texture environment color.

At the time of this writing, efforts are underway to standardize extensions that enhance the texture environment by
adding new functions. For example, there should be a way to add the texture color to the fragment color.

6.1.6 Texture Objects

Most texture mapping applications switch among many different textures during the course of rendering a scene.
To facilitate efficient switching among multiple textures and to facilitate texture management, OpenGL uses texture
objects to maintain texture state.

The state of a texture object consists of the set of texture images for the all mipmap levels of the texture and the
texturing parameters such as the texture wrap and minification and magnification filtering modes. Other OpenGL
texture-related state such as the texture environment or texture coordinate generation modes are not part of a
texture object’s state. Conceptually, the state of a texture object is just the texture image and the parameters that
determine how to filter that image.

As with display lists, each texture object is identified by a 32-bit unsigned integer that serves as the texture’s name.
Also as with display lists names, the application is free to assign arbitrary unused names to new texture objects.
The command glGenTextures assists in the assignment of texture object names by returning a set of names
guaranteed to be unused. A texture object is bound, prioritized, checked for residency, and deleted by its name.
The value zero is reserved to name the default texture of each texture target type. Each texture object has its own
texture target type. The three supported texture targets are:

GL TEXTURE 1D

GL TEXTURE 2D

GL TEXTURE 3D

Calling glBindTexture binds the named texture object as the current texture for the specified texture target.
Instead of creating a texture object explicitly, a texture object is created whenever a texture image or parameter
is set for an unused texture object name. Once created a texture object’s target (1D, 2D, or 3D) is fixed until the
texture object is deleted.

The glTexImage, glTexParameter, glGetTexParameter, glGetTexLevelParameter, and glGetTexIm-
age commands update or query the state of the currently bound texture of the specified target type. Keep in mind
that there are really three current textures, one for each texture target type: 1D, 2D, and 3D. When texturing is
fully enabled, the current texture object (i.e., current for the enabled texture target) is used for texturing. When
rendering objects with different textures, glBindTexture is the way to switch among the available textures.

Keep mind that switching textures is a fairly expensive operation. If a texture is not already resident in dedicated
texture memory, switching to a non-resident texture requires that the texture be downloaded to the hardware before
use. Even if the texture is already downloaded, caches that maximize texture performance may be invalidated
when switching textures. The details of switching textures varies depending on your OpenGL implementation,

5Introduced by OpenGL 1.1.

46

Programming with OpenGL: Advanced Rendering

but suffice it to say that OpenGL implementations are inevitably optimized to maximize texturing performance for
whatever texture is currently bound so changing textures is something to minimize. Real-world applications often
derive significant performance gains by sorting by texture the objects that they render to minimize the number of
glBindTexture commands required to render the scene. For example, if a scene uses three different tree textures
to draw several dozen trees within a scene, it is a good idea to draw all the trees that share a single texture first
before switching to a different tree texture.

Texture objects were introduced by OpenGL 1.1. The original OpenGL 1.0 specification did not support texture
objects. The thinking at the time was that display lists containing a complete set of texture images and texture
parameters could provide a sufficient mechanism for fast texture switches. But display listed textures proved
inadequate for several reasons. Recognizing textures embedded in display list efficiently proved difficult. One
problem was that a display listed glTexImage2D must encapsulate the original image, which might not be the
final texture as transformed by the pixel transfer pipeline. Changes to the pixel transfer pipeline state could change
the texture image downloaded in subsequent calls of the display list. Unless every pixel transfer state setting was
explicitly set in the display list, OpenGL implementations had to maintain the original texture data and be prepared
to re-transform it by the current pixel transfer pipeline state when the texture display list is called. Moreover, even
if every pixel transfer state setting is explicitly set in the display list, supporting future extensions that add new
pixel transfer state would invalidate the optimization. Texture objects store the post-pixel transfer pipeline image
so texture objects have no such problem. Another issue is that because display lists are not editable, display lists
precluded support for subtexture loads as provided by the glTexSubImage2D command. Lastly, display lists lack
a means to query and update the priority and residency of textures.6

6.2 Multitexture

Multitexture refers to the ability to apply two or more distinct textures to a single fragment. Each texture has
the ability to supply its own texture color to rasterized fragments. Without multitexture, there is only a single
supported texture unit. OpenGL’s multitexture support requires that every texture unit be fully functional and
maintain state that is independent of any other texture units. Each texture unit has its own texture coordinate
generation state, texture matrix state, texture enable state, and texture environment state. However, each texture
unit within an OpenGL context shares the same set of texture objects.

Rendering algorithms that require multiple rendering passes can often be reimplemented to use multitexture in
operate in less rendering passes. Some effects are only viable with multitexture.

Many OpenGL games such as Quake and Unreal use light maps to improve the lighting quality within their scenes.
Without multitexture, light map textures must be modulated into the scene with a second blended rendering pass in
addition to a first pass to render the base surface texture. With multitexture, the light maps and base surface texture
can be rendered in a single rendering pass. This can cut the transformation overhead almost in half when rendering
light maps because a single multitexture rendering pass means that polygons need to only be transformed once.
The framebuffer update overhead is also lower when using multitexture to render light maps. When multitexture
is used, the overhead of blending in the second rendering pass is completely eliminated. A single multitextured
rendering pass can render both the surface texture and the light map texture without any framebuffer blending
because the modulation of the surface texture with the light map texture occurs as part of the multitexture texture
environment. Light maps are described in more detail in Section 10.2.

The OpenGL 1.2.1 revision of the OpenGL specification [88] includes an Appendix F that introduces the concept
of OpenGL Architecture Review Board (ARB) approved extensions and specifies the ARB multitexture exten-
sion, the first distinct ARB extension. The original OpenGL 1.2 specification includes an ARB extension called
the ARB imaging extension, but the ARB imaging description is intermingled with the core OpenGL 1.2 speci-
fication. The ARB multitexture extension is the first ARB extension that is specified in an Appendix distinct
from the core specification. The purpose of ARB extensions is to add important new functionality to OpenGL in

6While the SGIX list priority extension does provide a way to prioritize display lists, the concept of querying texture residency,
while important to texture objects, is not applicable to display lists.

47

Programming with OpenGL: Advanced Rendering

a modular way that makes it easier and quicker for OpenGL implementors to make available standard OpenGL
feature subsets because an ARB extension does not require a complete update of the core OpenGL specification.

6.2.1 Multitexture API Overview

An OpenGL implementation that supports ARB multitexture supports a new set of API routines for controlling
the multitexture state of one or more texture units. The glActiveTextureARB routine controls which texture
unit the existing OpenGL texture commands affect. For example, to enable 2D texturing on texture unit 0 and 1D
texturing on texture unit 1, make the following OpenGL calls:

glActiveTextureARB(GL_TEXTURE0_ARB);
glEnable(GL_TEXTURE_2D);
glActiveTextureARB(GL_TEXTURE1_ARB);
glEnable(GL_TEXTURE_1D);

Note that the state of each texture unit is completely independent. When multitexture is supported, other texture
command such as glTexGen, glTexImage2D, and glTexParameter affect the current active texture unit as
last set by glActiveTextureARB. Other commands such as glDisable, glGetIntegerv, glMatrixMode,
glPushMatrix, and glPopMatrix, also abide by the current active texture unit when updating or querying
texture state.

The number of texture units supported can be queried. Indeed, the ARB multitexture specification unfortunately
permits an implementation to claim to support the extension but only support a single texture unit. This means
that, to be safe, even if you only need a two texture units, you should be careful to query the implementation-
dependent constant GL MAX TEXTURE UNITS ARB using glGetIntegerv. At the time of this writing, most
existing ARB multitexture implementations support only two texture units, but the extension has set aside
enumerants for as many as 32 texture units.

Without multitexture, OpenGL supports just a single set of texture coordinates, But with multitexture, each vertex
has a number of texture coordinate sets equal to the maximum number of texture units supported by the implemen-
tation. The glMultiTexCoordARB routines make it easy to supply different texture coordinates for each texture
unit. For example:

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, s0, t0);
glMultiTexCoord4fARB(GL_TEXTURE1_ARB, s1, t1, r1, q1);
glMultiTexCoord1iARB(GL_TEXTURE2_ARB, s2);
glVertex3f(x, y, z);

The behavior of the glTexCoord family of routines is specified to update just texture unit zero.

The multitexture extension supports vertex arrays for multiple texture coordinate sets. Because vertex arrays
are considered client state, the glClientActiveTextureARB command controls which vertex array texture co-
ordinate set that the glTexCoordPointer, glEnableClientState, glDisableClientState, and glGet-
Pointerv commands affect or query. For example:

glClientActiveTextureARB(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTextureARB(GL_TEXTURE1_ARB);
glTexCoordPointer(2, GL_FLOAT, 0, tex_array_ptr);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

The current raster position has been extended to maintain a distinct texture coordinate set for each supported
texture unit.

To simplify the multitexture extension, OpenGL’s evaluator and feedback functionality are not extended to support
multiple texture coordinate sets. Evaluators and feedback utilize only texture coordinate set 0.

48

Programming with OpenGL: Advanced Rendering

TE0

TE1

TE2

TE3 C'f

Cf

CT0

CT1

CT2

CT3

Cf = fragment color input to texturing
C'f = fragment color output from texturing
CTi = texture color from texture lookup i
TEi = texture environment i

Figure 29. Multitexture Texture Environments. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation. The input fragment color is successively combined
with each texture according to the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

The glPushAttrib, glPopAttrib, glPushClientAttrib, and glPopClientAttrib push and pop respec-
tively all the respective server or client texture state of all texture units when texture-related state is pushed or
popped.

6.2.2 Multitexture Texture Environments

The EXT multitexture extension uses a cascade model to combine the incoming fragment color with the frag-
ment’s texture contribution from each texture unit. The first enabled texture unit receives the incoming fragment
color and applies the texture unit’s environment to combine the incoming fragment with the fragment’s corre-
sponding texture color for the texture unit. The resulting color is passed to the next enabled texture unit and that
texture unit’s texture environment is applied using the fragment’s corresponding texture color for the texture unit.
This process continues until all the enabled texture units are used. The order that the texture environments are
applied is the numerical order of the texture units. Figure 29 shows the multitexture texture environment dataflow.

For now, the EXT multitexture texture environment is sufficient to support today’s multitexture applications
such as light maps or dual-paraboloid environment maps. However, most existing multitexture hardware, and
almost certainly all multitexture hardware being designed currently, supports a substantially more flexible facility
for combining multiple textures (though the exact details vary from hardware vendor to vendor [15]). As of the
writing, work is on-going to standardize a more powerful multitexture texture environment for OpenGL.

6.3 Merging Textures with Specular Highlights

Unfortunately, when a lit polygon includes a specular highlight, the resulting modulated texture will not look
correct since the specular highlight simply changes the brightness of the texture at that point rather than the
desired effect of adding in some specular illumination. Some vendors have addressed this problem with extensions
to perform specular lighting after texturing. The EXT separate specular color extension permits the color
result from the per-vertex specular lighting computation to be separately interpolated during rasterization and then
added to the fragment’s color after the texture environment. This new step in the OpenGL pipeline is called

49

Programming with OpenGL: Advanced Rendering

the color sum. OpenGL 1.2 integrates the separate specular color functionality into the OpenGL core standard.
Enabling the separate specular color functionality in OpenGL 1.2 is easy:

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);

OpenGL’s default behavior is restored by:

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);

One limitation of the separate specular color functionality is that the secondary color (as it is called) added in
during the color sum stage can only be supplied through OpenGL’s per-vertex specular lighting computation.
When lighting is disabled, there is no way to control the secondary color. The EXT secondary color extension
permits the secondary color to be pass directly into OpenGL via the command glSecondaryColor3fEXT. This
can be very useful is you wish to perform your own per-vertex lighting model that supplies independent specular
highlights. Here is an example assuming the extension is supported:

glDisable(GL_LIGHTING);
glEnable(GL_COLOR_SUM_EXT); /* enable color sum

with explicit secondary color */
glColor4f(0, 0.3, 0.5); /* explicit primary color (RGBA) */
glSecondaryColor3fEXT(1, 1, 0.8); /* explicit secondary color (RGB) */

Neither of these techniques address a problem fundamental to per-vertex computation of specular highlights
though. Because specular highlights change rapidly over a shiny surface, when an object is not sufficiently tessel-
lated, the specular highlight tend to “wobble” as the object moves or rotates. This is due to the specular highlight
sometimes being correctly sampled when a vertex is close to the highlight, but poorly sampled if a vertex is not
close to the highlight. Other techniques that can be used to address this problem are discussed in Section 10.1.1.

6.4 Texture Borders and Tiling

A useful (and sometimes misunderstood) feature of OpenGL is the texture border. OpenGL supports either a
constant texture border color or a border that is a portion of the edge of the texture image. The key to understanding
texture borders is understanding how textures are sampled when the texture coordinate values are near the edges
of the [0,1] range and the texture wrap mode is set to GL CLAMP. For point sampled filters, the computation is
quite simple: the border is never sampled. However, when the texture filter is linear and the texture coordinate
reaches the extremes (0.0 or 1.0), the resulting texel value is a 50% mix of the border color and the outer texel of
the texture image at that edge (25% and 75% at the corners).

The texture border is most useful when attempting to use a single high resolution texture image which is too
large for the OpenGL implementation to support as a single texture map. For this case, the texture can be broken
up into multiple tiles, each with a 1 pixel wide border from the neighboring tiles. The texture tiles can then be
loaded and used for rendering in several passes. For example, if a 1K by 1K texture is broken up into four 512
by 512 images, the four images would correspond to the texture coordinate ranges (0-0.5,0-0.5), (0.5,1.0,0-0.5),
(0-0.5,0.5,1.0) and (.5-1.0,.5-1.0). As each tile is loaded, only the portions of the geometry that correspond to the
appropriate texture coordinate ranges for a given tile should be drawn. If you had a single triangle whose texture
coordinates were (.1,.1), (.1,.7), and (.8,.8), you would clip the triangle against the four tile regions and draw only
the portion of the triangle that intersects with that region as shown in Figure 30. At the same time, the original
texture coordinates need to be adjusted to correspond to the scaled and translated texture space represented by the
tile. This transformation can be easily performed by loading the appropriate scale and translation onto the texture
matrix stack.

Unfortunately, OpenGL does not provide much assistance for performing the clipping operation. If the input
primitives are quads and they are appropriately aligned in object space with the texture, then the clipping operation

50

Programming with OpenGL: Advanced Rendering

(0.,1.)

(0.,0.)
(1.,1.)

(.1,.7)

(.8,.1)

(.1,.1)

(1.,0.)

Figure 30. Texture Tiling

is trivial; otherwise, it may involve substantially more work. One method to assist with the clipping uses stenciling
to control which textured fragments are kept. Stencil testing is described in Section 8.6. Then you are left with
the problem of setting the stencil bits appropriately. The easiest way to do this is to produce alpha values that
are proportional to the texture coordinate values and use glAlphaFunc to reject alpha values that you do not
wish to keep. Unfortunately, you can not easily map a multidimensional texture coordinate value (e.g., ,) to an
alpha value by simply interpolating the original vertex alpha values, so it is best to use a multidimensional texture
itself which has some portion of the texture with zero alpha and some portion with it equal to one. The texture
coordinates are then scaled so that the textured polygon map to texels with an alpha of 1.0 for pixels to be retained
and 0.0 for pixels to be rejected.

OpenGL 1.2 adds an alternative clamping behavior when the texture wrap mode is set to GL CLAMP TO EDGE.7

This mode clamps the texture coordinates such that the texture border is never sampled. The filtered color is
derived only from texels at the edge of the texture image. Unlike OpenGL’s standard texture clamping, the clamp
to edge behavior is unable to guarantee a consistent border appearance when used with mipmapping because the
clamping range changes with each mipmap level because the clamping range depends on the selected mipmap
level’s dimensions. The clamp to edge behavior is easier to implement in hardware than OpenGL’s standard
clamping with texture borders because the texture dimensions are not augmented by additional border texels the
dimensions are efficient powers of two. The clamp to edge behavior matches the texture clamping behavior of
Direct3D.

6.5 Mipmap Generation

Having explored the possibility of tiling low resolution textures to achieve the effect of high resolution textures,
we now examine methods for generating better texturing results without resorting to tiling. Again, OpenGL
supports a modest collection of filtering algorithms, the highest quality of the minification algorithms being
GL LINEAR MIPMAP LINEAR. OpenGL does not specify a method for generating the individual mipmap levels
(LODs). Each level can be loaded individually, so it is possible, but probably not desirable, to use a different
filtering algorithm to generate each mipmap level.

The GLU library provides a very simple interface (gluBuild2DMipmaps) for generating all of the 2D levels
required. The algorithm currently employed by most implementations is a box filter. There are a number of
advantages to using the box filter; it is simple, efficient, and can be repeatedly applied to the current level to
generate the next level without introducing filtering errors. However, the box filter has a number of limitations that

7The same functionality is also available through the SGIS texture edge extension.

51

Programming with OpenGL: Advanced Rendering

can be quite noticeable with certain textures. For example, if a texture contains very narrow features (e.g., lines),
then aliasing artifacts may be very pronounced.

The best choice of filter functions for generating mipmap levels is somewhat dependent on the manner in which
the texture will be used and it is also somewhat subjective. Some possibilities include using a linear filter (sum of
four pixels with weights [1/8,3/8,3/8,1/8]) or a cubic filter (weighted sum of eight pixels). Mitchell and Netravali
[64] propose a family of cubic filters for general image reconstruction which can be used for mipmap generation.
The advantage of the cubic filter over the box is that it can have negative side lobes (weights) which help maintain
sharpness while reducing the image. This can help reduce some of the blurring effect of filtering with mipmaps.

When attempting to use a filtering algorithm other than the one supplied by the GLU library, it is important to keep
a couple of things in mind. The highest resolution (finest) image of the mipmap (LOD 0) should always be used
as the input image source for each level to be generated. For the box filter, the correct result is generated when the
preceding level is used as the input image for generating the next level, but this is not true for other filter functions.
Each time a new (coarser) level is generated, the filter needs to be scaled to twice the width of the previous version
of the filter. A second consideration is that in order to maintain a strict factor of two reduction, filters with widths
wider than two need to sample outside the boundaries of the image. This is commonly handled by using the value
for the nearest edge pixel when sampling outside the image. However, a more correct algorithm can be selected
depending on whether the image is to be used in a texture in which a repeat or clamp wrap mode is to be used. In
the case of repeat, requests for pixels outside the image should wrap around to the appropriate pixel counted from
the opposite edge, effectively repeating the image.

Mipmaps may be generated using the host processor or using the OpenGL pipeline to perform some of the filtering
operations. For example, the GL LINEAR minification filter can be used to draw an image of exactly half the width
and height of an image which has been loaded into texture memory, by drawing a quadrilateral with the appropriate
transformation (i.e., the quad projects to a rectangle one fourth the area of the original image). This effectively
filters the image with a box filter. The resulting image can then be read from the color buffer back to host memory
for later use as LOD 1. This process can be repeated using the newly generated mipmap level to produce the next
level and so on until the coarsest level has been generated.

The above scheme seems a little cumbersome since each generated mipmap level needs to be read back to the
host and then loaded into texture memory before it can be used to create the next level. The glCopyTexImage
capability, added in OpenGL 1.1, allows an image in the color buffer to be copied directly to texture memory.

The texture LOD extension to OpenGL 1.1 (standard in OpenGL 1.2) can be used by an application to use the
previously computed mipmap level in the target texture itself as the texture applied to compute the final texture
level. In this way, the application would never need to change texture objects.

The above method outlines an algorithm for generating mipmap levels using the existing texture filters. There
are other mechanisms within the OpenGL pipeline that can be combined to do the filtering. Convolution can be
implemented using the accumulation buffer (this will be discussed in more detail in Section 13.3.3. A texture
image can be drawn using a point sampling filter (GL NEAREST) and the result added to the accumulation buffer
with the appropriate weighting. Different pixels (texels) from an NxN pattern can be selected from the texture by
drawing a quad that projects to a region 1/N x 1/N of the original texture width and height with a slight offset in
the and coordinates to control the nearest sampling. Each time a textured quad is rendered to the color buffer it
is accumulated with the appropriate weight in the accumulation buffer. Combining point-sampled texturing with
the accumulation buffer allows the implementation of nearly arbitrary filter kernels. Sampling outside the image
however still remains a difficulty for wide filter kernels. If the outside samples are generated by wrapping to the
opposite edge, then the GL REPEAT wrap mode can be used.

6.6 Texture Map Limits

In addition to issues concerning the maximum texture resolution and the methods used for generating texture
images there are also some pragmatic details with using texturing. Many OpenGL implementations hardware
accelerate texture mapping and have finite storage for texture maps being used. Many implementations will

52

Programming with OpenGL: Advanced Rendering

Fragment

Level 0

Level 1

Level 1

Level 0

Figure 31. Footprint in Anisotropically Scaled Texture

virtualize this resource so that an arbitrarily large set of texture maps can be supported within an application,
but as the resource becomes oversubscribed performance will degrade. In applications that need to use multiple
texture maps there is a tension between the available storage resources and the desire for improved image quality.

This simply means that it is unlikely that every texture map can have an arbitrarily high resolution and still fit
within the storage constraints; therefore, applications need to anticipate how textures will be used in scenes to
determine the appropriate resolution to use. Note that texture maps need not be square; if a texture is typically
used with an object that is projected to a non-square aspect ratio then the aspect ratio of the texture can be scaled
appropriately to make more efficient use of the available storage.

6.7 Anisotropic Texture Filtering

Currently, OpenGL only provides an isotropic filter for texture minification. This means that the amount of filtering
done along the and axes of the texture is the same, and is the maximum of the filtering needed along each of the
two axes individually. This can lead to excessive blurring when a texture is viewed at any angle other than straight
on. If it is known that a texture will always be viewed at a given angle or range of angles, it can be created in a
way that reduces over-filtering.

Suppose a textured square is rendered as shown in the left of Figure 31. The texture is shown in the right. Consider
the fragment that is shaded dark. Its ideal footprint is shown in the diagram of the texture as the dark inner region.
But since the minification filter is isotropic, the actual footprint is forced to a square that encloses the dark region.
A mipmap level will be chosen in which this square footprint is properly filtered for the fragment; in other words,
a mipmap level will be selected in which the size of this square is closest to the size of the fragment. That mipmap
is not level zero but level 1 or higher. Hence, at that fragment more filtering is needed along than along , but the
same amount of filtering is done in both. The result will be that the texture will be blurred more than it needs to
be.

To avoid this problem, do the extra filtering along when you create the texture, and make the texture have the
same width but only half the height. See Figure 31. The footprint now has an aspect ratio that is more square, so
the enclosing square is not much larger, and is closer to the size to the fragment. Level 0 will be used instead of
a higher level. Another way to think about this is that by using a texture that is shorter along , you reduce the
amount of minification that is required along .

The closer the filtered mipmaps aspect ratio matches the projected aspect ratio of the geometry, the more accurate

53

Programming with OpenGL: Advanced Rendering

Figure 32. Creating a Set of Anisotropically Filtered Images

Figure 33. Geometry Orientation and Texture Aspect Ratio

the sampling will be. An application can minimize excessive blurring at the expense of texture memory by creating
a set of re-sampled mipmaps with different aspect ratios.

The application can choose the mipmap that most closely corresponds to the texture scaling ratio being applied to
the textured terrain. This ratio can be quickly estimated by computing the angle between the viewers line of sight
and a plane representing the terrains average orientation. Using texture objects, the application can switch to the
mipmap will provide the best results.

1. Re-sample the texture data into different aspect ratios (gluScaleImage can be used for this purpose).

2. Create a set of mipmaps corresponding to each image aspect ratio.

3. At each frame, compute the best aspect ratio using the angle between the viewers line of sight and the
terrain.

4. Make the mipmap with the best aspect ratio current for texturing the terrain.

Since texture levels must have power of two dimensions, it would appear that the only aspect ratios that can
be prefiltered are 1:4, 1:2, 1:1, 2:1, 4:1, etc. You can actually define smaller aspect ratio step size by using a

54

Programming with OpenGL: Advanced Rendering

1 0 0 0

0 3/4 0 0

0 0 1 0

0 0 0 1

Pixel buffer Texture matrix Texture map

Figure 34. Non Power-of-2 Aspect Ratio Using Texture Matrix

combination of incomplete texture images and use of the texture transform matrix. For example, say you want a
ratio of 3:4. You cannot define a mipmap with lengths of this ratio, but you can define a 1:1 ratio mipmap and
define an image that is scaled into a 3:4 ratio within it. The part of the texture that is not used should be placed
along the top (maximum coordinates) or right (maximum coordinates) edge of the texture image. The scaled
image can be any size, as long as it fits within the texture level. You can then create a mipmap in the normal way.

Using this mipmap for some textured geometry with a 3:4 ratio, results in an incorrect textured image. Be sure to
set the texture transform matrix to rescale the narrower side of the texture (in our example in the direction) by
3/4:

This will change the apparent size ratio between the pixels and textures in the texture filtering system, giving
you the proper results. This technique would not work well with a wrapped texture; in our example, there is a
discontinuity in the image when you filter outside the range of to in . However, in our example, wrapping in

would work fine.

6.8 Paging Textures

As applications simulate higher levels of realism, the amount of texture memory they require can increase dra-
matically. Texture memory is a limited, expensive resource, so loading high resolution images as textures is not
always feasible. Applications are often forced to resample their images at a lower resolution to make them fit in
texture memory, with a corresponding loss of realism and image quality. If an application must view the entire
textured image at high resolution, there may be no alternative to this approach.

But many applications have texture requirements that can be structured so that only a small area of large texture
has to be shown at full resolution. For example when textures are used to produce a realistic flight simulation
environment, only the textured terrain close to the viewer has to show fine detail; terrain far from the viewer is
textured using low resolution texture levels, since a pixel corresponding to these areas covers many texels at once.
For many applications that use large texture maps, the maximum amount of texture memory in use for any given
viewpoint is bounded.

Applications can take advantage of this phenomena through texture paging. Rather than loading complete levels
of a large image, only the portion of the image closest to the viewer is kept in texture memory. The rest of the
image is stored in system memory, or on disk. As the viewer moves, the contents of texture memory are updated
to keep the closest portion of the image loaded.

There are two different approaches that could be used to address the problem. The first is to subdivide the texture
image into fixed sized tiles and selectively draw the geometry that corresponds to each image tile, one at a time,
reloading texture memory for each new tile. This approach is difficult to implement. Tile boundaries are a problem
for GL LINEAR filters since the locations where the geometry crosses tile boundaries need to be resampled properly.

55

Programming with OpenGL: Advanced Rendering

The problem could be addressed by clipping the geometry so that the texture coordinates are kept within the [0.0,
1.0] range and then use texture borders to handle the edges of each image tile. Clipping geometry to match each
image tile itself can be a difficult problem, especially if the geometry is changing dynamically. For example,
terrain close to the viewer might be replaced with more highly tessellated geometry to increase realism, while
geometry far from the viewer is tessellated more coarsely to improve rendering performance. In general, forcing a
correspondence between texture and geometry beyond what is established by texture coordinates is something to
be avoided, since it adds additional complication and software quality problems to the application.

A more sophisticated solution is to take advantage of texture coordinate wrapping to page textures without having
to tile the textured geometry. To make this clear, consider a single level texture. Define a viewing frustum that
limits the amount of visible geometry to a small area, small enough that the visible geometry can be easily textured.
Now imagine that the entire texture image is stored in system memory. As the viewer moves, the image in texture
memory can be updated so that it exactly corresponds to the geometry visible in the viewing frustum:

1. Given the current view frustum, compute the visible geometry.

2. Set the texture transform matrix to map the visible texture coordinates into 0 to 1 in and .

3. Use glTexImage2D to load texture memory with the appropriate texel data, using GL SKIP PIXELS and
GL SKIP ROWS to index to the proper subregion.

This technique would remap the texture coordinates of the visible geometry to match texture memory, then load
the matching texture image into texture memory using glTexImage2D.

6.8.1 Texture Subloading

While this technique works, it is a very inefficient user of texture bandwidth. Even if the viewer moves a small
amount, the entire texture level is reloaded. Performance can be improved by taking advantage of texture subload-
ing.

If the viewer is smoothly traversing textured terrain, you can take advantage of the fact by incrementally updating
the contents of texture memory. Instead of completely reloading the contents of texture memory, you can reload
the section that has gone out of view from the last frame with the portion of the image that has just come into
view this frame. This technique works because of texture coordinate wrapping. When GL TEXTURE WRAP S and
GL TEXTURE WRAP T are set to GL REPEAT (the default), the integer part of texture coordinates are discarded when
mapping into texture memory. In effect, texture coordinates the go off the edge of texture memory on one side,
“wrap around” to the opposite side. Using subloading, the updating technique looks like this:

1. Given the current and previous view frustum, compute how the range of texture coordinates have changed.

2. Transform the change of texture coordinates into one or more regions of texture memory that need to be
updated.

3. Use glTexSubImage to update the appropriate regions of texture memory, use GL SKIP PIXELS and
GL SKIP ROWS to index into the texture image.

If the subloads are computed properly, this technique does not require transforming texture coordinates using the
the texture transform matrix. Updating texture memory can take from 1 to 4 subloads.

On many systems, texture subloads can be very inefficient when narrow regions are being loaded. The subloading
method can be modified ensure that only subloads above a minimum size are allowed, at the cost of some additional
texture memory. The change is simple. Instead of updating every time the view position changes, ignore position
changes until the accumulated change requires a subload above the minimum size. Normally this will result in
out of date texture data being visible around the edges of the textured geometry. To avoid this, an invalid region is

56

Programming with OpenGL: Advanced Rendering

specified around the periphery of the texture level, and the view frustum is adjusted so the that geometry textured
from the texels from the invalid region are never visible. This technique allows updates to be cached, improving
performance.

This paging technique depends on only a limited region of the textured geometry being visible. In this example
we are depending on the limits of the view frustum to only allow properly textured geometry to be visible. If the
view frustum were expanded, we’d see the texture image wrapping over the surrounding geometry. Even with
these limitations, this technique can be expanded to include mipmapped textures.

Since OpenGL does not understand paged mipmaps, the application can not simply define a very large mipmap and
not expect the OpenGL implementation to try to allocate the texture memory needed for all the mipmap levels. In-
stead the application must use the texture LOD control functionality in OpenGL 1.2 (or the EXT texture lod ex-
tension) to define a small number of active levels, using the GL TEXTURE BASE LEVEL, GL TEXTURE MAX LEVEL,
GL TEXTURE MIN LOD and GL TEXTURE MAX LOD with the glTexParameter call. An invalid region must be
established and a minimum size update must be set so that all levels can be kept in sync with each other when
updated. For example, a subload 32 texels wide at the top level must be accompanied by a subload 16 texels wide
at the next coarser level, if mipmapping is going to filter properly. Multiple images at different resolutions will
have to be kept in system memory as source images to load texture memory.

If the viewer zooms in or zooms out of the geometry, the texturing system may require levels that are not available
in the paged mipmap. The application can avoid this problem by computing the mipmap levels that are needed
for any given viewer position, and keeping a set of paged mipmaps available, each representing a different set of
LOD levels. The coarsest set could be a normal mipmap, for when the viewer is very far away from the geometry.

6.8.2 Paging Images in System Memory

Up to this point, we’ve assumed that the texel data is available as a large contiguous image in system memory. Just
as texture memory is a limited resource, it also makes sense to conserve system memory as well. For very large
texture images, the image data can be divided into tiles, and paged into system memory. This paging can be kept
separate from the paging going on from system memory to texture memory. The only difference will be in the
offsets required to index the proper region in system memory to download, and increase the number of subloads
required to update texture memory. A sophisticated system can wrap texture image data in system memory just as
texture coordinates are wrapped in texture memory.

Consider the case of a two dimensional image roam, illustrated in Figure 35, in which the view is moving to the
right. As the view pans to the right, new texture tiles must be added to the right edge of the current portion of the
texture and old tiles could be discarded from the left edge.

Tiles discarded on the right side of the image create holes where new tiles could be loaded into the texture, but
there is a problem with the texture coordinates.

The ability to load subregions within a texture has other uses besides these paging applications. Without this
capability textures must be loaded in their entirety and their widths and heights must be powers of two. In the case
of video data, the images are typically not powers of two so a texture of the nearest larger power of two can be
created and only the relevant subregion needs to be loaded. When drawing geometry, the texture coordinates are
simply constrained to the fraction of the texture which is occupied with valid data. Mipmapping can not easily be
used with non-power-of-two image data since the coarser levels will contain image data from the invalid region of
the texture.

6.8.3 Implementing High Resolution Textured Terrain

Tanner, Migdal, and Jones [94] describe a hardware solution called clip mapping for supporting extremely large
textures. The approach is implemented in SGI’s InfiniteReality graphics subsystem. The basic clip mapping
functionality is accessed using the SGIX clipmap extension. In addition to requiring hardware support, the system
also requires significant software management of the texture data too, in part, simply due to the massive texture

57

Programming with OpenGL: Advanced Rendering

Tiles

Visible region
Roam

(0,0)

(1,1)

t

s

Toroidal wrapping

Figure 35. 2D Image Roam

sizes that can be supported. While the clip map approach has no inherent limit to its maximum resolution, the
InfiniteReality hardware implementation supports clip map textures to sizes up to 32,768 by 32,768 [65]. The clip
map itself is essentially a dynamically updatable partial mipmap. Highest resolution texture data is available only
around a particular point in the texture called the clip center. To ensure that clip mapped surfaces are shown at
the highest possible texture resolution, software is required to dynamically reposition the clip center as necessary.
Repositioning the clip center requires partial dynamic updates of the clip map texture data. With software support
for repositioning the clip center and managing the off-disk texture loading and caching required, clip mapping
offers the opportunity to dynamically roam over and zoom in and out of huge textured regions. The technique has
obvious applications for unconstrained viewing of high resolution satellite imagery at real-time rates.

Hüttner [53] describes another approach using only OpenGL’s base mipmap functionality to support very high
resolution textures. Hüttner proposes a data structure called a MIPmap pyramid grid or MP-grid. The MP-grid is
essentially a set of mipmap textures arranged in a grid to represent an aggregate high-resolution texture that would
be larger than the OpenGL implementation’s largest supported texture. For example, a 4 by 4 grid of 1024x1024
mipmapped textures could be used to represent a 4096x4096 aggregate texture. Typically, the aggregate texture is
terrain data intended to be draped over a polygonal mesh representing the terrain’s geometry. Before rendering, the
MP-grid algorithm first classifies each terrain polygon based on which grid cells within the MP-grid the polygon
covers. During rendering, each grid cell is considered in sequence. Assuming the grid cell is covered by polygons
in the scene, the mipmap texture for the grid cell is bound. Then, all the polygons covering the grid cell are
rendered with texturing enabled. Because a polygon may not exist completely within a single grid cell, care must
be taken to intersect such polygons with the boundary of all the grid cells that the polygon partially covers.

Hüttner compares the MP-grid scheme to the clip map scheme and notes that the MP-grid approach does not
require special hardware and does not depend on determining a single viewer-dependent clip center as needed in
the clip map approach. However, the MP-grid approach requires special clipping of the surface terrain mesh to
the MP-grid. No such clipping is required when clip mapping. Due its special hardware support, the clip mapping
approach is most likely better suited to the very biggest high resolution textures.

6.9 Transparency Mapping and Trimming with Alpha

The alpha component of textures can be used to solve a number of interesting problems. Intricate shapes such
as an image of a tree can be stored in texture memory with the alpha component acting as a matte (where the
image is opaque, where it is transparent, and a fractional value along the edges). When the texture is applied
to geometry, blending can be used to composite the image into the color buffer or the alpha test can be used to
discard pixels with a alpha component using GL EQUALS test. To maximize performance, set the alpha test to
GL LESS and discard pixels with a small alpha value, for example less than . This way some more pixels are
discarded that do not contribute significantly to the image.

58

Programming with OpenGL: Advanced Rendering

The advantage of using the alpha test instead of alpha blending is that blending typically degrades the performance
of fragment processing. With alpha testing fragments with zero alpha are rejected before they get to the color
buffer. A disadvantage of alpha testing is that the edges will not be blended into the scene so the edges will not be
properly antialiased.

The alpha component of a texture can be used in other ways, for example, to cut holes in polygons or to trim
surfaces. An image of the trim region is stored in a texture map and when it is applied to the surface, alpha testing
or blending can be used to reject the trimmed region. This method can be useful for trimming complex surfaces
in scientific visualization applications.

6.10 Billboards

It is often desirable to replace intricate geometry with simpler texture mapped geometry to increase realism and
performance. Billboarding is a technique in which complex objects such as trees are drawn with simple planar
texture mapped geometry and the geometry is transformed to face the viewer. The transformation typically consists
of a rotation to orient the object towards the viewer and a translation to place the object in the correct position. For
the case of the tree, an object with roughly cylindrical symmetry, an axial rotation is used to rotate the geometry
for the tree, typically a quadrilateral, about the axis running parallel to the tree trunk.

For the simple case of the viewer looking down the negative -axis and the up vector equal to the positive -axis,
the angle of rotation can be determined by computing the eye vector from the model view matrix

and the rotation about the axis is computed as

where

Once is computed, construct a rotation matrix representing this rotation about the -axis (). Then concate-
nate this rotation matrix with the modelview matrix to make a combined matrix called . Use this combined
matrix to transform the billboard geometry.

To handle the more general case of an arbitrary billboard rotation axis, an intermediate alignment rotation of
the billboard axis into the axis is computed as

and the matrix transformation is replaced with . Note that the preceding calculations assume that the pro-
jection matrix contains no rotational component.

In addition to objects which are cylindrically symmetric, it is also useful to compute transformations for spherically
symmetric objects such as smoke, clouds and bushes. Spherical symmetry allows billboards to rotate up and down

59

Programming with OpenGL: Advanced Rendering

x

y

z

Figure 36. Billboard with Cylindrical Symmetry

as well as left and right, whereas cylindrical behavior only allows rotation to the left or right. Cylindrical behavior
is suited to objects such as trees which should not bend backward as the viewer’s altitude increases.

Objects which are spherically symmetric are rotated about a point to face the view and thus provide more freedom
in computing the rotations. An additional alignment constraint can resolve this freedom. For example, an align-
ment constraint which keeps the object oriented in a consistent fashion, such as upright. This constraint can be
enforced in object coordinates when the objective is to maintain scene realism, perhaps to maintain the orientation
of plume of smoke consistently with other objects in a scene. The constraint can also be enforced in eye coordi-
nates which can be used to maintain alignment of an object relative to the screen, for example, keeping annotations
such as text aligned horizontally on the screen.

The computations for the spherically symmetric case are a minor extension of the computations for the arbitrarily
aligned cylindrical case. First an alignment transformation, , is computed to rotate the alignment axis onto the
up vector followed by a rotation about the up vector to align the face of the billboard with the eye vector. is
computed as

60

Programming with OpenGL: Advanced Rendering

Figure 37. Texture Containing Font Glyphs and Rendering Example

where is the billboard alignment axis with the component in the direction of the eye direction vector
removed

A rotation about the up vector is then computed as for the cylindrical case.

6.11 Rendering Text

A novel use for texturing is rendering antialiased text [41, 57]. Characters are stored in a 2D texture map as
for the tree image described above. When a character is to be rendered, a polygon of the desired size is texture
mapped with the character image. Since the texture image is filtered as part of the texture mapping process, the
quality of the rendered character can be quite good. Text strings can be drawn efficiently by storing an entire
character set within a single texture. Rendering a string then becomes rendering a set of quads with the vertex
texture coordinates determined by the position of each character in the texture image. Another advantage of this
method is that strings of characters may be arbitrarily oriented and positioned in three dimensions by orienting
and positioning the polygons.

Figure 37 shows an example of a texture image packed with glyphs for rendering text on the left. The right side of
the figure is a rendering example using the texture. Note how each glyphs in the rendering example matches the
corresponding glyph in the texture.

The GL INTENSITY texture format is a good texture format for textures containing glyphs because the texture
format is compact. The intensity texture format replicates the single intensity component value in the red, green,
blue, and alpha channels. When rendering colored glyphs, use the GL MODULATE texture environment and set the
current color to the desired glyph color.

Because text is often rendered on planar surfaces, you may need to use stencil testing or polygon offset to avoid
depth buffering artifacts caused by the co-planarity of the surface and glyph polygons.

The competing methods for drawing text in OpenGL include bitmaps, vector fonts, and outline fonts rendered
as polygons. The texture method is typically faster than bitmaps and comparable to vector and outline fonts. A
disadvantage of the texture method is that the texture filtering may make the text appear somewhat blurry. This
can be alleviated by taking more care when generating the texture maps (e.g., sharpening them). If mipmaps are
constructed with multiple characters stored in the same texture map, care must be taken to ensure that map levels
are clamped to the level where the image of a character has been reduced to 1 pixel on a side. Characters should
also be spaced far enough apart that the color from one character does not contribute to that of another when
filtering the images to produce the levels of detail.

61

Programming with OpenGL: Advanced Rendering

6.12 Texture Mosaicing

The method described above for grouping several images together in a single texture turns out to be useful in other
applications as well. In some OpenGL implementations the cost of binding a texture object can limit the overall
performance of the application when a large number of textures are being used in each frame. The situation can
be mitigated to some extent by packing textures which are used in the same scene together in a single object to
reduce the number of texture binds. Also, some images may not need a full power of two for their width or height
leaving an opportunity to use texture memory more efficiently if multiple images can be packed together.

Geometry which uses an image within a mosaiced texture has its texture coordinates scaled and biased to index
only the texels corresponding to its image. As in the case of character rendering, the individual images in the
mosaic must be separated far enough apart so that they do not interfere during filtering. Careful attention should
be paid to mipmap generation to ensure that multiple images are not blurred together in a level. The texture LOD
clamping capability in OpenGL 1.2 can be used to restrict the range of coarse LODs which are used or mosaiced
textures may be constructed from similar enough images that an appropriate single image can be constructed for
each level of detail. It may also be useful to pack images together which use the same texture environments to
reduce the number of texture environment changes as well.

6.13 Texture Coordinate Generation

Texture coordinates for a fragment are computed by interpolating the texture coordinates for a set of vertices.
OpenGL provides several mechanisms for specifying the texture coordinates at each vertex: texture coordinates
may be supplied directly by the application using the glTexCoord commands or vertex arrays, they may be
generated automatically from parametric maps for evaluators, or they may be generated directly by OpenGL using
a generation function.

OpenGL supports two mechanisms for computing a texture coordinate directly: distance from a plane, or the
reflection vector using the vertex position and normal to compute this vector. The first form is useful for making
texture coordinates which are proportional to the distance from the object to some other location and can be
computed in either object coordinates or eye coordinates. The latter is useful for environment mapping with a
sphere map. The texture coordinate generation function is specified separately for each texture coordinate.

6.14 Color Coding and Contouring

One application for object linear texture coordinate generation is color coding objects by distance. For example,
a terrain model can be colored by altitude using a 1D texture map to hold the coloring scheme and specifying
a generation function for the coordinate which measures the distance from the plane . Suppose that the
vertex coordinates are specified in meters and distances less than 50 meters are colored blue, distances between
50 and 800 meters green, distances between 800 and 1000 meters white. This means that a 1D texture map is
created with the first 5% blue, the next 75% green and the remaining 20% white. A 64 or 128 element texture
map provides enough resolution to distinguish between the levels. Specifying GL OBJECT LINEAR for the texture
generation mode and an GL OBJECT PLANE equation of (0, 1/1000, 0, 0) for the coordinate will set to the
value of the vertex scaled by 1/1000.

The same basic technique can be used to draw contour lines on an object, for example, in topography applica-
tions to indicate lines of constant elevation. For this example, a 1D texture map is used which is all one color
except at regularly spaced intervals (say, every eighth texel) where a tick mark is added in a different color.
A coordinate wrap mode of GL REPEAT is used to create repeating lines across the object being contoured. If a
GL OBJECT LINEAR generation function is used then the contours are anchored to the model. If a GL EYE LINEAR
generation function is used then the coordinates are evaluated in eye space and the contours stay fixed in space
rather than moving with the object.

62

Programming with OpenGL: Advanced Rendering

-x

-z x

z-y

y

Figure 38. Contour Generation Using TexGen

6.15 Visualizing Surface Orientations

One-dimensional texturing and the texture matrix can be used to visualize the overall orientation of surface normals
relative to a specific direction. One unexpected application of visualizing surface orientations is to optimize
specific types of manufacturing processes.

Bailey and Clark [7] describe a manufacturing process for the automated fabrication of solid freeform objects. The
process makes an abstract object “real” by laminating together sheet after sheet of paper with each sheet stacked
on top of the previous sheet. Each sheet of paper corresponds to a thin layer in the object under construction.
Before each lamination, a laser first cuts each sheet to the proper shape for its corresponding level within the
object. The laser will also cut a crosshatch pattern in the region of the sheet not belonging to the object level.
Later, the crosshatched regions will be brushed away as scrap from the final finished object.

The strength and surface quality of the object depend on the shape of the object and, importantly, how the object
is oriented as the object is built from sheet after sheet of laser-cut paper. In particular, if the density of the contour
lines formed from the layers of sheets is too low, the scrap paper becomes difficult remove and this adversely
affects the quality of the object’s surface in such regions. No orientation will eliminate completely the quality
problems due to regions of low contour line density because changing the orientation to improve one region is
bound to shift the problem to another region of the object. However, the quality of certain regions such as screw
threads or other regions that closely join with another part are more important to manufacture precisely.

Because the manufacturing process is slow, iterating the manufacturing process until a good quality orientation is
found is not a tenable option. Moreover, picking good orientations is difficult for people to eye-ball because of the
difficulty visualizing contour line density.

Bailey and Clark devised a texture-based interactive rendering technique using OpenGL for visualizing the contour
line density of a 3D model. The idea is to color-code regions of contour line as a red-yellow-green spectrum with
low density regions coded red (indicating poor contour line density and likely to lead to quality issues) and high
density regions colored green (indicating good contour line density). With this color visualization, a manufacturing
engineer can then interactively orient the model on a computer workstation based on the contour line density
color-coding and knowledge of process-dependent design rules to find a suitable orientation for manufacturing the
object.

The rendering technique uses 1D texturing and the texture matrix to render the model color-coded as described. In-

63

Programming with OpenGL: Advanced Rendering

teractive changes to the model orientation require no more effort than updating the texture matrix and re-rendering
the static geometry of the model. Because the technique leverages OpenGL’s per-vertex transform and texturing
functionality, graphics hardware that accelerates OpenGL’s transform functionality and texturing will automati-
cally accelerate this rendering technique.

Assume a coordinate space for surface normals with the Z axis perpendicular to the way the paper sheets are
stacked. If the object’s surface normals are transformed to this coordinate space, the contour line density is purely
a function of the Z component of the surface normal. Specifically, the contour line density is:

CLD

where is the paper layer thickness, approximately 0.0042 inches.

The possible range of CLD can be color-coded as a red-yellow-green spectrum based on known design rules, and
then the composite color-coded function can then be encoded in a 1D texture. In their particular case, Bailey and
Clark found that a CLD below 100 causes problems for the manufacturing process. Therefore, the 1D texture
would be set up to map a CLD below 100 to red.

Because is a constant, CLD varies only with . Typically, per-vertex surface normals are passed to OpenGL
using glNormal3f calls and such normals are used for lighting. For this rendering technique however, the nor-
malized per-vertex surface normal is passed to glTexCoord3f to serve as a 3D texture coordinate. Keep in mind
that OpenGL transforms texture coordinates as 3D homogeneous values.

Then the texture matrix can be used to rotate this per-vertex surface normal (passed in to OpenGL as a 3D texture
coordinate) to match the assumed coordinate space where the Z axis is perpendicular to the way the paper sheets
are stacked. Because the normal is assumed to be normalized, will vary from . Next, this rotated
component must be mapped to the texture coordinate used for 1D texturing and scaled and biased to the
texture range. The rotation and scale and bias transformations are concatenated as shown:

The composite of the rotate and scale and bias matrices can be loaded into the texture matrix like this:

GLfloat scaleBias[16] = { 0, 0, 0, 0, /* OpenGL wants column major */
0, 0, 0, 0,
0.5, 0, 0, 0,
0.5, 0, 0, 1 };

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMultMatrixf(&scaleBias[0]);
glRotatef(angle, x, y, z);

By enabling texturing and binding to the 1D color-coded texture and rendering the model using glTexCoord3f as
described, the contour line density is effectively visualized. To re-render the model assuming a different orientation
for the manufacturing process, simply adjust the texture matrix rotation and re-render the model’s static geometry.

Note that there is no way to normalize a texture coordinate in the way that OpenGL supports GL NORMALIZE for
normalizing normals passed to glNormal3f. Also if rendering the model involves modelview matrix changes,
these modelview matrix changes must also be reflected in the texture matrix.

The NV texgen reflection vector 8 extension addresses both these issues. The extension provides two
new texture coordinate generation (texgen) mode. The GL REFLECTION MAP NV mode can place the eye-space

8The suffix NV indicates this extension was specified by NVIDIA Corporation. At the time of writing,
NV texgen reflection vector is implemented in NVIDIA’s OpenGL and Mesa 3.1, an OpenGL-like API.

64

Programming with OpenGL: Advanced Rendering

reflection vector coordinates in , , and . The second mode is more interesting for the purpose at hand.
The GL NORMAL MAP NV mode can place the eye-space normal vector coordinates in , , and . By using the
GL NORMAL MAP NV mode for the , , and texture coordinates, you can use the technique described above, but
simply call glNormal3f instead of glTexCoord3f. The GL NORMALIZE functionality can be used to automati-
cally normalize the per-vertex normals and modelview matrix changes are automatically accounted for.

6.16 Projective Textures

Projective textures [89] use texture coordinates which are computed as the result of a projection. The result is
that the texture image can be subjected to a separate independent projection from the viewing projection. This
technique may be used to simulate effects such as slide projector or spotlight illumination, to generate shadows,
and to reproject a photograph of an object back onto the geometry of the object. Several of these techniques are
described in more detail in later sections of these notes.

OpenGL generalizes the two component texture coordinate (,) to a four-component homogeneous texture coor-
dinate (, , ,). The coordinate is analogous to the component in the vertex coordinates. The coordinate
is used for three dimensional texturing in implementations that support that extension and is iterated in manner
similar to and . OpenGL provides default values for (0) and (1). The addition of the coordinate adds very
little extra work to the usual texture mapping process. Rather than iterating (, ,) and dividing by 1/ at each
pixel, the division becomes a division by / . Thus, in implementations that perform perspective correction there
is no extra rasterization burden associated with processing .

6.16.1 How to Project a Texture

Projecting a texture image into your synthetic environment requires many of the same steps that are used to project
the rendered scene onto the display. The key to projecting a texture is the contents of the texture transform matrix.
The matrix contains the concatenation of three transformations:

1. A modelview transform to orient the projection in the scene.

2. A projective transform (perspective or orthogonal).

3. A scale and bias to map the near clipping plane to texture coordinates.

The modelview and projection parts of the texture transform can be computed in the same way, with the same
tools that are used for the modelview and projection transform. For example, you can use gluLookat to orient
the projection, and glFrustum or gluPerspective to define a perspective transformation.

The modelview transform is used in the same way as it is in the OpenGL viewing pipeline, to move the viewer
to the origin and the projection centered along the negative axis. In this case, viewer can be thought of a light
source, and the near clipping plane of the projection as the location of the texture image, which can be thought
of as printed on a transparent film. Alternatively, you can conceptualize a viewer at the view location, looking
through the texture on the near plane, at the surfaces to be textured.

The projection operation converts eye space into Normalized Device Coordinate (NDC) space. In this space, the
, , and coordinates range from to . When used in the texture matrix, the coordinates are , , and instead.

The projected texture can be visualized as laying on the surface of the near plane of the oriented projection defined
by the modelview and projection parts to the transform.

The final part of the transform scales and biases the texture map, which is defined in texture coordinates ranging
from to , so that the entire texture image (or the desired portion of the image) covers the near plane defined by
the projection. Since the near plane is now defined in NDC coordinates, Mapping the NDC near plane to match
the texture image would require scaling by , then biasing by , in both and . The texture image would

65

Programming with OpenGL: Advanced Rendering

be centered and cover the entire back plane. The texture could also be rotated if the orientation of the projected
image needed to be changed.

The projections are ordered in the same as the graphics pipeline, the modelview transform happens first, then the
projection, then the scale and bias to position the near plane onto the texture image:

1. glMatrixMode(GL TEXTURE)

2. glLoadIdentity() (clear current texture matrix)

3. glTranslatef(.5f, .5f, 0.f)

4. glScalef(.5f, .5f, 1.f) (texture covers entire NDC near plane)

5. Set the perspective transform (e.g., glFrustum).

6. Set the modelview transform (e.g., gluLookAt).

What about the texture coordinates for the primitives that the texture will be projected on? Since the projection
and modelview parts of the matrix have been defined in terms of eye space (where the entire scene is assembled),
the straightforward method is to create a 1-to-1 mapping between eye space and texture space. This can be done
by enabling texture generation to eye linear and setting the eye planes to a one-to-one mapping:

GLfloat Splane[] = 1.f, 0.f, 0.f, 0.f ;

GLfloat Tplane[] = 0.f, 1.f, 0.f, 0.f ;

GLfloat Rplane[] = 0.f, 0.f, 1.f, 0.f ;

GLfloat Qplane[] = 0.f, 0.f, 0.f, 1.f ;

You could also use object space mapping, but then you’d have to take the current modelview transform into
account.

So when you’ve done all this, what happens? As each primitive is rendered, texture coordinates matching the
, , and values that have been transformed by the modelview matrix are generated, then transformed by the

texture transformation matrix. The matrix applies a modelview and projection transform; this orients and projects
the primitive’s texture coordinate values into NDC space (-1 to 1 in each dimension). These values are scaled and
biased into texture coordinates. Then normal filtering and texture environment operations are performed using the
texture image.

If transformation and texturing is being applied to all the rendered polygons, how do you limit the projected texture
to a single area? There are a number of ways to do this. One is to simply only render the polygons you intend
to project the texture on when you have projecting texture active and the projection in the texture transformation
matrix. But this method is crude. Another way is to use the stencil buffer in a multipass algorithm to control what
parts of the scene are updated by a projected texture. The scene can be rendered without the projected texture, the
stencil buffer can be set to mask off an area, and the scene re-rendered with the projected texture, using the stencil
buffer to mask off all but the desired area. This can allow you to create an arbitrary outline for the projected image,
or to project a texture onto a surface that has a surface texture.

There is a very simple method that works when you want to project a non-repeating texture onto an untextured
surface. Set the GL MODULATE texture environment, set the texture repeat mode to GL CLAMP, and set the texture
border color to white. When the texture is projected, the surfaces outside the texture itself will default to the texture
border color, and be modulated with white. This will leave the areas textured with the border color unchanged,
since each color component will be scaled by one.

Filtering considerations are the same as for normal texturing; the size of the projected textures relative to screen
pixels determines minification or magnification. If the projected image will be relatively small, mipmapping may

66

Programming with OpenGL: Advanced Rendering

be required to get good quality results. Using good filtering is especially important if the projected texture moves
from frame to frame.

Please note that like the viewing projections, the texture projection is not really optical. Unless special steps are
taken, the texture will affect all surfaces within the projection, both in front and in back of the projection. Since
there is no implicit view volume clipping (like there is with the OpenGL viewing pipeline), the application needs
to be carefully modeled to avoid undesired texture projections, or user defined clipping planes can be used to
control where the projected texture appears.

6.17 Environment Mapping

OpenGL directly supports environment mapping using spherical environment maps. A sphere map is a single
texture of a perfectly reflecting sphere in the environment where the viewer is infinitely far from the sphere. The
environment behind the viewer (a hemisphere) is mapped to a circle in the center of the map. The hemisphere in
front of the viewer is mapped to a ring surrounding the circle. Sphere maps can be generated using a camera with
an extremely wide-angle (or fish eye) lens. Sphere map approximations can also be generated from a six-sided (or
cube) environment map by using texture mapping to project the six cube faces onto a sphere.

OpenGL provides a texture generation function (GL SPHERE MAP) which maps a vertex normal to a point on the
sphere map. Applications can use this capability to do simple reflection mapping (shade totally reflective surfaces)
or use the framework to do more elaborate shading such as Phong lighting [95]. Applications of environment
mapping are discussed in Sections 10.4 and 11.2.1.

6.18 Image Warping and Dewarping

Image warping or dewarping may be implemented using texture mapping by defining a correspondence between a
uniform polygonal mesh and a warped mesh. The points of the warped mesh are assigned the corresponding texture
coordinates of the uniform mesh and the mesh is texture mapped with the original image. Using this technique,
simple transformations such as zoom, rotation or shearing can be efficiently implemented. The technique also
easily extends to much higher order warps such as those needed to correct distortion in satellite imagery.

6.19 3D Textures

Three dimensional textures are a logical extension of 2D textures. In 3D textures, texels become unit cubes in texel
space. They are packed into a rectangular parallelepiped, each dimension constrained to be a power of two. This
texture map occupies a volume, rather than a rectangular region, and is accessed using three texture coordinates;
, , and . As with 2D textures, texture coordinates range from to in each dimension. Filtering is controlled

in the same fashion as 2D textures, using texture parameters and texture environment.

6.19.1 Using 3D Textures

In OpenGL, 3D textures have much in common with 2D and 1D textures. Texture parameters and texture envi-
ronment calls are the same, using the GL TEXTURE 3D EXT (GL TEXTURE 3D in OpenGL 1.2) target in place of
GL TEXTURE 2D or GL TEXTURE 1D.

Internal and external formats and types are the same, although a particular OpenGL implementation may limit the
availability of 3D texture formats.

3D textures need to be accessed with , , and texture coordinates instead of just and . The additional texture
coordinate complexity, combined with the common uses for 3D textures, means texture coordinate generation is
used more commonly for 3D textures than for 2D and 1D.

67

Programming with OpenGL: Advanced Rendering

3D texture maps take up a large amount of texture memory, and are expensive to change dynamically. This can
affect multipass algorithms that require multiple passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it does for 2D and 1D textures. A 3D
texture volume can be translated, rotated, scaled, or have other transforms applied to it. Applying a transformation
to the texture matrix is a convenient and high performance way to manipulate a 3D texture when it is too expensive
to alter the texel values directly.

3D Textures vs. Mipmaps A clear distinction should be made between 3D textures and mipmapped 2D textures.
3D textures can be thought of as a solid block of texture, requiring a third texture coordinate , to access any given
texel. A 2D mipmap is a series of 2D texture maps, each filtered to a different resolution. Texels from the
appropriate level(s) are chosen and filtered, based on the relationship between texel and pixel size on the primitive
being textured.

Like 2D textures, 3D texture maps can be mipmapped. Instead of resampling a 2D layer, the entire texture volume
is filtered down to an eighth of its volume by averaging eight adjacent texels on one level down to a single texel on
the next. Mipmapping serves the same purpose in both 2D and 3D texture maps; it provides a means of accurately
filtering when the projected texel size is small relative to the pixels being rendered.

6.19.2 3D Textures to Render Solid Materials

A direct 3D texture application is rendering solid objects composed of heterogeneous material. An example is
rendering a statue made of marble or wood. The object itself is composed of polygons or NURBS surfaces
bounding the solid. Combined with proper texgen values, rendering the surface using a 3D texture of the material
makes the object appear cut out of the material. With 2D textures objects often appear to have the material
laminated on the surface. The difference can be striking when there are obvious 3D coherencies in the material,
combined with sharp angles in the object’s surface.

Rendering a solid with 3D texture is straightforward:

Create the 3D texture The texture data for the material is organized as a three dimensional array. Often the
material is generated procedurally. As with 2D textures, proper filtering and sampling of the data must
be done to avoid aliasing. A mipmapped 3D texture will increase realism of the object. OpenGL does
not support a gluBuild3DMipmaps command, so the mipmaps need to created by the application. Be
sure to check to see if the size of the texture you want to create is supported by the system, and there
is sufficient texture memory available by calling glTexImage3DEXT with GL PROXY TEXTURE 3D EXT to
find a supported size. You can also call glGet with GL MAX 3D TEXTURE SIZE EXT to find the maximum
allowed size of any dimension in a 3D texture for your implementation of OpenGL, though the result may
be more conservative than the result of a proxy query.

Create Texture Coordinates For a solid surface, using glTexGen to create the texture coordinates is the easiest
approach. Define planes for , , and in eye space. Adjusting the scale has more effect on texture quality
than the position and orientation of the planes, since scaling affects how the texture is sampled.

Enable Texturing Use glEnable(GL TEXTURE 3D EXT) to enable 3D texture mapping. Be sure to set the tex-
ture parameters and texture environment appropriately. Check to see what restrictions your implementation
puts on these values.

Render the Object Once configured, rendering with 3D texture is no different than other texturing.

6.19.3 3D Textures as Multidimensional Functions

Instead of thinking of a 3D texture as a 3D volume of data, it can be thought of as a 2D texture map that varies as a
function of the coordinate value. Since the 3D texture filters in three dimensions, changing the value smoothly

68

Programming with OpenGL: Advanced Rendering

S

T

R

2D texture varies
as a function of R

Figure 39. 3D Textures as 2D Textures Varying with R

blends from one 2D texture image to the next.

An obvious application is animated 2D textures. A 3D texture can animate a sequence of images by using the
value as time. Since the images are interpolated, temporal aliasing is reduced.

Another application is generalized billboards. A normal billboard is a 2D texture applied to a polygon that always
faces the viewer. Billboards of objects such as trees behave poorly when the viewer views the object from above.
A 3D texture billboard can change the textured image as a function of viewer elevation angle, blending a sequence
of images between side view and top view, depending on the viewer’s position.

6.20 Detail Textures

Texture filtering can become unrealistic when magnifying. When the viewer is close to a texture surface, and single
texels start to cover many pixels. The linear magnification filtering of these texels results in an unrealistically
smoothed image with little surface detail. Not only does the image look unrealistic, but the lack of high frequency
spatial information on the surface makes it more difficult to get realistic height and and motion cues when moving
over the surface.

Ideally, every texture will have enough fine levels that any normal view of the textured surface will always have
sufficient high frequency spatial data. But providing extra levels are expensive. With mipmapping, each fine level
requires four times as many texels as the next coarser one. In some cases, it is worth it. The finer levels contain
much more visual information that’s useful to the application.

But sometimes it is not. A very high resolution image of an object will contain surface details, but the details
can be very similar across the surface. For example, a close-up photo of a road may show a lot of asphalt detail
that’s pretty similar across the entire road. Providing a mipmap level of this detail would consume a lot of texture
memory, without adding a lot of useful image data. Yet this detail provides important motion and height cues, and
keeps the level from looking too blurry.

A detail texture is one solution to this problem. A representative section of a high resolution image is chosen, and
its high frequency information extracted. The extracted information is stored in a small texture that contains just a
fraction of the entire image.

The main mipmapped textured can then have fewer, lower resolution levels. When the viewer is close to the
textured surface, the detail texture is combined with the filtered base texture to provide high frequency information

69

Programming with OpenGL: Advanced Rendering

Detail texture

Figure 40. Detail Textures

to the result. Since the detail texture is small, its pattern is repeated over the entire visible surface.

It is assumed that the detailed texture contains only high frequency image features. These features are changing
rapidly even across a small detail texture, so there are no low frequency components to cause tiling artifacts when
repeating the detail texture across the textured surface.

Detail textures should not contribute anything to a texture that is not magnifying. When implementing detail
texturing, you must be careful to fade in detail texturing as a function of the magnification of the base texture.

One way to do this is to gradually blend in the detail texture contribution as a function of distance from the textured
surface. In many cases, application specific constraints can simplify the problem. For example, a flight simulator
may have a look down mode that only needs a height above ground and a precomputed scaling factor to determine
magnification level. If the simulator’s view frustum brings the entire visible textured surface into view at nearly
the same magnification, this solution can work well.

In the general case however, computing texture magnification can be difficult. You must consider the visible
vertices of the textured surface, the texture coordinate scaling resulting from the current modelview and projection
transformations, the current texture generations settings, and the values in the texture transformation matrix. One
way around this is to add detail texture support in the OpenGL implementation. This is done in the detail texture
extension GL SGIS detail texture supported on SGI hardware. This extension blends in the detail texture as
a function of magnification, and allows the detail texture either to add to or modulate the base texture.

6.20.1 Signed Intensity Detail Textures

One technique that avoids having to compute the base texture magnification is to create a signed detail texture. The
detail texture image created so that it has both positive and negative intensity values, with an average value over
the detail texture of zero; when combined with the base image, it modifies it, adding high frequency components
to the textured image. The detail texture is combined with the base texture in a separate pass, using alpha blending.

Different blend functions can be used, depending on whether you want to add in the detail texture or modulate
with it. In the first pass the image is drawn with the base texture, in the second pass, The detail texture is made
current, and since it is higher resolution, the texture coordinate mapping is changed, either by changing the texgen
mapping or with the texture transformation matrix. Blending mode is enabled, and the blend function is set. If the

70

Programming with OpenGL: Advanced Rendering

Texture magnification is easy to compute in this view;
magnification is a function of height above ground.

Figure 41. Special Case Texture Magnification

blend function is glBlendFunc(GL ONE, GL ONE), the detail texture is added to the base texture. If the blend
function is glBlendFunc(GL ZERO, GL SRC COLOR), the detail texture will modulate the base texture.

The clever part of this algorithm is how the detail texture combines with the base texture as a function of magnifi-
cation. The detail texture is applied to the same geometry as the base texture. The texturing system is configured
so that the detail texture is at an offset magnification value relative to the base texture; it minifies if the base texture
is not magnifying. The minification filtering will cause the signed intensity components to blend together.

If the average intensity of the detail texture is zero, it will have little or no contribution to the image. As both the
detail and base texture are zoomed, the filtering of the detail texture begins to magnify, and the signed intensity
values stop canceling each other out.

Although a signed texture value can not be blended directly, it can be simulated by using a subtractive blend and
a biasing term. The signed texels of the detail texture are first converted to positive values. For example, if the
texture values range from -1/4 to 1/2, the texels can be biased by 1/4. Then the texture images applied and blended
normally. After the two textures are combined, a third pass subtracts out the 1/4 bias term from the textured image.

1. Create a signed detail texture image ranging from -1/4 to 1/2.

2. Bias the image to make it non-negative.

3. Render the surface with the base texture.

4. Enable blending.

5. Set blend function to modulate or add.

6. Re-render the surface using the detail texture with different texture coordinates.

7. glBlendEquation(GL FUNC REVERSE SUBTRACT)

8. Render the image unlit with a gray color (equal to the bias term) to remove the biasing term.

71

Programming with OpenGL: Advanced Rendering

Original
image

Blurred
image

Detail
image

Figure 42. Subtracting out Low Frequencies

6.20.2 Making Detail Textures

Detail textures contain the high frequency components from the texture image. The high frequency information is
extracted, not generated from scratch. So you must start with a high resolution version of the desired texture.

The first step is to choose the size of the detail texture, and select a region of the detailed image that contains high
frequency details representative of the entire image. Now extract the high frequency components of that region.
One technique is to remove the high frequency components from one copy of the region by blurring it. This can
be done with an image processing application, or you can use gluScaleImage to scale the image down, then up
again. For more sophisticated filtering, you can use a blurring convolution kernel, assuming your implementation
of OpenGL supports the imaging subset. Enable convolution, set the appropriate blurring filter kernel and use
glCopyPixels to process the image.

Now subtract the blurred image from the unprocessed one. You can do this using the subtractive blend mode or
with the accumulation buffer. The result will be a signed image that contains the high frequency components of
the image. You will have to be careful to add a biasing value before subtracting (or before returning the image
from the accumulation buffer) to avoid negative pixel values, since the frame buffer will clamp them. If you have
the imaging subset, you can use the minmax feature to find the range of pixel values in both the sharp and blurry
parts of the detail texture image before you subtract them. You can then use the results to find the proper biasing
term.

6.21 Procedural Texture Generation

Procedurally generated textures are a diverse topic; we concentrate on those based on filtered noise functions .
They are commonly used to simulate effects from phenomena such as fire, smoke, clouds, and marble formation.
These textures are described in detail in [25], which provides the basis for much of this section.

6.21.1 Filtered Noise Functions

A filtered noise function is simply a function created by filtering impulses of random amplitude over the domain.
There are a variety of ways to distribute the impulses spatially and to filter those impulses; these methods deter-
mine the character of the function and, in turn, the character of the procedural texture created from the function.
Regardless of the method chosen, a filtered noise function should have certain properties [25], some of which are:

It is a repeatable pseudorandom function of its inputs.

It has a known range, typically -1 to 1.

72

Programming with OpenGL: Advanced Rendering

It is band-limited, with a maximum frequency of about 1 per domain unit.

Given such a function, we can build a more interesting function by making dilated versions of the original such
that each one has a frequency of 2, 4, 8, etc. These are called the octaves of the original function. The octaves are
then composited together with the original noise function using some set of weights. The result is a band-limited
function which gives the impression of controlled randomness in each frequency band.

One way of distributing noise impulses is to space them uniformly along the coordinate axes, as in a lattice. In
value noise, the function itself interpolates the values at the lattice points, while in gradient noise the gradient
of the function interpolates the values at the lattice points [25]. Gradient noise is similar to the noise function
implemented in the RenderMan shading language.

Lattice noises can exhibit axis-aligned artifacts. Lewis [58] describes sparse convolution, a way to avoid such
artifacts by distributing the impulses using a stochastic process, and van Wijk [97] describes a similar technique
called spot noise.

Although the noise functions described in [25] are generally 3D, we first discuss how to generate a 2D noise
function, because it is more straightforward to construct in a 2D framebuffer and because some simple interesting
effects can be created with it.

6.21.2 Generating Noise Functions

Filtered noise functions are typically implemented as continuous functions that can be sampled at an arbitrary
domain value. However, for some applications a set of uniformly spaced samples of the function may suffice. In
these cases, a discrete version of the function can be created in the framebuffer using OpenGL. In the following,
we do not distinguish between the terms noise function and discrete noise function .

A simple way to create lattice noise is to create a texture with random values for the texels, and then to draw a
textured rectangle with a bilinear texture filter at an appropriate magnification. However, bilinear interpolation
produces poor results, especially when creating the lower octaves, where values are interpolated across a large
area. Some OpenGL implementations support bicubic texture filtering, which may produce results of acceptable
quality. However, a particular implementation of bicubic filtering may have limited subtexel precision, causing
noticeable banding at the lower octaves. Both bilinear and bicubic filters also have the limitation that they produce
only value noise; gradient noise is not possible. We suggest another approach.

6.21.3 High Resolution Filtering

The accumulation buffer can be used to convolve a high resolution filter with a relatively small image under
magnification. That is what we need to make the different octaves; the octave representing the lowest frequency
band will be created from a very small input image under large magnification. Suppose we want to create a
512x512 output image by convolving a 64x64 filter with a 4x4 input image. Our filter takes a 2x2 array of samples
from the input image at a time, but is discretized into 64x64 values in order to generate an output image of the
desired size. The input image is shown on the left in Figure 43 with each texel numbered. The output image is
shown on the left in Figure 44. Note that each texel of the input image will make a contribution to a 64x64 region
of the output image. Consider these regions for texels 5, 7, 13, and 15 of the input image; they are adjacent to each
other and have no overlap, as shown by the dotted lines on the left in Figure 44. Hence, these four texels can be
evaluated in the same pass without interfering with each other. Making use of this fact, we redistribute the texels
of the input image into four 2x2 textures as shown in the right of Figure 43. We also create a 64x64 texture that
contains the filter function; this texture will be used to modulate the contribution of the input texel over a 64x64
region of the color buffer. The steps to evaluate the texels in Texture are:

1. Using the filter texture, draw four filter functions into the alpha planes with the appropriate and offset,
as shown on the right in Figure 44.

73

Programming with OpenGL: Advanced Rendering

0

2

8

10

4

6

12

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

3

9

11

5

7

13

15

Texture A

Texture B

Texture C

Texture D

Figure 43. Input Image

2. Enable alpha blending and set the source blend factor to GL DST ALPHA and the destination blend factor to
GL ZERO.

3. Set the texture magnification filter to GL NEAREST.

4. Draw a rectangle to the dotted region with Texture D, noting the offset of 64 pixels in both and .

5. Accumulate the result into the accumulation buffer.

Repeat the above procedure for Textures , , and with the appropriate and offsets, and return the contents
of the accumulation buffer to the color buffer.

A wider filter requires more passes of the above procedure, and also requires that the original texture be divided
into more small textures. For example, if we had chosen a filter that covers a 4x4 array of input samples instead
of 2x2, we would have to make 16 passes instead of 4, and we would have to distribute the texels into 16 1x1
textures. Increasing the size of either the output image or the input image, however, has no effect on the number
of passes.

6.21.4 Spectral Synthesis

Now that we can create a single frequency noise function using the framebuffer, we need to create the different
octaves and to composite them into one texture. For each octave:

1. Scale the texture matrix by a power of 2 in both and .

2. Translate the texture matrix by a random offset in both and .

3. Set the texture wrap mode to GL REPEAT for and .

4. Draw a textured rectangle.

5. Accumulate the color buffer contents.

74

Programming with OpenGL: Advanced Rendering

Figure 44. Output Image

The random translation is an attempt to minimize the amount of overlap between each octave’s texels; without it,
every octave would use texels from the same corner of the input image. The accumulation is typically done with
a scale factor that controls the weight we want to give each octave.

6.21.5 Other Noise Functions

Gradient noise can be created using the same method described above, but with a different filter. The technique
described above can also create noise that is not aligned on a lattice. To create sparse convolution noise [58] or
spot noise [97], instead of drawing the entire point-sampled texture at once, draw one texel and one copy of the
filter at a time for each random location.

6.21.6 Turbulence

To create an illusion of turbulent flow, first-derivative discontinuities are introduced into the noise function by
taking the absolute value of the function. Although OpenGL does not include an absolute value operator for
framebuffer contents, the same effect can be achieved by the following:

1. glAccum(GL LOAD,1.0);

2. glAccum(GL ADD,-0.5);

3. glAccum(GL MULT,2.0);

4. glAccum(GL RETURN,1.0);

5. Save the image in the color buffer to a texture, main memory, or other color buffer.

6. glAccum(GL RETURN,-1.0);

7. Draw the saved image from Step 5 using GL ONE as both the source blend factor and the destination blend
factor.

75

Programming with OpenGL: Advanced Rendering

The calls with GL ADD and GL MULT map the values in the accumulation buffer from the range [0,1] to [-1,1]; this
is needed because values retrieved from the color buffer into the accumulation buffer are positive. Since values
from the accumulation buffer are clamped to [0,1] when returned, the first GL RETURN clamps all negative values
to 0 and returns the positive values intact. The second GL RETURN clamps the positive values to 0, and negates
and returns the negative values. The color buffer needs to be saved after the first GL RETURN because the second
GL RETURN overwrites the color buffer; OpenGL does not define blending for accumulation buffer operations.

6.21.7 Example: Image Warping

A common use of a 2D noise texture is to distort the texture coordinates while drawing a 2D image, thus warping
the image. A noise function is created in the framebuffer as described above, read back to the host, and used
as texture coordinates (or offsets to texture coordinates) to render the image. Since color values in OpenGL
are normalized to the range 0.0 to 1.0, if one is careful the image returned to the host may be used without much
conversion; assuming that the modelview and texture matrixes are set up to accept values in this range, the returned
data may be used directly for rendering.

Another similar use of a 2D noise texture is to distort the reflection of an image. In OpenGL, reflections on a flat
surface can be done by reflecting a scene across the surface. The results can be copied from the framebuffer to
texture memory, and in turn drawn with distorted texture coordinates. The shape and form of the distortion can be
controlled by modulating the contents of the framebuffer after the noise texture is drawn but before it is copied to
texture memory. This can produce interesting effects such as water ripples.

6.21.8 Generating 3D Noise

Using the techniques described above for generating a 2D noise function, we can generating a 3D noise function
by making 2D slices and filtering them. A 2D slice spans the and axes of the lattice, and corresponds to a slice
of the lattice at a fixed .

Suppose we want to make a 64x64x64 noise function with a frequency of 1 per domain unit, using the same
filtering (but one that now takes 2x2x2 input samples) as in the 2D example above. We first create 2 slices, one
for r= 0.0 and one for r =1.0. Then we create the 62 slices in between 0 and 1 by interpolating the two slices.
This interpolation can take place in the color buffer using blending, or it can take place in the accumulation buffer.
Functions with higher frequencies are created in a similar way. Widening the filter dramatically increases the
number of passes; going from a 2x2x2 filter to 4x4x4 requires 16 times as many passes.

To synthesize a function with different frequencies, we create a 3D noise function for each frequency, and com-
posite the different frequencies using a set of weights, just as we do in the 2D case. It is clear that a large amount
of memory is required to store the different 3D noise functions. These operations may be reordered so that less
total memory is required, perhaps at the expense of more interpolation passes.

6.21.9 Generating 2D Noise to Simulate 3D Noise

We have described a method for creating 2D noise functions. In the case of lattice noise, these 2D functions
correspond to a 2D slice of the lattice. There are cases where we want to model a 3D noise function and where
such a 2D function is inadequate. For example, to draw a vase that looks like it was carved from a solid block of
marble, we cannot use a lattice 2D noise function.

However, we can create a 2D noise function that approximates the appearance of a true 3D noise function, using
spot noise [97]. We take into account the object space coordinates of the geometry, and generate only spots that
are close enough to the geometry to make a contribution to the 3D noise at those points. The difficulty is how to
render the spot in such a way that at each fragment the value of the spot is determined by the object space distance
from the center of the spot to that fragment. Depending on the complexity of the geometry, we may be able to
make an acceptable approximation to the correct spot value by distorting the spot texture. One possible way to

76

Programming with OpenGL: Advanced Rendering

improve the approximation is to compensate for a nonuniform mapping of the noise texture to the geometry. Van
Wijk describes how he does this by nonuniformly scaling a spot. Approximating the correct spot value is most
important when generating the lower octaves, where the spots are largest and errors are most noticeable.

6.21.10 Trade-offs Between 3D and 2D Techniques

A 3D texture can be used with arbitrary geometry without much additional work if your OpenGL implementation
supports 3D textures. However, generating a 3D noise texture requires a large amount of memory and a large
number of passes, especially if you use a filter that convolves a large number of input values at a time. A 2D
texture as we just described doesn’t require nearly as many passes to create, but it does require knowledge of the
geometry and additional computation in order to properly shape the spot.

77

Programming with OpenGL: Advanced Rendering

7 Line Rendering Techniques

7.1 Wireframe Models

If your goal is to draw a true wireframe model, as opposed to drawing a hidden line rendering of a model or
highlighting edges of a model, there are several methods available (listed here in order of least efficient to most
efficient):

1. Draw the model as polygons in line mode using glBegin(GL POLYGON) and glPolygon-
Mode(GL FRONT AND BACK, GL LINE).

This method is by far the easiest if you’re already displaying the model as a shaded solid, since it involves
a single mode change. However, it is likely to be significantly slower than the other methods both because
more processing usually occurs for polygons than for lines and because every edge that is common to two
polygons will be drawn twice. This method is undesirable when using antialiased lines as well, because
each line that is drawn twice will be brighter than any lines drawn just once.

2. Draw the polygons as line loops using glBegin(GL LINE LOOP).

This method is almost as simple as the first, requiring only a change to the glBegin call. However, except
for possibly eliminating the extra processing required for polygons it has all of the other undesirable features
as well.

3. Extract the edges from the model and draw as independent lines using glBegin(GL LINES).

This method is more work than the previous two because each edge must be identified and all duplicates
removed. However, the extra work must only be done once and every time the model is drawn it will be
drawn much faster.

4. Extract the edges from the model and connect as many as possible into long line strips using glBe-
gin(GL LINE STRIP).

For just a little bit more effort than the GL LINES method, lines sharing common end-points can be con-
nected into larger line strips. This has the advantage of requiring less storage, less data transfer bandwidth,
and makes most efficient use of any line drawing hardware.

7.2 Hidden Lines

This section describes techniques to draw wireframe objects with the hidden lines removed or drawn in a style
different from the ones that are visible. This technique can clarify complex line drawings of objects, and improve
their appearance [52] [5].

The algorithm assumes that the object is composed of polygons. The algorithm first renders the polygons of the
objects, then the edges themselves, which make up the line drawing. During the first pass, only the depth buffer is
updated. During the second pass, the depth buffer only allows edges that are not obscured by the object’s polygons
to be rendered, leaving the previous contents of the frame buffer undisturbed everywhere an edge is not drawn.

Here’s the algorithm in detail:

1. Disable writing to the color buffer with glColorMask.

2. Enable depth testing with glEnable(GL DEPTH TEST).

3. Render the object as polygons.

4. Enable writing to the color buffer.

78

Programming with OpenGL: Advanced Rendering

5. Render the object as edges using one of the methods described in Section 7.1.

For best results the lines should be offset from the polygons using either glPolygonOffset or glDepthRange
to help reduce depth buffer aliasing artifacts.

The stencil buffer may be used to avoid the depth buffering artifacts for convex objects drawn using non-antialiased
(jaggy) lines all of one color. The following technique uses the stencil buffer to mask where all the lines are (both
hidden and visible). Then it uses the stencil function to prevent the polygon rendering from updating the depth
buffer where the stencil values have been set. When the visible lines are rendered, there is no depth value conflict,
since the polygons never touched those pixels.

Here’s the modified algorithm:

1. Disable writing to the color buffer with glColorMask.

2. Disable depth testing; glDisable(GL DEPTH TEST).

3. Enable stenciling; glEnable(GL STENCIL TEST).

4. Clear the stencil buffer.

5. Set the stencil buffer to set the stencil values to 1 where pixels are drawn; glStencilFunc(GL ALWAYS,
1, 1); glStencilOp(GL REPLACE, GL REPLACE, GL REPLACE).

6. Render the object as edges.

7. Use the stencil buffer to mask out pixels where the stencil value is 1; glStencilFunc(GL EQUAL, 1, 1)
and glStencilOp(GL KEEP, GL KEEP, GL KEEP).

8. Render the object as polygons.

9. Turn off stenciling glDisable(GL STENCIL TEST).

10. Enable writing to the color buffer.

11. Render the object as edges using one of the methods described in Section 7.1.

Variants of the above algorithm may be applied to each convex part of an object or, if the topology of the object is
not known, to each individual polygon to render well-behaved hidden line images.

Instead of removing hidden lines, sometimes it’s desirable to render them with a different color or pattern. This
can be done with a modification of the algorithm:

1. Leave the color depth buffer enabled for writing.

2. Set the color and/or pattern you want for the hidden lines.

3. Render the object as edges.

4. Disable writing to the color buffer.

5. Render the object as polygons.

6. Set the color and/or pattern you want for the visible lines.

7. Render the object as edges using one of the methods described in Section 7.1.

In this technique, all the edges are drawn twice; first with the hidden line pattern, then with the visible one.
Rendering the object as polygons updates the depth buffer, preventing the second pass of line drawing from
effecting the hidden lines.

79

Programming with OpenGL: Advanced Rendering

7.2.1 glPolygonOffset

In addition to the above methods which enable and disable various modes during the two passes of rendering, the
glPolygonOffset command may be used to move the lines and polygons relative to each other. If the edges
are drawn as lines in polygon mode, glEnable(GL POLYGON OFFSET LINE) can be used to move the lines a
little bit in front of the polygons. If a faster version of drawing the lines is used (as described in Section 7.1),
glEnable(GL POLYGON OFFSET FILL) will move the polygon surfaces a little bit behind the lines.

Keep in mind, however, that glPolygonOffset is designed to provide greater offsets for polygons viewed more
edge-on than for polygons that are flatter relative to the screen. This means that additional work is done for each
polygon which could slow down rendering. An advantage, however, is that once the parameters have been tuned
for a particular OpenGL implementation, the same unmodified code should work well on other implementations.

7.2.2 glDepthRange

Similar effects are available using glDepthRange but both the polygons and the edges are drawn at the maximum
speed for each type of primitive. This is done by moving the zNear value out a little bit from 0.0 while setting the
zFar to 1.0 for all normal drawing. Then when the edges are drawn move the zNear value to 0.0 and reduce the
zFar value by the same amount. The offset should be at least 0.00001, depending on the depth buffer accuracy and
the amount of perspective used in the projection matrix, and may need to be significantly greater in many cases.

The general algorithm for an offset of EDGE OFFSET is:

glDepthRange(EDGE_OFFSET, 1.0);
<draw all non-edge geometry>

glDepthRange(0.0, 1.0 - EDGE_OFFSET);
<draw all edges>

As with all algorithms described in this manual, it is up to the user to select the hidden line (or edge highlighting)
method that best meets his needs after considering ease of implementation, speed, and image quality.

7.3 Haloed Lines

Haloing lines can make it easier to understand a wireframe drawing. Lines that pass behind other lines stop short
a little before passing behind. It makes it clearer which line is in front of the other.

Haloed lines can be drawn using the depth buffer. The technique has two passes. First disable writing to the color
buffer; the first pass only updates the depth buffer. Set the line width to be greater than the normal line width
you’re using. The width you choose will determine the extent of the halos. Render the lines. Now set the line
width back to normal, and enable writing to the color buffer. Render the lines again. Each line will be bordered
on both sides by a wider “invisible line” in the depth buffer. This wider line will mask out other lines as they pass
beneath it.

1. Disable writing to the color buffer.

2. Enable the depth buffer for writing.

3. Increase line width.

4. Render lines.

5. Restore line width.

80

Programming with OpenGL: Advanced Rendering

This line drawn second

Depth buffer
changed

Depth buffer
values

This line drawn first

Figure 45. Haloed Line

6. Enable writing to the color buffer.

7. Ensure that depth testing is on, passing on GL LEQUAL.

8. Render lines.

This method will not work where multiple lines with the same depth meet. Instead of connecting, all of the lines
will be “blocked” by the last wide line drawn. There can also be depth buffer aliasing problems when the wide
line values are changed by another wide line crossing it. This effect becomes more pronounced if the narrow
lines are widened to improve image clarity.

To avoid this problem, use polygon offset to move narrower visible lines in front of the obscuring lines when the
lines are being drawn as polygons in line mode. The minimum offset should be used to avoid lines from one
surface of the object “popping through” the lines of a another surface separated by only a small depth value.

If the vertices of the object’s faces are oriented to allow face culling, then face culling can be used to sort the object
surfaces and allow a more robust technique: the lines of the object’s back faces are drawn, then obscuring wide
lines of the front face are drawn, then finally the narrow lines of the front face are drawn. No special depth buffer
techniques are needed.

1. Cull the front faces of the object.

2. Draw the object as lines.

3. Cull the back faces of the object.

4. Draw the object as wide lines in the background color.

5. Draw the object as lines.

Since the depth buffer isn’t needed, there are no depth aliasing problems. The backface culling technique is fast
and works well, but is not general. It won’t work for multiple obscuring or intersecting objects.

7.4 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge around a complex object. A
silhouette edge defines the outer boundaries of the object with respect to the viewer as shown in Figure 46.

81

Programming with OpenGL: Advanced Rendering

The stencil buffer can be used to render a silhouette edge around an object. With this technique, you can render
the object, then draw a silhouette around it, or just draw the silhouette itself [84].

The object is drawn 4 times; each time displaced by one pixel in the or direction. This offset must be done
in window coordinates. An easy way to do this is to change the viewport coordinates each time, changing the
viewport transform. The color and depth values are turned off, so only the stencil buffer is affected.

Every time the object covers a pixel, it increments the pixel’s stencil value. When the four passes have been
completed, the perimeter pixels of the object will have stencil values of 2 or 3. The interior will have values of 4,
and all pixels surrounding the object exterior will have values of 0 or 1.

Here is the algorithm in detail:

1. If you want to see the object itself, render it in the usual way.

2. Clear the stencil buffer to zero.

3. Disable writing to the color and depth buffers.

4. Set the stencil function to always pass, set the stencil operation to increment.

5. Translate the object by +1 pixel in , using glViewport.

6. Render the object.

7. Translate the object by -2 pixels in , using glViewport.

8. Render the object.

9. Translate by +1 pixel and +1 pixel in .

10. Render.

11. Translate by -2 pixel in .

12. Render.

13. Translate by +1 pixel in . You should be back to the original position.

14. Turn on the color and depth buffer.

15. Set the stencil function to pass if the stencil value is 2 or 3. Since the possible values range from 0 to 4, the
stencil function can pass if stencil bit 1 is set (counting from 0).

16. Rendering any primitive that covers the object will draw only the pixels of the silhouette. For a solid color
silhouette, render a polygon of the color desired over the object.

One of the bigger drawbacks of this algorithm is that it takes a large number of drawing passes to generate the
edges. A somewhat more efficient algorithm suggested by Akeley[4] is to use glPolygonOffset to draw an
offset depth image and then draw the polygons using GL LINE polygon mode. The stencil buffer is again used to
count the number of times each pixel is written. However, instead of counting the absolute number of writes to a
pixel, the stencil value is inverted on each write. The resulting stencil buffer will contain a one wherever a pixel
has been drawn an odd number of times. This ensures that lines drawn at the shared edges of polygon faces have
stencil values of zero since the lines will be drawn twice. While this algorithm is a little more approximate then
the previous algorithm it only requires two passes through the geometry.

The faster algorithm does not generate quite the same result as the first algorithm since it counts even and odd
transitions and relies on the depth image to ensure that other non-visible surfaces do not interfere with the stencil
count. The differences arise in that boundary edges within one object that are in front of another object will

82

Programming with OpenGL: Advanced Rendering

Figure 46. Shaded Solid Image, Silhouette Edges, Silhouette and Boundary Edges

be rendered as part of the silhouette image. By boundary edges we mean the true edges edges of the modeled
geometry and do not include the interior shared-face edges. In many cases this artifact is useful as silhouette edges
by themselves often do not provide sufficient information about the shape of objects. It is possible to combine the
algorithm for drawing silhouettes with an additional step in which all of the boundary edges of the geometry are
drawn as lines to produce a hidden line drawing displaying boundary edges plus silhouette edges.

The steps of the combined algorithm are:

1. Clear the depth and color buffers and clear the stencil buffer to zero.

2. Disable color buffer writes.

3. Draw the depth buffered geometry using glPolygonOffset to offset the image towards the far clipping
plane.

4. Disable writing to the depth buffer and glPolygonOffset.

5. Set the stencil function to always pass and set the stencil operation to invert.

6. Enable face culling.

7. Draw the geometry as lines using glPolygonMode.

8. Enable writes to the color buffer, disable face culling.

9. Set the stencil function to pass if the stencil value is 1.

10. Rendering a rectangle that fills the entire window (this will produce the silhouette image).

11. Draw the true edges of the geometry.

12. Enable writes to the depth buffer.

Since the algorithm uses an offset depth image it is susceptible to minor artifacts from the interaction of the lines
and the depth image similar to those present when using glPolygonOffset for hidden line drawings.

7.5 Preventing Smooth Wide Line Overlap

When drawing a series of wide smoothed lines that overlap, such as an outline composed of a GL LINE LOOP,
more than one fragment may be produced for a given pixel. Since smooth lines require enabling GL BLEND, this
may cause the pixel to appear brighter or darker than expected, as the fragments add more color to that pixel than
in other locations.

83

Programming with OpenGL: Advanced Rendering

An application may use a combination of the stencil test and alpha test to pass only the fragments that have the
highest alpha, and therefore contribute the most color to a pixel. This technique uses repeated application of the
alpha test to pass fragments with decreasing alpha, and uses the stencil test and buffer to mark where fragments
previously passed. This has the effect of sorting fragments by alpha value.

glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);
glEnable(GL_ALPHA_TEST);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glStencilFunc(GL_NOTEQUAL, 1, 0xff);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
for(a = .98f; a >= 0.0f; a -= .02f) {

glAlphaFunc(GL_GREATER, a);
/* draw lines here */

}

Because this draws the line set repeatedly (50 times in this example), you should consider the alpha values likely
to be used by your application and alter the loop appropriately.

For example, to improve performance by reducing the number of iterations, your application may favor higher
alpha values by increasing the step size as the value in the loop decreases, or simply end the loop early.

On the other hand, if your application requires more accuracy, it is possible to iterate through every possible alpha
value and pass only the fragments in each iteration that match each specific alpha value.

7.6 End Caps On Wide Lines

If wide lines form a loop, like a silhouette edge or the outline of a polygon, it may be necessary to fill regions
where one line ends and another begins, to give the appearance of a rounded joint. Smoothed wide points may be
applied at the ends of the line segments to form an end cap.

Use an algorithm like the one presented in Section 7.5 to avoid saturating pixels with the line and point color.

84

Programming with OpenGL: Advanced Rendering

8 Blending and Compositing

OpenGL provides a rich set of blending operations which can be used to implement transparency, composit-
ing, painting, and other effects. Rasterized fragments are linearly combined with pixels in the selected color
buffers, clamped to 1.0 and then written to the color buffers. The glBlendFunc command selects the source
and destination blend factors. The most frequently used factors are GL ZERO, GL ONE, GL SRC ALPHA and
GL ONE MINUS SRC ALPHA. OpenGL 1.1 specifies additive blending, but vendors have added extensions to allow
other blending equations such as subtraction and reverse subtraction, and several of these extensions are standard
commands in OpenGL 1.2, or are part of the “imaging subset” of OpenGL 1.2 (see Section 13.1.4).

Most OpenGL implementations use fixed point representations for color throughout the fragment processing path.
The color component resolution is typically 5, 8, or 12 bits. Resolution problems usually show up when attempting
to blend many images into the color buffer, for example, in some volume rendering techniques or multilayer
composites. Some of these problems can be alleviated using the accumulation buffer instead, but the accumulation
buffer does not provide the same flexibility for building up results and hardware accumulation buffer support is
not as widely available as blending support.

OpenGL does not require that implementations support an alpha buffer (“destination alpha”) for storing alpha
values like the other color components. For many applications this is not a limitation, but there is a class of
multipass operations where maintaining the current computed alpha value is necessary.

8.1 Compositing

The OpenGL blending operation does not directly implement the compositing operations described by Porter and
Duff [79]. The difference is that in their compositing operations the colors are premultiplied by the alpha value
and the resulting factors used to scale the colors are simplified after this scaling. It has been proposed that OpenGL
be extended to include the ability to premultiply the source color values by alpha to better match the Porter and
Duff operations. In the meantime, its certainly possible to achieve the same effect by computing the premultiplied
values in the color buffer itself. For example, if there is an image in the color buffer, a new image can be generated
which multiplies each color component by its alpha value and leaves the alpha value unchanged by performing a
glCopyPixels operation with blending enabled and the blending function set to (GL SRC ALPHA,GL ZERO). To
ensure that the original alpha value is left intact, use the glColorMask command to disable updates to the alpha
component during the copy operation.

8.2 Advanced Blending

OpenGL 1.1 only allows simple additive combinations of the source and destination color components dur-
ing blending. Two ways in which the blending operations have been extended by vendors include the ability
to blend with a constant color and the ability to use other blending equations. The blending color extension
(EXT blend color) adds a constant RGBA color state variable which can be used as a blending factor in the
blend equation. This capability can be very useful for implementing blends between two images without needing
to specify the individual source and destination alpha components on a per pixel basis.

The blend equation extension (EXT blend minmax) provides the framework for specifying alternate blending
equations. For example, in OpenGL 1.1, the accumulation buffer is the only mechanism which allows pixel values
to be subtracted, but there is no easy method to include a per-pixel scaling factor such as alpha, so a subtractive
blending equation has been implemented as an extension to 1.1 and is part of the imaging subset in OpenGL
1.2. Min and max functions are useful in image processing algorithms (e.g., for computing maximum intensity
projections) and are also implemented as an extension to 1.1 and as part of the 1.2 imaging subset.

85

Programming with OpenGL: Advanced Rendering

Operation Action

GL ACCUM read from selected buffer, scale by value, then add into accumu-
lation buffer

GL LOAD read from selected buffer, scale by value, then use image to re-
place contents of accumulation buffer

GL RETURN scale image by value, then copy into buffers selected for writing
GL ADD add value to R, G, B, and A components of every pixel in accu-

mulation buffer
GL MULT clamp value to range -1 to 1, then scale R, G, B, and A compo-

nents of every pixel in accumulation buffer.

Table 2: glAccum Operations

8.3 Painting

Two-dimensional painting applications can make interesting use of texturing and blending. An arbitrary image
can be used as a paint brush, using blending to accumulate the contribution over time. The image source (paint
brush) can be geometry or a pixel image. A texture mapped quad under an orthographic projection can be used in
the same way as a pixel image and often more efficiently (when texture mapping is hardware accelerated).

An interesting way to implement the painting process is to precompute the effect of painting the entire image with
the brush and then use blending to selectively expose the painted area as the brush passes over the area. This can
be implemented efficiently with texturing by using the fully painted image as a texture map, blending the source
image mapped on the brush with the current image stored in the color buffer. Use a geometric shape and translate
the texture coordinates as the coordinates move across the image. The main advantage of
this technique is that elaborate paint/brush combinations can be efficiently computed across the entire image all at
once rather than performing localized computations in the area covered by the brush.

8.4 Blending with the Accumulation Buffer

The accumulation buffer is designed for combining multiple images. Instead of simply replacing pixel values with
incoming pixel fragments, the fragments are scaled and then added to the existing pixel value. In order to maintain
accuracy over many blending operations, the accumulation buffer has a higher number of bits per color component
than a typical color buffer.

The accumulation buffer can be cleared like any other buffer. You can use glClearAccum to set the red,
green, blue, and alpha components of its clear color. Clear the accumulation buffer by bitwise or’ing in the
GL ACCUM BUFFER BIT value to the parameter of the glClear command.

You can’t render directly into the accumulation buffer. Instead you render into a selected color buffer, then use
glAccum to accumulate that image into the accumulation buffer. The glAccum command reads from the currently
selected read buffer. You can set the buffer you want it to read from using the glReadBuffer command.

The glAccum command takes two arguments, op and value. The possible settings for op are described in Table 2.

Since you must render to another buffer before accumulating, a typical approach to accumulating images is to
render images to the back buffer some number of times, accumulating each image into the accumulation buffer.
When the desired number of images have been accumulated, the contents of the accumulation buffer are copied
into the back buffer, and the buffers are swapped. This way, only the final accumulated image is displayed.

Here is an example procedure for accumulating images:

1. Call glDrawBuffer(GL BACK) to render to the back buffer only.

86

Programming with OpenGL: Advanced Rendering

2. Call glReadBuffer(GL BACK) so that the accumulation buffer will read from the back buffer.

Note that the first two steps are only necessary if the application has changed the selected draw and read buffers.
If the visual is double buffered, these settings are the default.

3. Clear the back buffer with glClear, then render the first image.

4. Call glAccum(GL LOAD, 1.f/n); this allows you to avoid a separate step to clear the accumulation buffer.

5. Alter the parameters of your image, and re-render it.

6. Call glAccum(GL ACCUM,1.f/n) to add the second image into the first.

7. Repeat the previous two steps n - 2 more times...

8. Call glAccum(GL RETURN, 1.f) to copy the completed image into the back buffer.

The accumulation buffer provides a way to take “multiple exposures” of a scene, while maintaining good color
resolution. There are a number of image effects that can be implemented with the accumulation buffer to improve
the realism of a rendered image [43, 70], including antialiasing, motion blur, soft shadows, and depth of field. To
create these effects, render the image multiple times, making small, incremental changes to the scene position (or
selected objects within the scene), and accumulate the results.

8.5 Blending Transitions

When generating real-time or interactive imagery, often the application may switch between different representa-
tions of an object. A different representation may be chosen which provides more detail or less detail, takes less
time to render, or for a variety of other reasons. The two representations may not be similar enough to generate the
same pixels on the screen, so the transition may generate an objectionable “pop” on the screen. The apparent dis-
continuity can be reduced by fading the old representation in and the new representation over a number of frames
using blending. The new representation is rendered with glBlendFunc(GL SRC ALPHA, GL ONE) and the old
representation with glBlendFunc(GL ONE MINUS SRC ALPHA, GL ONE), varying alpha from 0 to 1 over a few
frames.

8.6 The Stencil Buffer

The stencil buffer is like the depth and color buffers, except stencil pixels don’t represent colors or depths, but
have application-specific meanings. The stencil buffer isn’t directly visible like the color buffer, but the bits in
the stencil planes form an unsigned integer that affects and is updated by drawing commands, through the stencil
function and the stencil operations. The stencil function controls whether a fragment is discarded or not by the
stencil test, and the stencil operation determines how the stencil planes are updated as a result of that test [67].

Stencil buffer actions are part of OpenGL’s fragment operations. Stencil testing occurs immediately after the alpha
test, and immediately before the depth test. If GL STENCIL TEST is enabled, and stencil planes are available, the
application can control what happens under three different scenarios:

1. The stencil test fails.

2. The stencil test passes, but the depth test fails.

3. Both the stencil and the depth test pass.

87

Programming with OpenGL: Advanced Rendering

Comparison Description of comparison test between reference and stencil value

GL NEVER always fails
GL ALWAYS always passes
GL LESS passes if reference value is less than stencil buffer
GL LEQUAL passes if reference value is less than or equal to stencil buffer
GL EQUAL passes if reference value is equal to stencil buffer
GL GEQUAL passes if reference value is greater than or equal to stencil buffer
GL GREATER passes if reference value is greater than stencil buffer
GL NOTEQUAL passes if reference value is not equal to stencil buffer

Table 3: Stencil Buffer Comparisons

Stencil Operation Results of Operation on Stencil Values

GL KEEP stencil value unchanged
GL ZERO stencil value set to zero
GL REPLACE stencil value replaced by stencil reference value
GL INCR stencil value incremented
GL DECR stencil value decremented
GL INVERT stencil value bitwise inverted

Table 4: Stencil Buffer Operations

Whether a stencil operation for a given fragment passes or fails has nothing to do with the color or depth value
of the fragment. The stencil operation is a comparison between the value in the stencil buffer for the fragment’s
destination pixel and the stencil reference value. A mask is bitwise AND-ed with the value in the stencil planes
and with the reference value before the comparison is applied. The reference value, the comparison function, and
the comparison mask are set by glStencilFunc. The comparison functions available are listed in Table 3.

Stencil function and stencil test are often used interchangeably in these notes, but the “stencil test” specifically
means the application of the stencil function in conjunction with the stencil mask.

If the stencil test fails, the fragment is discarded (the color and depth values for that pixel remain unchanged) and
the stencil operation associated with the stencil test failing is applied to that stencil value. If the stencil test passes,
then the depth test is applied. If the depth test passes (or if depth testing is disabled or if the visual does not have a
depth buffer), the fragment continues on through the pixel pipeline, and the stencil operation corresponding to both
stencil and depth passing is applied to the stencil value for that pixel. If the depth test fails, the stencil operation
set for stencil passing but depth failing is applied to the pixel’s stencil value.

Thus, the stencil test controls which fragments continue towards the framebuffer, and the stencil operation controls
how the stencil buffer is updated by the results of both the stencil test and the depth test.

The stencil operations available are described in Table 4. The GL INCR and GL DECR operations saturate so
incrementing the maximum stencil value is still the maximum value and decrementing the value zero is still
zero. Some implementations support the EXT stencil wrap extension which adds two new stencil operations,
GL INCR WRAP EXT and GL DECR WRAP EXT. These operations “wrap” such that incrementing the maximum sten-
cil value generates zero and decrementing zero generates the maximum value.

The glStencilOp call sets the stencil operations for all three stencil test results: stencil fail, stencil pass/depth
buffer fail, and stencil pass/depth buffer pass.

Writes to the stencil buffer can be disabled and enabled per bit by glStencilMask. This allows an application
to apply stencil tests without the results affecting the stencil values. Keep in mind, however, that the GL INCR
and GL DECR operations operate on each stencil value as a whole, and may not operate as expected when the

88

Programming with OpenGL: Advanced Rendering

OpenGL Implementation Stencil Bits Supported

Most software implementations 8
(Mesa, Microsoft OpenGL, SGI OpenGL for Windows)
3Dlabs Permedia II 1
SGI Indigo Extreme 4
SGI Octane MXI 8
ATI Rage 128 8 (32-bit mode only)
NVIDIA RIVA TNT 8 (32-bit mode only)
SGI Onyx InfiniteReality 1 or 8 (multisampled!)

Table 5: Stencil Bits Supported by Selected OpenGL Implementations

stencil mask is not all ones. Stencil writes can also be disabled by calling glStencilOp(GL KEEP, GL KEEP,
GL KEEP).

There are three other important ways of controlling and accessing the stencil buffer. Every stencil value in the
buffer can be set to a desired value by calling glClearStencil and glClear(GL STENCIL BUFFER BIT). The
contents of the stencil buffer can be read into system memory using glReadPixels with the format parameter
set to GL STENCIL INDEX. The contents of the stencil buffer can also be set using glDrawPixels.

Different machines support different numbers of stencil bits per pixel. Table 5 lists the number of stencil bits
supported by a few selected OpenGL implementations. Use glGetIntegerv(GL STENCIL BITS, ...) to see
how many bits are available. If multiple stencil bits are available, glStencilMask and the mask argument to
glStencilFunc can be used to divide up the stencil buffer into a number of different sections. This allows the
application to store separate stencil values per pixel within the same stencil buffer.

The following sections describe how to use the stencil buffer in a number of useful multipass rendering techniques.

8.7 Compositing Images with Depth

Compositing separate images together is a useful technique for increasing the complexity of a scene [24]. Sec-
tion 8.1 discusses algorithms for compositing two images together using alpha values to control how pixels are
merged. One drawback of this method is that only simple visibility information can be expressed using mattes
or masks. Using the stencil buffer, it is possible to merge images using the original depth information from the
images. Both color and depth images can be independently saved to memory and later drawn to the screen using
glDrawPixels. This is sufficient for 2D style composites, where objects are drawn on top of each other to create
the final scene. To do true 3D compositing, it is necessary to use the color and depth values simultaneously, so
that depth testing can be used to determine which surfaces are obscured by others.

The stencil buffer can be used for true 3D compositing in a two pass operation. The color buffer is disabled for
writing, the stencil buffer is cleared, and the saved depth values are copied into the framebuffer. Depth testing is
enabled, insuring that only depth values that are closer to the original can update the depth buffer. glStencilOp
is called to set a stencil buffer bit if the depth test passes.

The stencil buffer now contains a mask of pixels that were closer to the view than the pixels of the original image.
The stencil function is changed to accomplish this masking operation, the color buffer is enabled for writing, and
the color values of the saved image are drawn to the frame buffer.

This technique works because the fragment operations, in particular the depth test and the stencil test, are part of
both the geometry and imaging pipelines in OpenGL. Here is the technique in more detail. It assumes that both
the depth and color values of an image have been saved to system memory, and are to be composited using depth
testing to an image in the framebuffer:

1. Clear the stencil buffer using glClear, or’ing in GL STENCIL BUFFER BIT.

89

Programming with OpenGL: Advanced Rendering

2. Disable the color buffer for writing with glColorMask.

3. Set stencil values to 1 when the depth test passes by calling glStencilFunc(GL ALWAYS, 1, 1), and
glStencilOp(GL KEEP, GL KEEP, GL REPLACE).

4. Ensure depth testing is set; glEnable(GL DEPTH TEST), glDepthFunc(GL LESS).

5. Draw the depth values to the framebuffer with glDrawPixels, using GL DEPTH COMPONENT for the format
argument.

6. Set the stencil buffer to test for stencil values of 1 with glStencilFunc(GL EQUAL, 1, 1) and glSten-
cilOp(GL KEEP, GL KEEP, GL KEEP).

7. Disable the depth testing with glDisable(GL DEPTH TEST).

8. Draw the color values to the framebuffer with glDrawPixels, using GL RGBA as the format argument.

At this point, both the depth and color values will have been merged, using the depth test to control which pixels
from the saved image would update the framebuffer. Compositing can still be problematic when merging images
with coplanar polygons.

This process can be repeated to merge multiple images. The depth values of the saved image can be manipulated
by changing the values of GL DEPTH SCALE and GL DEPTH BIAS with glPixelTransfer. This technique could
allow you to squeeze the incoming image into a limited range of depth values within the scene.

90

Programming with OpenGL: Advanced Rendering

9 Antialiasing

Aliasing refers to the jagged edges and other rendering artifacts commonly associated with computer-generated
drawings. It is caused by the presence of higher frequency renderings than can be represented by the pixel samples.
Lines are much more susceptible to aliasing problems because every pixel drawn is part of an edge while most
pixels of polygon models are in the middle where there are no high frequences. More detailed explanations of
why this is so are available in [68], [69], [59], and [20].

9.1 Line and Point Antialiasing

Line and point antialiasing should be considered separately from polygon antialiasing since the techniques are
usually quite different. Mathematically, a line is infinitely thin. Attempting to compute the percentage of a pixel
covered by an infinitely thin object would be impossible, so generally one of the following two methods is used:

1. The line is modeled as a long, thin, single-pixel-wide quadrilateral. The percentage of pixel coverage
is computed for each pixel touching the line and this coverage percentage is used as the alpha value for
blending.

2. The line is modeled as an infinitely thin transparent glowing object. This method treats a line as if drawn on
a vector stroke display where the display draws a line by deflecting the electron beam as opposed to a raster
display that moves the beam in horizontal scans and varies the beam intensity. This approach requires the
implementation to compute the effective shape of an electron beam as it moves across the CRT phosphors.

To antialias points or lines in OpenGL, you need to enable antialiasing by calling glEnable and passing in
GL POINT SMOOTH or GL LINE SMOOTH, as appropriate. You can also provide a quality hint by calling glHint.
The hint parameter can be GL FASTEST to indicate that the most efficient option should be chosen, GL NICEST to
indicate the highest quality option should be chosen, or GL DONT CARE to indicate no preference.

When antialiasing is enabled, OpenGL computes an alpha value representing either the fraction of each pixel that
is covered by the line or point or the beam intensity for the pixel as a function of the distance of the pixel center
from the line center. The setting of the GL LINE SMOOTH and the GL POINT SMOOTH hints determine how accurate
the calculation is when rendering lines and points, respectively. When the hint is set to GL NICEST, a larger filter
function may be applied causing more fragments to be generated and rendering to slow down.

No matter which line antialiasing method is used in your particular version of OpenGL, you can approximate
either by choosing the right blend equation. The important point to remember is that antialiased lines and points
are a form of transparent primitive. This requires blending to be enabled so that the incoming pixel fragment will
be combined with the value already in the framebuffer, depending on the alpha value.

The best approximation of a one-pixel-wide quadrilateral is achieved by setting the blending factors to
GL SRC ALPHA (source) and GL ONE MINUS SRC ALPHA (destination). To best approximate the lines of a stroke
display, use GL ONE for the destination factor. Note that this second blend equation only works well on a black
background and does not produce good results when drawn over bright objects.

As with all transparent primitives, antialiased lines and points should not be drawn until all opaque objects have
been drawn first. Depth buffer testing should remain enabled, but depth buffer updating should be disabled us-
ing glDepthMask(GL FALSE). Antialiased lines drawn with full depth buffering enabled produce incorrect line
crossings and can result in significantly worse rendering artifacts than with antialiasing disabled when a lot of
lines are drawn close together.

If the destination blend mode is set to GL ONE MINUS SRC ALPHA there may be visible order dependent rendering
artifacts if the antialiased primitives are not drawn in back to front order. There are no such order dependent
problems with a setting of GL ONE, however. It is best to pick the method that best suits your particular application.

91

Programming with OpenGL: Advanced Rendering

Incorrect monitor gamma settings are much more likely to become apparent with antialiased lines than shaded
polygons. Broadcast television uses a gamma value of 2.22. The gamma value needed to correct most color CRTs
is usually between 2.0 and 2.6. Some workstation manufacturers use values as low as 1.6 to enhance the perceived
contrast of rendered images even though it produces a definite intensity nonlinearity in displayed images. Signs of
insufficient gamma are “roping” of lines and moire patterns where many lines come together. Too much gamma
produces a “washed out” appearance.

Antialiasing in color index mode is trickier because you have to load the color map correctly to get primitive edges
to blend with the background color. When antialiasing is enabled, the last four bits of the color index indicate the
coverage value. Thus, you need to load sixteen contiguous colormap locations with a color ramp ranging from the
background color to the object’s color. This technique only works well when drawing wireframe images, where
the lines and points typically need to be blended with a constant background. If the lines and/or points need to be
blended with background polygons or images, RGBA rendering should be used.

9.2 Polygon Antialiasing

Antialiasing the edges of filled polygons is similar to antialiasing points and lines. However, antialiasing polygons
in color index mode isn’t practical since object intersections are more prevalent and you really need to use OpenGL
blending to get decent results.

To enable polygon antialiasing call glEnable with GL POLYGON SMOOTH. This causes pixels on the edges of the
polygon to be assigned fractional alpha values based on their coverage. Also, if you want, you can supply a value
for GL POLYGON SMOOTH HINT.

In order to get the polygons blended correctly when they overlap, you need to sort the polygons in front to back
order in eye space. This method does not work without sorting and requires an alpha buffer. Before rendering,
disable depth testing, enable blending and set the blending factors to GL SRC ALPHA SATURATE (source) and
GL ONE (destination). The final color will be the sum of the destination color and the scaled source color; the
scale factor is the smaller of either the incoming source alpha value or one minus the destination alpha value. This
means that for a pixel with a large alpha value, successive incoming pixels have little effect on the final color
because one minus the destination alpha is almost zero.

Since the accumulated coverage is stored in the color buffer, destination alpha is required for this algorithm to
work. Thus you must request a visual or pixel format with destination alpha. OpenGL does not require implemen-
tations to support a destination alpha buffer so visual selection may fail.

9.3 Multisampling

Multisampling is an antialiasing method that provides high quality results. It is available as an OpenGL extension
from at least one vendor. In this technique additional subpixel storage is maintained as part of the color, depth
and stencil buffers. Instead of using alpha for coverage, coverage masks are computed to help maintain sub-
pixel coverage information for all pixels. Current implementations support four, eight, and sixteen samples per
pixel. The method allows for full scene antialiasing at a modest performance penalty but a more substantial storage
penalty (since sub-pixel samples of color, depth, and stencil need to be maintained for every pixel). This technique
does not entirely replace the methods described above, but is complementary. Antialiased lines and points using
alpha coverage can be mixed with multisampling as well as the accumulation buffer antialiasing method.

9.4 Antialiasing With Textures

You can also antialias points and lines using the filtering provided by texturing using alpha textures. Simply create
an image of a circle where the alpha values are one in the center and go to zero as you move from the center out to
an edge. The alpha texel values would then be used to blend the point or rectangle fragments with the pixel values
already in the framebuffer.

92

Programming with OpenGL: Advanced Rendering

For example, to draw antialiased points, create a texture image containing a filled circle with a smooth (antialiased)
boundary. Then draw a textured polygon at the point making sure that the center of the texture is aligned with
the point’s coordinates and using the texture environment GL MODULATE. This method has the advantage that any
point shape may be accommodated simply by varying the texture image.

A similar technique can be used to draw antialiased line segments of any width. The texture image is a filtered
circle as described above. Instead of a line segment, a texture mapped rectangle, whose width is the desired line
width, is drawn centered on and aligned with the line segment. If line segments with round ends are desired, these
can be added by drawing an additional textured rectangle on each end of the line segment.

9.5 Antialiasing with Accumulation Buffer

Accumulation buffers can be used to antialias a scene without having to depth sort the primitives before rendering.
A supersampling technique is used where the entire scene is offset by small, subpixel amounts in screen space,
and accumulated. The jittering can be accomplished by modifying the transforms used to represent the scene.

One straightforward jittering method is to modify the projection matrix, adding small translations in and .
Care must be taken to compute the translations so that they shift the scene the appropriate amount in window
coordinate space. Fortunately, computing these offsets is straightforward. To compute a jitter offset in terms of
pixels, divide the jitter amount by the dimension of the object coordinate scene, then multiply by the appropriate
viewport dimension. The example code fragment below shows how to calculate a jitter value for an orthographic
projection; the results are applied to a translate call to modify the modelview matrix:

void ortho_jitter(GLfloat xoff, GLfloat yoff)
{

GLint viewport[4];
GLfloat ortho[16];
GLfloat scalex, scaley;

glGetIntegerv(GL_VIEWPORT, viewport);
/* this assumes that only a glOrtho() call has been
applied to the projection matrix */
glGetFloatv(GL_PROJECTION_MATRIX, ortho);

scalex = (2.f/ortho[0])/viewport[2];
scaley = (2.f/ortho[5])/viewport[3];
glTranslatef(xoff * scalex, yoff * scaley, 0.f);

}

If the projection matrix wasn’t created by calling glOrtho or gluOrtho2D, then you will need to use the viewing
volume extents (right, left, top, bottom) to compute scalex and scaley as follows:

GLfloat right, left, top, bottom;

scalex = ((right-left)/viewport[2];
scaley = ((top-bottom)/viewport[3];

The code is very similar for jittering a perspective projection. In this example, we jitter the frustum itself:

void frustum_jitter(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff)

{

93

Programming with OpenGL: Advanced Rendering

Count Values
2 0.25, 0.75 , 0.75, 0.25
3 0.5033922635, 0.8317967229 , 0.7806016275, 0.2504380877 ,

0.2261828938, 0.4131553612

4 0.375, 0.25 , 0.125, 0.75 , 0.875, 0.25 , 0.625, 0.75

5 0.5, 0.5 , 0.3, 0.1 , 0.7, 0.9 , 0.9, 0.3 , 0.1, 0.7

6 0.4646464646, 0.4646464646 , 0.1313131313, 0.7979797979 ,
0.5353535353, 0.8686868686 , 0.8686868686, 0.5353535353 ,
0.7979797979, 0.1313131313 , 0.2020202020, 0.2020202020

8 0.5625, 0.4375 , 0.0625, 0.9375 , 0.3125, 0.6875 , 0.6875, 0.8125 ,
0.8125, 0.1875 , 0.9375, 0.5625 , 0.4375, 0.0625 , 0.1875, 0.3125

9 0.5, 0.5 , 0.1666666666, 0.9444444444 , 0.5, 0.1666666666 ,
0.5, 0.8333333333 , 0.1666666666, 0.2777777777 ,
0.8333333333, 0.3888888888 , 0.1666666666, 0.6111111111 ,
0.8333333333, 0.7222222222 , 0.8333333333, 0.0555555555

12 0.4166666666, 0.625 , 0.9166666666, 0.875 , 0.25, 0.375 ,
0.4166666666, 0.125 , 0.75, 0.125 , 0.0833333333, 0.125 , 0.75, 0.625 ,
0.25, 0.875 , 0.5833333333, 0.375 , 0.9166666666, 0.375 ,
0.0833333333, 0.625 , 0.583333333, 0.875

16 0.375, 0.4375 , 0.625, 0.0625 , 0.875, 0.1875 , 0.125, 0.0625 ,
0.375, 0.6875 , 0.875, 0.4375 , 0.625, 0.5625 , 0.375, 0.9375 ,
0.625, 0.3125 , 0.125, 0.5625 , 0.125, 0.8125 , 0.375, 0.1875 ,
0.875, 0.9375 , 0.875, 0.6875 , 0.125, 0.3125 , 0.625, 0.8125

Table 6: Sample Jittering Values

GLfloat scalex, scaley;
GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport);
scalex = (right - left)/viewport[2];
scaley = (top - bottom)/viewport[3];

glFrustum(left - xoff * scalex,
right - xoff * scalex,
top - yoff * scaley,
bottom - yoff * scaley,
near, far);

}

The jittering values you choose should fall in an irregular pattern. In other words, it is undesirable to have the
sample points line up in any direction. This reduces aliasing artifacts by making them “noisy”. Selected subpixel
jitter values, organized by the number of samples needed, are taken from the OpenGL Programming Guide, and
are shown in Table 6. (Note that some of these patterns are a little more regular horizontally and vertically than is
optimal.)

Using the accumulation buffer, you can easily trade off quality and speed. For higher quality images, simply
increase the number of scenes that are accumulated. Although it is simple to antialias the scene using the accumu-
lation buffer, it is much more computationally intensive and probably slower than the polygon antialiasing method
described above.

94

Programming with OpenGL: Advanced Rendering

10 Lighting Techniques

This section discusses varies ways of improving and refining the lighting of your scenes using OpenGL.

10.1 Phong Shading

10.1.1 Phong Highlights with Texture

One of the problems with the OpenGL lighting model is that specular radiance is computed before textures are
applied in the normal pipeline sequence. To achieve more realistic looking results, specular highlights should be
computed and added to image after the texture has been applied. This can be accomplished by breaking the shading
process into two passes. In the first pass diffuse radiance is computed for each surface and then modulated by the
texture colors to be applied to the surface and the result written to the color buffer. In the second pass the specular
highlight is computed for each polygon and added to the image in the framebuffer using a blending function which
sums 100% of the source fragment and 100% of the destination pixels. For this particular example we will use an
infinite light and a local viewer. The steps to produce the image are as follows:

1. Define the material with appropriate diffuse and ambient reflectance and zero for the specular reflectance
coefficients.

2. Define and enable lights.

3. Define and enable texture to be combined with diffuse lighting.

4. Define modulate texture environment.

5. Draw lit, textured object into the color buffer.

6. Define new material with appropriate specular and shininess and zero for diffuse and ambient reflectance.

7. Disable texturing, enable blending, set the blend function to GL ONE, GL ONE.

8. Draw the specular-lit, non-textured geometry.

9. Disable blending.

10.1.2 Improved Highlight Shape

This implements the basic algorithm, but the Gouraud shaded specular highlight still leaves something to be
desired. We can improve on the specular highlight by using environment mapping to generate a higher quality
highlight. We generate a sphere map consisting only of a Phong highlight [78] and then use the GL SPHERE MAP
texture coordinate generation mode to generate texture coordinates which index this map. For each polygon in
the object, the reflection vector is computed at each vertex. Since the coordinates of the vector are interpolated
across the polygon and used to lookup the highlight, a much more accurate sampling of the highlight is achieved
compared to interpolation of the highlight value itself. The sphere map image for the texture map of the highlight
can be computed by rendering a highly tessellated sphere lit with only a specular highlight using the regular
OpenGL pipeline. Since the direction of the light relative to the view direction is effectively encoded in the texture
map, the texture map needs to be recomputed whenever the light or viewer position is changed. Sphere mapping
assumes that the view direction is constant (infinite viewer) and the environment (light) direction is infinitely far
away, so the highlight does not need to be changed when the object moves.

The nine step method outlined above needs minor modifications to incorporate the new lighting method:

6. Disable lighting.

95

Programming with OpenGL: Advanced Rendering

7. Load the sphere map texture, enable the sphere map texgen function.

8. Enable blending, set the blend function to GL ONE, GL ONE.

9. Draw the unlit, textured geometry with vertex colors set to 1.0.

10. Disable texgen, disable blending.

With a little work the technique can be extended to handle multiple light sources. OpenGL 1.2 includes new
functionality which enables the per-vertex lighting computation to compute a specular contribution separate from
the ambient, diffuse, and emissive contributions and adds this specular contribution in after the application of the
texture environment. Since this contribution is calculated per-vertex and interpolated it solves the specular-after-
texture problem, but it does provide any additional improvement in the shape or quality of the highlight, so the
above technique remains useful for improving the highlight quality.

10.1.3 Spotlight Effects using Projective Textures

The projective texture technique described earlier can be used to generate a number of interesting illumination
effects. One of the possible effects is spotlight illumination. The OpenGL lighting model already includes a spot-
light illumination model, providing control over the cutoff angle (spread of the cone), the exponent (concentration
across the cone), direction of the spotlight, and attenuation as a function of distance. The OpenGL model typically
suffers from undersampling of the light. Since the lighting model is only evaluated at the vertices and the results
are linearly interpolated, if the geometry being illuminated is not sufficiently tessellated incorrect illumination
contributions are computed. This typically manifests itself by a dull appearance across the illuminated area or
irregular or poorly defined edges at the perimeter of the illuminated area. Since the projective method samples the
illumination at each pixel the undersampling problem is eliminated.

Similar to the Phong highlight method, a suitable texture map must be generated. The texture is an intensity
map of a cross-section of the spotlight’s beam. The same type of exponent parameter used in the OpenGL model
can be incorporated or a different model entirely can be used. If 3D textures are available the attenuation due to
distance can be approximated using a 3D texture in which the intensity of the cross-section is attenuated along
the -dimension. When geometry is rendered with the spotlight projection, the coordinate of the fragment is
proportional to the distance from the light source.

In order to determine the transformation needed for the texture coordinates, it is easiest to think about the case of
the eye and the light source being at the same point. In this instance the texture coordinates should correspond
to the eye coordinates of the geometry being drawn. The simplest method to compute the coordinates (other than
explicitly computing them and sending them to the pipeline from the application) is to use an GL EYE LINEAR
texture generation function with an GL EYE PLANE equation. The planes simply correspond to the vertex coor-
dinate planes (e.g., the coordinate is the distance of the vertex coordinate from the - plane, etc.). Since eye
coordinates are in the range [-1.0, 1.0] and the texture coordinates need to be in the range [0.0, 1.0], a scale and
translate of 0.5 is applied to and using the texture matrix. A perspective spotlight projection transformation can
be computed using gluPerspective and combined into the texture transformation matrix. The transformation
for the general case when the eye and light source are not in the same position can be computed by incorporating
into the texture matrix the inverse of the transformations used to move the light source away from the eye position.

With the texture map available, the method for rendering the scene with the spotlight illumination is as follows:

1. Initialize the depth buffer.

2. Clear the color buffer to a constant value which represents the scene ambient illumination.

3. Draw the scene with depth buffering enabled and color buffer writes disabled.

4. Load and enable the spotlight texture, set the texture environment to GL MODULATE.

96

Programming with OpenGL: Advanced Rendering

5. Enable the texgen functions, load the texture matrix.

6. Enable blending and set the blend function to GL ONE, GL ONE.

7. Disable depth buffer updates and set the depth function to GL EQUAL.

8. Draw the scene with the vertex colors set to 1.0.

9. Disable the spotlight texture, texgen and texture transformation.

10. Set the blend function to GL DST COLOR.

11. Draw the scene with normal illumination.

There are three passes in the algorithm. At the end of the first pass the ambient illumination has been established
in the color buffer and the depth buffer contains the resolved depth values for the scene. In the second pass the
illumination from the spotlight is accumulated in the color buffer. By using the GL EQUAL depth function, only
visible surfaces contribute to the accumulated illumination. In the final pass the scene is drawn with the colors
modulated by the illumination accumulated in the first two passes to arrive at the final illumination values.

The algorithm does not restrict the use of texture on objects, since the spotlight texture is only used in the second
pass and only the scene geometry is needed in this pass. The second pass can be repeated multiple times with
different spotlight textures and projections to accumulate the contributions of multiple light sources.

There are a couple of considerations that also should be mentioned. Texture projection along the negative line-of-
sight of the texture (back projection) can contribute undesired illumination. This can be eliminated by positioning
a clip plane at the near plane of the line-of-site. Also, OpenGL encourages but does not guarantee pixel exactness
when various modes are enabled or disabled. This can manifest itself in undesirable ways during multipass algo-
rithms. For example, enabling texture coordinate generation may cause fragments with different depth values to be
generated compared to the case when texture coordinate generation is not enabled. This problem can be overcome
by re-establishing the depth buffer values between the second and third pass. This is done by redrawing the scene
with color buffer updates disabled and the depth buffering configured the same as for the first pass. Also, use a
texture wrap mode of GL CLAMP to keep the spotlight pattern from repeating. When using a linear texture filter,
use a black texel border to avoid clamping artifacts or, if available, use the GL CLAMP TO EDGE wrap mode.

It is also possible to render the entire scene in a single pass. If none of the objects in the scene are textured, the
complete image could be rendered once, if the ambient illumination can be summed with spotlight illumination
while the objects are rendered. Some vendors have added an additive texture environment function as an extension
which makes this operation feasible. A cruder method that works in OpenGL 1.1 involves illuminating the scene
using normal OpenGL lighting, using the spotlight texture to modulate the scene brightness.

10.1.4 Phong Shading by Adaptive Tessellation

Phong highlights can also be approached with a modeling technique. The surface can be adaptively tessellated
until the difference between terms on triangle vertices drops below a predetermined value. The advantage
of this technique is that it can be done as a separate pre-processing step. The disadvantage is that it increases the
complexity of the modeled object. This can be costly if:

The model will have to be clipped by a large number of user-defined clipping planes.

The model will have tiled textures applied to it.

The performance of the application/system is already triangle limited.

97

Programming with OpenGL: Advanced Rendering

10.2 Light Maps

A light map is a texture map applied to a material to simulate the effect of a local light source. Like specular
highlights, it can be used to improve the appearance of local light sources without resorting to excessive tessellation
of the objects in the scene. A excellent example of an application using lightmaps is the interactive PC game
Quake . This game uses light maps to simulate the effects of local light sources, both stationary and moving, to
great effect.

Using lightmaps usually requires a multipass algorithm, unless the objects being mapped are untextured. A texture
simulating the light’s effect on the object is created, then applied to one or more objects in the scene. Appropriate
texture coordinates are generated, and texture transformations can be used to position the light, and create moving
or changing light effects. Multiple light sources can be generated with a combination of more complex texture
maps and/or more passes to the algorithm.

Light maps are often luminance textures, which are applied to the object using GL MODULATE as the value for
GL TEXTURE ENV MODE. Colored lights can also be simulated by using an RGB texture.

Light maps can often produce satisfactory lighting effects at lower resolutions than normal textures. It is often not
necessary to produce mipmaps; choosing GL LINEAR for the minification and magnification filters is sufficient.
Of course, the minimum quality of the lighting effect is a function of the intended application.

10.2.1 2D Texture Light Maps

A 2D light map is a texture map applied to the surfaces of a scene, modulating the intensity of the surfaces to
simulate the effects of a local light. If the surface is already textured, then applying the light map becomes a
multipass operation, modulating the intensity of a surface detail texture.

A 2D light map can be generated analytically, creating a bright spot in luminance or color values that drops off
appropriately with increasing distance from the light center. As with other lighting equations, a quadratic drop off,
modified with linear and constant terms can be used to simulate a variety of lights, depending on the area of the
emitting source.

Since generating new textures takes time and consumes valuable texture memory, it is a good strategy to create
a few canonical light maps, based on intensity drop-off characteristics and color, then use them for a number of
different lights by transforming the texture coordinates. If the light source is isotropic, then simple translations
and scales can be used to position the light appropriately on the surface, while scales can be used to adjust the size
of the lighting effect, simulating different sizes of lights and distance from the lighted surface.

In order to apply a light map to a surface properly, the position of the light in the scene must be projected onto
each surface of interest. This position shows where the bright spot will be. The perpendicular distance of the light
from the surface can be used to adjust the bright spot size and brightness. One approach is to generate texture
coordinates, orienting the generating planes with each surface of interest, then translating and scaling the texture
matrix to position the light on the surface. This process is repeated for every surface affected by the light.

In order to repeat this process for multiple lights (without resorting to a multilight lightmap) or to light textured
surfaces, the lighting must be done as a series of passes. This can be done two ways. The more straightforward
way is to blend the entire scene. The other way is to blend together the surface texture and light maps to create
a texture for each surface. This texture will represent the contributions of the surface texture and all lightmaps
affecting its surface. The merged texture is then applied to the surface. Although more involved, the second
method produces a higher quality result.

For each surface:

1. Transform the surface so that it is perpendicular to the direction of view (maximize its visible surface). Scale
the image so that its area in pixels matches the desired size of the final texture.

98

Programming with OpenGL: Advanced Rendering

2. Render the transformed surface into the frame buffer (this can be done in the back buffer). If it is textured,
render it with the surface texture.

3. Re-render the surface, using the appropriate light map. Adjust the GL EYE PLANE equations and the texture
transform to position the light correctly on the surface. Use the appropriate blend function.

4. Repeat the previous step with each light visible to the surface.

5. Copy the image into a texture using glCopyTexImage2D.

6. When you’ve created textures for all lit surfaces, render the scene using the new textures.

Since switching between textures must be done quickly, and lightmap textures tend to be small, use texture objects
to switch between different light maps and surface textures to improve performance.

With either approach, the blending is a modulation of the colors of the existing texture. This can be done by
rendering with the blend function (GL ZERO, GL SRC COLOR). If the light map is composed of luminance values
than the individual destination color components will be scaled equally, if the light map represents a colored light,
then the color components of the destination will be scaled by the red, green, and blue components of the light
map texel values.

Note that each modulation pass attenuates the surface color. The results will become increasingly dim. If surfaces
require a large number of lights, the dynamic range of light maps can be compressed to avoid excessive darkening.
Instead of ranging from 1.0 (full light) to 0.0 (no light), They can range from 1.0 (full light) to 0.5 or 0.75 (no
light). The no light value can be adjusted as a function of the number of lights in the scene.

Here are the steps for using 2D Light Maps:

1. Create the 2D light data. “Canonical lights” can be defined at the center of the texture, with the intensity
dropping off in a realistic fashion towards the edges. In order to avoid artifacts, make sure the intensity of
the light field is the same at all the edges of the texture volume.

2. Define a 2D texture, using GL REPEAT for the wrap values in , , and . Minification and magnification
should be GL LINEAR to make the changes in intensity smoother. For performance reasons, make this
texture a texture object.

3. Render the scene without the lightmap, using surface textures as appropriate.

4. For each light in the scene:

(a) For each surface in the scene:

i. Cull surfaces that cannot “see” the current light.
ii. Find the plane of the surface.

iii. Align the GL EYE PLANE for GL s and GL t with the surface plane.
iv. Scale and translate the texture coordinates to position and size the light on the surface.
v. Render the surface using the appropriate blend function and lightmap texture.

An alternative to simple light maps is to use projective textures to draw light sources. This is a good approach
when doing spotlight effects. It’s not as useful for isotropic light sources, since you’ll have to tile your projections
to make the light shine in all directions. See the projective texture description in Section 10.1.2 and in Section 6.16
for more details.

99

Programming with OpenGL: Advanced Rendering

10.2.2 3D Texture Light Maps

3D Textures can also be used as light maps. One or more light sources are represented in 3D data, then the 3D
texture is applied to the entire scene. The main advantage of using 3D textures for light maps is that it’s easy to
calculate the proper texture coordinates. The textured light source can be positioned globally with the appropriate
texture transformations then the scene is rendered, using glTexGen to generate the proper , , and coordinates.

The light source can be moved by changing the texture matrix. The resolution of the light field is dependent on
the texture resolution.

A useful approach is to define a canonical light field in 3D texture data, then use it to represent multiple lights at
different positions and sizes by applying texture translations and scales to shift and resize the light. Multiple lights
can be simulated by accumulating the results of each light source on the scene.

To ensure that the light source can be shifted easily, set GL TEXTURE WRAP S, GL TEXTURE WRAP T, and
GL TEXTURE WRAP R EXT to GL REPEAT. Then the light can be shifted to any location in the scene. Be sure
that the texel values in the light map are the same at all boundaries of the texture; otherwise you’ll be able to see
the edges of the texture as vertical and horizontal “shadows” in the scene.

Although it is uncommon, some types of light fields would be very hard to do without 3D textures. A complex
light source, whose brightness and range varies as a function of distance from the light source could be best done
with a 3D texture. An example might be a “disco ball” effect where a light source has beams emanating out from
the center, with some beams shining farther than others. A complex light source could be made more impressive
by combining light maps with volume visualization techniques. For example the light beams could be made visible
in fog.

The light source itself can be a simple piece of geometry textured with the rest of the scene. Since it is at the
source of the textured light, it will be textured brightly.

For better realism, good lighting effects should be combined with the shadowing techniques described in Sec-
tion 11.4.

Procedure:

1. Create the 3D light data. A “canonical light” can be defined at the center of the texture volume, with the
intensity dropping off in a realistic fashion towards the edges. In order to avoid artifacts, make sure the
intensity of the light field is the same at all the edges of the texture volume.

2. Define a 3D texture, using GL REPEAT for the wrap values in , , and . Minification and magnification
should be GL LINEAR to make the changes in intensity smoother.

3. Render the scene without the lightmap, using surface textures as appropriate.

4. Define planes in eye space so that glTexGen will cause the texture to span the visible scene.

5. If you have textured surfaces, adding a lightmap becomes a multipass technique. Use the appropriate blend-
ing function to modulate the surface color.

6. Render the image with the light map, and texgen enabled. Use the appropriate texture transform to position
and scale the light source correctly.

7. Repeat steps 1-2 and 4-6 for each light source.

There are disadvantages to using 3D light maps:

3D textures are not widely supported yet, so your application will not be as portable.

3D textures use a lot of texture memory. 2D textures are more efficient for light maps.

100

Programming with OpenGL: Advanced Rendering

10.3 Gloss Maps

Surfaces whose shininess varies, like wet marble or wet paper or fabrics that are smoothed only in places, can be
modeled with gloss maps. A gloss map is a texture which modulates the contribution from specular lighting, so
that some points on the surface reflect less specular light than others.

This technique can be implemented using a multipass process in which the diffuse, ambient, and emissive lighting
components are drawn and then the specular lighting component is added using blending.

First, draw the surface normally with specular lighting disabled. This can be performed by setting the specu-
lar material value to zero, for example, in OpenGL, by glMaterialfv(GL FRONT AND BACK, GL SPECULAR,
specularColorArray), and then drawing the surface normally.

Second, draw the surface with the specular color restored and the diffuse, ambient, and emissive colors set to zero,
and with a texture encoding the gloss map. The texture can be a one component alpha texture or a two or four
component texture with the maximum value set for the luminance or color components.

Typically the gloss map value is stored directly in the alpha component, with zero indicating no contribution from
the specular component and one indicating the full specular reflection is to be added. Draw the second pass with
blending enabled, adding the new pixel color modulated by the alpha value from the texture. (In OpenGL this
behavior is configured with glBlendFunc(GL SRC ALPHA, GL ONE)). The meaning of the alpha component
may also be reversed if the applications takes care to reverse the frame buffer blending operation as well.

The second pass can be drawn either with the depth test set to pass when the framebuffer depth equals the depth
of the surface, or the initial pass can set the stencil buffer where the depth test passed and the second pass drawn
where the stencil buffer was set.

10.4 Other Lighting Models

Up to this point we have largely discussed the Phong lighting model. The diffuse and specular terms for a single
light are given by the following equation:

Section 10.1.1 discusses the use of sphere mapping to replace the OpenGL per-vertex specular illumination com-
putation with one performed at each pixel. The specular contribution in the texture map is computed using the
Phong formulation above. However, the Phong model can be substituted with other bi-directional reflectance
functions to achieve other lighting effects. Since the texture coordinates are computed with a sphere mapping
function, the resulting texture mapping operation accurately approximates view-dependent specular reflectance
distributions.

One improvement that can be made is to add a Fresnel reflection term, ,[45] to the specular equation:

The Fresnel term specifies the ratio the amount of reflected light to the amount of transmitted (refracted) light.
It is a function of the angle of incidence, , the angle of refraction and the material properties of the object
(dielectric, metal, etc. as described in Section 10.8). The effect of the Fresnel term is to attenuate light as a function
of its incident and reflected directions as well as its wavelength. Light is hardly reflected from dielectrics such as
glass at normal incidence, for example, while being almost totally reflected at glancing angles. This attenuation is
independent of wavelength. The absorption of metals, on the other hand, can be a function of the wavelength in,
for instance, copper and gold. At glancing angles, the light color is unaltered in reflection, but at normal incidence
the light is modulated by the color of the metal.

Since the sphere map serves as a table which is indexed by the the reflection vector, the Fresnel effects can be
included in the environment map by simply computing the specular equation with the Fresnel term to modulate

101

Programming with OpenGL: Advanced Rendering

and shift the color. This can be performed as a post-processing step on an existing environment map by computing
the Fresnel reflection coefficient at each angle of incidence and modulating the sphere map. Reflection, refraction
and sphere mapping are discussed in more detail in Section 11.1. Other bi-directional reflectance functions can be
encoded in a sphere map in a similar fashion.

10.5 Global Illumination

The lighting models described thus far have been relatively simple. The subtleties of real lighting are often
captured using a global illumination model. Global illumination models using radiosity or ray tracing are generally
too computationally complex to perform in real-time. However, if the objects and light sources comprising the
environment are static it is possible to perform the global illumination calculations as a preprocessing step and
then display the results interactively. Such an approach is both practical and useful for applications such as
architectural walkthroughs. The technique is typically employed for diffuse illumination solutions since view-
independent (ideal) diffuse illumination can be represented as a single value (color) at each object vertex.

In [99] Walter, et. al. describe a method for rendering global illumination solutions which contain view-
independent directionally variant lighting effects using the specular term in the OpenGL lighting model to ap-
proximate the directionally varying lighting information and the emissive term to approximate the directionally
invariant illumination (i.e., diffuse illumination). In this method, a set of OpenGL lights are treated as a set of basis
functions which are summed together while the object is rendered to yield a more general directional distribution.
The OpenGL light parameters such as position or intensity coefficients have no relationship to the light sources
in the original model, but instead serve as a compact representation for the directional illumination of an object.
Each rendered object has its own set of lights which are called virtual lights.

The method works on a global illumination solution which stores a number of samples of the directionally varying
illumination at each object vertex. The parameters for the virtual lights of a particular object are determined using
a fitting procedure consisting of a number of heuristics. The main idea is to produce a set of solutions for a number
of specular exponent values and then choose the exponent value which minimizes the mean-squared error using a
least squares method. A solution at a given exponent value is determined as follows:

1. Choose a specular exponent value.

2. Find the vertex on the object with the largest directional radiance.

3. Choose a light direction to align the specular lobe with this brightest direction.

4. Choose an intensity coefficient to match the radiance at the point on the object.

5. Compute the specular contribution at other points on the object and subtract from the radiance.

6. Repeat steps 2-5 using updated object radiance until all lights have been used.

7. At each vertex compute the specular and emission coefficients using a least squares fit.

Once the lighting parameters have been determined the model is rendered using the glLight and glMaterial
commands to set the directional light parameters and specular exponent for each object and the glMaterial
command to set the specular reflectance and and emitted intensity at each vertex. The rendering speed for the
model is limited by the geometric complexity of the model and the ability of the OpenGL implementation to deal
with multiple light sources and material changes at each vertex. Rendering performance may be improved by
rendering in multiple passes to limit the number of active lights or the number of material parameter changes in
each pass. For example, using glColorMaterial and glColor to change only the emitted intensity or specular
reflectance in each pass and framebuffer blending to sum the results together.

102

Programming with OpenGL: Advanced Rendering

10.6 Bump Mapping with Textures

Bump Mapping Bump mapping [9], like texture mapping, is a technique to add more realism to synthetic im-
ages without adding a lot of geometry. Texture mapping adds realism by attaching images to geometric surfaces.
Bump mapping adds per-pixel surface relief shading, increasing the apparent complexity of the surface by per-
turbing the surface normal. Surfaces that have a patterned roughness are good candidates for bump mapping.
Examples include oranges, strawberries, stucco, wood, etc.

An intuitive representation of surface bumpiness is formed by a 2D height field array, or bump map. This bump
map is defined by the scalar difference between the flat surface and the desired bumpy surface

along the normal at each point . Typically the function is modeled separately as polygons or
parametric patches and is modeled as a 2D image using a painting program or other image processing tool.

Rather than subdivide the surface into regions that are locally flat, observe that the shading perturbations
on such a surface depend more on perturbations in the surface normal than on the position of the surface itself.
A technique perturbing only the surface normal at shading time achieves similar results without the processing
burden of subdividing geometry. (Note that this technique does not perturb shadows from other surfaces falling
on the bumps or shadows from bumps on the same surface, so such shadows will retain their flat appearance.)

The normal vector at can be calculated by the cross product of the partial derivatives of in and .
(The notational simplification is used here to mean the partial derivative of with respect to , sometimes
written .) The chain rule can be applied to the partial derivatives to yield the following expression of in
terms of , , and derivatives of :

If is assumed to be sufficiently small, the final terms of each of the previous expressions can be approximated
by zero:

Expanding the cross product gives the following expression for :

Which evaluates to:

Because yields the normal and yields 0, we can further simplify the expression for as
follows:

103

Programming with OpenGL: Advanced Rendering

The values and are easily computed through forward differencing from the 2D bump map, and and
can be computed either directly from the surface definition or from forward differencing applied to the surface
parameterization.

Approximating Bump Mapping Using Texture Typically, bump mapping is implemented in custom rendering
software on the host, as few hardware systems implement bump map evaluation directly. It may be possible to
directly bump map an object covering a small number of pixels in software and composite the image into the
non-bump-mapped scene using techniques discussed elsewhere in these notes, and retain interactive frame rates.
However, the prohibitive cost of texture access and vector normalization make hardware assistance attractive.

The following sections present a technique for using texture maps to approximate bump mapping without requiring
a custom renderer [1] [77]. This multipass algorithm is an extension and refinement of texture embossing [86].

Tangent Space Recall that the bump map normal is formed by . Assume that the surface is
coincident with the plane and that changes in and correspond to changes in and , respectively. Then

can be substituted for , resulting in the following expression for the vector :

In order to evaluate the lighting equation, must be normalized. If the displacements in the bump map are
restricted to small values, however, the length of will be so close to one as to be approximated by one. Then

itself can be substituted for without normalization. If the diffuse intensity component of the lighting
equation is evaluated with the value presented above for , the result is the following:

(1)

This expression requires the surface to lie in the plane and that the and parameters change in and ,
respectively. Most surfaces, however, will have arbitrary locations and orientations in space. In order to use this
simplification to perform bump mapping, the view direction , and light source direction are transformed into
tangent space.

Tangent space has 3 axes, , and . The tangent vector, , is parallel to the direction of increasing on the
surface. The normal vector, , is perpendicular to the surface. The binormal, , is perpendicular to both and

, and like , lies in the plane tangent to the surface. These vectors form a coordinate system that is attached to
and varies over the surface.

The light source is transformed into tangent space at each vertex of the polygon. To find the tangent space vectors
at a vertex, use the vertex normal for and find the tangent axis by finding the vector direction of increasing
in the object’s coordinate system. The direction of increasing may also be used. Find by computing the cross
product of and . These unit vectors form the transformation shown below:

(2)

This transformation brings coordinates into tangent space, where the plane tangent to the surface lies in the
plane, and the normal to the surface coincides with the axis. Note that the tangent space transformation varies
for vertices representing a curved surface, and so this technique makes the approximation that curved surfaces are
flat and the tangent space transformation is interpolated from vertex to vertex.

104

Programming with OpenGL: Advanced Rendering

N

T

B

N T

B

N

T

B

Figure 47. Tangent Space Defined at Polygon Vertices

Figure 48. Bump Mapping: Shift and Subtract Image

Forward Differencing The first derivative of the height values of the bump map in a given direction can
be approximated by the following process:

1. Render the bump map texture.

2. Shift the texture coordinates at the vertices by .

3. Re-render the bump map texture, subtracting from the first image.

Consider a one dimensional bump map for simplicity. The map only varies as a function of . Assuming that the
height values of the bump map can be represented as a height function , then the three step process above
would be the following: . If the delta is one texel in , then the resulting texture coordinate is

, where is the width of the texture in texels. This operation implements a forward difference
of , which would approximate the first derivative of if was continuous.

In the two dimensional case, the height function is , and performing the forward difference in the direction
of evaluates the derivative of in the direction . This technique is also used to create embossed
images.

This operation provides the values used for the first two addends shown in Equation 1. In order to provide the
third addend of the dot product, the process needs to compute and add the transformed component of the light

105

Programming with OpenGL: Advanced Rendering

A

B

A - B

Figure 49. Shifting a Bump Map to Perform Forward Differencing

vector. The tangent space transform in Equation 2 implies that the transformed component of is simply the
inner product of the vertex normal and the light vector, . Therefore, the component can be computed using
OpenGL to evaluate the diffuse lighting term at each vertex. This computation is performed as a second pass,
adding to the previous results.

The steps for diffuse bump mapping are the following:

1. Render the polygon with the bump map textured on it. Since the bump map modifies the polygon color, you
can get the diffuse color you want by coloring the polygon with . Lighting is disabled.

2. Find , and at each vertex.

3. Use the vectors to create a transformation.

4. Use the matrix to rotate the light vector into tangent space.

5. Use the rotated and components of to shift the and texture coordinates at each polygon vertex.

6. Re-render the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon smooth shaded with lighting enabled and texturing disabled.

9. Add this image to result.

Using the accumulation buffer can improve the accuracy of this technique. The bump mapped objects in the scene
are rendered with the bump map, re-rendered with the shifted bump map and accumulated with a negative weight,
then re-rendered again using Gouraud shading and no bump map texture, accumulated normally.

The process can also be extended to find bump mapped specular highlights. The process is repeated using the
halfway vector () instead of the light vector. The halfway vector is computed by averaging the light and viewer
vectors . The combination of the forward difference of the bump map in the direction of the tangent space
and the component of approximate . Here are the steps for computing :

106

Programming with OpenGL: Advanced Rendering

1. Render the polygon with the bump map textured on it.

2. Find , and at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the halfway vector into tangent space.

5. Use the rotated and components of to shift the and texture coordinates at each polygon vertex.

6. Re-render the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture, this time use instead of . Use a polygon
whose color is equal to the specular color you want, .

The result must be raised to the shininess exponent before blending.

One technique for performing this exponential is to use the texture color table extension to perform a table lookup
on the results of . Invoke glColorTableSGI with GL TEXTURE COLOR TABLE SGI as its target, then
enable GL TEXTURE COLOR TABLE SGI. Copy the image calculated above from framebuffer memory into texture,
using glCopyTexImage2D. Finally, apply a projective texture transformation or calculate texture coordinates so
that the specular component is mapped onto the object with the same screen coordinates in which it was drawn.
Pixels copied from other objects drawn will not fall on the bump mapped object and will be discarded. It is
a good idea to copy only the rectangular screen region that bounds the bump-mapped object if the application
supports this. If the texture color table extension is not available, it may be possible to use glReadPixels,
glTexSubImage2D, apply the exponent on the host, and still retain interactivity for small regions.

Another possibility is to use glCopyPixels with a color table configured with glPixelMap. The bump mapped
object can be applied to the stencil buffer to create a mask so that only the pixels covered by the bump mapped
object are applied to the framebuffer.

Finally, use blending during the application of the specular component to add to the diffuse component and com-
plete the lighting equation.

Improving Quality The previous technique renders the entire scene multiple times. If very high quality is
important, the texture itself can be processed separately, then applied to the scene as a final step. The previous
technique yields lower quality results where the texture is less perpendicular to the line of sight in the image, due
to the object geometry. If the texture is processed before being applied to the image, we avoid this problem.

To process the texture separately, the vertices of the object must be mapped to a square grid. The rest of the steps
are the same, because the relationship between light source and the vertex normals hasn’t changed. When the new
texture map has been created, copy it back into texture memory, and use it to render the object.

Blending If you choose not to use the accumulation buffer, acceptable results can be obtained by blending.
Because of the subtraction step, you’ll have to remap the color values to avoid negative results. Since the image
values range from 0 to 1, the range of values after subtraction can be -1 (0 - 1) to 1 (1 - 0).

Scale and bias the bump map values to remap the results to the 0 to 1 range. Once you’ve made all three passes, it
is safe to remap the values back to their original 0 to 1 range. This scaling and biasing, combined with fewer bits
of color precision, make this method inferior to using the accumulation buffer.

107

Programming with OpenGL: Advanced Rendering

Bumps on Surfaces Facing Away From the Light Because this algorithm doesn’t take surfaces facing away
from lights into account, the forward differencing calculation will produce “lights” on the surface even when no
light is falling on the surface. Use the result of to scale the shift so that the bump effect tapers off slowly
as the surface becomes more oblique to the light direction. Empirically, adding a small bias (.3 in the authors’
experiments) to the dot product (and clamping the result) is more visibly pleasing because the bumps appear to
taper off after the surface has started facing away from the light, as would actually happen for a displaced surface.

Limitations Although this technique does closely approximate bump mapping, there are limitations that impact
its accuracy.

Bump Map Sampling The bump map height function is not continuous, but is sampled into the texture. The
resolution of the texture affects how faithfully the bump map is represented. Increasing the size of the bump
map texture can improve the sampling of the high frequency height components.

Texture Resolution The shifting and subtraction steps produce the directional derivative. Since this is a forward
differencing technique, the highest frequency component of the bump map increases as the shift is made
smaller. As the shift is made smaller, more demands are made of the texture coordinate precision. The
shift can become smaller than the texture filtering implementation can handle, leading to noise and aliases
effects. A good starting point is to size the shift components so their vector magnitude is a single texel.

Surface Curvature The tangent coordinate axes are different at each point on a curved surface. This technique
approximates this by finding the tangent space transforms at each vertex. Texture mapping interpolates the
different shift values from each vertex across the polygon. For polygons with very different vertex normals,
this approximation can break down. A solution would be to subdivide the polygons until their vertex normals
are parallel to within some error limit.

Maximum Bump Map Slope The bump map normals used in this technique are good approximations if the
bump map slope is small. If there are steep tangents in the bump map, the assumption that the perturbed
normal is length one becomes inaccurate, and the highlights appear too bright. This can be corrected by
creating a fourth pass, using a modulating texture derived from the original bump map. Each value of the

texel is one over the length of the perturbed normal:

10.7 Bump Mapped Reflections

To the authors’ knowledge, at least one hardware platform available at the time of writing supports a further
embellishment to bump mapping: bump mapped reflections.

If the bump map is stored as displacements to the normal (and), rather than a height field, the displacements
can be used as offsets added to the texture coordinates used in a second texture. This second texture represents
the lighting environment, and can be the environment mapped approximation to phong lighting discussed in Sec-
tion 10.1.1, or an environment map approximating reflections from the surface as discussed in Section 11.2.1.

10.8 Choosing Material Properties

OpenGL provides a full lighting model to help produce realistic objects. The library provides no guidance, how-
ever, on finding the proper lighting material parameters to simulate specific materials. This section categorizes
common materials, provides some guidance for choosing representative material properties, and provides a table
of material properties for common materials.

108

Programming with OpenGL: Advanced Rendering

10.8.1 Modeling Material Type

Material properties are modeled with the following OpenGL parameters:

GL AMBIENT How ambient light reflects from the material surface. This is an RGBA color vector. The magnitude
of each component indicates how much the light of that component is being reflected.

GL DIFFUSE How diffuse reflection from light sources reflect from the material surface. This is an RGBA color
vector. The magnitude of each component indicates how much the light of that component is being reflected.

GL SPECULAR How specular reflection from a light source reflects from the material. This is an RGBA color
vector. The magnitude of each component indicates how much the light of that component is being reflected.

GL EMISSION How much of what color is being emitted from this object. This is an RGBA color vector. The
magnitude of each component indicates how much light of that component is glowing from the material.
Since this parameter is only useful for glowing objects, we’ll ignore it in this section.

GL SHININESS How mirror-like the specular reflection is from this material. This is a single integer. The larger
the number, the more rapidly the specular reflection drops off as the viewing angle diverges from the reflec-
tion vector.

For lighting purposes, materials can be described by the type of material, and the smoothness of its surface.
Material type is simulated by the relationship between color components of the GL AMBIENT, GL DIFFUSE
and GL SPECULAR parameters. Surface smoothness is simulated by the overall magnitude of the GL AMBIENT,
GL DIFFUSE and GL SPECULAR parameters, and the value of GL SHININESS. As the magnitude of these compo-
nents get closer to one, and the GL SHININESS value increases, the material appears to have a smoother surface.

For lighting purposes, material type can be divided into four categories: dielectrics, metals, composites, and other
materials.

Dielectrics These are the most common category. These are non-conductive materials, such as plastic or wood,
which don’t have free electrons. The result is that dielectrics have relatively low reflectivity, and have a reflectivity
that is independent of light color. Because they don’t interact with the light much, many dielectrics are transparent.
The ambient, diffuse and specular colors tend to be the same.

Powdered dielectrics tend to look white because of the high surface area between the dielectric and the surrounding
air. Because of this high surface area, they also tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As a result, metals are opaque and tend to be very
reflective, and their ambient, diffuse, and specular colors tend to be the same. How the free electrons are excited
by light at different wavelengths determines the color of the metal. Materials like steel and nickel have nearly the
same response over all visible wavelengths, resulting in a grayish reflection. Copper and gold, on the other hand,
reflect long wavelengths more strongly than short ones, giving them their reddish and yellowish colors.

The color of light reflected from metals is also a function of incident and exiting light directions. This can’t be
modeled accurately with the OpenGL lighting model, compromising the metallic look of objects. However, a
modified form of environment mapping (such as the OpenGL sphere mapping) can be used to approximate the
proper visual effect.

Composite Materials Common composites, like plastic and paint, are composed of a dielectric binder with
metal pigments suspended in them. As a result, they combine the reflective properties of metals and dielectrics.
Their specular reflection is dielectric, their diffuse reflection is like metal.

109

Programming with OpenGL: Advanced Rendering

Other Materials Other materials that don’t fit into the above categories are materials such as thin films, and
other exotics.

10.8.2 Modeling Material Smoothness

As mentioned before, the apparent smoothness of a material is a function of how strongly it reflects and the
size of the specular highlight. This is affected by the overall magnitude of the GL AMBIENT, GL DIFFUSE and
GL SPECULAR parameters, and the value of GL SHININESS. Here are some heuristics that describe useful rela-
tionships between the magnitudes of these parameters:

1. The spectral color of the GL AMBIENT and GL DIFFUSE parameters should be the same.

2. The magnitudes of GL DIFFUSE and GL SPECULAR should sum to a value close to one. This helps prevent
color value overflow.

3. The value of GL SHININESS should increase as the magnitude of GL SPECULAR approaches one.

No promise is made that these relationships, or the values in Table 7 will provide a perfect imitation of a given
material. The empirical model used by OpenGL emphasizes performance, not physical exactness.

For an excellent description of material properties, see [45].

10.9 Anisotropic Lighting

The per-vertex lighting model used in OpenGL assumes that the surface has microscopic facets that are uniformly
distributed in any direction on the surface. That is to say, they assume isotropic lighting behavior.

Some surfaces have a directional grain, made from facets that are formed with a directional bias, like the grooves
formed by sanding or machining. These surfaces demonstrate anisotropic lighting, which depends on the rotation
of the surface around the normal to the surface. At normal distances, the viewer does not see the facets or grooves,
but rather sees the overall lighting effect from such a surface. Some everyday surfaces that have anistropic lighting
behavior are hair, satin Christmas tree ornaments, brushed alloy wheels, CDs, cymbals in a drum kit, and vinyl
records.

Heidrich and Seidel present a technique in [50] for rendering surfaces with anisotropic lighting, based on the
scientific visualization work of Zöckler et al [92]. The technique uses 2D texturing to provide a lighting solution
based on a “most significant” normal to a surface at a point.

The algorithm uses a surface model with infinitely thin scratches or threads that run across the surface. The tangent
vector defined per-vertex can be thought of as the direction of brush strokes, grooves, or threads. An infinitely
thin thread can be considered to have an infinite number of surface normals distributed in the plane perpendicular
to , as shown in Figure 50. In order to fully model the light reflected from these normals, the lighting equation
would need to be integrated over the normal plane.

Rather than integrate the lighting equation, the technique makes the assumption that the most significant light
reflection is from the surface normal with the maximum dot product with the light vector as seen in Figure 51.

The diffuse and specular lighting factors for a point based on the view vector , normal , light reflection vector
, light direction , and shininess exponent are shown below:

110

Programming with OpenGL: Advanced Rendering

Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS
Brass 0.329412 0.780392 0.992157 27.8974

0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0

Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0

Polished 0.25 0.4 0.774597 76.8
Bronze 0.148 0.2368 0.458561

0.06475 0.1036 0.200621
1.0 1.0 1.0

Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
1.0 1.0 1.0

Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0

Polished 0.2295 0.5508 0.580594 51.2
Copper 0.08825 0.2118 0.223257

0.0275 0.066 0.0695701
1.0 1.0 1.0

Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0

Polished 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991

0.0645 0.0903 0.208006
1.0 1.0 1.0

Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Table 7: Parameters for Common Materials

111

Programming with OpenGL: Advanced Rendering

Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS
Silver 0.19225 0.50754 0.508273 51.2

0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
1.0 1.0 1.0

Polished 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911

0.23125 0.2775 0.773911
1.0 1.0 1.0

Emerald 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55

Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95

Obsidian 0.05375 0.18275 0.332741 38.4
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82

Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922

Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55

Turquoise 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8

Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50

0.0 0.01 0.50
1.0 1.0 1.0

Black 0.02 0.01 0.4 10
Rubber 0.02 0.01 0.4

0.02 0.01 0.4
1.0 1.0 1.0

112

Programming with OpenGL: Advanced Rendering

Figure 50. Normals to a Fiber

Thread

L

N (L projected into
normal plane)

Normal plane

Figure 51. Projecting Light Vector to Maximize Lighting Contribution

113

Programming with OpenGL: Advanced Rendering

In order to avoid calculating and , the following substitutions allow the lighting calculation at a point on a
fiber to be evaluated with only , , and the fiber tangent (anisotropic bias):

If and are stored in the first two rows of a transformation matrix, and is transformed by this matrix, the
result is a vector containing and . After applying this transformation, is computed as and
is computed as , as shown in Equation 3 A scale and bias must also be included in the matrix in order to bring
the dot product range into the range . The resulting texture coordinates can be used to index a texture
storing the precomputed lighting equation.

(3)

If the further simplifications are made that the viewing vector is constant (infinitely far away) and that the light
direction is also constant, then the results of this transformation can be used to index a 2D texture to evaluate the
lighting equation based solely on providing at each vertex.

The application will need to fill the texture with the results of the lighting equation (shown in Equation 17 in
Appendix C.2) with the and coordinates scaled and biased back to the range and evaluated in the
equations above to compute and .

A transformation pipeline typically transforms surface normals into eye space by premultiplying by the inverse
transpose of the viewing matrix. If the anisotropic bias is defined in model space, it is necessary to query or
precompute the current modeling transformation and concatenate the inverse transpose of that transformation with
the transformation matrix computed above.

Because result of this lookup is not the complete anisotropic computation but rather the “most significant” com-
ponent of it, it may be necessary to raise the diffuse and specular lighting factors used in the lighting computation
to a large fractional power. (Since those factors will be less than one, a fractional power will increase the factors.)
This may result in a more visually acceptable image.

OpenGL’s texture matrix (glMatrixMode(GL TEXTURE)) and vertex texture coordinate (glTexCoord) can be
used to perform the texture coordinate computation directly. The transformation is stored in the texture matrix and

is transmitted using glTexCoord directly.

Keep in mind, however, that there is no normalization step in the OpenGL texture coordinate generation system. If
the modeling matrix is concatenated as mentioned previously, the coordinates must be transformed and normalized
before transmission.

Because the anisotropic lighting approximation given does not take self-shadowing into account, the texture color
will also need to be modulated with a saturated directional light. This will clamp the lighting contributions to zero
on parts of the surface facing away from the light.

This technique uses per-vertex texture coordinates to encode the anisotropic direction, so it also suffers from the
same per-vertex lighting artifacts in the isotropic lighting model. In addition, if a local lighting or viewing model
is desired, the application must calculate or , compute the entire anisotropic lighting contribution, and apply
it as a vertex color, which frees the texture stage for another use.

Because a single texture provides all the lighting components up front, changing any of the colors used in the
lighting model requires recalculating the texture. If two textures are used, either in a system with multiple texture

114

Programming with OpenGL: Advanced Rendering

units or with multipass, the diffuse and specular components may be separated and stored in two textures, and
either texture may be modulated by the material or vertex color in order to alter the diffuse or specular base color
separately without altering the maps. This can be used, for example, in a database containing a precomputed
radiosity solution stored in the per-vertex color. In this way, the diffuse color can still depend on the orientation
of the viewpoint relative to the anisotropic bias but only changes within the maximum color calculated by the
radiosity solution.

115

Programming with OpenGL: Advanced Rendering

Incident ray Reflected ray

Refracted ray

Normal
Incident ray Reflected ray

Refracted ray

Normal

Figure 52. Reflection and Refraction: Medium Below has Higher Index of Refraction

Critical
angle

Figure 53. Total Internal Reflection

11 Scene Realism

11.1 Reflections and Refractions

In both rendering and interactive computer graphics, substantial effort has been devoted to the modeling of re-
flected and refracted light. This is not surprising – almost all the light perceived in the world is reflected. This
section describes several ways to create the effects of reflection and refraction using OpenGL beginning with a
very brief review of the relevant physics. Pointers to more detailed descriptions are provided.

From elementary physics, the angle of reflection of a ray is equal to the angle of incidence of the ray (Figure 52).
This property is known as the Law of Reflection [21]. The reflected ray lies in the plane defined by the incident
ray and the surface normal.

Refraction is defined as the “change in the direction of travel as light passes from one medium to another” [21].
This change in direction is caused by the difference in the speed of light traveling through the two media. The
refractivity of a material is characterized by the index of refraction of the material, or the ratio of the speed of light
in the material to the speed of light in a vacuum [21].

116

Programming with OpenGL: Advanced Rendering

The direction of a light ray after it passes from one medium to another is computed from the direction of the
incident ray, the normal of the surface at the intersection of the incident ray, and the indices of refraction of the
two materials. The behavior is shown in Figure 52. The first medium through which the ray passes has an index
of refraction and the second has an index of refraction . The angle of incidence, , is the angle between
the incident ray and the surface normal. The refracted ray forms the angle with the normal. The incident and
refracted rays are coplanar. The relationship between the angle of incidence and the angle of refraction is stated
as Snell’s Law[21]:

(4)

If (light is passing from a more refractive material to a less refractive material), past some critical angle
the incident ray will be bent so far that it will not cross the boundary. This phenomenon is known as total internal
reflection and is illustrated in Figure 53 [21].

When a ray hits a surface, some light is reflected off the surface and some is transmitted. The weighting of the
transmitted and reflected light is determined by the Fresnel equations.

More details about reflection and refraction can be gleaned from most college physics books. For more details
on the reflection and transmission of light from a computer graphics perspective, consult one of several general
computer graphics books or books on radiosity or ray tracing [17], [32], [45].

Accelerated Reflection and Refraction Directly calculating surface physics effects like reflection and refrac-
tion using an algorithm such as ray tracing can be expensive, and rendering almost immediately stops being
interactive as scene complexity increases. It is useful to define techniques that approximate reflections or take
advantage of simplifying assumptions, such as having a planar reflector with straight edges.

11.1.1 Techniques for Rendering Reflections

It’s easy and intuitive to imagine that a reflected scene is made up of “virtual” reflected objects. As shown in and
Figure 55, the full scene can be thought of as a combination of the reflected scene painted “behind” the mirror
object and the original scene.

The process of drawing a scene with a single reflector can be broken into two steps: creating virtual reflected
objects from non-reflected objects, and then drawing the virtual objects within our original scene.

A reflected “virtual” object can be created by calculating a “virtual” vertex for every vertex in the original object.
Several techniques of increasing sophistication for finding these vertices will be discussed, including the simple
case of a planar reflector, curved surfaces with algebraic definitions such as spheres and cylinders, and arbitrary
curved surfaces approximated by triangles. Beware that reflection will reverse vertex ordering for the faces in the
object, so the face culling state for the reflection scene must be set to the reverse of the state for the original scene.

Once a reflected object’s virtual vertices have been calculated, there are several techniques for rendering the
reflected object within the scene. Clip planes may be used in restricted cases, the stencil buffer may be used as an
arbitrary clipping region, or a texture map may be projected onto the reflector, using the reflector’s edges to clip
the reflected image. These techniques will be discussed in detail in the following sections.

11.1.2 Planar Reflectors

This section discusses the modeling of planar reflective surfaces. Three techniques are discussed: using the
stencil buffer to draw the reflected geometry in the proper location, a technique using OpenGL’s clip planes to
clip reflected geometry to a reflected space visible by the eyepoint, and a technique which uses texture mapping
to make an image of the reflected geometry which is then texture mapped onto the reflective polygon. Both
techniques construct the scene in two (or more) passes.

As an example, consider a model of a room with a mirror on one wall. Compute the plane containing the mirror and
define an eye point from which to render the scene. When drawing the reflected scene, first apply a transformation

117

Programming with OpenGL: Advanced Rendering

Reflector

Scene

Real
eyepoint

Reflected
eyepoint

Figure 54. Mirror Reflection of the Viewpoint

Reflector

Scene

Real
eyepoint

Figure 55. Mirror Reflection of the Scene

118

Programming with OpenGL: Advanced Rendering

Reflected
Object

Real Object

Real Vertex

Mirror

Virtual
Vertex

Viewpoint

Figure 56. Virtual Reflected Vertices

that reflects objects across this plane. This can be envisioned as either reflecting the eye point or the objects across
the plane; both are identical and some people find one approach more intuitive than the other.

The reflection transformation can be decomposed for convenience into a translation to the origin, a rotation map-
ping the mirror into the plane, a scale of -1 in , the inverse of the rotation previously used, and a translation
back to the mirror location.

Given one vertex of the planar reflector and a vector perpendicular to the plane, this sequence of transforma-
tions can be expressed as the single 4 by 4 matrix [34] shown below:

where

Applying this transformation to the original scene produces a virtual scene on the opposite side of the reflector
representing the reflected scene. The next sections discuss how to render this reflected scene correctly within the
non-reflected scene.

Planar Reflections Using the Stencil Buffer The effects of specular reflection can be approximated by a two-
pass technique using the stencil buffer. The reflected scene is rendered during the first pass, and the non-reflected
scene is rendered during the second pass, using the stencil buffer to clear parts of the reflected image outside the
mirror polygon.

The sequence of steps for the first pass is as follows:

1. Set up initial viewing, and projection matrices as desired

2. Compute and apply the reflection transformation matrix.

3. Draw the remainder of the scene normally.

119

Programming with OpenGL: Advanced Rendering

4. Undo the reflection transformation.

The application and removal of the mirror transformation can be easily applied as part of the modeling transfor-
mation stack, like OpenGL’s GL MODELVIEW matrix stack using glPushMatrix and glPopMatrix.

Objects drawn in the first pass look as they would when seen in the mirror, ignoring the fact that the mirror may
not fill the entire field of view. For the purpose of rendering, imagine that the entire plane containing the mirror is
reflective, but in reality the mirror does not cover the entire plane, and so parts of the scene may be drawn which
will not be visible. For example, the lowest box in the scene in Figure 55 is drawn in the reflected scene, but its
reflection is not actually visible in the mirror. The second pass draws over the parts of the reflection which are not
normally visible.

When rendering the reflected scene, points on the plane of the reflector maintain the same position in eye space
as when rendered without reflection. For example, the corners of the reflective polygon are in the same location
when viewed from the reflected eye point as from the original viewpoint. In this way, it may be more intuitive to
think of reflecting the scene, rather than the eye point.

It’s important to configure a clipping plane in the plane of the mirror polygon, so geometry that is behind the
mirror, and subsequently is reflected in front of the mirror, is not rendered.

Do not render the mirror during the first pass or it will obscure the reflected image. This problem is most easy
solved by keeping track of the mirror polygon and skipping it during rendering. This should be simple because
the algorithm already has to find the mirror object and its associated data.

A special effect created by a magnified or minified reflection can be implemented by moving the scene backwards
or forwards along a vector perpendicular to the plane of the mirror. This scaling looks at first glance like a concave
or convex mirror, respectively, but should not be expected to survive inspection. If the position is the same distance
as the eye point from the mirror then the result is an image of the same scale.

Next, clear both the depth and stencil buffers, leaving the color buffer intact. Render the mirror polygon into the
stencil buffer to mask out portions of the reflected scene which were drawn in the first pass and should remain
visible. Configure the stencil test to pass outside the mirror polygon and clear the color buffer, so that pixels
outside the mirror return to the background color. Finally, disable the stencil test and render the remainder of the
scene normally.

The list of steps for the second pass, using OpenGL, is as follows.

1. Clear the stencil and depth buffers. (glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT)).

2. Configure the stencil buffer such that 1 will be stored at each pixel touched by a polygon:

glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glStencilFunc(GL_ALWAYS, 1, 1);
glEnable(GL_STENCIL_TEST);

3. Disable drawing into the color buffers (glColorMask(0, 0, 0, 0)).

4. Draw the mirror polygon, with blending if desired.

5. Reconfigure the stencil test:

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_NOTEQUAL);

6. Clear the color buffer to the background color.

7. Disable the stencil test (glDisable(GL STENCIL TEST)).

8. Draw the scene without reflection.

These steps are illustrated in Figure 57.

120

Programming with OpenGL: Advanced Rendering

Original scene Reflected objects

Stencil set outside reflector
and color buffer cleared

Original scene rendered
after reflected scene

Figure 57. Stencil Reflection Steps

It is possible to clear the stencil buffer and draw the reflector into stencil first, marking the stencil buffer where
the reflection should be drawn. However, drawing the entire scene with stencil testing enabled is likely to result
in lower performance than using stencil just to clear the screen all at once. A technique is presented later which
requires setting stencil first to render interreflections.

The planar mirror reflector typically takes up a small region of the screen. Software that support culling to the
viewing frustum can use a reduced frustum that tightly bounds the screen-space projection of the reflector when
drawing the reflected scene, reducing the number of objects to be processed.

See Section 3 for more information on modeling.

Planar Reflections using Clip Planes Rather than use the stencil buffer to mask out the region outside the
reflector, if the mirror polygon has five or fewer edges (four is a common number), OpenGL’s clip planes can be
configured to clip the reflected geometry to the region directly behind the mirror polygon.

For each edge, calculate the plane that is formed by that edge and the eyepoint. Configure this plane as a clip
plane (without applying the reflection transformation). Finally, configure one plane to clip reflected polygons to
the plane of the reflector, as in the stencil technique.

This may be a viable alternative if hardware does not support a stencil buffer.

Planar Reflections using Texture Mapping Another technique uses texture mapping. The first pass is identical
to the first pass of the previous technique: draw the reflected scene. After drawing the scene, copy the image into

121

Programming with OpenGL: Advanced Rendering

Original scene Reflected objects

Reflected scene image
projected onto reflector

Textured reflection
and original scene

Figure 58. Masking Reflections Using Projective Texture

a texture. (For example, in OpenGL, use glCopyTexImage2D). During the second pass, map this texture onto the
reflective polygon. The sequence of steps for the second pass is as follows:

1. Draw the non-reflected objects in the scene.

2. Bind the texture containing the reflected image.

3. Draw the reflective object with the appropriate texture coordinates.

The texture coordinates at the vertices of the reflective object must be in the same location as the vertices of the
reflective object in the texture. These coordinates may be computed by figuring the projection of the corners of the
object into the viewing plane used to compute the reflection map (the command gluProject may prove helpful).

Another approach, using OpenGL’s texture coordinate generation and GL TEXTURE matrix stack, is to load the
texture matrix with the projection matrix and configure texture coordinate generation as GL EYE LINEAR with the
glTexGen plane set to the XY plane. Texture coordinates are automatically generated that map the texture directly
to pixels in the rendered image, as illustrated in Figure 58

The texture mapping technique may be more efficient on some systems than stencil buffering, but keep in mind
that it uses up a texture stage, which may force the algorithm to use multiple passes to render the reflector if it also
has a texture applied to it and the hardware supports only a single texture. On the other hand, you may be able to
use a reflection texture during several frames, as described below.

The texture does not need to be the same size as the screen; it needs only to cover the screen-space projection of
the reflector. If a smaller texture is used, however, the projected texture coordinates must be adjusted so the texture
coordinates range from 0 to 1 within the smaller area.

122

Programming with OpenGL: Advanced Rendering

Eye

Reflected
object

Virtual
vertex

Real
vertex

Real
object

Figure 59. Virtual Reflected Vertices from a Curved Reflector

Finally, it may be acceptable to render the image of the reflected scene at a lower resolution than the final scene
and let texture filtering blur the texture when it is projected onto the reflector.

11.1.3 Curved Reflectors

Implicit and Extruded Reflectors Since the objective with accelerated reflection is to find “virtual” vertices
that appear to the viewer in the same place as an actual reflection, we can extend the planar technique to other
reflection objects whose surface definitions are well-known.

For example, if our object is a sphere, the point on the sphere where a ray of light from vertex in our scene would
reflect in order to reach the viewpoint can be computed directly [71]. Using the plane defined by that point and
the normal to the sphere at that point, the real vertex can be reflected into a virtual vertex, as shown in Figure59
This reflection takes the place of the planar reflection transformation presented above, and is calculated for each
reflected vertex rather than once per reflector.

The clip plane technique discussed for planar reflectors cannot be used directly for curved reflectors, although it
may be acceptable to approximate the reflector surface for a single reflected face. The stencil masking and texture
techniques, however, work well for this case.

Arbitrary Curved Reflectors Ofek and Rappoport present a technique [72] for computing virtual vertices for
objects reflected in arbitrary curved reflectors represented by a mesh of triangles sharing per-vertex normals. The
following sections examine their algorithm in the context of convex and then concave reflectors, and then discuss
some caveats of the technique. Figure 60 is an example of a polygonal checkerboard reflected in a spherical patch
formed from triangles.

Convex Reflectors Because there is no way to directly compute the reflection point from an arbitrary tessellated
reflector, an acceleration data structure called an explosion map is used to approximate the reflection point.

An explosion map stores reflection directions mapped to a 2D image, in much the same way as OpenGL maps re-
flection directions to a sphere map, discussed in more detail below. A unit vector is mapped into coordinates

within a circle inscribed in a explosion map with radius using Equation 5 and 6.

123

Programming with OpenGL: Advanced Rendering

Figure 60. Checkerboard reflected in Curved Patch

(5)

(6)

The reflection directions used in the mapping are not the actual reflection rays determined from the reflector vertex
and the viewpoint. Rather, the reflection ray is intersected with a sphere and the normalized vector from the center
of the sphere to the intersection point is used instead. There is a one-to-one between reflection vectors from the
convex reflector and intersection points on the sphere, as long as the sphere encloses the reflector. Figure 61
shows a viewing vector V and a point P on the reflector that forms the reflection vector R as a reflection of V. The
normalized direction vector D from the center of a sphere to the intersection of R with that sphere is inserted into
the equation shown above.

Once the reflection directions are mapped into 2D, an identifier for each triangle is rendered into the explosion
map using the mapped vertices for that triangle. This provides an exact mapping from any point on the sphere to
the point that reflects that point to the viewpoint. This identifier may be mapped using the color buffer or depth
buffer or both as necessary. Applications will need to verify the resolution available in the frame buffer and will
likely need to disable dithering. If the color buffer is used, the most significant bits of each component will be
used as the least significant bits may not be stored at all and will be extended from the more significant bits on
readback.

Imagine that a vertex of a face to be reflected lies on the sphere. (This is not typically the case, and will be
addressed in the next paragraph.) For this vertex on the sphere, the explosion map can be used to find a reflection
plane across which the vertex is reflected. The normalized vector pointing from the sphere center to the vertex is
mapped into the explosion map to find a triangle ID. The mapped point formed from the vertex and the mapped
triangle vertices are used to compute barycentric coordinates. These coordinates are used to interpolate a point and

124

Programming with OpenGL: Advanced Rendering

Eye

Reflector

Triangle n

Intersection of rays
reflected from eye
with sphere

Bounding
sphere Explosion

map

Painted with ID of
triangle n

Figure 61. Mapping Reflection Vectors into Explosion Map Coordinates

Figure 62. Triangle IDs Stored in an Explosion Map as Color

125

Programming with OpenGL: Advanced Rendering

Eye

Reflector

Yelds the triangle
that reflects the

vertex to the eye

Bounding
sphere

Explosion
map

Reflection from eye
mapped to triangle ID

Vertex

Vertex

Figure 63. Using An Explosion Map to determine the Reflecting Triangle

normal within in the triangle which approximate a plane and normal on the curved reflector. The mapped vertex
is reflected across this plane to form a virtual vertex. This process is illustrated in Figure 63.

Since it is likely impossible to determine a sphere on which all vertices in the scene lie, two separate explosion
maps with two spheres are computed. One sphere tightly bounds the reflector object, and one sphere bounds
the entire scene. The normalized vector from the center of each sphere to the vertex is used to look up the
reflecting triangle in the associated explosion map. Neither triangle may be correct, but the reflected virtual vertex
is approximated by constructing virtual vertices using the results of each explosion map, and then interpolating
between the two with a weight determined by the ratios of the distance from the surface of each sphere to the
original vertex. Figure 64 shows how the virtual vertices determined from the explosion maps representing the
near and far spheres are interpolated to find the final approximated reflected vertices.

Because the reflection directions from triangles in the reflector will not typically cover the entire explosion map,
extension polygons will need to be constructed which extend the reflection mappings to cover the map. These
extension polygons can be thought of as extending the edges of profile triangles in the reflector into quadrilaterals
that fully partition space so that all vertices in the original scene are reflected by some polygon.

In the case that the reflector is modeled from a solid object, extension quadrilaterals may be formed from triangles
in the reflector that have two vertex normals that face away from the viewer. Because the reflector is defined
to be convex, these triangles automatically lie on the boundary of the front-facing triangles in the reflector. The
normals of each vertex are projected into the plane perpendicular to the viewer at that vertex, which guarantees
that the reflection vector from the normals maps into the explosion map. This profile triangle is projected into the
explosion map using these “fixed up” coordinates. The edge formed by the “fixed up” vertices is extended to a
quadrilateral to cover the remaining explosion map area, which is rendered into the explosion map with the profile
triangle’s identifier. It is enough to extend these vertices just beyond the boundary of the explosion map before
rendering this quadrilateral.

If the reflector is a surface and is not guaranteed to have back-facing polygons, it is necessary to extend the actual
edges of the reflector until normals along the edge of the reflector fully span the space of angles in the X-Y plane.

Concave Reflectors In the case of reflectors formed from concave surfaces, the same techniques can be used
with some observations. Vertices in the original scene may not map to exactly one reflection direction and thus
their reflections cannot be approximated. Ofek and Rappoport note, however, that the motion of such vertices
appears chaotic and any of the mapped virtual vertices can be chosen as the reflected vertex.

126

Programming with OpenGL: Advanced Rendering

Eye

I-

I-
RF

R
Rn

Sphere
center

Near sphere Far sphere

Approximated reflection RIs.
Weighted average of reflections

computed from near and far explosion maps

Figure 64. Combining the Results of Near and Far Explosion Map Evaluation

127

Programming with OpenGL: Advanced Rendering

Reflectors of Mixed Convexity Reflective surfaces may have to be decomposed into surfaces that are either
concave or convex, and not both. It is enough, however, to decompose into reflectors whose reflection directions
do not map into more than one location in the explosion map.

Conclusions and Issues Surfaces used in this algorithm must be tessellated sufficiently so that straight edges in
the non-reflected scene form convincing curved reflections in the reflector. This may mean having to use some
kind of hierarchical tessellation and error bounding or pre-tessellating the surface. The reflected objects have to
be tessellated so that straight edges curve appropriately, but reflecting objects also must be tessellated so that the
barycentric interpolation computed from the explosion map provides visually acceptable reflections.

On the other hand, because the existence of the reflected image may be enough to add the desired illusion of depth
and location cuing, virtual objects typically can be rendered with less detail than the original objects, allowing
both lower levels of detail and lower quality shading.

Both the texture mapping and stencil techniques discussed above can be used with this technique to mask away
the portions of the reflected scene that are not actually visible.

11.1.4 Refraction

Refractions can be rendered with techniques similar to those presented for reflections. For example, with planar
refractors, rather than reflecting the original scene about the mirror plane, translate and rotate the original scene to
match the refracted viewpoint.

Refractions may be rendered using the same stencil masking and texture projection techniques described for
reflections.

Refractions from a curved object can be rendered using an extension of the explosion map technique shown above,
in which refraction directions are mapped to a 2D space instead of reflection directions.

Light rays converge through some curved refractors and diverge through others. Refractors which exhibit both be-
haviors must be partitioned into separate objects in the same way that concave and convex refractors are partitioned
as discussed in Section 11.1.3.

11.1.5 Further Realism

Interreflections Either the stencil technique or the texture mapping technique may be used to model scenes with
interreflections. Each algorithm uses additional passes for each “bounce” that the light takes. The application will
need to determine the maximum number of interreflections to be rendered.

When using the stencil technique, it is necessary to rearrange the stencil operations so that the reflected scene
images are masked directly by the stencil buffer. Render the reflections with the deepest recursion first. Concate-
nate the reflection transformations for each reflection polygon involved in an interreflection. Render each reflected
image as follows:

1. Clear the stencil buffer.

2. Set the stencil operation to increment stencil values where pixels are rendered.

3. Render each reflector involved in the interreflection into the stencil buffer.

4. Set the stencil test to pass where the stencil value equals the number of reflections.

5. Apply planar reflection transformation overall, or apply curved reflection transformation per-vertex

6. Draw the reflected scene

7. Draw the reflector, blending as desired.

128

Programming with OpenGL: Advanced Rendering

The choice of the initial color applied to reflectors in the scene can have an effect on the number of passes required.
The initial reflection value will generally appear as a smaller part of the picture on each of the passes. A good
initial guess is to set the initial color to the average color of the scene.

When using the texture technique, render with the deepest reflections first as above. The texture algorithm is more
simple in that the only operations for each reflection are to apply the concatenated reflection transformations, copy
the image to texture memory, and apply that image to the reflector during the next pass.

In an interactive application with moving objects or a moving viewpoint, it may be acceptable to use the reflection
texture with the contents from the previous frame. This use of previous results is one of the advantages of the
texture mapping technique.

Blurry Reflection Blurry reflectors, such as partially polished metals, can be approximated by accumulating
several reflected images for which the reflected surface normal is perturbed according to the reflected ray distribu-
tion. This distribution can be sampled from a BRDF, for example.

For planar surfaces, the eyepoint is perturbed to simulate the perturbed normal. In this way, objects close to the
mirror remain sharp while objects farther away are more blurred, which is what the viewer expects.

Similar techniques may be applied for curved reflectors and refractions.

Care must be taken to render enough samples to reduce visible error, otherwise reflected images tend to appear
only like several images overlaid. The accumulation buffer may be used to average several reflection images
before copying to texture in the texturing algorithm presented above.

11.2 Environment Mapping

The discussion of reflections so far is solidly based on the principles of geometric optics. Virtual reflected objects
are rendered from virtual eye positions and then, through stenciling or reusing the virtual image as a texture, these
virtual reflected objects are further transformed to appear as reflections on “real” reflective objects within the
scene.

There is another approach however. Instead of rendering virtual versions of objects to appear as reflections on
reflective surfaces, we can encode the complete panoramic environment surrounding a reflective object in a texture
and then look up into the texture based on texture coordinates that are parameterized by the reflection vector as it
varies across the reflective surface.

This technique is known as environment mapping and was first proposed by Blinn and Newell [11]. Unlike
geometric reflection techniques that render reflected virtual objects to appear as reflections within the actual scene,
an environment map may have nothing to do with the actual surroundings of the object. Indeed, a common use of
environment mapping is interactively rendering an object free-floating against an empty black background. The
point of applying an environment map to such an object is not to give a true sense of the object’s surroundings
(it has none). Instead, the view-dependent nature of the (fake) reflected environment merely helps highlight the
object’s surface curvature.

Additionally, the environment map image can be blurred to simulate the appearance of a dull, less shiny surface.
An environment map may encode just the light from emissive light sources (instead of the less bright light reflected
from non-emissive objects in the environment). This is the basis for the textured phong highlight technique
described in Section 10.1.1.

At an abstract level, what an environment map supplies is a fast way to determine the incident irradiance in any
direction at a particular fixed point in space. Given a direction, the environment map tells us the irradiance in that
direction. Typically, the direction used for querying an environment is the reflection vector on a surface. Using
a reflection vector to access an environment map accounts for the illumination due to perfect specular reflection
[76].

129

Programming with OpenGL: Advanced Rendering

An environment map is accessed solely based on a 3D orientation. This has important ramifications for the use of
environment maps and is fundamental to most of the limitations of environment mapping. An orientation in 3D
space ultimately has two degrees of freedom. For example, you can express a 3D orientation as some number of
degree of latitude and and some other number of degrees of longitude. As will be seen, the actual parameterization
of a 3D orientation into two degrees of freedom varies depending on the particular details of different environment
mapping techniques.

The crucial observation is that given the two degrees of freedom used to define a 3D orientation, we can use 2D
texture mapping as the basis for implementing environment mapping. By encoding an environment map as a 2D
texture, OpenGL applications can use conventional 2D texturing hardware to accelerate environment mapping and
render convincing reflective objects at very interactive rates.

The Inherent Limitations of Environment Mapping It is important to keep in mind the limitations of this
approach. The environment map is accessed solely based on a 3D orientation. This would imply that different
positions within the environment receive exactly identical incoming irradiance from the environment. Obviously,
that’s not at all true in general. The incident illumination for a point above a table is almost certainly going to
be different than the incident illumination for a point underneath the table. Still the assumption is reasonable if
the two positions are relatively near each other. What “near” means depends on the environment. In the case of
the table, “near” certainly implies that the two points are close to each other but also that both should be on the
same side of the table. However if the environment is the void of interstellar space, “near” could mean hundreds
of miles away.

When using an environment map to render an object, we assume that the environment map is relatively position
independent with respect to the object being rendering. This simply means, for example, that when we use a
single environment map to render a shiny metallic teapot, we are assuming that the “environments” of all the
points making up the teapot are all approximately the same. For convex objects such as a sphere that is relatively
distant from the other objects making up the sphere’s environment, this is a very reasonable assumption. For a
non-convex object such as a shiny torus, the assumption is not very good because the torus, being non-convex, can
reflect itself. Such inter-reflections are position dependent and therefore can not be captured by an environment
map.

Even in a case such as a torus that has the opportunity for inter-reflections, we often still use environment mapping.
The object’s shiny surface simply will not reflect itself. Most observers will not even notice the lack of inter-
reflections, particularly in the context of an animated scene. Environment mapping is often convincing even when
applied in situations that, technically, are not well suited to the technique. The simple fact is that human observers
are typically easily impressed by shiny rendered objects (they are a lot like raccoons in this respect) and are very
trusting in the authenticity of reflections, particularly on complex curved surfaces.

Keep in mind that the environment of an object is a complete 360 degree panorama. This leads a problem when
you try to encode the environment as a 2D texture. The implicit topology of OpenGL’s 2D texturing functionality
is that of an infinite plane with texture coordinates simply interpolated between vertices using (ideally) barycentric
coordinates. Anyone versed in planar and spherical geometry understands the sort of problems this mismatch of
topology creates.

Before we can use OpenGL texturing for environment mapping, we must first decide on a parameterization of
the environment that works given the way OpenGL interpolates texture coordinates. Multiple parameterizations
are possible. Blinn and Newell originally described a cylindrical parameterization indexed by polar coordinates.
Unfortunately, 2D texture coordinates parameterized as an abscissa and polar angle are not interpolated correctly
by conventional texturing hardware as supported by OpenGL. Figure 65 demonstrates this point.

Three common environment map parameterizations are sphere mapping, dual paraboloid mapping, and cube map-
ping. Each will be described in turn. Each parameterization has different advantages and disadvantages.

You can use environment maps to represent any effect that depends only upon a 3D orientation. These effects
include specular and directional diffuse reflection, refraction, and Phong lighting. Several of these effects are

130

Programming with OpenGL: Advanced Rendering

90o

0o

-90o

180o 270o 360o90o0o

90o

0o

-90o

180o 270o 360o90o0o

Figure 65. Problems with Cylindrical Environment Mapping. A triangle that covers a pole does not cover the
pole when interpolated using polar coordinates and a cylindrical environment map encoded as a conventional 2D
texture. Likewise, a triangle that crosses the line of zero degrees longitude does not cross the line as expected when
2D textured with OpenGL.

discussed in the context of OpenGL’s sphere mapping capability, but they are applicable to other parameterizations
as well.

11.2.1 Sphere Mapping

OpenGL has built in support for an environment mapping parameterization know as sphere mapping. Sphere
mapping is a type of environment mapping in which the irradiance image is equivalent to that which would be
seen in a perfectly reflective hemisphere when viewed using an orthographic projection [76]. This concept is
illustrated in Figure 66. The sphere map is computed in the viewing plane. The width and height of the plane are
equal to the diameter of the sphere. Rays fired using the orthographic projection are shown in blue (dark gray). In
the center of the sphere, the ray reflects back to the viewer. Along the edges of the sphere, the rays are tangent and
go behind the sphere.

Note that since the sphere map computes the irradiance at a single point, the sphere is thought of as infinitely
small. In effect, you take the limit as the size of the sphere approaches zero. Note that a ray cast at the center of
the sphere is bounced directly back at the viewer. Also note that all of the rays along the silhouette edge of the
sphere will map to the same point directly behind the sphere in the environment.

OpenGL provides a texture coordinate generation mode to generate and texture coordinates at vertices based
on the current normal and the direction to the eye point. The generated coordinates are then used to index a sphere
map image which has been bound as a texture.

The Mathematics of Sphere Mapping The vector from the eye point to the vertex is denoted as , normalized
to . Since the computation is performed in eye coordinates, the eye is located at the origin and is equal to
the location of the vertex in eye-space. The current normal is transformed to eye coordinates by the inverse
transpose of the modelview matrix and is normalized, becoming . The reflected vector can be computed as:

(7)

Define:

131

Programming with OpenGL: Advanced Rendering

Reflected ray

Incident ray

Refective sphere

V
ie

w
in

g
 p

la
n

e

Normal

Figure 66. Creating a Sphere Map

u

u
u

r

r

r

n

n

n

Viewer
(0,0,0)

Reflective
polygon

Figure 67. Sphere Map Coordinate Generation

132

Programming with OpenGL: Advanced Rendering

Then the texture coordinates are calculated as:

(8)

(9)

This computation happens internally to OpenGL in the texture coordinate generation step. The math is performed
for each vertex of a primitive as shown in Figure 67.

The above equations look intimidating, but they are not as mystifying as they first appear. Equation 7 is the stan-
dard equation for computing the reflection vector given a surface normal and incident vector. Most introductory
graphics textbooks have a short proof and a good explanation of this equation.9

Because and are normalized, is normalized as well. You can think of as a 3D point on the unit sphere.
Our task is to make this 3D point into a 2D texture coordinate. Reducing to two dimensions is accomplished by
projecting onto the unit circle in the plane. This is the reason for dividing by .

Because we know is normalized, the result of and must be within the range . But to index
into a 2D texture map, we need coordinates in the range. In Equations 8 and 9, the scale by and bias by
serve to map values in the range the to the range .

When constructing sphere maps, the reverse mapping from to is often needed. The reverse mapping is:

The image in a sphere map can be thought of as a circle of radius centered at . Plugging into the
reverse mapping equations above results in a reflection vector of . OpenGL assumes the eye looks down
the negative Z axis. So the vector is reflected straight back at the eye. If we think of a sphere map as what
we see when looking directly at a chrome sphere, then dead in the center of the sphere we expect to see our own
reflection.

Try plugging coordinates on the edge of the sphere map’s circle such as and into the reverse
mapping equations. For any point on the circle edge, the result is always . Again, if we think of a sphere
map as what we see when looking at a chrome sphere, the silhouette edge of the sphere is seen as an extreme
grazing reflection of whatever is directly behind the sphere. If this does not make sense, look back at Figure 66 to
convince yourself of this fact. This means that every point on the circle’s edge of a properly generated sphere map
should the same color.

Finally try plugging coordinates for points outside the sphere map’s circle into the reverse mapping equa-
tions. Try points such as and . The operand of the square root in the equations for both and
become negative. This should not be too surprising because properly normalized reflection vectors are guaranteed
to fall within the sphere map’s circle.

Using a Sphere Map To use sphere mapping in OpenGL, the following steps are performed:

1. Bind the texture containing the sphere map.

2. Set sphere mapping texture coordinate generation:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);

9Many texts [27, 28, 82] present this reflection vector formula with a sign reversed from the form shown in Equation 7. It is the still the
same fundamental formula; the difference is simply one of convention. The OpenGL vector points from the eye to the surface vertex (i.e.,
an eye-space position), while many texts present the formula instead considering a light vector pointing from the surface to a light.

133

Programming with OpenGL: Advanced Rendering

Figure 68. Reflection Map Created Using a Reflective Sphere

3. Enable texture coordinate generation and 2D texturing:

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_2D);

4. Draw the object, providing correct normals on a per-face or per-vertex basis.

Generating a Sphere Map for Specular Reflection There are several ways to generate a specular sphere map.
Two physical approaches are worth mentioning. In the first approach, the user literally takes a picture of a reflective
sphere. Figure 68 was generated in this fashion. This technique is problematic because the camera is visible in
the sphere map. In the second approach, a fisheye lens approximates the sphere mapping. The problem with this
technique is that no fisheye lens can provide the field of view required for a correct result.

A sphere map can also be generated programmatically. Consider the circle of the environment map within the
square texture to be a unit circle. For each point in the unit circle, you can compute a point on the sphere:

Since you are dealing with a unit sphere, the normal at is equal to . Given the vector toward the eye point,
you can compute the reflected vector :

(10)

In OpenGL, it is assumed that the eye point is looking down the negative axis, so . Equation 10
reduces to:

The assumption that the means that OpenGL’s sphere mapping is actually not view-independent.
The implications of this assumption will be discussed below with the other limitations of the sphere mapping
technique.

134

Programming with OpenGL: Advanced Rendering

The rays are intersected with the environment to determine the irradiance. A simple implementation of the algo-
rithm is shown in the following pseudocode:

void gen_sphere_map(GLsizei width, GLsizei height, GLfloat pos[3],
GLfloat (*tex)[3])

{
GLfloat ray[3], color[3], p[3], s, t;
int i, j;

for (j = 0; j < height; j++) {
t = 2.0 * ((float)j / (float)(height-1) - .5);
for (i = 0; i < width; i++) {

s = 2.0 * ((float)i / (float)(width - 1) - .5);

if (s*s + t*t > 1.0) continue;

/* compute the point on the sphere (aka the normal) */
p[0] = s;
p[1] = t;
p[2] = sqrt(1.0 - s*s - t*t);

/* compute reflected ray */
ray[0] = p[0] * p[2] * 2;
ray[2] = p[1] * p[2] * 2;
ray[3] = p[2] * p[2] * 2 - 1;
fire_ray(pos, ray, tex[j*width + i]);

}
}

}

Note that you could easily optimize the routine such that the bounds on i in the inner for loop were intelligently
set based on j.

The most interesting part of the computation has been encapsulated inside the fire ray routine. fire ray
performs the ray/environment intersection given the starting point and the direction of the ray. Using the ray, it
computes the color and puts the results into its third parameter (which is the appropriate location in the texture
map).

A naive implementation such as the one above will lead to sampling artifacts. In reality, a texel in the image
projects to a volume which should be intersected with the environment. To filter, you should choose several rays
in this volume and combine the results.

The intersection and color computation can be done in several ways. You can use a model of the scene and a ray
tracing package. Alternately, you can represent the scene as six images which form the faces of a cube centered
around the point for which the sphere map is being created. The images represent what a camera with a field of
view and a focal point at the center of the square would see in the given direction. The six images may be generated
with OpenGL or a rendering package, or can be captured with a camera. Figure 69 shows six images which were
acquired using a camera. Once the six images have been acquired, the rays from the point are intersected with the
cube to provide the sphere map texel values. Figure 70 shows the map generated from the cube faces in Figure 69.

Warping a Sphere Map from Cube Views Yet another approach uses OpenGL’s texture mapping capabilities
to create the sphere map. Unlike a ray casting approach, the texture warping approach to constructing sphere
maps is easily accelerated by graphics hardware. The algorithm renders six cube faces as previously described
and copies the results into six respective texture objects using glCopyTexImage2D. Be sure to align the first cube
face view frustum to directly face the viewer. Then the other five cube faces should be aligned with respect to

135

Programming with OpenGL: Advanced Rendering

Figure 69. Image Cube Faces Captured at Cafe Verona in Palo Alto, California

136

Programming with OpenGL: Advanced Rendering

Figure 70. Sphere Map Generated from Image Cube Faces in Figure 69

the first. This reliance on the direction to the viewer is because a sphere map is view dependent which will be
explained fully later.

Now, a textured mesh can be drawn to form the actual sphere map. Each one of the six faces becomes a subregion
of the mesh. Figure 71 shows the relationship of the submesh for each cube face view to the entire sphere map
mesh. The finer the tessellation of the mesh is, the better the warping. In practice, the mesh does not have to be
very fine for constructing usable sphere maps.

To render the mesh, first map locations on the cube view faces to unnormalized reflections vectors. Think of each
location on a cube view face as a 2D coordinate where both and range between . For example,
consider a particular location on the plane face (assuming the front cube view face is oriented
on the plane so as to face the viewer). This location is mapped to the unnormalized reflection vector

. Normalize this vector and consider it . Then with this , compute using Equations 8
and 9.

Treat as a 2D vertex position in the range by . Scale by one half and bias by one half the
original 2D coordinate, the coordinate in our example, to map it into the standard by
texture image range. Use this remapped coordinate as a texture coordinate for the 2D vertex position. Setup an
orthographic view mapping the by coordinate range into a 128 by 128 pixel region (or whatever
resolution sphere map you want to create). Bind to the texture object containing the cube view face rendered image
for appropriate face (the plane cube view face in our example). Then using the process just described for
mapping from a cube face location to a reflection vector to a 2D coordinate, render a mesh of such coordinates,
assigning them texture coordinates as described.

The back face mesh must be handled specially. It is not a straightforward warped rectangular patch, but instead
is a mesh in the shape of a ring. You can think of the back cube view face as being pulled inside-out. In a sphere
map, the center of the back cube view face becomes a singularity around the circular edge of the sphere map.
The easiest way to render the back face mesh is as four meshes. The construction of these meshes is aided by the
reverse mapping equations. Another issue with the back face mesh is that if a simple polygonal mesh is used, the

137

Programming with OpenGL: Advanced Rendering

Front & Back
Face Sub-meshes

Left & Right
Face Sub-meshes

Top & Bottom
Face Sub-meshes

Figure 71. Meshes for Warping Six Cube Views into a Sphere Map

138

Programming with OpenGL: Advanced Rendering

polygonal edges will not for a perfect sphere. For this reason, it is useful to add an narrow “extender” mesh at the
circle’s edge that makes sure the entire circular sphere map region is rendered.

The meshes required are static for a fixed tessellation. You can compute the meshes once and then simply re-
render the meshes for different sets of cube views. Precomputing the meshes helps reduce the overhead for
repeated warping of cube face views into sphere map textures.

The final step is to copy the rendered sphere map into a texture using glCopyTexImage2D. Once this is done,
you are ready to use the newly constructed sphere map.

Multipass Techniques and Interreflections Scenes containing two reflective objects may be rendered using
sphere maps created via a multipass algorithm. Begin by creating an initial sphere map for each of the reflective
objects in the scene. Choice of initial values was discussed in detail in Section 11.1.5. Then iterate over the objects,
recreating the sphere maps with the current sphere maps of the other objects applied. The following pseudocode
illustrates how this algorithm might be implemented:

do {
for (each reflective object obj with center c) {

initialize the viewpoint to look along the axis (0, 0, -1)
translate the viewpoint to c
render the view of the scene (except for obj)
save rendered image as cube1
rotate the viewer to look along (0, 0, 1)
render the view of the scene
save rendered image as cube2
rotate the viewer to look along (0, -1, 0)
render the view of the scene
save rendered image as cube3
rotate the viewer to look along (0, 1, 0)
render the view of the scene
save rendered image as cube4
rotate the viewer to look along (-1, 0, 0)
render the view of the scene
save rendered image as cube5
rotate the viewer to look along (1, 0, 0)
render the view of the scene
save rendered image as cube6
using the cube images, update the sphere map of obj

}
} while (sphere map has not converged)

Note that during the rendering of the scene, other reflective objects must have their most recent sphere maps
applied. Detection of convergence can be tricky. The simplest technique is to iterate a certain number of times
and assume the results will be good. More sophisticated approaches can look at the change in the sphere maps for
a given pass, or compute the maximum possible change given the projected area of the reflective objects.

Other Sphere Mapping Techniques Sphere mapping may be used to approximate effects other the specular
reflection. Any effect which is dependent only on the surface normal or other single vector can be approximated,
including Phong shading and refractive effects. You can use your sphere map to store the outgoing color and
intensity as a function of the normal. If you use a sphere map indexed by something other than the reflection
vector, you will need to perform your own texture coordinate computations.

When computing your specular sphere map, this color was determined by firing a ray which had been reflected
about the normal. To compute a different type of sphere map, determine the color using a different method. For

139

Programming with OpenGL: Advanced Rendering

Reasonably sampled
polygons that do not cross
behind the sphere map.

Reasonable: Intended
environment wrap through
the sphere map perimeter.

Wrong: But 2D texturing hardware
simply crosses the environment
instead of wrapping.

Figure 72. The Source of Sphere Mapping Sparkles

example, to create a Phong lighting map, you can take the dot product of the normal direction and the direction to
the light source.

Limitations of Sphere Mapping Although sphere mapping is generally convincing, it is not generally correct.
Most of the artifacts come from the fact that the sphere map is generated at a single point and then applied over a
large number of points. Objects with interreflections cannot be handled correctly. If reflected objects are close to
the reflective object, their reflections should appear differently when viewed from different points on the reflector.
Using sphere maps, this will not happen. Sphere mapping results are only correct if you assume that all the
reflective objects are infinitely far from the reflective object.

Interpolation of the texture coordinates also leads to artifacts. Texture coordinates are computed at the vertices and
linearly interpolated across the polygon. Unfortunately, the sphere map is not in a linear space, so this interpolation
is not correct. Additionally, the linear interpolation will not take into account the fact that the points at the edge of
the circle all map to the same location. Coordinates may be interpolated within the circle of the sphere map when
they should be interpolated across the boundary [98]. Figure 72 shows how this occurs.

This is responsible for an unsightly artifact that appears as random “sparkles” or “dirt” at the silhouette edge of a
sphere mapped object. As long as the sphere map center reflects directly back at the viewer and reasonable vertex
normals are supplied, the artifacts are only a problem at the silhouette or grazing edges of objects because that is
where vertex normals of a polygon are likely to cause wrapping to the other side of the sphere map. Because these
grazing polygons are small in screen space, the number of affected pixels is usually small. Still the effectively
random sparkling can be objectionable, particularly in animated scenes. Figure 73 shows a scene and a zoomed
version of the scene showing sparkles at the silhouette edge of the sphere mapped object.

The final major limitation of sphere maps is that their construction assumes that the center of the sphere map is
what reflects directly back at the viewer. Recall that in the discussion about the construction of sphere maps, both
by ray casting or by texture warping, the construction involves a particular view orientation. The sphere map

140

Programming with OpenGL: Advanced Rendering

Figure 73. Example Showing Sparkle Artifacts

Figure 74. Two Paraboliods Shown in 2D as Parabolas

image is said to be view dependent. This means unless the sphere map is regenerated for different views, the
sphere map will be incorrect.

It is possible using the six cube map views to continuously re-warp a new sphere map texture for different views. If
the environment mapped object is to reflect a dynamic environment, this continuous re-warping is required anyway.
This ends up being a major limitation for using sphere map in complex dynamic scenes with a continuously
changing viewer.

11.2.2 Dual-Paraboloid Environment Mapping

Another environment map parameterization proposed by Heidrich and Seidel [51] avoids many of the disad-
vantages of and objectionable artifacts caused by sphere mapping. The dual-paraboloid environment mapping
approach is view independent, has better sampling characteristics, and, because the singularity at the edge of the
sphere map is eliminated, there are no sparkling artifacts at glancing edges.

TheMathematics of Dual-ParaboloidMaps The principle that underlies paraboloid maps is the same principle
that underlies a parabolic lens or satellite dish. The geometry of a paraboloid can focus rays. The paraboloid used

141

Programming with OpenGL: Advanced Rendering

Figure 75. Example Dual-Paraboloid Texture Map Images

for dual-paraboloid mapping is:

Figure 74 shows how two paraboloids can focus the entire environment surrounding a point into two images.

Unlike the sphere mapping approach that the encodes the entire environment in a single texture, the dual-
paraboloid mapping scheme requires two textures to store the environment, one texture for the “front” environment
and another texture for the “back” environment. Importantly, the sense of “front” and “back” is completely inde-
pendent of the viewer orientation. Figure 75 shows an example of two paraboloid maps. Because two textures are
required, the technique must be performed in two rendering passes though this can be reduced to a single rendering
pass if multitexturing is supported.

Because the math for the paraboloid is all linear (unlike the spherical basis of the sphere map), Heidrich and
Seidel observe that OpenGL with its texture matrix can map a eye-coordinate reflection vector into a 2D texture
coordinate within a dual-paraboloid map. Construct the necessary texture matrix as follows:

where

is a matrix that scales an biases a 2D coordinate in the range to the texture image range . And where

is a projective transform that divides by the coordinate. This serves to flatten a 3D vector into 2D. And where

142

Programming with OpenGL: Advanced Rendering

is a matrix that subtracts the supplied 3D vector from an orientation vector that supplies a view direction. We
will make either or depending on whether we are mapping the front or back paraboloid
map respectively. Finally, the matrix is the inverse of the linear part of the current (affine) modelview
matrix. The matrix transforms a 3D eye-space reflection vector into an object-space version of the vector.

Using Dual-ParaboloidMaps For the rationale for these transformations, consult Heidrich and Siedel [51]. The
implication of this math is that these successive transformations can be concatenated into a single 4 by 4 projective
matrix and then installed as OpenGL’s texture matrix. Then supplying a per-vertex eye-space reflection normal
via glTexCoord3f, the 3D vector will be transformed into a 2D texture coordinate in a front or back paraboloid
map, depending on how is oriented.

An alternative to supplying the reflection vector through glTexCoord3f is using the NV reflection vector
extension’s capability to generate automatically the eye-space reflection vector for the texture coordinates.
Recall that this is the same extension used in Section 6.15 though we are generating the reflection vector instead
of the normal vector. Assuming the extension is available, here is how to generate the eye-space reflection vector
as a 3D texture coordinate:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_NV);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);

Here is how to set up OpenGL’s texture matrix given the transformation described above:

GLfloat mapMatrix[16] = {
0.5, 0, 0, 0,
0, 0.5, 0, 0,
0, 0, 1, 0,
0.5, 0.5, 0, 1

};
GLfloat projectMatrix[16] = {

1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 1,
0, 0, 0, 0

};
GLfloat diffFrontMatrix[16] = {

-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 0, -1, 1

};
GLfloat diffBackMatrix[16] = {

1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 0, 1, 1

};
GLfloat mv[16], ilmv[16];

glGetFloatv(GL_MODELVIEW_MATRIX, mv);
mv[3] = 0;

143

Programming with OpenGL: Advanced Rendering

Figure 76. The Sweet Circles of a Dual-Paraboloid Map

mv[7] = 0;
mv[11] = 0;
mv[12] = 0;
mv[13] = 0;
mv[14] = 0;
mv[15] = 1;
invert_matrix(mv, ilmv);

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMultMatrixf(mapMatrix);
glMultMatrixf(projectMatrix);
if (frontSide)

glMultMatrixf(diffFrontMatrix);
else

glMultMatrixf(diffBackMatrix);
glMultMatrixf(ilmv);

Note that each dual-paraboloid texture contains an incomplete version of the complete environment. There is

144

Programming with OpenGL: Advanced Rendering

some overlap between the two texture maps as shown in Figure 75 in the corners of each image. Notice that the
corner region in one map are distorted so that the other map has a better sampled version of the same information.
Moreover, there is some information in each map that is simply not in the other map. The information in the
center of each map is only in a single map. Figure 76 shows that each map has a centered circular region where
texels within the region are better sampled than the corresponding texels for the same reflection vector in the other
map if the corresponding texels are available in the other map at all. We call this centered circular region of each
dual-paraboloid map the sweet circle.

What remains to be done is making sure that the front dual-paraboloid map is used for pixels best sampled from the
front dual-paraboloid map and vice versa. In the projective transformation discussed above, if a reflection vector
falls within the sweet circle of one dual-paraboloid map, it will be guaranteed to fall outside the sweet circle of the
opposite map.

With OpenGL’s alpha testing capability, we can discard texels outside the sweet circle of each texture. The idea is
to encode in the alpha channel of each dual-paraboloid texture an alpha value of 1.0 if the texel is within the sweet
circle and 0.0 if the texel is outside the sweet circle. Be conservative about whether a texel is inside the circle to
avoid in cracks the transition between the two maps.

Now, we can render an object in two passes. First, bind to the front dual-paraboloid texture and use a value of
when constructing the texture matrix. Then in a second pass, bind to the back dual-paraboloid texture

and use a value of when constructing the texture matrix. During both passes, enable alpha testing to
eliminate fragments with an alpha value less than 1.0. Set up the texture environment to make the fragment’s alpha
value be the texture’s alpha value. The result is a complete dual-paraboloid mapped object.

When multitexturing is available, the two passes can be collapsed into a single multitextured rendering pass. As
described in Section 6.2, each texture unit has its independent texture matrix. We load the first texture unit to
use the front texture matrix and the second texture unit to use the back texture matrix. The first texture unit uses
a GL REPLACE texture environment while the second texture unit uses a GL BLEND texture environment. This
effect is to blend the two textures based on the alpha component of the second texture. One side benefit of the
multitextured approach is that the transition between the two dual-paraboloid map textures is harder to notice.
Even with simple alpha testing the seam is quite difficult to notice.

Advantages and Disadvantages The main advantages of the dual-paraboloid map approach compared to the
sphere map approach are better sampling of the texture environment, the elimination of sphere mapping’s sparkle
artifacts, and view-independence. The last advantage is important because it allows the viewer, environment
mapped object, and the environment to move with respect to each other without having to continuously regenerate
the dual-paraboloid map. The disadvantage of the dual-paraboloid map approach are that it requires two rendering
passes or the use of multitexturing. Also constructing the dual-paraboloid map requires warping two textures
instead of just one.

Even though they are view-independent, dynamic generation of dual-paraboloid maps is still necessary if you want
the environment to be dynamic. The same texture warping approach that is used to construct sphere maps can be
applied to generate dual-paraboloid maps though the mesh used is different. Figure 77 shows how cube map faces
are arranged within the two dual-paraboloid map texture images, and Figure 78 shows what the texture warping
mesh pattern looks like.

To help in the construction of the texture warping mesh, the dual-paraboloid mapping functions for converting a
reflection vector to the front and back 2D texture coordinates are:

front side:

back side:

145

Programming with OpenGL: Advanced Rendering

front texture back texture
alpha=1.0 inside circle,
alpha=0.0 outside circle

front back

toptop

bottom bottom

left right leftright

Figure 77. How Cube Map Faces Map to a Dual-Paraboloid Map

Figure 78. The Texture Warping Mesh for Constructing a Dual-Paraboloid Map

146

Programming with OpenGL: Advanced Rendering

The reverse mapping is:

front side:

back side:

Cheap Per-pixel Lighting One application of dual-paraboloid texture mapping deserving particular note is im-
plementing a view-independent form of textured per-pixel lighting. Two textures can encode a specular light-
ing solution as a dual-paraboloid map. Another two textures can encode a diffuse lighting solution as a dual-
paraboloid map. By indexing the specular dual-paraboloid map by the eye-space reflection vector and the diffuse
dual-paraboloid map by the eye-space normal vector, a complete specular-diffuse lighting solution is possible.

The same approach could be used with sphere mapping, but the cost of regenerating and downloading two sphere
maps for the diffuse and specular contributions whenever the view changes will undermine good performance.
Because dual-paraboloid maps are view-independent, the same dual-paraboloid maps can be used in changing
views. Additionally, the sphere map sparkling artifacts are not an issue when using dual-paraboloid maps.

You can support an unlimited number of lights through this approach with no extra cost beyond that required to
construct the dual-paraboloid maps. Directional lights are easily supported, but supporting positional requires
constructing distinct dual-paraboloid maps for localized regions of space and assuming such regions are relatively
positional independent with respect to lighting. Essentially, positional lights must be treated as directional lights
for a localized region where the dual-paraboloid maps are used. High-quality shiny specular contributions may
require increasing the resolution in the specular dual-paraboloid texture map. Modulating the texture color with
the interpolated per-vertex color provides the equivalent of fast per-vertex color material changes. Spotlights and
attenuation are not possible with this approach. Because the texture look ups into each dual-paraboloid map are
performed per-pixel, this approach is rightfully considered a per-pixel lighting method. Unlike per-vertex lighting
models, this approach can reproduce consistent specular highlights even on relatively poorly tessellated geometry.

With a single texture unit, this approach requires four textured rendering passes. After two passes to generate
the diffuse lighting contribution, use additive blending to add in the specular contribution in the third and fourth
specular passes. Modulating the diffuse lighting contribution with a surface texture requires an initial fifth render-
ing pass. Existing multitexture hardware supporting two texture units can implement this technique in two passes
and add a surface texture with a third pass. Future hardware supporting five texture units and a suitably extended
texture environment to combine all these units (the ARB multitexture base texture environment is not capable
enough) could render the entire per-pixel lighting effect including a surface texture in a single pass!

147

Programming with OpenGL: Advanced Rendering

The NV reflection vector extension provides texture coordinate generation modes for both the eye-space
reflection vector and eye-space normal vector to support this approach. Interpolating an unnormalized reflection
vector and normal vector is not ideal. In true per-pixel Phong shading [78], the eye and normal vectors are
interpolated and re-normalized per-pixel and the reflection vector is computed per-pixel.

11.2.3 Cube Environment Mapping

A third parameterization of environment mapping uses six cube face views directly as an environment map instead
of requiring a re-warping of the cube views into a sphere map or dual-paraboloid map. To support cube mapping,
the OpenGL implementation’s texturing hardware is expected to directly fetch texels from the six cube face views
loaded into texture memory. Existing OpenGL implementations do not support such a mode.

This approach is described by Voorhies and Foran [98]. Voorhies and Foran make two important observations.
First, the expensive divider required in perspective-correct texture mapping hardware can be used by cube map
texturing hardware to pre-construct the per-fragment divide necessary to project an unnormalized reflection vector
to a particular cube face. Second, an efficient hardware block is proposed to compute the reflection vector per-
pixel using linearly interpolated eye-space normal and eye-space position vectors. Unfortunately, efficient cube
mapping requires special hardware support that is not available at the time of this writing.

11.3 Impact of Complexity on Choice of Reflection Technique

Because maintainability and readability of applications is important, it may be worth considering more general
techniques like ray casting and ray tracing for providing reflections and shadows. As multiprocessor machines
slowly become more prevalent, it may be the case that a simple brute-force algorithm provides acceptable perfor-
mance without the complexity of the combination of the above techniques.

For example, an application implementing the algorithms above for curved reflectors and blurred reflections in-
cluding view-frustum culling and reducing the size of textures used approaches a prohibitive complexity level. For
small reflectors, ray tracing can achieve interactive performance with much less algorithmic complexity.

Unfortunately, there is no right answer and each developer must evaluate their tolerance for complexity, frame
rate, and quality.

11.4 Creating Shadows

Shadows are an important way to add realism to a scene. There are a number of trade-offs possible when rendering
a scene with shadows [104]. Just as with lighting, there are increasing levels of realism possible, paid for with
decreasing levels of rendering performance.

Shadows are composed of two parts, the umbra and the penumbra. The umbra is the area of a shadowed object
that is not visible from any part of the light source. The penumbra is the area of a shadowed object that can receive
some, but not all of the light. A point source light would have no penumbra, since no part of a shadowed object
can receive part of the light.

Penumbras form a transition region between the umbra and the lighted parts of the object; they vary as function of
the geometry of the light source and the shadowing object. Since shadows tend to have high contrast edges, They
are more unforgiving with respect to aliasing artifacts and other rendering errors.

Although OpenGL does not support shadows directly, there are a number of ways to implement them with the
library. They vary in difficulty to implement, and quality of results. The quality varies as a function of two
parameters. The complexity of the shadowing object, and the complexity of the scene that is being shadowed.

148

Programming with OpenGL: Advanced Rendering

11.4.1 Projection Shadows

An easy-to-implement type of shadow can be created using projection transforms [96, 10]. An object is simply
projected onto a plane, then rendered as a separate primitive. Computing the shadow involves applying a ortho-
graphic or perspective projection matrix to the modelview transform, then rendering the projected object in the
desired shadow color.

Here is the sequence needed to render an object that has a shadow cast from a directional light on the axis down
onto the , plane:

1. Render the scene, including the shadowing object in the usual way.

2. Set the modelview matrix to identity, then call glScalef(1.f, 0.f, 1.f).

3. Make the rest of the transformation calls necessary to position and orient the shadowing object.

4. Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it into the object’s shadow. This simple
example can be expanded by applying additional transforms before the glScalef call to position the shadow onto
the appropriate flat object. Applying this shadow is similar to decaling a polygon with another coplanar one. Depth
buffering aliasing must be taken into account. To avoid depth aliasing problems, the shadow can be slightly offset
from the base polygon using polygon offset, the depth test can be disabled, or the stencil buffer can be used to
ensure correct shadow decaling. The best approach is probably depth buffering with polygon offset. This way the
depth buffering will minimize the amount of clipping you will have to do to the shadow.

The direction of the light source can be altered by applying a shear transform after the glScalef call. This
technique is not limited to directional light sources. A point source can be represented by adding a perspective
transform to the sequence.

Although you can construct an arbitrary shadow from a sequence of transforms, it might be easier to just construct
a projection matrix directly. The function below takes an arbitrary plane, defined as a plane equation in

form, and a light position in homogeneous coordinates. If the light is directional, the value
should be 0. The function concatenates the shadow matrix with the current matrix.

static void
myShadowMatrix(float ground[4], float light[4])
{

float dot;
float shadowMat[4][4];

dot = ground[0] * light[0] +
ground[1] * light[1] +
ground[2] * light[2] +
ground[3] * light[3];

shadowMat[0][0] = dot - light[0] * ground[0];
shadowMat[1][0] = 0.0 - light[0] * ground[1];
shadowMat[2][0] = 0.0 - light[0] * ground[2];
shadowMat[3][0] = 0.0 - light[0] * ground[3];

shadowMat[0][1] = 0.0 - light[1] * ground[0];
shadowMat[1][1] = dot - light[1] * ground[1];
shadowMat[2][1] = 0.0 - light[1] * ground[2];

149

Programming with OpenGL: Advanced Rendering

shadowMat[3][1] = 0.0 - light[1] * ground[3];

shadowMat[0][2] = 0.0 - light[2] * ground[0];
shadowMat[1][2] = 0.0 - light[2] * ground[1];
shadowMat[2][2] = dot - light[2] * ground[2];
shadowMat[3][2] = 0.0 - light[2] * ground[3];

shadowMat[0][3] = 0.0 - light[3] * ground[0];
shadowMat[1][3] = 0.0 - light[3] * ground[1];
shadowMat[2][3] = 0.0 - light[3] * ground[2];
shadowMat[3][3] = dot - light[3] * ground[3];

glMultMatrixf((const GLfloat*)shadowMat);
}

Projection Shadow Trade-offs This method of shadow volume is limited in a number of ways. First, it is very
difficult to use to shadow onto anything other than flat surfaces. Although you could project onto a polygonal
surface, by carefully casting the shadow onto the plane of each polygon face, you would then have to clip the
result to the polygon’s boundaries. Sometimes depth buffering can do the clipping for you; casting a shadow to
the corner of a room composed of just a few perpendicular polygons is feasible with this method.

The other problem with projection shadows is controlling the shadow’s color. Since the shadow is a squashed
version of the shadowing object, not the polygon being shadowed, there are limits to how well you can control
the shadow’s color. Since the normals have been squashed by the projection operation, trying to properly light the
shadow is impossible. A shadowed polygon with an interpolated color won’t shadow correctly either, since the
shadow is a copy of the shadowing object.

11.4.2 Shadow Volumes

This technique treats the shadows cast by objects as polygonal volumes. The stencil buffer is used to find the
intersection between the polygons in the scene and the shadow volume [20, 8, 49].

The shadow volume is constructed from rays cast from the light source, intersecting the vertices of the shadowing
object, then continuing outside the scene. Defined in this way, the shadow volumes are semi-infinite pyramids,
but the same results can be obtained by truncating the base of the shadow volume beyond any object that might
be shadowed by it. This gives you a polygonal surface, whose interior volume contains shadowed objects or parts
of shadowed objects. The polygons of the shadow volume are defined so that their front faces point out from the
shadow volume itself.

The stencil buffer is used to compute which parts of the objects in the scene are in the shadow volume. It uses
a non-zero winding rule technique. For every pixel in the scene, the stencil value is incremented as it crosses a
shadow boundary going into the shadow volume, and decrements as it crosses a boundary going out. The stencil
operations are set so this increment and decrement only happens when the depth test passes. As a result, pixels in
the scene with non-zero stencil values identify the parts of an object in shadow.

Since the shadow volume shape is determined by the vertices of the shadowing object, it’s possible to construct
a complex shadow volume shape. Since the stencil operations will not wrap past zero, it’s important to structure
the algorithm so that the stencil values are never decremented past zero, or information will be lost. This problem
can be avoided by rendering all the polygons that will increment the stencil count first (i.e., the front facing ones),
then rendering the back facing ones.

Another issue with counting is the position of the eye with respect to the shadow volume. If the eye is inside a
shadow volume, the count of objects outside the shadow volume will be , not zero. This problem is discussed
in more detail in Section 11.4. The algorithm takes this case into account by initializing the stencil buffer to 1 if
the eye is inside the shadow volume.

150

Programming with OpenGL: Advanced Rendering

Light

Eye

Shadowing
object

Shadowed
object

Shadow volume

Figure 79. Shadow Volume

Here’s the algorithm for a single shadow and light source:

1. The color buffer and depth buffer are enabled for writing, and depth testing is enabled.

2. Set attributes for drawing in shadow. Turn off the light source.

3. Render the entire scene.

4. Compute the polygons enclosing the shadow volume.

5. Disable the color and depth buffer for writing, but leave the depth test enabled.

6. Clear the stencil buffer to 0 if the eye is outside the shadow volume, or 1 if inside.

7. Set the stencil function to always pass.

8. Set the stencil operations to increment if the depth test passes.

9. Turn on back face culling.

10. Render the shadow volume polygons.

11. Set the stencil operations to decrement if the depth test passes.

12. Turn on front face culling.

13. Render the shadow volume polygons.

14. Set the stencil function to test for equality to 0.

15. Set the stencil operations to do nothing.

16. Turn on the light source.

151

Programming with OpenGL: Advanced Rendering

17. Render the entire scene.

When the entire scene is rendered the second time, only pixels that have a stencil value equal to zero are updated.
Since the stencil values were only changed when the depth test passes, this value represents how many times
the pixel’s projection passed into the shadow volume minus the number of times it passed out of the shadow
volume before striking the closest object in the scene (after that the depth test will fail). If the shadow boundary
was crossed an even number of times, the pixel projection hit an object that was outside the shadow volume.
The pixels outside the shadow volume can therefore “see” the light, which is why it is turned on for the second
rendering pass.

For a complicated shadowing object, it make sense to find its silhouette vertices, and use only these for calculating
the shadow volume. These vertices can be found by looking for any polygon edges that either (1) surround a
shadowing object composed of a single polygon, or (2) is shared by two polygons, one which is facing towards
the light source, one which is facing away. You can determine which direction the polygons are facing by taking
a dot product of the polygon’s facet normal with the direction of the light source, or by a combination of selection
and front/back face culling

Multiple Light Sources The algorithm can be extended to handle multiple light sources. For each light source,
repeat the second pass of the algorithm, clearing the stencil buffer to “zero”, computing the shadow volume
polygons, and rendering them to update the stencil buffer. Instead of replacing the pixel values of the unshadowed
scenes, choose the appropriate blending function and add that light’s contribution to the scene for each light. If
more color accuracy is desired, use the accumulation buffer.

The accumulation buffer can also be used with this algorithm to create soft shadows. Jitter the light source position
and repeat the steps described above for multiple light sources.

Shadow Volume Trade-offs Shadow volumes can be very efficient if the shadowing object is simple. Difficul-
ties occur when the shadowing object is a complex shape, making it difficult to compute a shadow volume. Ideally,
the shadow volume should be generated from the vertices along the silhouette of the object, as seen from the light.
This is not a trivial problem for complex shadowing objects.

Since the stencil count for objects in shadow depends on whether the eye point is in the shadow or not, making the
algorithm independent of eye position is more difficult. One solution is to intersect the shadow volume with the
view frustum, and use the result as the shadow volume. This can be a non-trivial CSG operation.

In certain pathological cases, the shape of the shadow volume may cause a stencil value underflow even if you
render the front facing shadow polygons first. To avoid this problem, you can choose a “zero” value in the middle
of the stencil values representable range. For an 8 bit stencil buffer, you could choose 128 as the “zero” value. The
algorithm would be modified to initialize and test for this value instead of zero. The “zero” should be initialized
to “zero” + 1 if the eye is inside the shadow volume.

Shadow volumes will test your polygon renderer’s handling of adjacent polygons. If there are any rendering
problems, such as “double hits”, the stencil count can get messed up, leading to grossly incorrect shadows.

11.4.3 Shadow Maps

Shadow maps use the depth buffer and projective texture mapping to create a screen space method for shadowing
objects [81, 89]. Its performance is not directly dependent on the complexity of the shadowing object.

The scene is transformed so that the eye point is at the light source. The objects in the scene are rendered, updating
the depth buffer. The depth buffer is read back, then written into a texture map. This texture is mapped onto the
primitives in the original scene, as viewed from the eye point, using the texture transformation matrix, and eye
space texture coordinate generation. The value of the texture’s texel value, the texture’s “intensity”, is compared
against the texture coordinate’s value at each pixel. This comparison is used to determine whether the pixel is

152

Programming with OpenGL: Advanced Rendering

shadowed from the light source. If the value of the texture coordinate is greater than texel value, the object was
in shadow. If not, it was lit by the light in question.

This procedure works because the depth buffer records the distances from the light to every object in the scene,
creating a shadow map. The smaller the value, the closer the object is to the light. The transform and texture
coordinate generation is chosen so that , , and locations of objects in the scene map to the and coordinates
of the proper texels in the shadow texture map, and to values corresponding to the distance from the light source.
Note that the values and texel values must be scaled so that comparisons between them are meaningful.

Both values measure the distance from an object to the light. The texel value is the distance between the light and
the first object encountered along that texel’s path. If the distance is greater than the texel value, this means that
there is an object closer to the light than this one. Otherwise, there is nothing closer to the light than this object,
so it is illuminated by the light source. Think of it as a depth test done from the light’s point of view.

Shadow maps can almost be done with the OpenGL 1.1 implementation. However, the ability to compare the tex-
ture’s r component against the corresponding texel value is missing. There is an OpenGL extension, SGIX shadow,
that performs the comparison. As each texel is compared, the results set the fragment’s alpha value to 0 or 1. The
extension can be described as using the shadow texture value test to mask out shadowed areas using alpha values.

Shadow Map Trade-offs Shadow maps have an advantage, being an image space technique, that they can be
used to shadow any object that can be rendered. You do not have to find the silhouette edge of the shadowing
object, or clip the object being shadowed. This is similar to the argument made for depth buffering vs. an object-
based hidden surface removal technique, such as depth sort.

The same image space drawbacks are also true. Since the shadow map is point sampled, then mapped onto objects
from an entirely different point of view, aliasing artifacts are a problem. When the texture is mapped, the shape of
the original shadow texel does not necessarily map cleanly to the pixel. Two major types of artifacts result from
these problems; aliased shadow edges, and self-shadowing “shadow acne” effects.

These effects ca not be fixed by simply averaging shadow map texel values. These values encode distances. They
must be compared against r values, and generate a Boolean result. Averaging the texel values results in distance
values that are simply incorrect. What needs to be blended are the Boolean results of the and texel comparison.
The SGIX shadow extension does this, blending four adjacent comparison results to produce an alpha value. Other
techniques can be used to suppress aliasing artifacts:

1. Increase shadow map/texture spatial resolution. Silicon Graphics supports off-screen buffers on some sys-
tems, called a p-buffer, whose resolution is not tied to the window size. It can be used to create a higher
resolution shadow map.

2. Jitter the shadow texture by modifying the projection in the texture transformation matrix. The /texel
comparisons can then be averaged to smooth out shadow edges.

3. Modify the texture projection matrix so that the values are biased by a small amount. Making the values
a little smaller is equivalent to moving the objects a little closer to the light. This prevents sampling errors
from causing a curved surface to shadow itself. This biasing can also be done with polygon offset.

One more problem with shadow maps should be noted. It is difficult to use the shadow map technique to cast
shadows from a light surrounded by objects. This is because the shadow map is created by rendering the entire
scene from the light’s point of view. It’s not always possible to come up with a transform to do this, depending on
the geometric relationship between the light and the objects in the scene.

11.4.4 Soft Shadows by Jittering Lights

Most shadow techniques create a very “hard” shadow edge; surfaces in shadow, and surfaces being lit are separated
by a sharp, distinct boundary, with a large change in surface brightness. This is an accurate representation for
distant point light sources, but is unrealistic for many lighting environments.

153

Programming with OpenGL: Advanced Rendering

A brute force way to approximate the appearance of soft shadows is to use one of the shadow techniques described
above to model an area light source as a collection of point light sources. Brotman and Badler [14] used this
approach with shadow volumes to generate their soft shadows.

With an accumulation buffer, you can combine the shadowed illumination from multiple point light sources. With
enough point light source samples, the summed result is softer shadows, with a more gradual transition from lit
to unlit areas. These soft shadows are a more realistic representation of area light sources, which create shadows
consisting of an umbra (where none of the light is visible) and penumbra (where part of the light is visible).

Consider a light source that is a volume instead of merely a point. Soft shadows are created by rendering the
shadowed scene multiple times, and accumulating into the accumulation buffer. Each rendering of the scene differs
in that the OpenGL point position of the light source is moved slightly within the volume where the physical light
being modeled would be emitting energy. To reduce aliasing artifacts, it is best to reposition the light in an irregular
pattern.

Shadows from multiple, separate light sources can also be accumulated. This allows the creation of scenes con-
taining shadows with non-trivial patterns of light and dark, resulting from the light contributions of all the lights
in the scene.

11.4.5 Soft Shadows Using Textures

Heckbert and Herf describe an alternative technique for rendering soft shadows by creating a texture for each
partially shadowed polygon in the scene [47]. This texture represents the effect of the scene’s lights on the polygon.

For each shadowed polygon, an image is rendered which represents the contribution of each light source for
each shadowed polygon, and that image is used as a texture in the final scene containing the shadowed polygon.
Shadowing polygons are projected onto the shadowed polygon from the direction of the sample point on the light
source. The accumulation buffer is used to average the results of that projection for several points (typically 16)
on the polygon representing the light source.

The algorithm finds a single quadrilateral that tightly bounds the shadowed polygon in the plane of that polygon.
The quad and the sample point on the light source are used to create a viewing frustum that projects intervening
polygons onto the shadowed polygon. Multiple shadow textures per polygon are avoided because each “lighting”
frustum shares the base quadrilateral, and so the shadowing results can all be accumulated into the same texture.

A pass is made for each sample point on each light source. The color buffer is cleared to the color of the light, and
then the projected polygons are drawn with the ambient color of the scene. The resulting image is then added into
the accumulation buffer. The final accumulation buffer result is copied into texture memory and is applied during
the final scene as the polygon’s texture.

Care must be taken to choose an image resolution for the shadow texture that looks acceptable on the final polygon.
Depth testing and texturing can be disabled to improve performance during the projection pass. It may be necessary
to save the accumulation buffer at intervals and average the results if the contribution of a shadow pass exceeds
the resolution of the accumulation buffer.

A paper describing this technique in detail and other information on shadow generation algorithms is available at
Heckbert and Herf’s web site [48].

The Heckbert and Herf method of soft shadow generation is essentially the superposition of numerous “hard”
shadows. The contributions from individual shadowing polygons are usually noticeable unless an extremely large
number of shadowing polygons are used.

Soler and Sillion [91] model the special case of a light source, shadow occluder, and shadow receiver, all in parallel
planes, with a convolution operation that results in shadow textures with fewer sampling-related artifacts. First,
the light source and shadow occluder are represented as images. Scaled versions of the images are then efficiently
convolved through the application of the Fast Fourier Transform (FFT) and its inverse to produce a soft shadow
texture. Soler and Sillion go on to apply approximations that generalize the “exact” special case of parallel objects
to more general situations. While the FFT at the heart of the technique is not readily accelerated by OpenGL, the

154

Programming with OpenGL: Advanced Rendering

technique is still very useful because of its speed for pre-computing high-quality shadow textures that can later be
used as light map textures during OpenGL rendering.

155

Programming with OpenGL: Advanced Rendering

12 Transparency

Transparent objects are common in everyday life and using them can add significant realism to generated scenes.
In this section, we describe several techniques used to render transparent objects in OpenGL.

12.1 Screen-Door Transparency

One of the simpler transparency techniques is known as screen-door transparency. Screen-door transparency uses
a bit mask to cause certain pixels not to be rasterized. The percentage of bits in the bitmask which are set to is
equivalent to the transparency of the object [27].

In OpenGL, screen-door transparency is implemented using polygon stippling. The command glPoly-
gonStipple defines a 32x32 polygon stipple pattern. When stippling is enabled (using glEn-
able(GL POLYGON STIPPLE)) the low-order and bits of the screen coordinates of each fragment are used to
index into the stipple pattern. If the corresponding bit of the stipple pattern is , the fragment is rejected. If the bit
is , rasterization continues.

Since the lookup into the stipple pattern takes place in screen space, a different pattern should be used for objects
which overlap, even if the transparency of the objects is the same. If the same stipple pattern is used, the same
pixels in the framebuffer would be drawn for each object. Of the transparent objects, only the last (or the closest,
if depth buffering is enabled) would be visible.

The biggest advantage of screen-door transparency is that the objects do not need to be sorted. Also, rasterization
may be faster on some systems using the screen-door technique than using other techniques such as alpha blending.
Since the screen-door technique operates on a per-fragment basis, the results will not look as smooth as if another
technique had been used. However, patterns that repeat on a 2x2 grid are the smoothest and a 50% transparent
“checkerboard” pattern looks quite smooth on most systems.

12.2 Alpha Blending

To draw semi-transparent geometry, the most common technique is to use alpha blending. In this technique, the
alpha value for each fragment drawn reflects the transparency of that object. (To be totally correct, the alpha value
actually represents the opacity, since an alpha value of 1.0 represents a 100% opaque surface). Each fragment is
combined with the values in the framebuffer using the blending equation:

(11)

Here, is the output color which will be written to the frame buffer. and are the source color and
alpha, which come from the fragment. is the destination color, which is the color value currently in the frame-
buffer at the location. This equation is specified using the OpenGL command glBlendFunc(GL SRC ALPHA,
GL ONE MINUS SRC ALPHA). Blending is then enabled with glEnable(GL BLEND).

Transparent primitives drawn using alpha blending should always be drawn after all opaque primitives are drawn.
Unless the transparent objects are sorted in back to front order, depth buffer updates must be disabled using
glDepthMask(GL FALSE), although depth buffer compares should remain enabled.

If the objects are not sorted and drawn in back to front order, the above blending equation produces order-
dependent rendering artifacts that can be quite objectionable. If sorting of the scene is undesirable, order de-
pendencies can be eliminated by using GL ONE for the destination factor rather than GL ONE MINUS SRC ALPHA.
This method does not look as natural, especially when transparent objects are drawn over light objects, but it
requires no sorting.

A common mistake when implementing alpha blended transparency is to assume that it requires a framebuffer
with an alpha channel. The alpha value used for blended transparency comes down the graphics pipeline with

156

Programming with OpenGL: Advanced Rendering

each fragment; the alpha values in the framebuffer (GL DST ALPHA) are not actually used, so no alpha buffer is
required.

The alpha value of the fragment can be set in several ways. If lighting is not being used, the alpha value can be set
using a 4- component color command such as glColor4f. If lighting is enabled, the fourth color component of
the diffuse reflectance coefficient of the material corresponds to the transparency of the object.

If texturing is enabled, the source of the alpha channel is controlled by the texture internal format, the texture
environment function, and the texture environment constant color. The interaction is described in more detail in
the glTexEnv man page. Many intricate effects can be implemented using alpha values from textures.

12.3 Sorting

The sorting step can be complicated. The sorting should be done in eye coordinates, so it is necessary to transform
the geometry to eye coordinates in some fashion. If transparent objects interpenetrate, the individual triangles
should be sorted and drawn from back to front. Ideally, polygons which interpenetrate should be tessellated
along their intersections, sorted, and drawn independently, but this is typically not required to get good results.
Frequently only crude or perhaps no sorting at all gives acceptable results.

If there is a single transparent object, or multiple transparent objects which do not overlap in screen space (i.e.,
each screen pixel is touched by at most one of the transparent objects), a shortcut may be taken under certain
conditions. If the objects are closed, convex, and viewed from the outside, culling may be used to draw the
backfacing polygons prior to the front facing polygons. The steps are as follows:

1. Enable culling: glEnable(GL CULL FACE).

2. Configure face culling to eliminate front facing polygons: glCullFace(FRONT).

3. Draw the object.

4. Configure face culling to eliminate back facing polygons: glCullFace(BACK).

5. Draw the object again.

6. Disable culling: glDisable(GL CULL FACE).

We assume that the vertices of the polygons of the object are arranged in a counter-clockwise direction when
the object is viewed from the outside. If necessary, we can specify that polygons oriented clockwise should be
considered front-facing with the glFrontFace command.

Drawing depth buffered opaque objects mixed with transparent objects takes somewhat more care. The usual trick
is to draw the background and opaque objects first in any order with depth testing enabled, depth buffer updates
enabled, and blending disabled. Next, the transparent objects are drawn from back to front with blending enabled,
depth testing enabled but depth buffer updates disabled so that transparent objects do not occlude each other.

12.4 Using the Alpha Function

The alpha function is used to discard fragments based upon a comparison of the fragment’s alpha value with a
reference value. The comparison function and the reference value are specified with the command glAlphaFunc.
The alpha test is enabled with glEnable(GL ALPHA TEST).

The alpha test is frequently used to draw complicated geometry using texture maps on polygons. For example, a
tree can be drawn as a picture of a tree on a single rectangle. The parts of the texture which are part of the tree have
an alpha value of ; parts of the texture which are not part of the tree have an alpha value of . This technique is
often combined with billboarding (Section 6.10), in which a rectangle is turned to perpetually face the eye point.

Like polygon stippling, the alpha function discards fragments instead of drawing them into the framebuffer. There-
fore sorting of the primitives is not necessary (unless some other mode like alpha blending is enabled). The
disadvantage is that pixels must be completely opaque or completely transparent.

157

Programming with OpenGL: Advanced Rendering

12.5 Using Multisampling

On systems which support the multisample extension (SGIS multisample), the per-fragment sample mask may
be used to change the transparency of an object. This method is basically identical to screen-door transparency
described in Section 12.1, but at a sub-pixel (fragment) level.

One technique involves GL SAMPLE ALPHA TO MASK SGIS. If transparent objects in a scene do not overlap,
GL SAMPLE ALPHA TO MASK SGIS may be used. This parameter causes the alpha of a fragment to be mapped
to a sample mask which will be bitwise ANDed with the fragment’s mask. The value of the generated sample
mask is implementation-dependent and is a function of the pixel location and the fragment’s alpha value. If two
objects were drawn at the same location with the same transparency, the sample mask would be the same and the
same samples would be touched. If two objects were drawn at the same location with different transparencies,
results may or may not be acceptable.

The simplest technique is to use the glSampleMaskSGIS command to set the value of the
GL SAMPLE MASK SGIS. This value is used to generate a temporary mask which is bitwise ANDed with
the fragment’s mask. Again, results may not be correct if transparent objects overlap.

Currently, SGIS multisample is supported by Silicon Graphics and Hewlett Packard.

158

Programming with OpenGL: Advanced Rendering

13 Image Processing

13.1 Introduction

One of the strengths of OpenGL is that it provides tools for both image processing and 3D rendering. OpenGL
is designed with the understanding that many image processing tools are useful for 3D graphics and vice versa.
For example, convolution may be used to implement depth-of-field effects. Conversely, many operations typically
thought of as image processing operations may be cast as geometric rendering and texture mapping operations.
Electronic light tables (ELTs), used in defense imaging, require image transformations which can be implemented
using OpenGL’s textured drawing capabilities. This section demonstrates how to apply the pixel transfer pipeline,
texturing, and fragment operations to the image processing problems of color manipulation, convolution, and
image warping.

13.1.1 The Pixel Transfer Pipeline

The pixel transfer pipeline is the part of OpenGL most typically thought of in image processing applications. The
pipeline is a configurable series of operations which are applied to each pixel during any command that moves
pixels between the framebuffer, host memory, and texture memory, including:

glDrawPixels

glReadPixels

glTexImage*D

glTexSubImage*D

glGetTexImage*D

glCopyPixels

glCopyTexImage*D

glCopyTexSubImage*D

These operations move image data which falls into one of the following categories:

Color index values

Color values (RGBA, luminance, luminance/alpha, red, green, ...)

Stencil buffer values

Depth values

The “pixel transfer pipeline” processes each of these categories of data differently. For image processing, opera-
tions on color data are generally the most interesting. Before any operations are applied, source data in any color
format (for example, GL LUMINANCE) and type (for example, GL UNSIGNED BYTE) is converted into floating-point
RGBA components. All color pixel transfer operations operate on images of this type and format. After the pixel
transfer operations have been applied, the image is converted to its destination type and format.

Base OpenGL defines only a few pixel transfer operations, which are controlled using the glPixelTransfer
command. The operations are:

GL INDEX SHIFT and GL INDEX OFFSET, which are applied only to color index images.

159

Programming with OpenGL: Advanced Rendering

Scale and bias values which are applied to each channel of RGBA images.

Scale and bias values which are applied to depth values.

Pixel maps, discussed in detail in Section 13.2.3.

The pixel transfer pipeline is the part of OpenGL that has grown the most through OpenGL extensions. Some of the
more interesting extensions will be discussed in this section, including the vendors who support each extension
in OpenGL 1.1 as of April 1998. Where possible, we will mention techniques to achieve equivalent results on
systems that do not support the extension.

13.1.2 Geometric Drawing and Texturing

OpenGL’s texturing capabilities are discussed in detail in Section 6. These capabilities can be put to work to
solve image processing problems. By texturing an input image onto a grid represented as geometry, we can apply
arbitrary deformations to the image. Given the textured draw rates of OpenGL implementations that accelerate
texturing in hardware, very impressive performance can often be achieved though the use of textured geometry.
Image processing applications using texturing are discussed in Section 13.4.

13.1.3 The Framebuffer and Per-Fragment Operations

Per-fragment and framebuffer operations can be used to operate on pixels of an image in parallel. Additionally,
multiple images may be combined in a variety of ways. Blending and the accumulation buffer are two areas of
interest. These features are discussed in detail in Section 8. The accumulation buffer is particularly important
since it provides several fundamental operations:

Scaling of an image by a constant:

– glAccum(GL MULT, <scale>)

– glAccum(GL LOAD, <scale>)

– glAccum(GL RETURN, <scale>)

Biasing of an image by a constant:

– glAccum(GL ADD, <scale>)

– Clear of framebuffer with color <scale>, followed by glAccum(GL LOAD, 1)

Linear combination of two images on a pixel-by-pixel basis: glAccum(GL LOAD, <scale1>) followed
by glAccum(GL ACCUM, <scale2>)

The accumulation buffer and blending are discussed in subsequent sections in terms of the image processing
operations that use them.

13.1.4 The Imaging Subset in OpenGL 1.2

Several extensions to OpenGL 1.1 are incorporated as standard commands in OpenGL 1.2 as part of the optional
imaging subset:

Color tables (SGI texture color table in 1.1)

Convolution during pixel transfer (EXT convolution)

160

Programming with OpenGL: Advanced Rendering

The color matrix (SGI color matrix)

Histogram and minmax functions (EXT histogram) during pixel transfer

The blending equation and the enumerants for constant color/alpha blending, subtractive blending
(EXT blend subtract), and blending with min and max operators (EXT blend minmax).

This group of extensions to the pixel transfer pipeline are useful to a class of applications that perform image
processing.

The imaging subset provides color table support (glColorTable) in the pixel transfer pipeline before
the convolution operation (GL COLOR TABLE), after convolution and before application of the color matrix
(GL POST CONVOLUTION COLOR TABLE), and after the color matrix (GL POST COLOR TABLE). Scale and bias are
available for each color table.

The subset provides 1D, 2D and separable convolutions (glConvolutionFilter*D and glSeparable-
Filter2D) in the pixel transfer pipeline, including scale and bias parameters.

Histogram and min and max functions are provided through glHistogram and glMinMax.

The imaging subset also provides support for glBlendEquation and glBlendColor and the
blending modes GL CONSTANT COLOR, GL ONE MINUS CONSTANT COLOR, GL CONSTANT ALPHA, and
GL ONE MINUS CONSTANT ALPHA.

If an implementation supports the imaging subset, all of the above features are supported. If the implementation
doesn’t support it, using these features will result in GL INVALID OPERATION or GL INVALID ENUM.

You can determine if an OpenGL 1.2 implementation implements the imaging subset by checking the result of
glGetString(GL EXTENSIONS) for the substring “ARB imaging”.

The imaging subset of OpenGL 1.2 is supported by the following vendors as of April, 1999:

Silicon Graphics

Hewlett Packard

Sun Microsystems, Inc.

Intergraph Computer Systems

13.1.5 Pixel Buffers

Pixel buffers (Pbuffers for short) are additional non-visible rendering buffers for an OpenGL renderer. The format
for the color buffers and the types and sizes of any associated ancillary buffers are described similarly to the way
GLX visuals are described using the GLX extension or pixel formats are described using the WGL extension. In
the GLX extension, GLX visual descriptions are superseded by a newer FBconfig description which uniformly
describes both visible and non-visible framebuffer resources.

Pbuffers are useful for computing and storing the results of intermediate rendering steps. The contents of a Pbuffer
are transferred to a visible buffer or vice-versa using the glxMakeCurrentRead command to attach separate and
distinct readable and writable buffers to the rendering context. Commands that read data from a buffer such as
glCopyPixels and glReadPixels take source data from the currently bound read buffer and commands that
generate fragments write them to the currently bound write buffer. Since Pbuffers may have ancillary buffers, it
is possible for Pbuffers to store copies of the color, depth, and stencil buffers and efficiently transfer them back to
the visible buffer and associated ancillary buffers.

Pixel buffers and glxMakeCurrentRead were originally implemented as the SGI make current read,
SGIX fbconfig, and SGIX pbuffer GLX extensions and were added to the GLX standard as part of the GLX
1.3 specification. Pbuffers and MakeCurrentRead functionality are available on the Windows platforms on im-
plementations that support the WGL EXT make current read and WGL EXT pbuffer extensions. At the time of
writing these extensions are supported by Intergraph and Silicon Graphics.

161

Programming with OpenGL: Advanced Rendering

13.2 Colors and Color Spaces

This section considers ways to modify the pixels of an image on a local basis. That is, each output pixel will be a
function of a single corresponding input pixel. Convolution, a non-local operation, will be considered in the next
section.

13.2.1 The Accumulation Buffer: Interpolation and Extrapolation

Haeberli and Voorhies [40] have suggested several interesting image processing techniques using linear interpola-
tion and extrapolation. Each technique is stated in terms of the formula:

(12)

This equation is evaluated on a per-pixel basis. and are the input images, is the output image, and is
the blending factor. If is between and , the equations describe a linear interpolation. If is allowed to range
outside , the result is extrapolation [40].

In the limited case where , these equations may be implemented using the accumulation buffer via the
following steps:

1. Draw into the color buffer.

2. Load , scaling by (glAccum(GL LOAD, (1-x))).

3. Draw into the color buffer.

4. Accumulate , scaling by (glAccum(GL ACCUM,x)).

5. Return the results (glAccum(GL RETURN, 1)).

It is assumed that and are between and . Since the accumulation buffer can only store values in the
range , for the case or , the equation must be implemented in a different way. Given the value

, you can modify equation 12 and derive a list of accumulation buffer operations to perform the operation. Define
a scale factor such that:

Equation 12 becomes:

and the list of steps becomes:

1. Compute .

2. Draw into the color buffer.

3. Load , scaling by (glAccum(GL LOAD, (1-x)/s)).

4. Draw into the color buffer.

5. Accumulate , scaling by (glAccum(GL ACCUM, x/s)).

6. Return the results, scaling by (glAccum(GL RETURN, s)).

The techniques suggested by Haeberli and Voorhies use a degenerate image as and an appropriate value of
to move toward or away from that image. To increase brightness, is set to a black image and . To

change contrast, is set to a gray image of the average luminance value of . Decreasing (toward the gray
image) decreases contrast; increasing increases contrast. Saturation may be varied using a luminance version of

as . (For information on converting RGB images to luminance, see Section 13.2.4.) Sharpening may be
accomplished by setting to a blurred version of [40].

162

Programming with OpenGL: Advanced Rendering

13.2.2 Pixel Scale and Bias Operations

Scale and bias operations can be used to adjust the colors of images. Also, they can be used to select and expand
a small range of values in the input image. Scales and biases are applied at several locations in the pixel transfer
pipeline. In general, scales and biases are controlled with eight floating point values (a scale and a bias for each
channel).

The first scale and bias in the pixel transfer pipeline is part of base OpenGL and is specified withglPixelTrans-
fer(<pname>, <value>) where <pname> specifies one of GL RED SCALE, GL RED BIAS, GL GREEN SCALE,
GL GREEN BIAS, GL BLUE SCALE, GL BLUE BIAS, GL ALPHA SCALE, or GL ALPHA BIAS. Other sets of scale and
bias values are associated with the color matrix extension (SGI color matrix) and the convolution extension
(EXT convolution), both of which are part of the imaging subset of OpenGL 1.2.

13.2.3 Look-Up Tables

One useful tool for color modification is the look-up table. Generally speaking, a look-up table maps an input value
to a location in a table, and replaces that value with the table entry. Two look-up tables in OpenGL, pixel maps
and color tables, map components independently in one-dimensional tables. These mechanisms provide efficient
mapping for applications requiring no correspondence between the channels of the image. A third mechanism,
pixel texturing, uses the OpenGL texturing capability to perform multi-dimensional look-ups.

Pixel Maps Pixel maps are a feature of base OpenGL which allow certain look-up operations to be performed.
OpenGL maintains tables which map:

The red channel to the red channel (GL PIXEL MAP R TO R)

The green channel to the green channel (GL PIXEL MAP G TO G)

The blue channel to the blue channel (GL PIXEL MAP B TO B)

The alpha channel to the alpha channel (GL PIXEL MAP A TO A)

Color indices to color indices (GL PIXEL MAP I TO I)

Stencil indices to stencil indices (GL PIXEL MAP S TO S)

Color indices to RGBA values (GL PIXEL MAP I TO R, GL PIXEL MAP I TO G, GL PIXEL MAP I TO B, and
GL PIXEL MAP I TO A)

Tables that map color indices to RGBA values are used automatically whenever an image with a color index
format is transferred to a destination which requires an RGBA image. For example, performing a glDraw-
Pixels of a color index image to an RGBA framebuffer would result in application of the I to RGBA pixel
maps. Other tables are enabled with the commands glPixelTransfer(GL MAP COLOR, 1) and glPixel-
Transfer(GL MAP STENCIL, 1).

Pixel maps are defined using the glPixelMap command and queried using the glGetPixelMap command. De-
tails on the use of these commands may be found in [12]. The sizes of the pixel maps are not tied together in any
way. For example, the R to R pixel map does not need to be the same size as the G to G pixel map.

Each system provides a constant, GL MAX PIXEL MAP TABLE, which gives the maximum size of a pixel map which
may be defined.

163

Programming with OpenGL: Advanced Rendering

The Color Table Extension The color table extension, SGI color table, provides additional look-up tables
in the OpenGL pixel transfer pipeline. Although the capabilities of color tables and pixel maps are similar, the
semantics are different.

The color table extension defines the following look-up tables:

“First” color table (GL COLOR TABLE SGI)

Post convolution color table (GL POST CONVOLUTION COLOR TABLE SGI)

Post color matrix color table (GL POST COLOR MATRIX COLOR TABLE SGI)

Each table is independently enabled and disabled using the glEnable and glDisable commands. One, two,
or all three of the tables may be applied during the same operation. Color index images have to be converted to
RGBA images using the I to RGBA pixel maps described in the previous section before they can be passed through
the RGBA portion of the pixel transfer pipeline.

Color tables are specified using the glColorTableEXT and glCopyColorTableEXT commands and are queried
using the glGetColorTableEXT command. The man pages for these commands provide details on their use.
Note that unlike the RGBA to RGBA pixel maps, all channels of a color table are specified at the same time.

When a color table is specified, an internal format parameter (for example, GL RGB or GL LUMINANCE EXT) gives
the channels present in the table. When the color table is applied to an image (which is by definition RGBA),
channels of the image which are not present in the color table are left unmodified. In this way, color tables are
more flexible than pixel maps, which replace all channels of the input image.

Although color tables provide similar functionality to pixel maps and may prove more useful in certain circum-
stances, they do not replace pixel maps in the OpenGL pipeline and the tables managed by pixel maps and color
tables are independent. It is possible to apply both a pixel map and a color table (or color tables) during the same
pixel operation (although the utility of this is questionable). The maximum sizes and relative efficiencies of pixel
maps and color tables vary from platform to platform.

The color table extension in OpenGL 1.1 is supported by the following vendors:

Silicon Graphics

Hewlett Packard

Sun Microsystems, Inc.

The Texture Color Table Extension The texture color table extension (SGI texture color table) provides
a color table (GL TEXTURE COLOR TABLE SGI) which is applied to texels after filtering and prior to combination
with the fragment color with the texture environment operation. The procedures to define, enable, and disable the
texture color table are the same as those of the tables in SGI color table.

The texture color table extension is currently supported by the following vendors:

Silicon Graphics

Evans & Sutherland

Hewlett Packard

Sun Microsystems, Inc.

The texture color table is not part of the imaging subset of OpenGL 1.2.

164

Programming with OpenGL: Advanced Rendering

The Pixel Texture Extension The pixel texture extension (SGIX pixel texture) allows multi-dimensional
lookups through OpenGL’s texturing capability. Remember that OpenGL defines rasterization of a pixel image
during a glDrawPixels or glCopyPixels command as the generation of a fragment for each pixel in the image.
Per-fragment operations are applied, including texturing (if enabled). If the input image contained color data, each
fragment’s color comes from the color of the pixel that generated it. The texture coordinate of the fragment
is taken from the current raster position, which is generally not useful because the texture coordinate will be
constant over the pixel rectangle. The pixel texture extension allows the texture coordinates , , , and of the
fragment to be copied from the color coordinates R, G, B, and A of the pixel. With three and four dimensional
textures (EXT texture3D and SGIS texture4D), arbitrary effects can be implemented (although the texture
storage requirements to do so can be staggering).

The pixel texture extension is supported by the following vendors:

Silicon Graphics

Pixel texture is not part of the imaging subset of OpenGL 1.2.

Equivalent Functionality Without SGIX pixel texture There is no way to apply a true multidimensional
lookup to a pixel image without SGIX pixel texture. In some cases, pixel maps and color tables may be used
as a substitute. Blending, accumulation buffer operations, or scale/bias operations may be used when the function
to be applied is linear and each channel is independent. In other cases, the application will have to perform the
lookup on the host or draw a textured point for each pixel in the image.

13.2.4 The Color Matrix Extension

The color matrix extension (SGI color matrix) defines a 4x4 color matrix which is managed using the same
commands as the projection, modelview, or texture matrix. The color matrix premultiplies RGBA colors in the
pixel transfer pipeline and as such can be used to perform linear color space conversions.

Since the color matrix is treated like any other matrix, it is always enabled and defaults to the identity matrix. To
change the contents of the color matrix, the current matrix mode must be set to GL COLOR using glMatrixMode.
After that, the color matrix may be manipulated using the same commands as any other matrix; for example,
glLoadMatrix, glPushMatrix, and glPopMatrix.

The color matrix extension is currently supported on the following platforms:

Silicon Graphics

Equivalent Functionality Without SGI color matrix Unfortunately, the functionality of
SGI color matrix is difficult to efficiently duplicate on systems which do not support the extension. In
the case where the image is going from the host to the framebuffer (a glDrawPixels operation), the best way to
handle the situation is the split the image up into red, green, blue, and alpha images (via application processing
or a draw followed by reads with format set to GL RED, GL GREEN, GL BLUE, or GL ALPHA). The red, green,
blue, and alpha images can be drawn as GL LUMINANCE images. RGBA scale operations are applied, with the
four values equal to the row of the matrix corresponding to source channel. The images are composited in the
framebuffer using blending (glBlendFunc(GL ONE, GL ONE)).

Scale and Bias Scale and bias operations may be performed using the color matrix. A scale factor can be applied
using the glScale command. A bias is equivalent to a translation and may be applied using the glTranslate
command. Using glScale and glTranslate, the R scale or bias is put in the parameter, the G scale or bias
in the parameter, and the B scale or bias in the parameter. Modifications to the A channel must be specified

165

Programming with OpenGL: Advanced Rendering

using glLoadMatrix or glMultMatrix. In general, using the color matrix to implement scale and bias will be
slower than using a transfer operation which implements scale and bias directly, but management of state may be
easier using color matrices. Also, the scale and bias could be rolled into another color matrix operation.

Conversion to Luminance Converting a color image into a luminance image may be accomplished by scaling
each component by its weight in the luminance equation.

The recommended weight values for , , and are , , and . Some authors have used
the values from the YIQ color conversion equation (, , and), but Haeberli notes that these values
are incorrect in a linear RGB color space.[39]

Modifying Saturation The saturation of a color is the distance of that color from a gray of equal intensity.[27]
Haeberli has suggested modifying saturation using the equation:

where:

with , , and as described in the above section. Since the saturation of a color is the difference between
the color and a gray value of equal intensity, it is comforting to note that setting to gives the luminance equation.
Setting to leaves the saturation unchanged; setting it to takes the complement of the colors [39].

Hue Rotation Changing the hue of a color may be accomplished by loading a rotation about the gray vector
. This operation may be performed in one step using the glRotate command. The matrix may also be

constructed via the following steps [39]:

1. Load the identity matrix (glLoadIdentity).

2. Rotate such that the gray vector maps onto the axis using the glRotate command.

3. Rotate about the axis to adjust the hue (glRotate(<degrees>, 0, 0, 1)).

4. Rotate the gray vector back into position.

166

Programming with OpenGL: Advanced Rendering

Unfortunately, a naive application of glRotate will not preserve the luminance of the image. To avoid this
problem, you must make sure that areas of constant luminance map to planes perpendicular to the axis when you
perform the hue rotation. Recalling that the luminance of a vector is equal to:

you realize the plane of constant luminance is defined by:

Therefore, the vector is perpendicular to planes of constant luminance. The algorithm for matrix
construction becomes the following [39]:

1. Load the identity matrix.

2. Apply a rotation matrix such that the gray vector maps onto the positive axis.

3. Compute . Apply a skew transform which maps to
. This matrix is:

4. Rotate about the axis to adjust the hue.

5. Apply the inverse of the shear matrix.

6. Apply the inverse of the rotation matrix.

It is possible to compute a single matrix as a function of , , , and the degrees of rotation which performs
this operation.

CMY Conversion The CMY color space describes colors in terms of the subtractive primaries: cyan, magenta,
and yellow. CMY is used mainly for hardcopy devices such as color printers. Generally, the conversion from RGB
to CMY follows the equation [27]:

CMY conversion may be performed using the color matrix or a scale and bias operation. The conversion is
equivalent to a scale by and a bias by . Using the 4x4 color matrix, the equation may be restated as:

Here, the incoming alpha channel must be equal to 1. If the source is RGB, the 1 will be added automatically in
the format conversion stage of the pipeline.

A related color space, CMYK, uses a fourth channel (K) to represent black. Since conversion to CMYK requires
a operation, it cannot be performed using the color matrix.

The extension EXT CMYKA also supports conversion to and from CMYK and CMYKA. This extension is currently
supported by Evans & Sutherland.

167

Programming with OpenGL: Advanced Rendering

YIQ Conversion The YIQ color space is used in U.S. color television broadcasting. Conversion from RGBA to
YIQA may be accomplished using the color matrix:

(Generally, YIQ is not used with an alpha channel so the fourth component is eliminated.) The inverse matrix is
used to map YIQ to RGBA [27].

13.3 Convolutions

13.3.1 Introduction

Convolutions are used to perform many common image processing operations including sharpening, blurring,
noise reduction, embossing, and edge enhancement. This section begins with a very brief overview of the math-
ematics of the convolution operation. More detailed explanations of the mathematics and uses of the convolution
operation can be found in many books on computer graphics and image processing such as [27]. After this brief
mathematical introduction, this section will describe two ways to perform convolutions using OpenGL: via the
accumulation buffer and via the convolution extension.

13.3.2 The Convolution Operation

The convolution operation is a mathematical operation which takes two functions and and produces a
third function . Mathematically, convolution is defined as:

(13)

is referred to as the filter. The integral only needs to be evaluated over the range where is nonzero
(called the support of the filter).[27]

In spatial domain image processing, you discretize the operation. becomes an array of pixels . The
kernel is an array of values (assume finite support). Equation 13 becomes:

(14)

Two-Dimensional Convolutions Since you generally operate on two-dimensional images in image processing,
extend Equation14 to:

(15)

During convolution, the value for a pixel in the output image is calculated by aligning the filter array (kernel) with
the pixel at the same location in the input image and summing the values of the pixels in the input array multiplied
by the corresponding values in the filter array.

The algorithm can be visualized as a loop over the width and height of the input image. In the loop, the filter is
typically centered over each input pixel. Another loop over the width and height of the filter multiplies the values
in the filter array with the values under the filter in the input image. The results of the multiplication are added

168

Programming with OpenGL: Advanced Rendering

together and stored in the output image in the same location as the pixel in the input image. The output
and input images are kept logically separate so that the results of one step in the loop don’t affect later steps in the
loop.

The convolution filter may have a single element per-pixel, where the RGBA components are scaled by the same
value, or the filter may have separate red, green, blue, and alpha values for each element.

Separable Filters In the general case, the two-dimensional convolution operation requires
multiplications for each output pixel. Separable filters are a special case of general convolution in which the filter

can be expressed in terms of two vectors

such that for each

If the filter is separable, the convolution operation may be performed using only multiplications
for each output pixel. Applying the separable filter to Equation15 becomes:

Which can be simplified to:

To apply the separable convolution, first apply as though it were a by filter. Then apply as
though it were a by filter.

13.3.3 Convolutions Using the Accumulation Buffer

The convolution operation may be implemented by building the output image in the accumulation buffer. For
each kernel entry , translate the input image by from its original position and then accumulate
the translated image using the command glAccum(GL ACCUM, G[i][j]). This translation can be performed by
glCopyPixels but an application may be able to more efficiently redraw the image shifted using glViewport.

translations and accumulations must be performed. Skip clearing the accumulation buffer by using
GL LOAD instead of GL ACCUM for the first accumulation.

Here is an example of using the accumulation buffer to convolve using a Sobel filter, commonly used to do edge
detection. This filter is used to find horizontal edges:

Since the accumulation buffer can only store values in the range (-1..1), first modify the kernel such that at any
point in the computation the values do not exceed this range:

The operations needed to apply the filter are:

169

Programming with OpenGL: Advanced Rendering

1. Draw the input image.

2. glAccum(GL LOAD, 1/4)

3. Translate the input image left by one pixel.

4. glAccum(GL ACCUM, 2/4)

5. Translate the input image left by one pixel.

6. glAccum(GL ACCUM, 1/4)

7. Translate the input image right by two pixels and down by two pixels.

8. glAccum(GL ACCUM, -1/4)

9. Translate the input image left by one pixel.

10. glAccum(GL ACCUM, -2/4)

11. Translate the input image left by one pixel.

12. glAccum(GL ACCUM, -1/4)

13. Return the results to the framebuffer (glAccum(GL RETURN, 4)).

In this example, each pixel in the output image is the combination of pixels in the 3 by 3 pixel square whose lower
left corner is at the output pixel. At each step, the image is shifted so that the pixel that would have been under the
kernel element with the value used is under the lower left corner. As an optimization, ignore locations where the
kernel is equal to zero.

A general algorithm for the 2D convolution operation is:

Draw the input image
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

glAccum(GL_ACCUM, G[i][j]*scale);
Move or redraw the input image to the left by 1 pixel

}
Move or redraw the input image to the right by width pixels
Move or redraw the input image down by 1 pixel

}
glAccum(GL_RETURN, 1/scale);

scale is a value chosen to ensure that the intermediate results cannot go outside a certain range. In the Sobel
filter example, scale = 4. Assuming the input values are in , scale can be naively computed using the
following algorithm:

float minPossible = 0, maxPossible = 1;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

if (G[i][j] < 0) {
minPossible += G[i][j];

} else {
maxPossible += G[i][j];

}
}

}
scale = 1.0 / ((-minPossible > maxPossible) ?

-minPossible : maxPossible);

170

Programming with OpenGL: Advanced Rendering

Since the accumulation buffer has limited precision, more accurate results can be obtained by changing the order of
the computation and computing scale accordingly. Additionally, if values in the input image can be constrained
to a smaller range, scale can be made larger, which may also give more accurate results.

For separable kernels, convolution can be implemented using image translations and accumula-
tions. A general algorithm is:

Draw the input image
for (i = 0; i < width; i++) {
glAccum(GL_ACCUM, Grow[i] * rowScale);
Move or redraw the input image to the left 1 pixel

}
glAccum(GL_RETURN, 1 / rowScale);
for (j = 0; j < height; j++) {
glAccum(GL_ACCUM, Gcol[j] * colScale);
Move or redraw the framebuffer image down by 1 pixel

}
glAccum(GL_RETURN, 1 / colScale);

In this example, it is assumed that scales for the row and column filters have been determined in a similar fashion
to the general two-dimensional filter, such that the accumulation buffer values will never go out of range.

13.3.4 The Convolution Extension

The convolution extension, EXT convolution, defines a stage in the OpenGL pixel transfer pipeline which ap-
plies a 1D, separable 2D, or general 2D convolution. The 1D convolution is applied only to 1D texture down-
loads and is infrequently used. 2D kernels are specified using the commands glConvolutionFilter2DEXT,
glCopyConvolutionFilter2DEXT, and glSeparableFilter2DEXT. The convolution stage is enabled using
the enumerant GL CONVOLUTION 2D EXT or GL SEPARABLE 2D EXT. Filters are queried using glGetConvolu-
tionFilterEXT and glGetSeparableFilterEXT.

The maximum permitted convolution size is machine-dependent and may be queried using
glGetConvolutionParameterfvEXT with the parameters GL MAX CONVOLUTION WIDTH EXT and
GL MAX CONVOLUTION HEIGHT EXT.

The relative performance of separable and general filters varies from platform to platform, but it is best to specify
a separable filter whenever possible.

EXT convolution is currently supported by the following vendors:

Silicon Graphics

Hewlett Packard

Sun Microsystems, Inc.

13.3.5 Useful Convolution Filters

This section briefly describes several useful convolution filters. The filters may be applied to an image using either
the convolution extension or the accumulation buffer technique. Unless otherwise noted, the kernels presented are
normalized (that is, the kernel weights sum to).

You should keep in mind that this section is intended only as a very basic reference. Numerous texts on image
processing provide more details and other filters including [66].

Line detection Detection of one pixel wide lines can accomplished with the following filters:

171

Programming with OpenGL: Advanced Rendering

Horizontal Edges

Vertical Edges

Left Diagonal Edges

Right Diagonal Edges

Gradient Detection (Embossing) Changes in value over 3 pixels can be detected using kernels called Gradient
Masks or Prewitt Masks. The direction of the change from darker to lighter is described by one of the points of
the compass. The 3x3 kernels are as follows:

North

West

East

South

172

Programming with OpenGL: Advanced Rendering

Northeast

Smoothing and Blurring Smoothing and blurring operations are low-pass spatial filters. They reduce or elimi-
nate high-frequency aspects of an image.

Arithmetic Mean The arithmetic mean simply takes an average of the pixels in the kernel. Each element in the
filter is equal to divided by the total number of elements in the filter. Thus the 3x3 arithmetic mean filter is:

Basic Smooth: 3x3 (not normalized)

Basic Smooth: 5x5 (not normalized)

High-pass Filters A high-pass filter enhances the high-frequency parts of an image. This type of filter is used
to sharpen images.

Basic High-Pass Filter: 3x3

Basic High-Pass Filter: 5x5

173

Programming with OpenGL: Advanced Rendering

Laplacian Filter The Laplacian is used to enhance discontinuities. The 3x3 kernel is:

and the 5x5 is:

Sobel Filter The Sobel filter consists of two kernels which detect horizontal and vertical changes in an image. If
both are applied to an image, the results can by used to compute the magnitude and direction of the edges in the im-
age. If the application of the Sobel kernels results in two images which are stored in the arrays Gh[0..(height-
1][0..(width-1)] and Gv[0..(height-1)][0..(width-1)], the magnitude of the edge passing through
the pixel x, y is given by:

(you are justified in using the magnitude representation since the values represent the magnitude of orthogonal
vectors). The direction can also be derived from Gh and Gv:

The 3x3 Sobel kernels are:

Horizontal

Vertical

13.3.6 Correlation and Feature Detection

The correlation operation is defined mathematically as:

(16)

The is the complex conjugate of , but since this section will discuss correlation for signals which only
contain real values, substitute .

Correlation is useful for feature detection; applying correlation to an image that possibly contains a target feature
and an image of that feature forms local maxima or pixel value “spikes” in candidate positions. This is useful in

174

Programming with OpenGL: Advanced Rendering

detecting letters on a page, or the position of armaments on a battlefield. Correlation can also be used to detect
motion, such as the velocity of hurricanes in a satellite image or the jittering of an unsteady camera.

For two-dimensional discrete images, you may use Equation 15 to evaluate correlation.

The convolution extension (EXT convolution) in OpenGL may be used to apply correlation to an image, but
only for features no larger than the maximum convolution kernel size. For larger images or platforms which do
not supply the convolution extension, use the accumulation buffer technique for convolution. (It is worth the effort
to consider an alternative method, such as applying a multiplication in the frequence domain [35], if your feature
and candidate images are very large.)

Once you have applied convolution, your application will need to find the “spikes” to determine where fea-
tures have been detected. To aid this process, it may be useful to apply thresholding with a color table
(SGI color table) to convert candidates pixels to one value and non-candidates to another.

One method used for finding features uses the following steps:

Draw a small image containing just the feature to detect.

Create a convolution filter containing that image.

Transfer the image to the convolution filter using glCopyConvolutionFilter2DEXT.

Draw your candidate image into the color buffers.

Optionally configure a threshold for candidate pixels:

– Create a color table using glColorTableSGI.

– glEnable(GL POST CONVOLUTION COLOR TABLE SGI).

glEnable(GL CONVOLUTION 2D EXT)

Apply pixel transfer to your candidate image using glCopyPixels.

Read back the frame buffer using glReadPixels.

Measure candidate pixel locations.

If your candidate image comes from a source other than the OpenGL color buffer, use glDrawPixels to apply
the pixel transfer pipeline to your image.

If features in the candidate image are not pixel-exact, for example if they are rotated slightly or blurred, it may be
necessary to create the feature image using jittering and blending, and then lower the acceptance threshold in the
color table.

13.4 Image Warping

13.4.1 The Pixel Zoom Operation

OpenGL provides control over the generation of fragments from pixels via the pixel zoom operation. Zoom factors
are specified using glPixelZoom. Negative zooms are used to specify reflections.

Pixel zooming may prove faster than the texture mapping techniques described below on some systems, but do not
provide as fine a control over filtering.

175

Programming with OpenGL: Advanced Rendering

13.4.2 Warps Using Texture Mapping

Image warping or dewarping may be implemented using texture mapping by defining a correspondence between
a uniform polygonal mesh and a warped mesh. The points of the warped mesh are assigned the corresponding
texture coordinates of the uniform mesh and the mesh is rendered texture mapped with the original image. Using
this technique, simple transformations such as zoom, rotation, or shearing can be efficiently implemented. The
technique also easily extends to much higher-order warps such as those needed to correct distortion in satellite
imagery.

176

Programming with OpenGL: Advanced Rendering

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

First Scene Second Scene
drawn with

glStencilFunc(GL_EQUAL, 1, 1);

Pattern Drawn In
Stencil Buffer

Resulting Image

Figure 80. Using Stencil to Dissolve Between Images

14 Special Effects

14.1 Dissolves with Stencil

Stencil buffers can be used to mask selected pixels on the screen. This allows for pixel by pixel compositing of
images. You can draw geometry or arrays of stencil values to control, per pixel, what is drawn into the color buffer.
One way to use this capability is to composite multiple images.

A common film technique is the “dissolve”, where one image or animated sequence is replaced with another, in a
smooth sequence. The stencil buffer can be used to implement arbitrary dissolve patterns. The alpha planes of the
color buffer and the alpha function can also be used to implement this kind of dissolve, but using the stencil buffer
frees up the alpha planes for motion blur, transparency, smoothing, and other effects.

The basic approach to a stencil buffer dissolve is to render two different images, using the stencil buffer to control
where each image can draw to the framebuffer. This can be done very simply by defining a stencil test and
associating a different reference value with each image. The stencil buffer is initialized to a value such that the
stencil test will pass with one of the images’ reference values, and fail with the other. An example of a dissolve
part way between two images is shown in Figure 80.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is all cleared to one value, allowing
only one of the images to be drawn to the framebuffer. Frame by frame, the stencil buffer is progressively changed
(in an application defined pattern) to a different value, one that passes only when compared against the second
image’s reference value. As a result, more and more of the first image is replaced by the second.

Over a series of frames, the first image “dissolves” into the second, under control of the evolving pattern in the
stencil buffer.

Here is a step-by-step description of a dissolve.

1. Clear the stencil buffer with glClear(GL STENCIL BUFFER BIT).

2. Disable writing to the color buffer, using glColorMask(GL FALSE, GL FALSE, GL FALSE,
GL FALSE).

3. If the values in the depth buffer should not change, use glDepthMask(GL FALSE).

For this example, we’ll have the stencil test always fail, and set the stencil operation to write the reference value
to the stencil buffer. Your application will also need to turn on stenciling before you begin drawing the dissolve
pattern.

1. Turn on stenciling; glEnable(GL STENCIL TEST).

177

Programming with OpenGL: Advanced Rendering

2. Set stencil function to always fail; glStencilFunc(GL NEVER, 1, 1).

3. Set stencil op to write 1 on stencil test failure; glStencilOp(GL REPLACE, GL KEEP, GL KEEP).

4. Write the dissolve pattern to the stencil buffer by drawing geometry or using glDrawPixels.

5. Disable writing to the stencil buffer with glStencilMask(GL FALSE).

6. Set stencil function to pass on 0; glStencilFunc(GL EQUAL, 0, 1).

7. Enable color buffer for writing with glColorMask(GL TRUE, GL TRUE, GL TRUE, GL TRUE).

8. If you’re depth testing, turn depth buffer writes back on with glDepthMask.

9. Draw the first image. It will only be written where the stencil buffer values are 0.

10. Change the stencil test so only values that are 1 pass; glStencilFunc(GL EQUAL, 1, 1).

11. Draw the second image. Only pixels with stencil value of 1 will change.

12. Repeat the process, updating the stencil buffer, so that more and more stencil values are 1, using your
dissolve pattern, and redrawing image 1 and 2, until the entire stencil buffer has 1’s in it, and only image 2
is visible.

If each new frame’s dissolve pattern is a superset of the previous frame’s pattern, image 1 doesn’t have to be re-
rendered. This is because once a pixel of image 1 is replaced with image 2, image 1 will never be redrawn there.
Designing the dissolve pattern with this restriction can improve the performance of this technique.

14.2 Motion Blur

This is probably one of the easiest effects to implement. Simply re-render a scene multiple times, incrementing the
position and/or orientation of an object in the scene. The object will appear blurred, suggesting motion. This effect
can be incorporated in the frames of an animation sequence to improve its realism, especially when simulating
high-speed motion.

The apparent speed of the object can be increased by dimming its blurred path. This can be done by accumulating
the scene without the moving object, setting the value parameter to be larger than 1/ . Then re-render the scene
with the moving object, setting the value parameter to something smaller than 1/ . For example, to make a blurred
object appear 1/2 as bright, accumulated over 10 scenes, do the following:

1. Render the scene without the moving object, using glAccum(GL LOAD,.5f).

2. Accumulate the scene 10 more times, with the moving object, using glAccum(GL ACCUM,.05f).

Choose the values to ensure that the non-moving parts of the scene retain the same overall brightness.

It’s also possible to use different values for each accumulation step. This technique could be used to make an object
appear to be accelerating or decelerating. As before, ensure that the overall scene brightness remains constant.

If you are using motion blur as part of a real-time animated sequence, and your value is constant, you can improve
the latency of each frame after the first n dramatically. Instead of accumulating n scenes, then discarding the image
and starting again, you can subtract out the first scene of the sequence, add in the new one, and display the result.
In effect, you’re keeping a “running total” of the accumulated images.

The first image of the sequence can be “subtracted out” by rendering that image, then accumulating it with glAc-
cum(GL ACCUM, -1.f/n). As a result, each frame only incurs the latency of drawing two scenes; adding in the
newest one, and subtracting out the oldest.

178

Programming with OpenGL: Advanced Rendering

A

B
A

B

A

B

Normal (non-jittered) view

Jittered to point A

Jittered to point B

View from eye

View from eye

Figure 81. Jittered Eye Points

14.3 Depth of Field

OpenGL’s perspective projections simulate a pinhole camera; everything in the scene is in perfect focus. Real
lenses have a finite area, which causes only objects within a limited range of distances to be in focus. Objects
closer or farther from the camera are progressively more blurred.

The accumulation buffer can be used to create depth of field effects by jittering the eye point and the direction
of view. These two parameters change in concert, so that one plane in the frustum doesn’t change. This distance
from the eye point is thus in focus, while distances nearer and farther become more and more blurred.

To create depth of field blurring, the perspective transform changes described for antialiasing in Section 9.5 are
expanded somewhat. This code modifies the frustum as before, but adds in an additional offset. This offset is also
used to change the modelview matrix; the two acting together change the eye point and the direction of view:

void frustum_depthoffield(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff,
GLdouble focus)

{
glFrustum(left - xoff * near/focus,

right - xoff * near/focus,

179

Programming with OpenGL: Advanced Rendering

top - yoff * near/focus,
bottom - yoff * near/focus,
near, far);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-xoff, -yoff);

}

The variables xoff and yoff now jitter the eye point, not the entire scene. The focus variable describes the
distance from the eye where objects will be in perfect focus. Think of the eye point jittering as sampling the surface
of a lens. The larger the lens, the greater the range of jitter values, and the more pronounced the blurring. The
more samples taken, the more accurate a sampling of the lens. You can use the jitter values given in Section 9.5.

This function assumes that the current matrix is the projection matrix. It sets the frustum, then sets the modelview
matrix to the identity, and loads it with a translation. The usual modelview transformations could then be applied
to the modified modelview matrix stack. The translate would become the last logical transform to be applied.

180

Programming with OpenGL: Advanced Rendering

L
-L

Figure 82. Opposing Lights Approximating Warm to Cool Shift

15 Illustration and Artistic Techniques

In applications such as scientific visualization and technical illustration photorealism detracts from rather than
enhances the information in the rendered image. Applications such as cartography and computer aided design
benefit from the use of hidden surface elimination and 3D illumination and shading techniques, but the goal of
increased insight from the generated images suggests some different processing compared to those used to achieve
photorealism.

15.1 Non-photorealistic Lighting Models

In [36, 37] lighting and shading algorithms are developed based on traditional technical illustration practices.
A non-photorealistic lighting model for matte and metal surfaces is constructed. The model for matte surfaces
use both luminance and hue changes to indicate surface orientation. This lighting model reduces the dynamic
range of the luminance, reserving luminance extremes to emphasize edges and highlights. To compensate for
the reduced dynamic range and provide additional shape cues, tone-based shading adds hue shifts to the lighting
model. Exploiting the relationship that cool colors (blue, violet, green) recede and warm colors (red, orange,
yellow) advance, a sense of depth is added by including cool to warm color transitions in the model. The diffuse
cosine term is replace with the term:

where , and are linear combinations of a cool color (e.g., a shade of blue) combined with the object’s
diffuse reflectance and a warm color (e.g., yellow) also combined with the object’s diffuse reflectance. A typical
value for is and for is

This modified diffuse lighting model can be approximated using OpenGL lighting by using two opposed lights
(,) as shown in Figure 82. The diffuse colors are set to , and , re-
spectively, and the ambient color set to (and the specular and emissive contributions set to
zero. Objects are drawn with the material reflectances set to one (white). Highlights can be added in a subsequent
pass using blending to accumulate the result. Alternatively the environment mapping techniques discussed in Sec-
tion 10.4 can be used to capture and apply the BRDF at the expensive of computing a map for each different object
material.

181

Programming with OpenGL: Advanced Rendering

Phong Lighting and
Gouraud Shading

Anisotropic Light Texture

Anisotropic Lighting
Applied

Figure 83. Simulation of Anisotropic Lighting

For metallic surfaces, the lighting model is further augmented to simulate the appearance of anisotropic reflection
(Section 10.9). While anisotropic reflection typically occurs on machined (milled) metal parts rather than polished
parts, the anisotropic model is used to provide a cue that the surfaces are metal and to provide a sense of curvature.
To simulate the anisotropic reflection pattern, the curved surface is shaded with stripes along the parametric axis
of maximum curvature. The intensity of the stripes are random values between 0.0 and 0.5, except the stripe
closest to the light source is set to 1.0 to simulate a highlight. The values between the stripes are interpolated.
This process is implemented in the OpenGL pipeline using texture mapping. A small one- or two-dimensional
luminance texture is created containing the randomized set of stripe values. The stripe at coordinate zero (or
some well known position) is set to the value one. The object is drawn with texture enabled and the wrap mode set
to GL CLAMP and the texture coordinate set to vary along the curvature. The position of the highlight is adjusted
by biasing the coordinate with the texture matrix. This procedure is illustrated in Figure 83.

15.2 Edge Lines

An important aspect of the lighting model is reducing the dynamic range of the luminance to make edges and
highlights more distinct. Edges can be further emphasized by outlining the silhouette and boundary edges in a
dark color. Some algorithms for drawing silhouette lines are described in Section 7.4. Additional algorithms
using image processing techniques are described in [85] and can be implemented using the OpenGL pipeline as
described in Section 13. [37, 62] discuss software methods for extracting silhouette edges which can then be
drawn as lines.

15.3 Gradual Cutaway Views

Engineering drawings of complex objects (such as automobiles) may show a cutaway view, removing some layers
of the object (such as the outer shell) in order to reveal the object’s inner components and their respective positions.
When the purpose of the drawing is more sales-oriented, the cutaway view may be done in a more artistic style,
with the cut edge of object’s outer shell faded gradually and the parts of the edge closer to the viewer becoming
more and more transparent. Additional stylistic touches can be added by showing the seams of the object shell,
and have them also fade to transparency at a slightly different rate than the shell surface itself.

This effect can be done in a straightforward way using OpenGL. This technique uses texture mapping and texture
coordinate generation to modulate the alpha component of an object’s shell. The object must be divided into two
parts that can be rendered separately; the object’s shell and the object’s interior. The interior is rendered first
in a standard fashion, using depth buffering. The object shell is rendered, but a one-dimensional texture map
containing an alpha component ramp is used to modulate the object color.

182

Programming with OpenGL: Advanced Rendering

Internal parts

Object shell

T
ex

ge
n:

 S
 is

 p
ro

po
rt

io
na

l t
o

Z
 in

 e
ye

 s
pa

ce

Figure 84. Gradual Cutaway Using a 1D Texture

If alpha blending is enabled, using glBlendMode(GL SRC ALPHA, GL ONE MINUS SRC ALPHA), the texture
map will scale down the alpha component of the shell as it gets closer to the viewer, rendering it more trans-
parent. The edges of the shell can be rendered as a separate pass, using a slightly different 1D texture map or
different texgen plane equation to produce a different rate of transparency change from that of the shell surface.

Since the shell itself is blended, it must be handled as a transparent object to avoid render order artifacts. Both
depth buffering and alpha blending using GL SRC ALPHA for the source and GL ONE MINUS SRC ALPHA for the
destination require depth sorted primitives in order to work reliably. The shell should be sorted so the surfaces
more distant from the viewer are rendered first. If the shell is convex, and the surface primitives are oriented
consistently, an easy way to do this is with face culling. If the shell primitives are oriented to be outward facing,
rendering the shell twice, first with front face, then back face culling will draw the surfaces in the proper depth
order. For more information, see Section 12 in these course notes.

15.3.1 Steps to Generating a Cutaway Shell

1. Draw the object internals with depth buffering.

2. Enable and configure a 1 dimensional texture ramp; use GL ALPHA as the format.

3. Enable and configure texture coordinate generation for the component; use eye linear, and set the eye
plane to map over the range of the object shell cutaway from to .

4. Enable blending, and set the blend mode: source is GL SRC ALPHA, destination is
GL ONE MINUS SRC ALPHA.

5. Render the shell of the object in depth order; most distant objects first. For convex shells, this could be done
using face culling.

183

Programming with OpenGL: Advanced Rendering

6. Load a different texture ramp in the 1D texture map.

7. Render the shell edges; you can do this by re-rendering the shell after call glPolygonMode with the mode
set to GL LINE.

If you want to render the shell edges, you’ll need to use polygon offset, or some other method, such as using the
stencil buffer, to avoid z fighting. A reasonable setting to try would be glPolygonOffset(-1.f, -1.f).

15.3.2 Refinements

There are a number of parameters you will want to adjust for maximum effect. One is the shape of the texture ramp
for both the shell and the shell edges. A linear ramp produces a somewhat abrupt cutoff; tapering the beginning
and end of the ramp will produce a smoother transition. The texture ramps can also be adjusted by changing the
texgen eye plane. Changing the plane values can move the distance and the range of the cutaway transition zone.

Since both the shell and the interior of the object will be lit, there is some question as to what the back surface of
the shell revealed by the cutaway should look like. As before, aesthetics and the surrounding scene will determine
what’s best. Some choices would be showing the back of the shell in a darker version of the shell’s color, unlit.
Another possibility is to use back face lighting on the shell’s interior.

15.3.3 Rendering a Surface Textured Shell

The steps above assume an untextured object shell. If the shell itself has a surface texture, things get more
involved. The preference would be to apply both the 2D surface texture and the 1D transparency texture ramp
simultaneously. In order to blend two textures together, use a multipass method. The basic idea is to separate the
blend function glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA) into two separate steps. There are
now three objects to consider; internal components of the object, the shell of the object textured with a surface
texture, and the shell of the object textured with the 1D alpha texture. The alpha textured shell is used to adjust
the transparency of the other two objects separately.

Two approaches suggest themselves, based on your hardware’s capabilities. If your system supports an alpha
buffer, the approach is only a little more complicated. If you don’t, you can do it with two buffers.

Alpha Buffer Approach You render the internal object as before, then adjust the transparency of the re-
sulting image by rendering the alpha-textured shell with the blend mode set to glBlendFunc(GL ZERO,
GL ONE MINUS SRC ALPHA). The alpha values from the shell are used to scale the image of the object internals
that have been rendered into the framebuffer. The alpha values themselves are also saved into the alpha buffer.

Now depth buffer update is disabled, and the surface textured shell is rendered, with the blend mode set
to glBlendFunc(GL ONE MINUS DST ALPHA, GL ONE). In this way the internal part of the object, which
has already been scaled by is summed with the surface textured shell, which is blended by

, giving the desired result.

1. Configure a window that can store alpha color values.

2. Draw the object internals with depth buffering.

3. Mask off depth buffer updates.

4. Enable blend mode.

5. glBlendFunc(GL ZERO, GL ONE MINUS SRC ALPHA)

6. Draw alpha textured shell to adjust internal objects’ transparency.

184

Programming with OpenGL: Advanced Rendering

7. glBlendFunc(GL ONE MINUS DST ALPHA, GL ONE)

8. Disable 1D Texturing Enable 2D texturing.

9. Render surface textured shell.

No Alpha Buffer Approach If you don’t have an alpha buffer to store intermediate alpha values, then you’ll
have to render two images, one of the internal objects, one of the surface textured shell, then combine the two
images using blending.

The first steps are the same as the alpha buffer approach: You render the internal object as before, then adjust the
transparency of the resulting image by rendering the alpha textured shell with the blend mode set to glBlend-
Func(GL ZERO, GL ONE MINUS SRC ALPHA). The alpha values from the shell are used to scale the image of the
object internals that have been rendered into the framebuffer. This time the alpha values are lost.

In a separate buffer (or different area of the window) Render the surface textured shell. Now adjust the trans-
parency of this image by re-rendering the shell using only the alpha texture. This time the blend mode should be
glBlendFunc(GL ZERO, GL SRC ALPHA). This image now has it’s transparency adjusted.

Now you can combine the two images using glCopyPixels with the blend function set to glBlend-
Func(GL ONE, GL ONE). This brings the two halves of the blend operation together.

There is one problem. There is no depth testing between the transparent shell and the internal objects images. You
can also take care of this using a stenciling technique. The technique allows you, in effect, copy an image with its
depth information. The stencil buffer is used to save the results of depth comparing the two images’ depth values,
and used as a per-pixel mask to control the merging of the two images. See Section 8.7 for details.

15.4 Depth Cuing

Perspective projection and hidden surface and line elimination are regularly used to add a sense of depth to ren-
dered images. However, other kinds of depth cues are useful, particularly for applications using orthographic
projections. The term depth-cuing is typically associated with the technique of changing the intensity of an object
as a function of distance from the eye. This effect is typically implemented using the fog stage of the OpenGL
pipeline. For example, using a linear fog function with the fog color set to black results in a linear interpolation be-
tween the object’s color and zero, where the interpolation factor, , is determined by the distance of each fragment
from the eye,

It is also straightforward to implement a cuing algorithm using a 1D texture map using glTexGen to generate a
texture coordinate using a linear texture coordinate generation function to compute a coordinate proportional to
the distance from the eye along the -axis. The filtered texel value is used as the interpolation factor between the
polygon color and texture environment color. One advantage of using a 1D texture is that the map can be used
to encode an arbitrary function of distance which can be used to implement more extreme cuing effects. Textures
can also be useful on OpenGL implementations that use per-vertex rather than per-pixel fog calculations.

Other types of depth cues may also be useful. Section 17.7 describes methods for generating points with appro-
priate perspective foreshortening. Similar problems exist for line primitives as their width is specified in window
coordinates rather than object coordinates. For most wireframe display applications this is not an issue since the
lines are typically very narrow. However, for some applications wider lines are used to convey other types of
information. A simple method for generating perspective lines is to use polygonal primitives rather than lines.

15.5 Cross Hatching and 3D Halftones

In [85], Saito suggests using cross-hatching to shade 3D geometry to provide visual cues. Rather than performing
2D hatching using a fixed screen space pattern (e.g., using polygon stipple) an algorithm is suggested for generat-

185

Programming with OpenGL: Advanced Rendering

Figure 85. 3D Cross Hatching

ing hatch lines aligned with parametric axes for the object (for example a sequence of straight lines traversing the
length of a cylinder, or a sequence of rings around a cylinder).

A similar type of shading can be achieved using texture mapping. The parametric coordinates of the object are
used as the texture coordinates at each vertex and a 1D or 2D texture map consisting of a single stripe is used
to generate the hatching. This method is similar to the methods for generating contour lines in Section 6.14,
except the iso-contours are now lines of constant parametric coordinate. If a 1D texture is used, at minimum two
alternating texels are needed. A wrap mode of GL REPEAT is used to replicate the stripe pattern across the object.
If a 2D texture is used then the texture map contains a single stripe. Two parametric coordinates can be cross
hatched at the same time using a 2D texture map with stripes in both the and directions. To reduce artifacts,
the object needs to be tessellated finely enough to provide accurate sampling of the parametric coordinates.

This style of shading can be useful with bilevel output devices. For example, a luminance hatched image can be
thresholded against an unlit version of the same image using a max function. This results in the darker portions of
the shaded image being hatched, while the brighter portions remain unchanged as shown in Figure 85. This idea
is generalized to the notion of a 3D halftone screen in [41].

Traditionally, halftones are generated by thresholding an image against a halftone screen. Graphics devices such
as laser printers can approximate the variable width circles used in halftones by using circular raster patterns. Such
patterns can be generated using a clustered-dot ordered dither [27]. An dither pattern can be represented as
a matrix. For dithering operations in which the number of output pixels is greater than the number of input pixels
i.e., each input pixel is converted to a set of output pixels, the input pixel is compared against each element
in the dither matrix. For each element that the input pixel is larger than the dither element, a 1 is output, otherwise
a 0. An example dither matrix is:

A dithering operation of this type can be implemented using the OpenGL pipeline as follows

1. Replicate the dither patter in the framebuffer to generate an a threshold image the size of the output image.
Use glCopyPixels to perform the replication.

2. Set glPixelZoom(n,n) to replicate each pixel to a block.

3. Move the threshold image into the accumulation buffer with glAccum(GL LOAD,1.0).

4. Use glDrawPixels to transfer the expanded source image in the framebuffer

186

Programming with OpenGL: Advanced Rendering

5. Call glAccum(GL ACCUM,-1.0).

6. Call glAccum(GL RETURN,-1.0) to invert and return the result.

7. Set up glPixelMap to map 0 to 0 and everything else to 1.0.

8. Call glReadPixels with the pixel map to retrieve the thresholded image.

Alternatively, the subtractive blend function can be used to do the thresholding instead of the accumulation buffer
if the imaging extensions are present. If the input image is not a luminance image, it can be converted to luminance
using the techniques described in Section 13.2.4 during the transfer to the framebuffer. If the framebuffer is not
large enough to hold the output image, the source image can be split into tiles which are processed separately and
merged.

15.6 2D Drawing Techniques

While most applications use OpenGL for rendering 3D data it is inevitable that 3D geometry must be combined
with some 2D screen space geometry. OpenGL is designed to coexist with other renderers in the window system,
that is, OpenGL and other renderers can operate on the same window. For example, X Window System 2D drawing
primitives and OpenGL commands can be combined together in a window. Similarly, Win32 GDI drawing and
OpenGL commands can be combined together in the same window.

One advantage of using the native window system 2D renderer is that the 2D renderers typically provide more
control over 2D operations. For example, control over the joins in lines (mitre, round, bevel), the end caps on lines
(round, butt) and have rasterization rules that are somewhat easier to predict. For example, both the X Window Sys-
tem and Win32 GDI have very precise specifications of the algorithms for rasterizing 2D lines, whereas OpenGL
has provided some latitude for implementors which occasionally causes problems with application portability.

Some disadvantages in not using OpenGL commands for 2D rendering, are that the native window system 2D
renderers are not tightly integrated with the OpenGL renderers. For example, the 2D renderer typically does not
update or test against the depth or other ancillary buffers, the coordinate system typically has the origin at the top
left corner of the window, some desirable OpenGL functionality may not be available in the 2D renderer (e.g.,
framebuffer blending, antialiased lines), and the 2D code is less portable.

To specify object coordinates in screen space, an orthographic projection is used. For a window of width
and height , the transformation maps object coordinate to window coordinate and object coordinate

to window coordinate . Since OpenGL has pixel centers on half integer boundaries, this mapping
results in pixel centers at 0.5, 1.5, 2.5, ..., -.5 along the -axis and 0.5, 1.5, 2.5, ..., -.5 along the -axis.

One difficulty is that the line rasterization rules for OpenGL are designed to avoid multiple pixel hits when drawing
connected line primitives. The reason for this is that multiple hits cause difficulties in using blending or stenciling
algorithms to merge multiple primitives reliably. This means that if a rectangle is drawn with a GL LINE LOOP,
the rectangle will be properly closed with no missing pixels, whereas if the same rectangle is drawn with a
GL LINE STRIP, or independent GL LINES there will likely be pixels missing and or multiple hits on the rect-
angle boundary at or near the vertices of the rectangle. A second issue is that OpenGL does use half integer pixel
centers, whereas the native window system specifies pixel centers at integer boundaries. Application developers
often incorrectly use integer pixel centers with OpenGL without compensating in the projection transform.

15.6.1 Line Joins

Wide lines in OpenGL are drawn by expanding the width of the line along the or direction of the line for -
major and -major lines, respectively (a line is -major if the slope is in the range). When two non-colinear
wide lines are connected together the overlap in the end caps leaves a noticeable gap. In 2D drawing engines such

187

Programming with OpenGL: Advanced Rendering

Figure 86. Line Join Styles: None, Round, Miter, Bevel

as GDI or the X Window System, lines can be joined using a number of different styles: round, mitered, or beveled
as shown in Figure 86.

A round join can be implemented by drawing a round antialiased point with a size equal to the line width at the
shared vertex. For most implementations the antialiasing algorithm generates a point that is similar enough in
size to match the line width without noticeable artifacts. However, many implementations do not support large
antialiased point sizes, making it necessary to use a triangle fan or texture mapped quadrilateral to implement a
disc of the desired radius to join very wide lines.

A mitered join can be implemented by drawing a triangle fan with the first vertex at the shared vertex of the join,
and three remaining vertices at the two outside vertices of rectangles enclosing the two lines, and the intersection
point of the two outside edges of the wide lines extended until they meet. For an -major line of width and
window coordinate end points and the rectangle around the line is ,

, , .

Mitered joins with very sharp angles are not aesthetically pleasing, so for angles less then some threshold angle
(typically 11 degrees) a bevel join is used. A bevel join can be constructed by rendering a single triangle consisting
of the shared vertex and the two outside corner vertices of the lines as described above.

Having gone this far, it is a small step to switch from using lines to using triangle strips to draw the lines instead.
One advantage of using lines is that many OpenGL implementations support antialiasing up to moderate line
widths, whereas there is substantially less support for polygon antialiasing. Wide antialiased lines can be combined
with antialiased points to do round joins, but requires the overlap algorithm from Section 7.5 to sort the coverage
values. Accumulation buffer antialiasing can be used with triangle primitives as well.

15.7 Painting on Images

In [42], Haeberli describes a technique for using filters in the form of brush strokes to create abstract images (im-
pressionistic paintings) from source images. The output image is generated by rendering an ordered list of brush
strokes. Each brush stroke contains color, shape, size, and orientation information. Typically the color informa-
tion is determined by sampling the corresponding location in the source image. The size, shape, and orientation
information are generated from user input in an interactive painting application. The paper also describes some
novel algorithms for generating brush stroke geometry. One example is the use of a depth buffered cone with the
base of the cone parallel to the image plane at each stroke location. This algorithm results in a series of Dirichlet
domains [80] where the color of each domain is sampled from the source image.

Additional effects can be achieved by preprocessing the input image. For example, the contrast can be enhanced,
or the image sharpened using simple image processing techniques. Edge detection operators can be used to recover
paths for brush strokes to follow. These operations can be automated and combined with stochastic methods to
choose brush shape and size to generate brush strokes automatically.

188

Programming with OpenGL: Advanced Rendering

16 Scientific Visualization Techniques

16.1 Scalar Field Visualization

Scalar field visualization is the graphical expression of relationships between scalar values distributed in space.

The difficulty of rendering scalar fields depends on a number of factors; The dimensionality of the data, whether
the data has been sampled on a regular grid or not, and the range of values the field can assume.

16.1.1 Definition of a Scalar Field

A scalar value is a single component that can assume one of a range of values. An example of this is temperature.
In contrast, a vector value has more than one component. An example of a vector value is a direction, composed
of x, y, and z components. A scalar field is an arrangement of scalar values distributed in a space.

Typically, scalar field data being visualized is not continuous (as the original scalar field is), but is composed of a
set of discrete sampled values. The sample spacing may be regular, forming a grid, or the sample spacing might
be irregular, with varied spacing between samples values.

The sample values themselves will be limited to some finite range, due to limitations in the measuring equipment or
restrictions on the simulation that created the values. Both the range of possible sample values, and the significance
of the values themselves, vary with the application. For example, if a scalar field of atmospheric temperature values
is used for aviation flight planning, the range of values is bounded to the values possible in the atmosphere. If
the field is used for flight planning in winter, the values of greatest interest are right around the freezing point of
water, since airframe icing is a major concern. In summer, higher temperatures mean lower aircraft performance,
so unusually high temperatures are of greater interest.

When visualizing data, the exact values of the data are not as important as the relationship between values. Data
visualization is used to gain insight into the data set, and expose relationships between values that might not be
apparent in the raw data. As a result, intuitive, but less exact, representations of data values are often used.

16.1.2 Representing Data Values

There are a number of ways to represent scalar data values for visualization. The most obvious is color. A set of
color values can be used to represent the range of values the data can assume. There are a few issues that must
be considered when choosing color values. First, there are large set of color values that can be used to represent
the color range. The colors should be chosen to make the values intuitive. A common technique is to use “cold”
colors such as black, purple, blue for low values, and “hot” colors such as red, orange, and white to represent high
values. Sometimes green hues are used to fill in the mid-range values. This ties into viewer expectations about
heat and color, indicating the “energy” of the data values.

Colors tailored to the application space will give the most mileage. If the goal is to notice data discrepancies,
make those values stand out from the rest of the color range. For example, unusual values can be shaded with red
hues, with the rest of the value range shades of green. The color range can be made consistent by changing only
the hue, fixing the saturation and brightness to only slow changes over the entire data range.

In general, chose one or more “color paths” through RGB color space to represent the data range, taking psycho-
logical and application specific factors into account.

Once colors are chosen, there are a number of ways to render them. The most obvious way is to map the data
values to RGB values directly in the application. OpenGL can be used to simplify and accelerate the process and
reduce the amount of work performed in the application.

One obvious way is to use color index values, choosing a colormap where data values index the desired colors.
This approach is not recommended, however, for a number of reasons. First, it is a limited approach. Color
index values must be integers, and the allowable range of values is limited by the maximum size of the colormap.

189

Programming with OpenGL: Advanced Rendering

Second, graphics API implementations are moving away from color index support, and many implementors don’t
emphasize the color index part of their implementations. Color index applications may be unaccelerated, and
possibly not as well implemented as the RGBA path.

Fortunately, there is a better way to provide a mapping between data values and rgb colors: texture maps. The
texture map can provide a mapping between data values, input as texture coordinates, to colors, which are mapped
as colors in the texture map itself. Texture mapping is optimized and hardware accelerated on almost every
implementation of OpenGL at the time of writing, and arbitrarily large mappings can be created using one or more
texture maps.

A simple example might clarify this technique. Imagine a set of 50 data values to map colors onto:

1. Create a 1D 64 entry texture map (you’re limited to creating textures whose dimensions are powers-of-2)

2. Load the first 50 entries of the texture with the color values corresponding to the first 50 data values.

3. Choose a texture transformation matrix that maps the data values to the S values that index the corresponding
texels. This will work if the data values can be mapped with a linear or perspective transformation to the
appropriate texture coordinates. If your implementation supports a lookup table associated with texture
filtering, such as GL TEXTURE COLOR TABLE SGI, you can use the glColorTableSGI command to create
an arbitrary non-linear mapping between data value and texture coordinate. If you don’t have this support,
you can create a lookup table in the application.

4. If you don’t want to interpolate between data values, use GL NEAREST for GL TEXTURE MIN FILTER, and
GL TEXTURE MAG FILTER, and use the same texture coordinates over all the vertices of the primitive you
want to color. Remember that OpenGL indexs a texel by truncating the texture coordinate scaled by the
texture size. This is written into the specification, so you can always look up the exact texel you want.

5. If you do want to interpolate colors between data values, use GL LINEAR for GL TEXTURE MIN FILTER and
GL TEXTURE MAG FILTER, and choose the correct data values at the sample points, letting texture filtering
do the color interpolation for you. Since OpenGL texture mapping is perspective correct, you don’t have to
worry about perspective projection coloring artifacts.

16.1.3 Interpolating Data Values

Be careful about interpolating between sampled scalar values. Most interpolation techniques assume a linear
relationship between sampled data values, which might not be the case. A linearly interpolated set of colors
applied to non-linear data can create misleading and incorrect images. There are two basic approaches to avoiding
this problem. First, don’t interpolate between data values at all. Only display the data values at the sample points.
This results in no interpolation problems, but possibly makes the data harder to interpret. The other possibility is
to ensure adequate sampling. If the data is known to be linear between sample points, within an acceptable error,
then interpolation can be safely done. What “acceptable error” means depends on the application.

16.1.4 Rendering Data Values

Keep in mind that the purpose of scientific visualization is to visualize relationships in the data, not show every
value with precision. It isn’t necessary to know the exact value of a data point by looking at an image of it. It is
important to be able to see how that data point relates to others. Annotation can quickly reach the point of clutter
and confusion. If the application user requests additional information about the data, the application can provide
interactive manipulation and picking techniques to alter the mapping and make queries about the data in the image.

A few rendering techniques follow. Many more are available.

190

Programming with OpenGL: Advanced Rendering

Point Fields Point fields display data positions as a “cloud” of points in space. The data values themselves
can be displayed as point color, point size, or point shape. Points can be rendered very quickly with OpenGL.
If the data is static, display lists will give the best performance for most applications. If the data is dynamically
changing, try using vertex arrays to represent the data. This also can simplify the application, since data value
changes can be accessed through arrays. Some data can be represented by changing the point size, but this can be
expensive on some implementations. It may also help performance to sort points by size before rendering. This
technique is also used to render natural phenomena in Section 17.7. If the number of points is small enough, and
the implementation has high enough performance, individual billboards can be used instead of OpenGL points.
This technique, as described in Section 6.10, allows points of different shapes, and high quality appearance can be
achieved though alpha blending the polygon edges.

Height Fields If the spatial distribution of the points is two dimensional, the third dimension can be use to
represent the data value of each sample. One way to create the geometry for this technique is to perturb a flat
plane, changing the altitude of the plane at each sample point. This perturbation can be used to distort the plane
into a mountainous surface, using the data points as vertices of the polygon. Another technique is to leave the
plane flat, and draw lines perpendicular from the surface to the data point. In each case, the data value is the
perpendicular distance from the point to the reference plane. If the data is very noisy, the distorted plane can
become very jagged, making it hard to interpret the data. Additional points can be inserted to smooth transitions,
and the plane can be made partially transparent so that the terrain won’t obscure neighboring points as much. For
details on rendering transparent objects, see Section 12.2

This technique can be more render intensive than point fields. Back face culling may improve fill performance
if the viewing angle is oblique enough that many triangles are backfacing. As before, a display list for a static
surface, or vertex array representation for a dynamic one, will also improve performance.

How the perturbed plane is tessellated can effect both rendering performance and visual appearance of the resulting
surface. If the samples are regularly spaced, choosing connectivity is relatively easy. If the the sample spacing isn’t
regular, then a deluanay tessellation scheme is a good choice, since it produces “fat” triangles (triangles with large
angles at each vertex), which gives the best representation for a given surface. Delaunay triangulation algorithms
are beyond the scope of these notes; an excellent book on the subject is written by O’Rourke [73] this and similar
topics. See Section 3 for a discussion of tessellation.

Contouring Contouring is closely related to height fields. If the data values are organized into regions, the
relationship can be represented as a 3D contour map. Each data value divides up the terrain into regions, bounded
by isolines. Each region is displaced a different height above the reference surface. The boundaries of each data
value can be stitched together and tessellated, producing a 3D surface. Alternatively, the region can be sampled,
and rendered as a height field. In both this and the previous technique, the elevation data can be delineated with
color values on the surface, as with topological maps. This can be easily rendered with a one-dimensional texture
and the use of the texture generation functionality in OpenGL:

1. Create a 1D texture map with the desired color values.

2. Configure texgen to map different elevation values to texture coordinates (e.g. map y values to s coordinate
values).

3. Render the surface with 1D texturing and texgen enabled.

You probably want to use GL EYE LINEAR texture generation, so the surface can be manipulated relative to the
viewer without changing the texture mapping.

191

Programming with OpenGL: Advanced Rendering

Annotating Metrics A variation on the contouring idea, in [95], Teschner proposes a method for displaying
metrics, such as 2D tick marks, on an object using a 2D texture map containing the metrics. Texture coordinates
are generated as a distance from object coordinates to a reference plane. For the 2D case, two reference planes
are used. An example application for this technique is to create a 2D texture marked off with tick marks every
kilometer in both the and directions and map this texture on to terrain data using a GL REPEAT texture coordinate
wrap mode. An GL OBJECT LINEAR texture coordinate generation mode is used, with the reference planes at

and and a scale factor set such that a vertex coordinate which is 1km from the or plane
produces a texture coordinate value equal to the distance between two tick marks in texture coordinate space.

16.1.5 Regular vs. Irregular Data Sampling

Regular data sampling makes the creation of geometry much easier for surface representations, however many
real-world data sets are irregularly sampled. As mentioned previously, an irregular sampling array becomes a
tessellation problem.

There may be a strong temptation to resample the data into a regular grid. This approach can be problematic in
many cases, since the data may not change linearly between grid points. False relationships can be created in the
resampled data.

Regridding can also lead to a performance degradation, since you will probably end up with a larger number of
data points.

16.1.6 3D Scalar Fields

Visualizing a three dimensional field of data points is more challenging than 2D for two reasons: First, producing
surfaces to represent data values is no longer easy, since there isn’t a free dimension to use. Second, data values
tend to obscure each other, making it harder to see relationships in the data.

Point fields, as described above, can be used to visualize 3D data fields. If the point density is high, points can
be rendered with transparency, and sorted from back to front. This makes the obscured points more visible. See
Section 12.2 for details on transparency.

Another technique is to use volume visualization techniques to view the data. This technique is especially useful
for very dense datasets. See Section 16.2 for details.

Another method is to calculate isosurfaces from the dataset. Data points with similar values can be connected
together with a tessellated surface. These surfaces, like point fields, should be drawn partially transparent, using
alpha blending, and rendered from back to front. Each isosurface can have a separate color, to make them easier
to distinguish. See O’Rourke’s book [73] for ideas on generating the iso surfaces.

16.1.7 Multiple Scalar Fields

Rather than visualize a single data set, you may want to go a step farther and explore the interrelationships be-
tweens two more more scalar fields. This can be done, at the expense of visual complexity, by tagging data values
with multiple independent attributes. Some possibilities are:

1. point field: color for one data value, transparency for the other

2. point field: color for one data value, point size for the other

3. point field: color for one data value, texture pattern for the other

4. point field: two complementary color scales that can be mixed to result in unique color values

5. height field: height for one data value, color for the other

192

Programming with OpenGL: Advanced Rendering

Of course, sharing attributes on sample points only works if both data sets were sampled at the same locations.
If not, there will be two interacting sets of independent sample points, which will be hard to decipher visually,
especially if the data set is dense.

16.1.8 Manipulating Scalar Fields

Interactivity is an important feature available in all of these data visualization techniques. A visualization system
becomes dramatically more useful if the data set can be manipulated by the viewer, especially in real-time.

Some important interaction features include:

1. 3D manipulation of the data space The viewer should be able to rotate, scale, and zoom the data space. This
makes it possible to clarify the relationship between data points, especially for 3D data fields.

2. Isolate a subset of the data The ability to zoom in and clip a subregion of the data set is important for
analyzing the data as a series of smaller pieces. Allowing the user to simplify the scene by subsetting the
data makes it possible to tag the subset with additional information without incurring excessive clutter.

3. Picking/Selecting data values Being able to pick a data value or small set of values is an important feature.
The user can query a point, getting its exact value, without cluttering the entire scene with unnecessary
details.

16.2 Volume Visualization with Texture

Volume rendering is a useful technique for visualizing three dimensional arrays of sampled data. Examples of
sampled 3D data can range from computational fluid dynamics, medical data from CAT or MRI scanners, seismic
data, or any volumetric information where geometric surfaces are difficult to generate or unavailable. Volume
visualization provides a way to see through the data, revealing complex 3D relationships.

There are a number of approaches for visualization of volume data. Many of them use data analysis techniques to
find the contour surfaces inside the volume of interest, then render the resulting geometry with transparency.

The 3D texture approach is a direct data visualization technique, using 2D or 3D textured data slices, combined
using a blending operator [23]. The approach described here is equivalent to ray casting [44] and produces the
same results. Unlike ray casting, where each image pixel is built up ray by ray, this approach takes advantage of
spatial coherence. The 3D texture is used as a voxel cache, processing all rays simultaneously, one 2D layer at
a time. Since an entire 2D slice of the voxels are “cast” at one time, the resulting algorithm is much faster with
hardware-accelerated texture than ray casting.

This section is divided into two approaches, one using 2D textures, the other using a 3D texture. Although the 3D
texture approach is simpler and yields superior results overall, 3D textures are currently still an EXT extension in
OpenGL and are not universally available like 2D textures. 3D texturing will be available as part of OpenGL 1.2,
so both methods [23] are described here.

16.2.1 Overview of the Technique

The technique for visualizing volume data is composed of two parts. First the texture data is sampled with planes
parallel to the viewport and stacked along the direction of view. These planes are rendered as polygons, clipped
to the limits of the texture volume. These clipped polygons are textured with the volume data, and the resulting
images are blended together, from back to front, towards the viewing position. As each polygon is rendered, its
pixel values are blended into the framebuffer to provide the appropriate transparency effect. See Figure 87.

If the OpenGL implementation doesn’t support 3D textures, a more limited version of the technique can be used,
where 3 sets of 2D textures are created, one set for each major plane of the volume data. The process then proceeds
as with the 3D case, except that the slices are constrained to be parallel to one of the three 2D texture sets.

193

Programming with OpenGL: Advanced Rendering

Figure 87. Slicing a 3D Texture to Render Volume

Close-up views of the volume cause sampling errors to occur at texels that are far from the line of sight into the
data. To correct this problem, use a series of concentric tessellated spheres centered around the eye point, rather
than a single flat polygon, to generate each textured “slice” of the data. As with flat slices, the spherical shells
should be clipped to the data volume, and each textured shell blended from back to front. See Figure 88.

16.2.2 3D Texture Volume Rendering

Using 3D textures for volume rendering is the most desirable method. The slices can be oriented perpendicular to
the viewer’s line of sight, and creating spherical slices for close-up views doesn’t lead to sampling errors.

Here are the steps for rendering a volume using 3D textures:

1. Load the volume data into a 3D texture. This is done once for a particular data volume.

Eye

Volume

Shells

Figure 88. Slicing a 3D Texture with Spherical Shells

194

Programming with OpenGL: Advanced Rendering

2. Choose the number of slices, based on the criteria in Section 16.2.5. Usually this matches the texel dimen-
sions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Compute a series of polygons that cut through the data perpendicular to the direction of view. Use texture
coordinate generation to texture the slice properly with respect to the 3D texture data.

5. Use the texture transform matrix to set the desired orientation of the textured images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend operation is performed at each slice;
the type of blend depends on the desired effect. See the blend equation descriptions in Section 16.2.4 for
details.

7. As the viewpoint and direction of view changes, recompute the data slice positions and update the texture
transformation matrix as necessary.

16.2.3 2D Texture Volume Rendering

Volume rendering with 2D textures is more complex and does not provide as good results as 3D textures, but can
be used on any OpenGL implementation.

The problem with 2D textures is that the data slice polygons can’t always be perpendicular to the view direction.
Three sets of 2D texture maps are created, each set perpendicular to one of the major axes of the data volume.
These texture sets are created from adjacent 2D slices of the original 3D volume data along a major axis. The data
slice polygons must be aligned with whichever set of 2D texture maps is most parallel to it. In the worst case, the
data slices are canted 45 degrees from the view direction.

The more edge-on the slices are to the eye, the worse the data sampling is. In the extreme case of an edge-on slice,
the textured values on the slices aren’t blended at all. At each edge pixel, only one sample is visible, from the line
of texel values crossing the polygon slice. All the other values are obscured.

For the same reason, sampling the texel data as spherical shells to avoid aliasing when doing close-ups of the
volume data, isn’t practical with 2D textures.

Here are the steps for rendering a volume using 2D textures:

1. Generate the three sets of 2D textures from the volume data. Each set of 2D textures is oriented perpendic-
ular to one of volume’s major axes. This processing is done once for a particular data volume.

2. Choose the number of slices, based on the criteria in Section 16.2.5. Usually this matches the texel dimen-
sions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Find the set of 2D textures most perpendicular to the direction of view. Generate data slice polygons parallel
to the 2D texture set chosen. Use texture coordinate generation to texture each slice properly with respect
to its corresponding 2D texture in the texture set.

5. Use the texture transform matrix to set the desired orientation of the textured images on the slices.

6. Render each slice as a textured polygon, from back to front. A blend operation is performed at each slice;
the type of blend depends on the desired effect. See the blend equation descriptions in Section 16.2.4 for
details.

7. As the viewpoint and direction of view changes, recompute the data slice positions and update the texture
transformation matrix as necessary. Always orient the data slices to the 2D texture set that is most closely
aligned with it.

195

Programming with OpenGL: Advanced Rendering

16.2.4 Blending Operators

There a number of common blending functions used in volume visualization. They are described below.

Over The over operator [79] is the most common way to blend for volume visualization. Volumes blended with
the over operator approximate the flow of light through a colored, transparent material. The transparency of each
point in the material is determined by the value of the texel’s alpha channel. Texels with higher alpha values tend
to obscure texels behind them, and stand out through the obscuring texels in front of them.

The over operator can be implemented in OpenGL by setting the blend function to perform the over operation:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

Attenuate The attenuate operator simulates an X-ray of the material. With attenuate, the texel’s alpha appears to
attenuate light shining through the material along the view direction towards the viewer. The texel alpha channel
models material density. The final brightness at each pixel is attenuated by the total texel density along the
direction of view.

Attenuation can be implemented with OpenGL by scaling each element by the number of slices, then summing
the results. This can be done by combination of the appropriate blend function and blend color:

glBlendFunc(GL_CONSTANT_ALPHA_EXT, GL_ONE)
glBlendColorEXT(1.f, 1.f, 1.f, 1.f/number_of_slices)

Maximum Intensity Projection Maximum Intensity Projection, or MIP, is used in medical imaging to visualize
blood flow. MIP finds the brightest texel alpha from all the texture slices at each pixel location. MIP is a contrast
enhancing operator; structures with higher alpha values tend to stand out against the surrounding data.

MIP can be implemented with OpenGL using the blend minmax extension:

glBlendEquationEXT(GL_MAX_EXT)

Under Volume slices rendered front to back with the under operator give the same result as the over operator
blending slices from back to front. Unfortunately, OpenGL doesn’t have an exact equivalent for the under operator,
although using glBlendFunc(GL ONE MINUS DST, GL DST) is a good approximation. Use the over operator
and back to front rendering for best results. See Section 8.1 for more details.

16.2.5 Sampling Frequency

There are a number of factors to consider when choosing the number of slices (data polygons) to use when
rendering your volume:

Performance It’s often convenient to have separate “interactive” and “detail” modes for viewing volumes. The
interactive mode can render the volume with a smaller number of slices, improving the interactivity at the
expense of image quality. Detail mode – rendering with more slices – can be invoked when the volume
being manipulated slows or stops.

Cubical Voxels The data slice spacing should be chosen so that the texture sampling rate from slice to slice is
equal to the texture sampling rate within each slice. Uniform sampling rate treats 3D texture texels as cubical
voxels, which minimizes resampling artifacts.

For a cubical data volume, the number of slices through the volume should roughly match the resolution
in texels of the slices. When the viewing direction is not along a major axis, the number of sample texels

196

Programming with OpenGL: Advanced Rendering

changes from plane to plane. Choosing the number of texels along each side is usually a good approxima-
tion.

Non-linear blending The over operator is not linear, so adding more slices doesn’t just make the image more
detailed. It also increases the overall attenuation, making it harder to see density details at the “back” of the
volume. Strictly speaking, if you change the number of slices used to render the volume, the alpha values
of the data should be rescaled. There is only one correct sample spacing for a given data set’s alpha values.
Generally, it doesn’t buy you anything to have more slices than you have voxels in your 3D data.

Perspective When viewing a volume in perspective, the density of slices should increase with distance from the
viewer. The data in the back of the volume should appear denser as a result of perspective distortion. If the
volume isn’t being viewed in perspective, then uniformly spaced data slices are usually the best approach.

Flat vs. Spherical Slices If you are using spherical slices to get good close-ups of the data, then the slice spacing
should be handled in the same way as for flat slices. The spheres making up the slices should be tessellated
finely enough to avoid concentric shells from touching each other.

2D vs. 3D Textures 3D textures can sample the data in the , , or directions freely. 2D textures are constrained
to and . 2D texture slices correspond exactly to texel slices of the volume data. To create a slice at an
arbitrary point would require resampling the volume data.

Theoretically, the minimum data slice spacing is computed by finding the longest ray cast through the volume in
the view direction, transforming the texel values found along that ray using the transfer function (if there is one),
then finding the highest frequency component of the transformed texels, and using double that number for the
minimum number of data slices for that view direction.

This can lead to a large number of slices. For a data cube 512 texels on a side, the worst case would be at least
slices, or about 1774 slices. In practice, however, the volume data tends to be bandwidth limited; and in

many cases choosing the number of data slices to be equal to the volume’s dimensions, measured in texels, works
well. In this example, you may get satisfactory results with 512 slices, rather than 1774. If the data is very blurry,
or image quality is not paramount (for example, in “interactive mode”), this value could be reduced by a factor of
two or four.

16.2.6 Shrinking the Volume Image

For best visual quality, render the volume image so that the size of a texel is about the size of a pixel. Besides
making it easier to see density details in the image, larger images avoid the problems associated with under-
sampling a minified volume.

Reducing the volume size will cause the texel data to be sampled to a smaller area. Since the over operator is
non-linear, the shrunken data will interact with it to yield an image that is different, not just smaller. The minified
image will have density artifacts that are not in the original volume data.

If a smaller image is desired, first render the image full size in the desired orientation, then shrink the resulting 2D
image.

16.2.7 Virtualizing Texture Memory

Volume data doesn’t have to be limited to the maximum size of 3D texture memory. The visualization technique
can be virtualized by dividing the data volume into a set of smaller “bricks”. Each brick is loaded into texture
memory, then data slices are textured and blended from the brick as usual. The processing of bricks themselves is
ordered from back to front relative to the viewer. The process is repeated with each brick in the volume until the
entire volume has been processed.

197

Programming with OpenGL: Advanced Rendering

To avoid sampling errors at the edges, data slice texture coordinates should be adjusted so they don’t use the
surface texels of any brick. The bricks themselves are oriented so that they overlap by one volume texel with their
immediate neighbors. This allows the results of rendering each brick to combine seamlessly. For more information
on paging textures, see Section 6.8.

16.2.8 Mixing Volumetric and Geometric Objects

In many applications it is useful to display both geometric primitives and volumetric data sets in the same scene.
For example, medical data can be rendered volumetrically, with a polygonal prosthesis placed inside it. The
embedded geometry may be opaque or transparent.

The Opaque geometric objects are rendered first using depth buffering. The volumetric data slice polygons are
then drawn, with depth testing still enabled. Depth buffer updating should be masked off if the slice polygons are
being rendered from front to back (for most volumetric operators, data slices are rendered back to front). With
depth testing enabled, the pixels of volume planes behind the object aren’t rendered, while the planes in front of
the object blend it in. The blending of the planes in front of the object gradually obscure it, making it appear
embedded in the volume data.

If the object itself should be transparent, it must be rendered along with the data slice polygons a slice at a time.
The object is chopped into slabs using user defined clipping planes.The slab thickness corresponds to the spacing
between volume data slices. Each slab of object corresponds to one of the data slices. Each slice of the object is
rendered and blended with its corresponding data slice polygon, as the polygons are rendered back to front.

16.2.9 Transfer Functions

Different alpha values in volumetric data often correspond to different materials in the volume being rendered. To
help analyze the volume data, a non-linear transfer function can be applied to the texels, highlighting particular
classes of volume data. This transformation function can be applied through one of OpenGL’s lookup tables. The
SGI texture color table extension applies a lookup table to texels values during texturing, after the texel
value is filtered.

Since filtering adjusts the texel component values, a more accurate method is to apply the lookup table to the texel
values before the textures are filtered. If the EXT color table table extension is available, then a colortable in
the pixel path can be used to process the texel values while the texture is loaded. If lookup tables aren’t available,
the processing can be done to the volume data by the application, before loading the texture.

If the paletted texture extension (EXT paletted texture) is available and the 3D texture can be stored simply
as color table indices, it is possible to rapidly change the resulting texel component values by changing the color
table.

16.2.10 Volume Cutting Planes

Additional surfaces can be created on the volume with user defined clipping planes. A clipping plane can be used
to cut through the volume, exposing a new surface. This technique can help expose the volume’s internal structure.
The rendering technique is the same, with the addition of one or more clipping planes defined while rendering and
blending the data slice polygons.

16.2.11 Shading the Volume

In addition to visualizing the voxel data, the data can be lit and shaded. Since there are no explicit surfaces in the
data, lighting is computed per volume texel.

198

Programming with OpenGL: Advanced Rendering

The direct approach to shading is to do it on the host. The volumetric data can be processed to find the gradient at
each voxel. Then the dot product between the gradient vector, now used as a normal, and the light is computed,
and the results saved as 3D data. The volumetric data now contains the intensity at each point in the data, instead
of data density. Specular intensity can be computed the same way, and combined so that each texel contains the
total light intensity at every sample point in the volume. This processed data can then be visualized in the manner
described previously.

The problem with this technique is that a change of light source (or viewer position, if specular lighting is desired)
requires that the data volume be reprocessed. A more flexible approach is to save the components of the gradient
vectors as color components in the 3D texture. Then the lighting can be done while the data is being visualized.
One way to do this is to transform the texel data using the color matrix extension. The light direction can be
processed to form a matrix that when multiplied by the texture color components (now containing the components
of the normal at that point), will produce the dot product of the two. The color matrix is part of the pixel path, so
this processing can be done when the texture is being loaded. Now the 3D texture contains lighting intensities as
before, but the dot product calculations are done in the pixel pipeline, not in the host.

The data’s gradient vectors could also be computed interactively, as an extension of the texture bump-mapping
technique described in Section 10.6. Each data slice polygon is treated as a surface polygon to be bump-mapped.
Since the texture data must be shifted and subtracted, then blended with the shaded polygon to generate the lit
slice before blending, the process of generating lit slices must be processed separately from the blending of slices
to create the volume image.

16.2.12 Warped Volumes

The data volume can be warped by non-linearly shifting the texture coordinates of the data slices. For more
warping control, tessellate the vertices to provide more vertex locations to perturb the texture coordinate values.
Among other things, very high quality atmospheric effects, such as smoke, can be produced with this technique.

16.3 Vector Field Visualization

Visualizing vector fields is a difficult problem. Whereas scalar fields have a scalar value at each sample point,
vector fields have an -component vector (usually 2 or 3 components) at each point. Vector fields occur in appli-
cations such as computational fluid dynamics and typically represent the flow of a gas or liquid. Visualization of
the field provides a way to better observe and understand the flow patterns.

Vector field visualization techniques can be grouped into 3 general classes:

Icon Based Icon based techniques render a 3D geometric object (cone, arrow, etc) at each sample point with the
geometry aligned with the vector direction at that point. Other attributes such as object size or color can be used
to encode a scalar quantity such as the magnitude of the vector at each sample point.

Particle Tracing Based Particle tracing based techniques use point-shaped geometry to trace out paths through
the vector field. Portions of the field are seeded with particles and paths are traced through the field following the
vector field samples. The positions of the particles along their respective paths are animated over time to convey
a sense of flow through the field. A variation on the techniques is to trace out the paths and display each path as a
stream line using lines, ribbons or tubed shaped geometry.

Texture Based Texture based techniques use image processing algorithms to trace out many paths through the
field simultaneously. These techniques work very well for 2D fields or cross sections of 3D fields resulting in
dense and detailed stream line images.

199

Programming with OpenGL: Advanced Rendering

Figure 89. Line Integral Convolution

16.4 Line Integral Convolution (LIC) with Texture

Line integral convolution is texture based technique for visualizing vector fields and has the advantage of being
able to visualize large and detailed vector fields in a reasonable display area.

Line integral convolution involves selectively blurring a reference image as a function of the vector field to be
displayed. The reference image can be anything, but to make the results clearer, is usually an spatially uncorrelated
image (e.g., a noise image). The resulting image appears stretched and squished along the directions of the
distorting vector field streamlines, visualizing the flow with a minimum of display resolution. Vortices, sources,
sinks and other discontinuities are clear shown in the resulting image, and the viewer can get an immediate grasp
of the flow fields “big picture”.

In each case, you start with a vector field, sampled as a discrete grid of normalized vectors. You also need an
image that is non-uniform and spatially uncorrelated, so correlations you apply to it will be more obvious. The
goal is to process the image with the vector field, using line integral convolution, so you can visualize it. Note
that in this technique, you will concentrate on the direction of the flow field, not its velocity; this is why the vector
values at each gridpoint are normalized.

The processed image can be calculated directly using a special convolution technique. A representative set of
vector values on the vector grid are chosen. Special convolution kernels are created shaped like the local stream
line at that vector by tracing local field flow forwards and backwards some user-defined distance. The resulting
curve is used as a convolution kernel to convolve the underlying image. This process is repeated over the entire
image using a sampling of the vectors in the vector field.

Mathematically, for each location in the input vector field, a parametric curve is generated which passes
through the location and follows the vector field for some distance in either direction. To create an output pixel

, a weighted sum of the values of the input image along the curve is computed. The weighting function is
. Thus the continuous form of the equation is:

To discretize the equation, use values along the curve :

200

Programming with OpenGL: Advanced Rendering

Flow field vectors

n samples

L

Figure 90. Line Integral Convolution with OpenGL

16.4.1 Sampling

How accurately the processed image represents the vector field depends on how accurately the line convolution
kernels follow the flow fields stream lines. Since the convolution kernels are only discretely sampling a continuous
flow field, they are inaccurate in general. Areas of flow that are changing slowly will be represented well, but
rapidly changing regions of the flow field (such as the center of vortices and other singularities) will be incorrectly
described or missed altogether.

There are various ways of optimizing the sampling intervals to minimize this this problem, with different tradeoffs
between computation time and resulting accuracy. The numerical analysis topics involved are beyond the scope of
this document, and are well covered elsewhere [16, 61]. For our purposes, we’ll use the simplest and least accurate
method – a fixed spatial sampling interval.

16.4.2 Using OpenGL to Create Line Integral Convolution (LIC) Images

Instead of generating a series of custom convolution kernels and applying them to an image, you can use a texture
mapping approach. This variant has the advantage that it’s reasonably easy to implement and runs quickly, espe-
cially on systems with good texturing and accumulation buffer support, since it is parallelizing the convolution
operations.

The concept is simple; a surface, tessellated into a mesh, is textured with an image to be processed. Each vertex on
the surface has a texture coordinate associated with it. Instead of convolving the image with a series of streamline
convolution kernels, the texture coordinates at each vertex are shifted parallel to flow field vector local to that
vertex. This process, called advection, is done repeatedly in a series of displacements parallel to the flow vectors,
with the resulting series distorted images combined using the accumulation buffer.

The texture coordinates at each grid location are displaced parallel to the local field vector in a fixed series of
steps. The displacement is done both parallel and antiparallel to the field vector at the vertex. The amount of
displacement for each step and the number of steps determines the accuracy and appearance of the line integral
convolution. The application generally sets a global value describing the length of the displacement range for all
of the texture coordinates on the surface; the number of displacements along that length is computed per vertex,
as a function of the local field’s curl.

16.4.3 Line Integral Convolution Procedure

Next, make some simplifying assumptions to make the procedure simple:

201

Programming with OpenGL: Advanced Rendering

1. The supplied flow field vector grid matches the tessellated textured surface; there’s a one-to-one correspon-
dence between vector and vertex.

2. Set a fixed number of displacements () at each vertex.

These assumptions allow you to simply use the vector associated with each vertex on the tessellated surface when
computing texture displacements. You can also simply calculate the displacements by parameterizing the vector
and computing evenly spaced texture coordinate locations displaced along the vector direction, both forwards and
backwards.

Given these assumptions, the procedure looks like this:

1. Update the texture coordinates at each vertex on the surface.

2. Render the surface using the noise texture and the displaced texture coordinates.

3. Accumulate the resulting image in the accumulation buffer, scaling by .

4. Repeat the steps above times, then return the accumulated image.

5. Perform histogram equalization or image scaling to maximize contrast.

16.4.4 Details

Since the most of the work goes into updating the texture coordinates, it makes sense to use vertex arrays to
represent the textured surface. Using a vertex array provides two benefits; it simplifies the representation of the
texture coordinates (they can be kept in a 2D array), and it potentially increases rendering performance since using
glDrawElements has an index array that can eliminate the need for sending shared texture and vertex coordinates
multiple times, and reduces function call overhead.

Scaling each accumulation uniformly is not optimal. The displacement of the texture coordinates is most accu-
rate close to the grid vector; so each image contribution can be scaled as an inverse function of distance from
from the vector. The farther the displacement from the original flow field vector, the less accurate the advection
can potentially be, and the smaller accumulation scale factor is. Obviously more sophisticated algorithms can
be implemented that adjust scale based on a computed, rather than assumed, accuracy. Any scaling algorithm
should take into account the maximum and minimum possible color values after accumulating to avoid pixel color
overflow or underflow.

In many implementations, the performance of this algorithm will be limited by the speed of the convolution
operation. For some applications, a blend operation can be substituted with a loss of resolution accuracy; the
scaling operation can be provided by changing the intensity of the base polygon. Watch out for overflow and
underflow of the blended color values.

16.4.5 Maximizing Contrast

There are a couple of obvious methods to maximize the effects of the flow field being visualized, in particular, to
contract the blurring tendency from the the random noise texels being blended together. One simple method is to
scale and bias the image to maximize its contrast. The imaging subset makes this easy. Process the image by doing
a pixel copy, turning on sink after the minmax operation. With the minimum and maximum values obtained, you
can execute glCopyPixels again, setting scale and bias in the pixel pipeline to scale and bias the image.

Or you can do a full histogram equalization. Using the histogram feature, copy the image through the pixel
pipeline, then process the resulting histogram to create a lookup table. The lookup table will balance the intensities
into a linear ramp. Again use copypixels to remap the pixel intensity values. In detail:

202

Programming with OpenGL: Advanced Rendering

1. glEnable(GL MIN MAX)

2. glMinmax(GL MIN MAX, GL LUMINANCE, GL TRUE)

3. glCopyPixels of LIC Image.

4. glGetMinmax to get minimum and maximum pixel values.

5. Compute a scale and bias value to get full 0 to 1 dynamic range.

6. glDisable(GL MIN MAX)

7. glDisable(GL MIN MAX)

8. glPixelTransfer to set scale and bias value.

9. glCopyPixels of LIC Image to rescale it.

16.4.6 Going Farther

The approach described here to generate line integral convolution images is very simplistic. More sophisticated
algorithms will decouple the surface tessellation from the flow field grid, and more finely subdivide the tessella-
tion surface where there rapidly changing flows to properly sample them. This subdivision algorithm should be
backed with a rigorous sampling approach so that the results can can be trusted within given accuracy bounds. A
subdivision algorithm must also recognize and handle various types of flow discontinuities.

This technique can easily be extended into three dimensions, using 3D textures. Volume visualization techniques,
described in Section 16.2 in these notes, can be used to visualize the 3D LIC image.

16.5 Illuminated Stream Lines

Stream line based techniques rely on tracing a path through the field starting at some point in the field. Once the
path has been traced, the path is represented using geometric primitives. When visualizing 3-dimensional fields,
illumination and shading provide additional visual cues, particularly for dense collections of stream lines. One
type of geometry that can be used is tube shaped geometry constructed from segments of cylinders following the
path. In order to capture accurate shading information the radius of the cylinders needs to be finely tessellated
resulting in a large polygon load when displaying a large number of stream lines.

Another possibility it to use line primitives since they can be rendered very efficiently and allow very large numbers
of streamlines to be drawn. A disadvantage is that lines are rendered as flat geometry with a single normal at each
end point so they result in much lower shading accuracy compared to using tessellated cylinders. In [92] an
algorithm is described to approximate cylinder-like lighting using texture mapping.

The main idea behind the algorithm is to choose a normal vector that lies in the same plane as that formed by
the tangent vector and light vector . The diffuse and specular lighting contributions are then expressed in
terms of the line’s tangent vector and the light vector rather than a normal vector. For the diffuse term,

. This allows the diffuse cosine term to be evaluated using the OpenGL texture matrix to compute

, by specifying the components of the tangent vector in the texture coordinate and the components of the light
vector in the texture matrix,

203

Programming with OpenGL: Advanced Rendering

The resulting texture coordinate is which has been biased to ensure that the computed
coordinate value lies in the range . The texture coordinate is then used to index a 1-dimensional texture
storing the cosine function modulated by the material diffuse reflectance .

Similarly the specular term can be expressed in terms of the tangent vector and viewing direction as

. Using the texture matrix,

to compute , then and as before. Thus and can be
used with a 2-dimensional texture to generate the specular term. Since the texture encodes the viewing direction

, the texture map must be regenerated if the view direction changes (if the light moves with the view, as is the
case for a headlight, then no recomputation is necessary). Finally, the specular and diffuse terms can be combined
together with an ambient term into a single texture map to perform the entire lighting calculation in a single pass.

Since the texture map encodes the material reflectance coefficients, multiple texture maps are required for multiple
materials. This need for multiple maps can be eliminated by sending the material color as the line color and storing
only the light intensity in the texture map. The two can be combined using the GL MODULATE texture environment
function. Multiple maps or recomputations are required to support different combinations of diffuse and specular
properties.

The illuminated lines can also be rendered using transparency techniques. This is useful for dense collections of
stream lines. The opacity value is sent with the line color and the lines must be sorted from back to front to be
rendered correctly as described in Section 12.

204

Programming with OpenGL: Advanced Rendering

alpha .85

alpha .75

Scale x 2

alpha 1.0

Scale x 2

Figure 91. Dilating, Fading Smoke

17 Natural Phenomena

The are a large number of naturally occurring phenomena such as smoke, fire and clouds which are challenging
to render at interactive rates with any semblance of realism. A common solution is to reduce the requirement for
complex geometry by using textures. Many of the techniques use a combination of geometry and texture which
vary as a function of time or other parameters such as distance from the viewer.

17.1 Smoke

Modeling smoke potentially requires some sophisticated physics, but surprisingly realistic images can be generated
using fairly simple techniques. One such technique involves capturing a 2D cross section or image of a puff of
smoke with both luminance and alpha channels for the image. The image can then be texture mapped onto a
quadrilateral and blended into the scene. The billboard techniques outlined in Section 6.10 can be used to ensure
that the image is transformed to face the user. Using a GL MODULATE texture environment, the color and alpha
value of the quadrilateral can be used to control the color and transparency of the smoke in order to simulate
different types of smoke. For example, smoke from an oil fire would be dark and opaque, whereas steam from a
flare stack would be much lighter in color.

The size, position, orientation, and opacity of the quadrilateral can be varied as a function of time to simulate the
puff of smoke enlarging, drifting and dissipating over time.

More realistic effects can be achieved using volumetric techniques. Instead of a 2D image, a 3D volumetric image
of smoke is rendered using the algorithms described in Section 16.2. Again, dynamics can be simulated by varying
the position, size and transparency of the volume. More complex dynamics can be simulated by applying local
distortions or deformations to the texture coordinates of the volume lattice rather than simply applying uniform
transformations. The volumetric shading technique described in Section 16.2.11 can be used to illuminate the
smoke.

There are many procedural techniques which can be used to synthesize both 2D and 3D textures [25].

17.2 Vapor Trails

Vapor trails emanating from a jet or a missile can be rendered using methods similar to the painting technique
described in Section 8.3. A circular, wispy 2D image such as that used in the preceding section is used to generate
the vapor pattern over some unit interval by rendering it as a billboard. A texture image consisting only of alpha

205

Programming with OpenGL: Advanced Rendering

Fade

Head

Dialate

Figure 92. Vapor Trail

values is used to modulate the alpha values of a white billboard polygon. The trajectory of the airborne object
is painted using multiple overlapping copies of the billboard as shown in Figure 92. Over time the individual
billboards gradually enlarge and fade. The program for rendering a trail is largely an exercise in maintaining an
active list of the position, orientation and time since creation for each billboard used to paint the trail. As each
billboard polygon exceeds a threshold transparency value it can be discarded from the list.

17.3 Fire

The simplest techniques for rendering fire involve applying static images and movie loops as textures to billboards.

A static image of fire can be constructed from a noise texture; Section 6.20.2 describes how to make a noise
texture using OpenGL. The weights for different frequency components should be chosen to reflect the spectral
structure of fire, and turbulence can also be incorporated effectively into the texture. The texture is mapped to
a billboard polygon. Several such textures, composited together, can create the appearance of multiple layers of
intermingling flames. Finally, the texture coordinates may be distorted vertically to simulate the effect of flames
rising and horizontally to mimic the effect of winds.

A sequence of fire textures can be played as an animation. The abrupt manner in which fire moves and changes
intensity can be modeled using the same turbulence techniques used to create the fire texture itself. The speed
of the animation playback, as well as the distortion applied to the texture coordinates of the billboard, might be
controlled using a turbulent noise function. To create the animation a series of texture objects is created, each one
containing one image from the fire sequence. During playback the set of texture objects is sequenced through, one
each frame, mapping the current texture to a quadrilateral using a modulate texture environment.

17.4 Explosions

Explosion effects can be rendered by combining the techniques for smoke, vapor, and fire. A static image of a
fireball is drawn centered in the middle of the explosion and dilated and faded over some time period. At the same
time, the vapor and smoke rendering techniques are combined to cause a smoke trail to rise from the center of the
explosion. To make the explosion appear more realistic, the geometry for fragments of objects are added to the
scene with their own animated trajectories.

206

Programming with OpenGL: Advanced Rendering

17.5 Clouds

Clouds, like smoke, have an amorphous structure without well defined surfaces and boundaries. In recent times,
computationally intensive physical modeling techniques have given way to simplified mathematical models which
are both computationally tractable and aesthetically pleasing [31, 25].

The main idea behind these techniques involves generating a realistic 2D or 3D texture function using a fractal
or spectral based function. Gardner suggests a Fourier-like sum of sine waves with phase shifts

with the relationships

Care must be taken using this technique to choose values to avoid a regular pattern in the texture. Alternatively,
texture generation techniques described in Section 6.20.2 can be used.

A stochastic method, based on work by Fournier and Miller [29, 63], uses a midpoint displacement technique
called Diamond-Square for generating a set of random values on a uniform grid. These generated values are
interpreted as opacity values and correspond to the cloud density at a given point. The algorithm is iterative
and during each iteration two steps are executed. The first, the diamond step takes four corners of a square and
produces a new value at the center of the square by averaging the values at the four corners and adding a random
number in the range . The second step, the square step, consists of taking the corners of the four diamonds
that were generated in the diamond step (they share the center point of the diamond step) and generating a new
center value for each diamond by averaging its four corners and adding a random number in the range .
During the square step, attention must be paid to diamonds at the edges of the grid as they will wrap around to the
opposite side of the grid. During each iteration the number of squares processed is increased by a factor of four.
To produce smooth variations in the generated values, the range of the random value added during the generation
of center points is reduced by some fraction for each iteration.

Seed values for the first few iterations of the algorithm may be used to control the overall shape of the cloud.

Any of these techniques can be used to produce a 2D texture which can be used to render a cloud layer. A cloud
layer is simulated by drawing a large textured polygon in the sky at a fixed altitude. A luminance cloud texture is
used to blend a white constant texture environment color into a blue sky polygon.

Some of the dynamic aspects of clouds can be simulated by vary parameters over time. Cloud development can
be simulated by scaling and biasing the luminance values in the texture. Drifting can be simulated by moving the
texture pattern across the sky, i.e., transforming the texture coordinates. Ground fog can be simulated by drawing
the thin cloud layer between the viewer and ground rather than the viewer and the sky.

Gardner also suggests using ellipsoids to simulate 3D cloud structures. The texture data is generated using a 3-
dimensional extension of the Fourier synthesis method outlined above and the textures are applied with increasing
transparency near the boundary of the ellipsoid. These 3D textures can also be combined with the volume render-
ing techniques described in Section 16.2 to produce 3D cloud images. In order to improve the performance of the
rendering, the full volume rendering algorithm need not be used. In particular, the cloud may be assumed to be
elliptical and opaque at the center. Therefore, the interior of the cloud can be drawn as a polygonal shell and the
outer edges of the cloud using the volume rendering techniques.

207

Programming with OpenGL: Advanced Rendering

y = a sin(f x)

Figure 93. Water Modeled as a Height Field

17.6 Water

A large body of research has been done into modeling, shading, and reproducing optical effects of water [100,
75, 30], yet most methods still present a large computation burden to achieve a realistic image. Nevertheless, it
is possible to borrow from these approaches and achieve modest results while retaining interactive performance
[54, 25].

The dynamics of wind and waves can be simulated using procedural models and rendered using meshes or height
fields. The geometry is textured using simple procedural texture images. Multipass rendering techniques can be
used to layer additional effects such as surf. Environment mapping can be used to simulate reflections from the
surface. Specular illumination using environment mapping can be combined with the Fresnel reflection model
from Section 10.4 to create a more physically accurate lighting model. The bump mapping technique from Sec-
tion 10.6 can be used to create the illusion of ripples without modeling them in the geometry. The bump map
can be animated as part of the simulation to animate the ripples. The combination of reflection mapping and a
dynamic model for ripples provides a visually compelling image. Alternatively, synthetic perturbations to the
texture coordinates as outlined in Section 6.21.7 can also be used.

Small swells can be modeled using a texture mapped height field. The height of the vertices can be modulated
with a sinusoid to simulate simple wave patterns as showing in Figure 93. The frequency and amplitude of the
waves can be varied to achieve different effects. The phase of the sinusoid can be varied over time to create wave
motion.

Optical effects such as caustics can be approximated using parts of the OpenGL pipeline as described by Nishita
and Nakamae [70] but interactive frame rates are not likely to be achieved. Instead such effects can be faked using
textures to modulate the intensity of any geometry that lies below the surface. Other below-surface effects can also
be simulated. Movements of the water (surge) can be simulated by perturbing the vertex coordinates of submerged
objects, again using sinusoids. Blueish-green fog can be used to simulate light attenuation in water.

17.7 Light Points

OpenGL has direct support for rendering both aliased and antialiased points, but these simple facilities are usually
insufficient for simulating small light sources, such as stars, beacons, runway lights, etc. In particular, the size of
OpenGL points is not affected by perspective projections. To render more realistic looking small light sources it
is necessary to change some combination of the size and brightness of the source as a function of distance from
the eye.

The brightness attenuation as a function of distance, , can be approximated by using the same equation used in

208

Programming with OpenGL: Advanced Rendering

the OpenGL lighting equation

Attenuation can be achieved by modulating the point size by the square root of the attenuation

As the point size approaches the size of a single pixel the resolution of the raster display system will cause artifacts.
To avoid this problem the point can be made semi-transparent once it crosses a particular size threshold. The alpha
value is proportional to the ratio of the point area determined from the size attenuation computation to the area of
the point being rendered

More complex behavior such as defocusing, perspective distortion and directionality of light sources can be
achieved by using an image of the light lobe as a texture map combined with billboarding to keep the light lobe
oriented towards the viewer. An advantage of using texture mapping is that the quadrilateral or other geometry that
the texture is applied to is automatically scaled by the perspective projection so rendering the correct size is less
of an issue. To effectively simulate distance attenuation it may, however be necessary to select different texture
patterns according to distance from the eye.

17.8 Other Atmospheric Effects

OpenGL provides a primitive capability for rendering atmospheric effects such as fog, mist and haze. It is useful
to simulate the affects of atmospheric effects on visibility to increase realism, and it allows the database designer
to cover up a multitude of sins such as “dropping” polygons near the far clipping plane in order to sustain a fixed
frame rate.

OpenGL implements fogging by blending the fog color with the incoming fragments using a fog blending factor,
,

This blending factor is computed using one of three equations: exponential (GL EXP), exponential-squared
(GL EXP2), and linear (GL LINEAR)

where is the eye-coordinate distance between the viewpoint and the fragment center.

Linear fog is frequently used to implement intensity depth-cuing in which objects closer to the viewer are drawn
at higher intensity [27]. The effect of intensity as a function of distance is achieved by blending the incoming
fragments with a black fog color.

The exponential fog equation has some physical basis. It is the result of integrating a uniform attenuation between
the object and the viewer. The exponential-squared function includes the attenuation for reflected light which
has passed through the attenuation layer twice, once for the incident path and again for the reflected path. The
exponential and exponential-squared functions can be used to represent a number of atmospheric effects using
different combinations of fog colors and density values. Since OpenGL does not fog the pixel values during a
clear operation, the value of at the far plane, ,

209

Programming with OpenGL: Advanced Rendering

can be used to determine the color to which to clear the background

where is the color to which the background would be cleared without fog enabled.

As mentioned earlier, the obscured visibility of objects near the far plane can be exploited to overcome various
problems such as drawing time overruns, level-of-detail transitions, and database paging. However, in practice it
has been found that the exponential function does not attenuate distant fragments rapidly enough, so exponential-
squared fog can be used to achieve a sharper fall-off in visibility. Some vendors have gone a step further and
provided more control over the fog function by allowing applications to control the fog value through a spline
curve.

There are other problems that OpenGL’s primitive fog model does not address. For example, emissive geometry
such as the light points described above should be attenuated less severely than non-emissive geometry. This effect
can be approximated by precompensating the color values for emissive geometry, or reducing the fog density when
emissive geometry is drawn. Neither of these solutions is completely satisfactory since colors values are clamped
to 1.0 in OpenGL, limiting the amount of precompensation that can be done. Many OpenGL implementations
use lookup table methods to efficiently compute the fog function, so changes to the fog density may result in
expensive table recomputations. To overcome this problem some vendors have provided a mechanism to bias the
eye-coordinate distance, avoiding the need to recompute the fog lookup table.

If OpenGL fog processing is bypassed it is possible to do more sophisticated atmospheric effects using multipass
techniques. The OpenGL fog computation can be thought of as simple table lookup using the eye-coordinate
distance. The result is used as a blend factor for blending between the fragment color and fog color. A similar
operation can be implemented using glTexGen to generate the eye-coordinate distance for each fragment and a
1D texture for the fog function. Using a specially constructed 2D or 3D texture and a more sophisticated, texture
coordinate generation function, it is possible to compute more complex fog functions incorporating parameters
such as altitude and eye-coordinate distance.

17.9 Particle Systems

Some objects are difficult to represent as a set of surface primitives, even taking advantage of transparency and
texture mapping techniques. These include objects that have poorly defined or dynamic topologies, or have no
solid surface. Natural phenomena that meet this criteria include smoke, clouds, fire, water, etc.

Particle systems can be used to represent these objects. A particle system is a large set of simple primitive objects
which are processed as a group to represent an object. The characteristics of these objects, such as size, position,
color, and the lifetime of the particle itself, can be changed dynamically. If these parameters of the particles are
coordinated, the collection of particles can represent an object.

17.9.1 Representing Particles

Since you would like to use a lot of particles to create more realistic objects, you would like to render them as
cheaply as possible. One good candidate primitive is an OpenGL point. Unaliased single points of default size are
rendered as single fragments. They can be thought of as very small screen aligned rectangular billboards, since
they are always oriented towards the viewer.

It is important to pass points to the graphics hardware as efficiently as possible. Display lists are very efficient, but
since the characteristics of the points are usually changing from frame to frame, vertex arrays would be a better
choice. Vertex arrays avoid the overhead of multiple function calls per vertex, and have an additional advantage;
the primitive data is organized in array form. This is useful since some or all of the point characteristics must be
updated by the program each frame. It is important that this be done efficiently, or the updating can become the
bottleneck, starving the graphics hardware.

210

Programming with OpenGL: Advanced Rendering

Initialize Particles

Render Particles Update Particles

Figure 94. Particle System Block Diagram

Index X, Y, Z R, G, B, A Vx, Vy, Vz Lifetime Count

0
1
2
3
...

A particle system program has these basic components:

Particles in particle systems can be organized in tables, indexed by the particle, containing particle characteristics
to be updated each frame. This representation works well with vertex array representation, since the tables can be
used directly to render the updated particles.

Interleaved or non-interleaved vertex arrays can be used, depending on the complexity of the particle system
parameters. Parameters directly used for rendering, such as position can be intermixed in the table with
non-rendering parameters, such as current velocity. Vertex array strides can be adjusted to intermix these two
types of information, or they can be kept separated. Since particle update performance is important, particle tables
may have many non-rendering values to support incremental update algorithms.

When choosing a vertex array representation, keep in mind that OpenGL implementations often have higher
performance using interleaved arrays that are densely packed. We recommend using glInterleavedArrays
when possible. Of course, the data structure may have be adjusted to optimize for either rendering speed or
particle update performance, depending on which part of the system is the performance bottleneck.

17.9.2 Particle Sizes

If particles are very small, or the particles are clustered tightly together some distance from the viewer, good ef-
fects are possible with particles of a single size. If the particles are moving a large distance towards or away from
the viewer, a constant sized particle may appear unrealistic. Particles of changing sizes can lead to performance
penalties. Changing point size can be a costly operation in OpenGL. Whenever possible, sort and group the parti-
cles by size when rendering to minimize the number of glPointSize calls. Sorting overhead can be minimized
in many cases by using an incremental sorting algorithm, since points generally move only a small distance from
frame to frame.

If the GL EXT point parameters extension is available, you can use glPointParameterfEXT and glPoint-
ParameterfvEXT to set parameters that control point size as a function of distance from the viewer. This ex-
tension should be carefully benchmarked to see if your implementation can handle a set points with unsorted

211

Programming with OpenGL: Advanced Rendering

distance values efficiently. If not, then the points should still be sorted (or perhaps just partially sorted) to increase
rendering efficiency.

Often sorting can be minimized by quantizing point sizes to a few distinct values. Groups of points within a given
bounding volumes can be all set to an average size appropriate for that volume. As before, the effectiveness of
quantizing particle size will depend on the behavior of particles in a particular system.

17.9.3 Large and Small Points

If the particle size is increased from the default, the rectangular nature of the point representation may become
too apparent. Point antialiasing can be used to render the points as circles rather than squares. Benchmark the
performance of antialiased points of various sizes on your system to determine the overhead of using this feature.
Be sure to also take into account the fact that you will have to use alpha blending to make point antialiasing work.

If a particle must appear smaller than a single pixel, its alpha value can be reduced to make it more transparent
(remember to enable blending), simulating the brightness of a smaller particle. Another technique that is faster
but may not look as good is to reduce the intensity of the particle’s color instead of its alpha. See Section 17.7 for
more information.

17.9.4 Antialiasing

Antialiasing particles, both spatially and temporally, can be an important consideration, especially if particles are
moving slowly. Antialiasing points will cause the particles to move more smoothly as they cross pixel boundaries,
since fragments with fractional alpha values will be generated. Another technique is to use the particle positions
between two adjacent frames to orient a line centered at the particle’s current position, and draw an antialiased
line instead of a point. If the line’s length and alpha are varied as a function of current velocity, you can create a
motion blur effect.

If high quality is important and performance is not, or you have very good hardware support, the accumulation
buffer can be used to generate excellent antialiasing and motion blur. The particles for a given frame can be
rendered repeatedly and accumulated. The particle positions can be jittered for spatial antialiasing, and the particle
re-rendered along its direction of motion can produce motion blur effects. For more information, see Section 9.5
in these notes, and the accumulation buffer paper in the 1990 SIGGRAPH Proceedings [43] reprinted in these
course notes.

17.9.5 “Fat” Particles

Up until this point, we have dealt with very simple representations of particles. We do not have to limit ourselves
to simple points, however. In OpenGL, points can be texture mapped and lit, providing ways to achieve more
particle effects. It may also make sense to consider using small textured quads instead of points to represent
particles for some systems. The quads can be textured with a texture map containing alpha values to describe its
shape, transparency and color. Using more complex particles may allow you to use less particles to achieve the
same visual effect, enhancing performance.

One problem with using quads or other surface primitives is that, unless you want to expose their planar nature,
you will have to billboard them. Billboarding is rotating each quad so that it always faces the viewer. Since you
control the orientation of the particles, this only becomes a problem when the viewing transformation changes.
See Section 6.10 in these notes.

Some implementations have a billboarding extension, called GL sprite, which will orient surfaces automatically.
Implementation performance may vary, and since surfaces can all be oriented together, it may still be faster to
billboard the surfaces yourself. Benchmark to be sure.

212

Programming with OpenGL: Advanced Rendering

17.9.6 Particle Systems in a Scene

Particle systems can be difficult to integrate seamlessly into a complex scene. They are often not depth buffered,
relying on the the accumulated light contributions of all the particles to create a particular effect. The rest of the
scene will probably require depth buffering, however, so both the depth test and depth buffer update state needs to
be managed within the scene. Although particles can be lit, it is extremely expensive to try to cause each particle to
act as an OpenGL light source, especially since the number of simultaneous available OpenGL lights are limited.
Instead a few light sources can be placed in the system to represent an overall lighting effect. Blending state must
also be managed, since antialiased particles require alpha blending to work.

17.10 Precipitation

Precipitation effects such as rain and snow can be modeled and rendered using the particle techniques described
above. The task can be broken down into several tasks:

1. Realistic particle rendering.

2. Computing particle dynamics.

3. Managing particle lifetime.

The basic particle rendering techniques are described in the preceding section. Using snowflakes as an example;
individual flakes can be rendered as white colored points. Ideally the particle size should be rendered correctly
under perspective projection as discussed for light points in Section 17.7. Since the real-life particles are subject to
the effects of gravity, wind, thermal convection, etc, the modeled dynamics should include these effects. However,
much of the complexity lies in the management of the particle lifetime. Again, considering the snow example, a
running simulation must be maintained for the entire world, not just the portion that is currently visible. Particle
dynamics may cause particles to move from a portion of the world which is not currently visible to the visible
portion or vice versa. In the snow example, particles may shrink and disappear to mimic the melting effects of the
sun.

One of the more difficult problems with managing the lifetime of particles is the end of life of the particle. Usually
snowflakes accumulate to form a layer of snow over the objects upon which they fall. One way to model this is
to terminate the particle dynamics when the particle strikes a surface (using a collision detection algorithm), but
continue to draw it in its final position. A difficulty with this solution is that the number of particles which need
to be drawn each frame will grow without bound. Another way to solve this problem is to draw the surfaces upon
which the particles are falling as textured surfaces and when a particle strikes the surface, remove the particle from
the dynamic system and incorporate it into the texture map used to render the surface. This solution allows the
number of particles in the system to reach a steady state, but creates a new problem of efficiently managing the
texture maps for the collision surfaces.

One way to maintain these texture maps is to use the rendering pipeline to update the maps. At the beginning of a
simulation the texture map for a surface is clean. At the end of each frame, the particles which are to be retired this
frame are drawn with an orthographic projection onto the textured surface (the viewpoint is perpendicular to the
surface) using the current version of the texture and the resulting image replaces the current texture map. In order
to avoid rendering artifacts when transitioning a particle from its live state to the texture map, it may be necessary
to fade the live particle away over a few frames introducing a new limbo state for particles during this transition
period.

Using a texture map for collided snow particles provides an efficient mechanism for maintaining a constant number
of particles in the system and it works well for simulating the initial accumulation of precipitation on an uncovered
surface. However, it does not serve as a realistic model for continued accumulation since it only simulates a one
dimensional layer. To simulate continued accumulation, the model must be enhanced.

213

Programming with OpenGL: Advanced Rendering

Changing our example from snow to rain, some of the properties of the precipitation change. Rain particles
typically contain more mass than snow particles and are thus affected differently by gravity and wind. Heavy rain
may be better simulated using short antialiased line segments rather than points to simulate motion blurring.

The initial accumulation of rain is a more complex problem than snow. In the case of snow, an opaque accumula-
tion is built up over time. For rain, the rain drops are semi-transparent and they affect the surface characteristics
and thus the surface shading of the collision surface in a more subtle manner. One way to model this effect is to
create a texture map similar to the one created for the snow model. However, this map is used in conjunction with
a multipass shading technique for the rest of the scene, partitioning the scene into two collections of pixels: those
which are wet and those which are dry. The scene is drawn twice using two different shading models, one which
renders objects which appear wet and another which renders objects with a dry appearance. The texture map is
used to choose which computation to store in the framebuffer on a pixel by pixel basis.

Another method to reduce the rendering workload and increase the performance of the simulation is to reduce
the number of particles using a “hollywood” technique. In this scheme rather than rendering particles throughout
the entire volume a “curtain” of particles is rendered in front of the viewer. The use of motion blurring and
fog along with lighting to simulate an overcast sky can make the illusion more convincing. It is still possible
to simulate simple accumulation of precipitation by choosing points on collision surfaces at random (within the
parameterization of the simulation) and blending them into texture maps as described above.

214

Programming with OpenGL: Advanced Rendering

18 Tuning Your OpenGL Application

Tuning your software allows it to use hardware capabilities more effectively. Writing high-performance code is
usually more complex than just following a set of rules. More often, it involves making trade-offs between special
functionality, quality, and performance.

Since different hardware accelerators achieve optimal performance in different ways, not all rules apply in all
cases. Some performance rules of thumb are applicable to most every OpenGL implementation – software or
hardware – and others can be hardware-specific. This section provides many hints that may be used to tune your
OpenGL application for optimal performance.

18.1 What Is Pipeline Tuning?

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code in which a program
spends 90% of its time. Most graphics hardware accelerators are arranged in a pipeline, where one stage may
perform vertex transformation and lighting while another draws the actual pixels into the framebuffer. Because
these stages operate in parallel, it is appropriate to use a different approach: look for bottlenecks – overloaded
stages that are holding up other processes.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent in that bottleneck is the best
way to improve performance. Conversely, doing work that further narrows the bottleneck, or that creates a new
bottleneck somewhere else, can further degrade performance.

If different parts of the hardware are responsible for different parts of the pipeline, the workload may instead be
increased at one part of the pipeline without degrading performance, as long as that part does not become a new
bottleneck. In this way, an application can sometimes be altered to draw, for example, a higher-quality image with
no performance degradation.

Different programs (or portions of programs) stress different parts of the pipeline, so it is important to understand
which elements in the graphics pipeline are the bottlenecks for your program.

Note that in a software implementation, the CPU does all the work. As a result, it does not make sense to increase
the work for any stage if another is using more CPU time; you would be increasing the total amount of work for
the CPU and decreasing performance.

18.1.1 Three-Stage Model of the Graphics Pipeline

The graphics pipeline consists of three conceptual stages. All three parts may be implemented in software or parts
of the pipeline may be performed by a hardware graphics accelerator. The conceptual model is useful in either
case: it helps you to know where your application spends its time. The stages are:

The application program running on the CPU, feeding commands to the graphics subsystem (always on
the CPU)

The geometry subsystem, which performs per-vertex operations such as coordinate transformations, light-
ing, texture coordinate generation, and clipping (may be hardware-accelerated)

The raster subsystem, which performs per-pixel operations such as the simple operation of writing color
values into the framebuffer, or more complex operations like depth buffering, alpha blending, and texture
mapping (may be hardware accelerated)

The amount of work required from the different pipeline stages varies depending on the application. For example,
consider a program that draws a small number of large polygons. Because there are only a few polygons, the

215

Programming with OpenGL: Advanced Rendering

pipeline stage that performs geometry operations is lightly loaded. Because those few polygons cover many pixels
on the screen, the pipeline stage that does rasterization is heavily loaded.

In this example, you must speed up the rasterization stage, either by drawing fewer pixels, or by drawing pixels in
a way that takes less time by turning off modes like texturing, blending, or depth-buffering. In addition, because
spare capacity is available in the per-polygon stage, you may be able to increase the workload at that stage without
degrading performance. For example, use a more complex lighting model, or define geometries such that they
remain the same size but look more detailed because they are composed of a larger number of polygons.

18.1.2 Finding Bottlenecks in Your Application

The basic strategy for isolating bottlenecks is to measure the time it takes to execute part or all of program and
then change the code in ways that add or subtract work at a single point in the graphics pipeline. If changing the
amount of work at a given stage does not alter performance appreciably, that stage is not the bottleneck. If there is
a noticeable difference in performance, you have found a bottleneck.

Application Bottlenecks To see if your application is the bottleneck, remove as much graphics work as possible,
while preserving the behavior of the application in terms of the number of instructions executed and the way
memory is accessed. Often, changing just a few OpenGL calls is a sufficient test. For example, replacing the
vertex and normal calls glVertex3fv and glNormal3fv with color subroutine calls (glColor3fv) preserves
the CPU behavior while eliminating all drawing and lighting work in the graphics pipeline. If making these
changes does not significantly improve performance, then your application is the bottleneck.

Geometry Bottlenecks Programs that create bottlenecks in the geometry (per-vertex) stage are termed trans-
form limited. To test for bottlenecks in geometry operations, change the program so that the application code runs
at the same speed and the same number of pixels are filled, but the geometry work is reduced. For example, if
you are using lighting, call glDisable with a GL LIGHTING argument to temporarily turn off lighting. If perfor-
mance improves, your application has a geometry bottleneck. For more information, see “Tuning the Geometry
Subsystem.”

On some of the faster hardware accelerators the bus between the CPU and the graphics hardware can limit the
number of polygons sent from the application to the geometry subsystems. If removing the glColor3fv or
glNormal3fv calls shows a speed improvement on such a system, the bus may be the bottleneck.

Rasterization Bottlenecks Programs that cause bottlenecks at the rasterization (per-pixel) stage in the pipeline
are fill limited. To test for bottlenecks in rasterization operations, shrink objects or make the window smaller to
reduce the number of active pixels. This technique will not work if your program alters its behavior based on the
sizes of objects or the size of the window. You can also reduce the work done per pixel by turning off per-pixel
operations such as depth-buffering, texturing, or alpha blending. If any of these experiments speed up the program,
it has a fill bottleneck. For more information, see “Tuning the Raster Subsystem.”

Many programs draw a variety of things, each of which stress different parts of the system. Decompose such a
program into pieces and time each piece. You can then focus on tuning the slowest pieces.

Since correct double buffering waits for the vertical retrace of the monitor before switching the buffer, you will
only be able to time your application in units of the monitor refresh rate (e.g. 1/60 of a second), unless you run
your tests in single-buffered mode. Single buffered behavior can be achieved with a double buffered visual by
drawing to the front buffer. Screen clears and all the other normal operations can remain the same.

Table 8 provides an overview of factors that may limit rendering performance and the part of the pipeline to which
they belong.

216

Programming with OpenGL: Advanced Rendering

Performance Parameter Pipeline Stage

Amount of data per polygon All stages
Application overhead Application
Transform rate and geometry mode setting Geometry subsystem
Total number of polygons in a frame Geometry and raster subsystem
Number of pixels filled Raster subsystem
Fill rate for the current mode settings Raster subsystem
Duration of screen and/or depth buffer clear Raster subsystem

Table 8: Factors Influencing Performance

18.1.3 Measuring Depth Complexity

Finding depth complexity, or how many fragments were generated for each pixel in a rendered scene, is important
for analyzing rasterization performance. It indicates how well polygons are distributed across the framebuffer and
how many fragments were generated and discarded – clues for application tuning.

One way to show depth complexity is to use the color values of the pixels in the scene to indicate the number of
times a pixel was written. It is relatively easy to draw an image representing depth complexity with the stencil
buffer. The basic approach is simple. Increment a pixel’s stencil value every time the pixel is written. When the
scene is finished, read back the stencil buffer and display it in the color buffer, color coding the different stencil
values.

This technique generates a count of the number of fragments generated for each pixel, whether the depth test failed
or not. By changing the stencil operations, a similar technique could be used to count the number of fragments
discarded after failing the depth test or to count the number of times a pixel was covered by fragments passing the
depth test.

Here’s the procedure in more detail:

1. Clear the depth and stencil buffer:

glClear(GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

2. Enable stenciling:

glEnable(GL_STENCIL_TEST);

3. Set up the proper stencil parameters:

glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

4. Draw the scene.

5. Read back the stencil buffer with glReadPixels using GL STENCIL INDEX as the format argument.

6. Draw the stencil buffer to the screen using glDrawPixels with GL COLOR INDEX as the format argument.

You can control the mapping of stencil values to colors by glPixelMap. You can map the stencil values to either
RGBA or color index values, depending on the type of color buffer to which you’re writing. In color index mode,
you must turn on the color mapping with glPixelTransferi(GL MAP COLOR, GL TRUE).

217

Programming with OpenGL: Advanced Rendering

18.2 Optimizing Your Application Code

18.2.1 Optimize Cache and Memory Usage

On most systems, memory is structured in a hierarchy that contains a small amount of faster, more expensive
memory at the top (e.g., CPU registers) and a large amount of slower memory at the base (e.g., hard disks). As
memory is referenced, it is automatically copied into higher levels of the hierarchy, so data that is referenced most
often migrates to the fastest memory locations.

The goal of machine designers and programmers is to maximize the chance of finding data as high up in this
memory hierarchy as possible. To achieve this goal, algorithms for maintaining the hierarchy, embodied in the
hardware and the operating system, assume that programs have locality of reference in both time and space;
that is, programs are much more likely to access a location recently accessed or those nearby it, than elsewhere.
Performance increases if you respect the degree of locality required by each level in the memory hierarchy.

Minimizing Cache Misses Most CPUs have first-level instruction and data caches on chip and many have
second-level caches that are bigger but somewhat slower. Memory accesses are much faster if the data is already
loaded into the first-level cache. When your program accesses data that is not in one of the caches, a cache miss
occurs. This causes a block of consecutively addressed words, including the data that your program just accessed,
to be loaded into the cache. Since cache misses are costly, you should try to minimize them, using these tips:

Keep frequently accessed data together. Store and access frequently used data in flat, sequential data struc-
tures and avoid pointer indirection. This way, the most frequently accessed data remains in the first-level
cache as much as possible.

Access data sequentially. Each cache miss brings in a block of consecutively addressed words of needed
data. If you are accessing data sequentially then each cache miss will bring in words (where is system
dependent); if you are accessing only every nth word, then you will constantly be bringing in unneeded data,
degrading performance.

Avoid simultaneously traversing several large buffers of data, such as an array of vertex coordinates and
an array of colors within a loop since there can be cache conflicts between the buffers. Instead, pack the
contents into one buffer whenever possible. If you are using vertex arrays, try to use interleaved arrays. (For
more information on vertex arrays see “Rendering Geometry Efficiently.”)

Some framebuffers have cache-like behaviors as well. It is a good idea to group geometry so that the drawing is
done to one part of the screen at a time. Using triangle strips and polylines tends to do this while simultaneously
offering other performance advantages as well.

18.2.2 Store Data in a Format That is Efficient for Rendering

Putting some extra effort into generating a simpler database makes a significant difference when traversing that
data for display. A common tendency is to leave the data in a format that is good for loading or generating the
object, but non-optimal for actually displaying it. For peak performance, do as much of the work as possible before
rendering. This preprocessing is typically performed when an application can temporarily be non-interactive, such
as at initialization time or when changing from a modeling to a fast-rendering mode.

See “Rendering Geometry Efficiently” and “Rendering Images Efficiently” for tips on how to store your geometric
data and image data to make it more efficient for rendering.

218

Programming with OpenGL: Advanced Rendering

Minimizing State Changes Your program will almost always benefit if you reduce the number of state changes.
A good way to do this is to rearrange your scene data according to what state is set and render primitives with
the same state settings together. Mode changes should be ordered so that the most expensive state changes occur
least often. Typically it is expensive to change texture binding, material parameters, fog parameters, texture filter
modes, and the lighting model. However, some experimentation will be required to determine which state settings
are most expensive on your target systems. For example, on systems that accelerate rasterization, it may not be
that expensive to change rasterization controls such as the depth test function and whether or not depth testing is
enabled. However, if you are running on a system with software rasterization, this may cause cached graphics
state, such as function pointers or automatically generated code, to be flushed and regenerated.

Your target OpenGL implementation may not optimize state changes that are redundant, so it is also important for
your application to avoid setting the same state values twice, such as enabling lighting when it is already enabled.

18.2.3 Per-Platform Tuning

Many of the performance tuning techniques discussed here (e.g., minimizing the number of state changes and
disabling features that are not required) are a good idea no matter what system you are targeting. Other tuning
techniques are specific to particular system. OpenGL implementations vary widely, so inexpensive commands on
one platform may be expensive on another. For example, before you sort your database based on state changes,
you need to determine which state changes are the most expensive for each system on which you are interested in
running.

In addition, you may want to modify the behavior of your program depending on which modes are fast. This
is especially important for programs that must run faster than a particular frame rate. Features may need to be
disabled in order to maintain interactivity. For example, if a particular texture mapping environment is slow on
one of your target systems, you may need to disable texture mapping or change the texture environment whenever
your program is running on that platform.

Before you can tune your program for each of the target platforms, you need to characterize those platforms’
performance. This is not always straightforward. Often a particular device is able to accelerate certain features,
but not all at the same time. Thus it is important to test the performance for combinations of features that you will
be using. For example, a graphics adapter may accelerate texture mapping but only for certain texture parameters
and texture environment settings. Even if all texture modes are accelerated, experimentation will be required to
see how many textures you can use at once without causing the adapter to page textures in and out of the local
memory.

An even more complicated situation arises if the graphics adapter has a shared pool of memory that is allocated
to several tasks. For example, the adapter may not have a framebuffer deep enough to contain a depth buffer and
a stencil buffer. In this case, the adapter would be able to accelerate both depth buffering and stenciling but not
at the same time. Or perhaps, depth buffering and stenciling can both be accelerated but only for certain stencil
buffer depths.

Typically, per-platform testing is done at initialization time. You should do some trial runs through your data with
different combinations of state settings and calculate the time it takes to render in each case. You may want to save
the results in a file so your program does not have to do this each time it starts up. You can find an example of
how to measure the performance of particular OpenGL operations and save the results using the isfast program
on the web site.

18.3 Tuning the Geometry Subsystem

18.3.1 Use Expensive Modes Efficiently

OpenGL offers many features that create sophisticated effects with excellent performance. However, these features
have some performance cost, compared to drawing the same scene without them. Use these features only where

219

Programming with OpenGL: Advanced Rendering

their effects, performance, and quality are justified.

Turn off features when they are not required. Once a feature has been turned on, it can slow the transform
rate even when it has no visible effect.

For example, the use of fog can slow the transform rate of polygons. When the polygons are too close to
show fog, or when the fog density is set to zero, turn off fog explicitly with glDisable(GL FOG).

Minimize mode changes. Be especially careful about expensive mode changes such as changing
glDepthRange parameters and changing fog parameters when fog is enabled.

For optimum performance of most software renderers and many hardware renderers as well, use flat shading.
This reduces the number of lighting computations from one per-vertex to one per-primitive, and also reduces
the amount of data that must be processed for each primitive. Keep in mind that long triangle strips approach
one vertex per primitive and may show little benefit from flat shading.

18.3.2 Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix type is known. Follow
these guidelines to achieve optimal transform rates:

Use glLoadIdentity to initialize a matrix, rather than loading your own copy of the identity matrix.

Use specific matrix calls such as glRotate, glTranslate, and glScale rather than composing your own
rotation, translation, or scale matrices and calling glLoadMatrix and/ or glMultMatrix.

18.3.3 Optimizing Lighting Performance

OpenGL offers a large selection of lighting features. The penalties some features carry may vary depending on
the hardware you’re running on. Be prepared to experiment with the lighting configuration.

As a general rule, use the simplest possible lighting model: a single infinite light with an infinite viewer. For some
local effects, try replacing local lights with infinite lights and a local viewer. Keep in mind, however, that not all
rules listed here increase performance for all architectures.

Use the following settings for peak performance lighting:

Single infinite light.

Nonlocal viewing. Set GL LIGHT MODEL LOCAL VIEWER to GL FALSE in glLightModel (the default).

Single-sided lighting. Set GL LIGHT MODEL TWO SIDE to GL FALSE in glLightModel (the default).

If two-sided lighting is used, use the same material properties for front and back by specifying
GL FRONT AND BACK.

Do not use per-vertex color.

Disable GL NORMALIZE. Since it is usually only necessary to renormalize when the model-view matrix
includes a scaling transformation, consider preprocessing the scene to eliminate scaling.

In addition, follow these guidelines to achieve peak lighting performance:

Avoid using multiple lights.

There may be a sharp drop in lighting performance when adding lights.

220

Programming with OpenGL: Advanced Rendering

Avoid using local lights.

Local lights are noticeably more expensive than infinite lights.

Use positional light sources rather than spot lights.

If local lights must be used, a positional light is less expensive than a spot light.

Do not change material parameters frequently.

Changing material parameters can be expensive. If you need to change the material parameters many times
per frame, consider rearranging the scene to minimize material changes. Also consider using glColorMa-
terial if you need to change some material parameters often, rather than using glMaterial to change
parameters explicitly. Changing material parameters inside a glBegin/glEnd sequence can be more ex-
pensive than changing them outside.

The following code fragment illustrates how to change ambient and diffuse material parameters at every
polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
/* Draw triangles: */
glBegin(GL_TRIANGLES);
/* Set ambient and diffuse material parameters: */
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
...
glEnd();

Avoid local viewer.

Local viewing: Setting GL LIGHT MODEL LOCAL VIEWER to GL TRUE with glLightModel, while using
infinite lights only, reduces performance by a small amount. However, each additional local light noticeably
degrades the transform rate.

Disable two-sided lighting.

Two-sided lighting illuminates both sides of a polygon. This is much faster than the alternative of drawing
polygons twice. However, using two-sided lighting can be significantly slower than one-sided lighting for a
single rendering of an object.

Disable GL NORMALIZE.

If possible, provide unit-length normals and do not call glScale to avoid the overhead of GL NORMALIZE.
On some OpenGL implementations it may be faster to simply rescale the normal, instead of renormalizing
it, when the modelview matrix contains a uniform scale matrix. The normal rescaling functionality in
OpenGL 1.2, or the EXT rescale normal extension for older OpenGL versions, can be used to improve
the performance of this case. If it is supported, you can enable GL RESCALE NORMAL EXT and the normal
will be rescaled making re- normalization unnecessary.

Avoid changing the GL SHININESS material parameter if possible.

Some portions of the lighting calculation may be approximated with a table, and changing the
GL SHININESS value may force those tables to be regenerated.

221

Programming with OpenGL: Advanced Rendering

18.3.4 Advanced Geometry-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing. Follow these guidelines to draw
objects with complex surface characteristics:

Use texture to replace complex geometry.

Texture mapping can be used instead of extra polygons to add detail to a geometric object. This can greatly
simplify geometry, resulting in a net speed increase and an improved picture, as long as it does not cause the
program to become fill-limited. However, since many hardware implementations are slower to fill textured
pixels than non-textured pixels, large areas to be covered with a simple texture can often be drawn faster if
drawn as geometry.

Use textured polygons as single-polygon billboards.

Billboards are polygons that are fixed at a point and rotated about an axis, or about a point, so that the
polygon always faces the viewer. Billboards can be used for distant objects to save geometry. Section 6.10
discusses how to render billboards.

Use glAlphaFunc in conjunction with one or more textures to give the effect of rather complex geometry
on a single polygon.

Consider drawing an image of a complex object by texturing it onto a single polygon. Set alpha values to
zero in the texture outside the image of the object. (The edges of the object can be antialiased by using
alpha values between zero and one.) Orient the polygon to face the viewer. To prevent pixels with zero
alpha values in the textured polygon from being drawn, call glAlphaFunc(GL NOTEQUAL, 0.0).

This effect is often used to create objects like trees that have complex edges or many holes through which
the background should be visible (or both).

Eliminate objects or polygons that will be out of sight or too small to see. Section 5 discusses some tech-
niques for occlusion culling.

18.4 Tuning the Raster Subsystem

An explosion of both data and operations is required to rasterize a polygon as individual pixels. Typically, the
operations include depth comparison, Gouraud shading, color blending, logical operations, texture mapping, and
possibly antialiasing. The following techniques can improve performance for a fill-limited applications.

18.4.1 Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For example, if you are drawing a sphere,
half of its polygons are backfacing at any given time. Backface and frontface removal is done after transformation
calculations but before per-fragment operations. This means that backface removal may make transform-limited
polygons somewhat slower, but make fill-limited polygons significantly faster. You can turn on backface removal
when you are drawing an object with many backfacing polygons, then turn it off again when drawing is completed.
Back face removal has the added advantage of eliminating -fighting problems on objects with sharp edges.

18.4.2 Minimizing Per-Pixel Calculations

Another way to improve fill-limited drawing is to reduce the work required to render fragments.

222

Programming with OpenGL: Advanced Rendering

Avoid Unnecessary Per-Fragment Operations Turn off per-fragment operations for objects that do not require
them, and structure the drawing process to minimize their use without causing excessive toggling of modes. For
example, if you are using alpha blending to draw some partially transparent objects, make sure that you disable
blending when drawing the opaque objects. Also, if you enable alpha test to render textures with holes through
which the background can be seen, be sure to disable alpha testing when rendering textures or objects with no
holes. It also helps to sort primitives so that primitives that require alpha blending or alpha test to be enabled, are
drawn at the same time (and hopefully after all non-transparent primitives).

Use Simple Fill Algorithms for Large Polygons If you are drawing very large polygons such as “backgrounds,”
your performance will be improved if you use simple fill algorithms. For example, you should set glShadeModel
to GL FLAT if smooth shading is not required. Also, disable per-fragment operations such as depth buffering, if
possible. If you need to texture the background polygons, consider using GL REPLACE for the texture environment.
Keep in mind that on many architectures, a clear operation can be significantly faster than drawing large polygons.

Use the Depth Buffer Efficiently Any rendering operation can become fill-limited for large polygons. Clever
structuring of drawing can eliminate or minimize per-pixel depth buffering operations. For example, if large
backgrounds are drawn first, they do not need to be depth buffered. It is better to disable depth buffering for the
backgrounds and then enable it for other objects where it is needed.

Games and flight simulators often use this technique. The sky and ground are drawn with depth buffering disabled,
then the polygons lying flat on the ground (runway and grid) are drawn without suffering a performance penalty.
Finally, depth buffering is enabled for drawing the mountains and airplanes.

There are many other special cases in which depth buffering might not be required. For example, terrain, ocean
waves, and 3D function plots are often represented as height fields (- grids with one height value at each lattice
point). It’s straightforward to draw height fields in back-to-front order by determining which edge of the field is
furthest away from the viewer, then drawing strips of triangles or quadrilaterals parallel to that starting edge and
working forward. The entire height field can be drawn without depth testing provided it does not intersect any
piece of previously-drawn geometry. Depth values need not be written at all, unless subsequently-drawn depth
buffered geometry might intersect the height field; in that case, depth values for the height field should be written,
but the depth test can be avoided by calling glDepthFunc(GL ALWAYS).

18.4.3 Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

Avoid frequent switching between texture maps. If you have many small textures, consider combining them
into a single larger, mosaiced texture. Rather than switching to a new texture before drawing a textured
polygon choose texture coordinates that select the appropriate small texture tile within the large texture.

Use texture objects to encapsulate texture data. Place all the glTexImage calls (including mipmaps) re-
quired to completely specify a texture and the associated glTexParameter calls (which set texture proper-
ties) into a texture object and bind this texture object to the rendering context. This allows the implementa-
tion to compile the texture into a format that is optimal for rendering and, if the system accelerates texturing,
to efficiently manage textures on the graphics adapter.

Try to keep texture references localized between polygons. Some implementations use caching to optimize
texture mapped rendering. Keeping the texture references localized when sending a batch of polygons to
OpenGL can reduce the cache misses.

If possible, use glTexSubImage*D to replace all or part of an existing texture image rather than the more
costly operations of deleting and creating an entire new image.

223

Programming with OpenGL: Advanced Rendering

Call glAreTexturesResident to make sure that all your textures are resident during rendering. (On
systems where texturing is done on the host, glAreTexturesResident always returns GL TRUE.) If nec-
essary, reduce the size or internal format resolution of your textures until they all fit into memory. If such
a reduction creates intolerably fuzzy textured objects, you may use higher resolutions and specify which
textures are important to keep in texture memory by using glPrioritizeTextures.

Use smaller texel sizes. There is often a tradeoff between texel size and the speed of texture filtering, with
smaller texel sizes typically performing better. Applications should try to minimize the width of a texel
internal format to something like GL RGBA4 or GL RGB5 A1 for color textures and 8 bit components for
luminance or luminance alpha textures unless the application requires the extra color resolution.

Avoid expensive texture filter modes. On some systems, trilinear filtering is much more expensive than point
sampling or bilinear filtering.

18.4.4 Clearing the Color and Depth Buffers Simultaneously

The most basic per-frame operations are clearing the color and depth buffers. On some systems, there are opti-
mizations for common special cases of these operations.

Whenever you need to clear both the color and depth buffers, do not clear each buffer independently. Instead use
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT).

Also, be sure to disable dithering before clearing.

18.5 Rendering Geometry Efficiently

18.5.1 Using Peak-Performance Primitives

This section describes how to draw geometry with optimal primitives. Consider these guidelines to optimize
drawing:

Use connected primitives (line strips, triangle strips, triangle fans, and quad strips).

Connected primitives are desirable because they reduce the amount of data both stored and transferred, and
the amount of per-polygon or per-line work done by the OpenGL. Be sure to put as many vertices as possible
in a glBegin/ glEnd sequence to amortize the cost of a glBegin and glEnd.

Avoid using glBegin(GL POLYGON).

When rendering independent triangles, use glBegin(GL TRIANGLES) instead of glBegin(GL POLYGON).
Also, when rendering independent quadrilaterals, use glBegin(GL QUADS).

Batch primitives between glBegin and glEnd.

Use a single call to glBegin(GL TRIANGLES) to draw multiple independent triangles rather than calling
glBegin(GL TRIANGLES) multiple times. Also, use a single call to glBegin(GL QUADS) to draw multi-
ple independent quadrilaterals, and a single call to glBegin(GL LINES) to draw multiple independent line
segments.

Use “well-behaved” polygons–convex and planar, with only three or four vertices.

Concave and self-intersecting polygons must be tessellated by the GLU library before they can be drawn,
and are therefore prohibitively expensive. Nonplanar polygons and polygons with large numbers of vertices
are more likely to exhibit shading artifacts.

If your database has polygons that are not well-behaved, perform an initial one-time pass over the database
to transform the troublemakers into well- behaved polygons and use the new database for rendering. You
can store the results in OpenGL display lists. Using connected primitives results in additional gains.

224

Programming with OpenGL: Advanced Rendering

Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per polygon. Setting a color
or normal per vertex, regardless of the glShadeModel used, may be slower than setting only a color per
polygon, because of the time spent sending the extra data and resetting the current color. The number of
normals and colors per polygon also directly affects the size of a display list containing the object.

Group like primitives and minimize state changes to reduce pipeline revalidation.

Keep primitive data consistent.

Try to send the same type of data for each vertex of a primitive. In other words, if the first vertex has an
associated color or normal, the primitive can often be more efficiently processed if all the following vertices
also have a color or normal.

For wireframe objects, GL LINES, GL LINE STRIP and GL LINE LOOP are likely to be significantly faster
than drawing polygons as lines using glPolygonMode(GL FRONT AND BACK, GL LINE). First, the lines
only are drawn once rather than twice. Second, lines representing the polygon edges of a closed object can
easily be turned into long polylines which take up less space and are drawn more efficiently than individual
lines.

18.5.2 Using Vertex Arrays

Vertex arrays are available in OpenGL 1.1. They offer the following benefits:

The OpenGL implementation can take advantage of uniform data formats.

The glInterleavedArrays call lets you specify packed vertex data easily. Packed vertex formats are
typically faster for OpenGL to process.

The glDrawArrays call reduces subroutine call overhead.

The glDrawElements call reduces subroutine call overhead and also reduces per-vertex calculations be-
cause vertices may be reused. Be aware that using indexed vertices may introduce other problems with cache
misses if the access pattern corresponding to the indexes is irregular enough. Indexed arrays are often most
useful with implementations which perform the vertex processing on the CPU and may tend to degrade the
performance of systems which have fast geometry processing in the accelerator if they become bottlenecked
by the memory subsystem.

Use the EXT compiled vertex array extension if it is available. This extension allows you to lock down
the portions of the arrays that you are using. This way the OpenGL implementation can DMA the arrays to
the graphics adapter or reuse per-vertex calculations for vertices that are shared by adjacent primitives.

If you use glBegin and glEnd instead of glDrawArrays or glDrawElements calls, put as many vertices as
possible between the glBegin and the glEnd calls.

18.5.3 Using Display Lists

You can often improve performance by storing frequently used commands in a display list. If you plan to redraw
the same geometry multiple times, or if you have a set of state changes that need to be applied multiple times,
consider using display lists. Display lists allow you to define the geometry and/or state changes once and execute
them multiple times. Some graphics hardware may store display lists in dedicated memory or may store the data
in an optimized form for rendering.

225

Programming with OpenGL: Advanced Rendering

The biggest drawback of using display lists is data expansion. The display list contains an entire copy of all your
data plus additional data for each command and for each list. As a result, tuning for display lists focuses mainly on
reducing storage requirements. Performance improves if the data that is being traversed fits in the cache. Follow
these rules to optimize display lists:

Call glDeleteLists to delete display lists that are no longer needed. This frees storage space used by the
deleted display lists and expedites the creation of new display lists.

Avoid duplication of display lists. For example, if you have a scene with 100 spheres of different sizes and
materials, generate one display list that is a unit sphere centered about the origin. Then reference the sphere
many times, setting the appropriate material properties and transforms each time.

Make the display lists as flat as possible, but be sure not to exceed the cache size. Avoid using an excessive
hierarchy with many invocations to glCallList. Each glCallList invocation requires the OpenGL
implementation to do some work (e.g., a table lookup) to find the designated display list. A flat display list
requires less memory and yields simpler and faster traversal. It also improves cache coherency.

On the other hand, excessive flattening increases the size. For example, if you’re drawing a car with four
wheels, having a hierarchy with four pointers from the body to one wheel is preferable to a flat structure
with one body and four wheels.

Avoid creating very small display lists. Very small lists may not perform well since there is some overhead
when executing a list. Also, it is often inefficient to split primitive definitions across display lists.

If appropriate, store state settings with geometry; it may improve performance.

For example, suppose you want to apply a transformation to some geometric objects and then draw the
result. If the geometric objects are to be transformed in the same way each time, it is better to store the
matrix in the display list.

18.5.4 Balancing Polygon Size and Pixel Operations

The optimum size of polygons depends on the other operations going on in the pipeline:

If the polygons are too large for the fill-rate to keep up with the rest of the pipeline, the application is fill-rate
limited. Smaller polygons balance the pipeline and increase the polygon rate, allowing finer looking details
and better lighting without changing the overall time to draw the object.

If the polygons are too small for the rest of the pipeline to keep up with filling, then the application is
transform limited. Larger and fewer polygons, or fewer vertices, balance the pipeline and increase the fill
rate allowing the object to be drawn faster.

18.6 Rendering Images Efficiently

To improve performance when drawing pixel rectangles, follow these guidelines:

Disable all per-fragment operations.

Disable texturing and fog.

Define images in the native hardware format so type conversion is not necessary.

226

Programming with OpenGL: Advanced Rendering

Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to overload in host bandwidth, pro-
cessing, or rasterizing. When all modes are off, the path is most likely limited by host bandwidth, and a wise
choice of host pixel format and type pays off tremendously. For this reason, using type GL UNSIGNED BYTE,
for the image components is sometimes faster.

Zooming up pixels may create a raster bottleneck.

A big pixel rectangle has a higher throughput (that is, pixels per second) than a small rectangle. Because the
imaging pipeline is tuned to trade off a relatively large setup time with a high throughput, a large rectangle
amortizes the setup cost over many pixels.

18.7 Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of applications. This section
discusses those factors.

18.7.1 Factors Contributing to Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered per second, the smoother
the motion appears.

Smooth animation also requires double buffering. In double buffering, one framebuffer holds the current frame,
which is scanned out to the monitor by video hardware, while the rendering hardware is drawing into a second
buffer that is not visible. When the new framebuffer is ready to be displayed, the system swaps the buffers. The
system must wait until the next vertical retrace period between raster scans to swap the buffers, so that each raster
scan displays an entire stable frame, rather than parts of two or more frames.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec (milliseconds) for a 60-Hz
monitor. If the draw time for a frame is slightly longer than the time for n raster scans, the system waits until
the n+1st vertical retrace before swapping buffers and allowing drawing to continue, so the total frame time is
(n+1)*16.7 msec. It may be very hard to make the final transition from one half of the display subsystem’s refresh
time to full speed, because you will need to speed up your program by a factor of at least two.

To summarize: A change in the time spent rendering a frame when double buffering has no visible effect unless it
changes the total time to a different integer multiple of the screen refresh time.

If you want an observable performance increase, you must reduce the rendering time enough to take a smaller
number of 16.7 msec raster scans. Alternatively, if performance is acceptable, you can add work without reducing
performance, as long as the rendering time does not exceed the current multiple of the raster scan time.

To help monitor timing improvements, turn off double buffering by always drawing to the front buffer. If you do
not, it is difficult to know if you are near a 16.7 msec boundary.

18.7.2 Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing measurements in single-buffer
mode only. For more detailed information, see “Taking Timing Measurements.”

In addition, follow these guidelines to optimize frame rate performance:

Reduce drawing time to a lower multiple of the screen refresh time.

This is the only way to produce an observable performance increase.

227

Programming with OpenGL: Advanced Rendering

Perform non-graphics computation after swapping buffers.

If an implementation allows control to return to a program while waiting to swap the color buffers, the
program is free to do non-graphics computation. Therefore, the procedure for rendering a frame could be:
call swapbuffers immediately after sending the last graphics call for the current frame, perform computation
needed for the next frame, then execute OpenGL calls for the next frame.

Do non-drawing work after a screen clear.

Clearing a full screen can take time. If you make additional drawing calls immediately after a screen clear,
you may fill up the graphics pipeline and force the program to stall. Instead, do some non-drawing work
after the clear.

If you are rotating or otherwise moving an object at a fixed speed, it is wise to base the transformation on the
amount of time spent rendering the frame rather than a fixed amount per frame, so that the motion does not speed
up or slow down as scene complexity or viewing angle changes.

18.8 Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helps you determine which
changes to your code have a noticeable effect on the speed of your application.

To achieve performance that is demonstrably close to the best the hardware can achieve, you can first follow the
more general tuning tips provided here, but you then need to apply a rigorous and systematic analysis.

18.8.1 Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to do and then calculating how
long that should take, based on the known performance characteristics of the hardware. Compare this calculation
of expected performance with the performance actually observed and continue to apply the tuning techniques
until the two match more closely. At this point, you have a detailed accounting of how your program spends
its time, and you are in a strong position both to tune further and to make appropriate decisions considering the
speed-versus-quality trade-off.

The following parameters determine the performance of most applications:

Total number of polygons in a frame

Transform rate for the given polygon type and mode settings

Number of pixels filled

Fill rate for the given mode settings

Duration of color and depth buffer clear

Duration of buffer swap

Length of time spent in application overhead

Number of attribute changes and time per change

228

Programming with OpenGL: Advanced Rendering

18.8.2 Achieving Accurate Timing Measurements

Consider these guidelines to get accurate timing measurements:

Take measurements on a quiet system. Verify that no unusual activity is taking place on your system while
you take timing measurements. Terminate other applications. For example, do not have a clock or a network
application like sendmail running while you are benchmarking.

Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that’s at least one hundred times
the clock resolution. A good rule of thumb is to benchmark something that takes at least two seconds so
that the uncertainty contributed by the clock reading is less than one percent of the total error. To measure
something that’s faster, write a loop to execute the test code repeatedly.

Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a given timing trial. If the scene
changes, the current bottleneck in the graphics pipeline may change, making your timing measurements
meaningless. For example, if you are benchmarking the drawing of a rotating airplane, choose a single
frame and draw it repeatedly, instead of letting the airplane rotate, or make sure the rotation covers the same
angles every time. Once a single frame has been analyzed and tuned, look at frames that stress the graphics
pipeline in different ways, then analyze and tune them individually.

Compare multiple trials.

Run your program multiple times and try to understand variance in the trials. Variance may be due to other
programs running, system activity, prior memory placement, or other factors.

Call glFinish before reading the clock at the start and at the end of the time trial.

This is important if you are using a machine with hardware acceleration because the graphics commands
are put into a hardware queue in the graphics subsystem, to be processed as soon as the graphics pipeline
is ready. The CPU can immediately do other work, including issuing more graphics commands until the
queue fills up.

When benchmarking a piece of graphics code, you must include in your measurements the time it takes to
process all the work left in the queue after the last graphics call. Call glFinish at the end of your timing
trial, just before sampling the clock. Also call glFinish before sampling the clock and starting the trial, to
ensure no graphics calls remain in the graphics queue ahead of the process you are timing.

18.8.3 Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

Determine how many polygons are being drawn and estimate how many pixels they cover on the screen.
Have your program count the polygons when you read in the database. To determine the number of pixels
filled, start by making a visual estimate. Be sure to include surfaces that are hidden behind other surfaces,
and notice whether or not backface elimination is enabled. For greater accuracy, use feedback mode and
calculate the actual number of pixels filled or use the stencil buffer technique described in Section 18.1.3.

Determine the transform and fill rates on the target system for the mode settings you are using. Refer to
the product literature for the target system to determine some transform and fill rates. Determine others by
writing and running small benchmarks.

Divide the number of polygons drawn by the transform rate to get the time spent on per-polygon operations.

229

Programming with OpenGL: Advanced Rendering

Divide the number of pixels filled by the fill rate to get the time spent on per-pixel operations.

Measure the time spent in the application. To determine time spent executing instructions in the application,
stub out the OpenGL calls and benchmark your application.

This process takes some effort to complete. In practice, it is best to make a quick start by making some as-
sumptions, then refine your understanding as you tune and experiment. Ultimately, you need to experiment with
different rendering techniques and do repeated benchmarks, especially when the unexpected happens.

230

Programming with OpenGL: Advanced Rendering

19 Portability Considerations

Think about portability from the beginning of the development cycle. Although this is a standard mantra for
software development, it is important that OpenGL application developers in particular be aware of the flexibility
of OpenGL and provide a way for their program to gracefully fall back onto an alternative algorithm or exit when
a required implementation characteristic is not available.

19.1 General Concerns

Your OpenGL application should be at least a little flexible about the features it has available. A common goal is
an application which can run well on almost all OpenGL platforms, and can also use the exceptional features on
some platforms for high-speed and/or high-quality rendering.

It is unrealistic to expect an application developer to provide code that determines the best possible combination of
modes and techniques for a given piece of hardware given both available features and those features’ performance.
However, a reasonable amount of time spent checking implementation characteristics at runtime can allow an
application to better leverage an implementation with acceleration.

For example, one extreme is to develop an application that does not use the stencil buffer because the developer
does not know if it will be available. The other extreme is to provide a fully general algorithm that uses 0, 1, or
however many bits are available in the stencil buffer. A middle ground that maximizes portability, development
time, and utilization of accelerated hardware might be to provide an algorithm that uses no stencil and an algorithm
that uses 1 stencil bit and chooses between them at runtime based on querying the implementation.

19.1.1 Handle Runtime Feature Availability Carefully

OpenGL implementations vary widely in their support of buffer sizes and the availability of some buffers, such
as stencil and the alpha channel, especially among PC hardware. Be prepared to proceed with a limited number
of bits per component, and be prepared to drop back on an alternative algorithm if you need but cannot get, for
example, the accumulation buffer and the stencil buffer.

Implementations may choose to provide some extensions but not others. Check at runtime for the extensions
available to you and then choose whether the implementation has the capability for a more interesting algorithm,
such as 3D texturing for volume rendering (Section 16.2). You can check for an extension by checking the result
of glGetString(GL EXTENSIONS) for the substring corresponding to the extension. Section 20 discusses using
extensions in more detail.

When writing programs which automatically configure to the available extensions the program may use the dy-
namic linking capabilities of the underlying operating system to acquire addresses of the functions implementing
the new commands. On most UNIX systems the dlopen, dlsym, and dlclose commands may be used to
manipulate dynamic libraries and query functions. On Windows systems the commands LoadLibrary, GetP-
rocAddress, and FreeLibrary provide similar functionality. Portable programs should use dynamic binding
rather than relying on linking explicitly with extension function symbols.

Other capabilities to check include:

The size available for textures, convolution kernels, color tables, and histograms.

The precision of the accumulation buffer.

The availability of specific resolutions of texture-internal formats.

Whether hints are honored (glHint).

The maximum recursion depth allowed during display list traversal.

231

Programming with OpenGL: Advanced Rendering

The maximum stack depth available for different OpenGL transforms.

The maximum number of lights available.

Textures and other state elements that provide PROXY targets can test for the success of a state element binding
without changing the actual values for that piece of state. You can identify the size available for one object by
attempting to bind a very large object, then steadily reduce the size requested until the proxy parameters are
accepted. A proxy binding that fails sets the state values for the proxy target to 0, while one that succeeds sets the
proxy values to the parameters provided in the proxy call.

Note that the convolution extension does not provide a PROXY target but you can directly query the
maximum width and height of the convolution kernel through glGetConvolutionParameter*EXT using
GL MAX CONVOLUTION WIDTH EXT and GL MAX CONVOLUTION HEIGHT EXT.

19.1.2 Extensions and OpenGL Versioning

Some current OpenGL features were introduced first as extensions and eventually incorporated into the OpenGL
core in a later version. For example, the glPolygonOffset command is both an extension and a part of OpenGL
1.1. Usually when an extension is incorporated into an OpenGL version, the extension suffixes from the commands
and enumerants are removed and functionality is unchanged from the extension specification. In rare cases, the
behavior diverges from the original extension when implementation experience suggests useful improvements. For
example, the EXT polygon offset, EXT vertex array and EXT blend logicop extensions changed a little
when they were added to OpenGL 1.1, whereas the EXT texture3D, EXT texture lod, extensions remained
essentially the same when their functionality was incorporated into OpenGL 1.2.

Some implementations of new versions of OpenGL may continue to support both the extension as well as the new
version of the functionality. For cases where the core functionality behavior has diverged from the extension spec-
ification, the implemented extension behavior should still be compatible with the original extension specification.

While it is best to try to write applications to the latest version of OpenGL, sometimes it is desirable to support
new and older versions of OpenGL as well as extensions within the same application in order to maximize the
number of platforms the application will run on. To achieve this, the application must provide both compile-time
and run-time guards to test for the existence of needed functionality for both the OpenGL version numbers and
extension availability. At compile-time the OpenGL version can be tested with #ifdef GL VERSION 1 1 and
#ifdef GL VERSION 1 2 and the run-time version can be tested with glGetString(GL VERSION). The first
few characters of the version string will contain the current version number: 1.0, 1.1, or 1.2.

19.1.3 Source Compatibility Across OpenGL SDKs

Whether an implementation of OpenGL provides an extension or subset is determinable at runtime. However,
the software development kit, including the link library and the headers, may not define some of the symbols or
tokens used by an extension. If your application must be portable in source code form, it is important to place
#ifdef/#endif guards around code that uses extensions.

For example, the preprocessor token GL EXT texture3D is defined in compile environments that export the 3D
texture extension command and enumerants. Even if the implementation supports 3D texturing, you will not be
able to compile or link your program if you use the symbols.

Keep this difference between compile-time and run-time availability in mind when designing both your source
distribution and your application binary. Section 20 discusses this issue in more detail.

19.1.4 Characterize Platform Performance

Section 18 briefly discusses characterizing the performance of your application.

232

Programming with OpenGL: Advanced Rendering

One of OpenGL’s goals is to allow a program using the base API to “just work,” no matter where it runs or is
compiled. An implementation cannot be called OpenGL if it does not pass an exhaustive set of conformance
tests that guarantee all the base features of OpenGL are available and are mathematically correct. However, that
guarantee says nothing about the performance an application can expect. It will probably be necessary to check at
run time some of the combinations of modes and states your application could use, and decide at that time which
combination provides enough performance to be desirable.

Some typical features to check for performance availability include:

Blending

GL LINEAR and GL * MIPMAP * filters for texturing

RGBA texture modes as opposed to color index textures

Display lists if application data is largely static

Vertex arrays and interleaved vertex arrays, if appropriate

Convolution and other imaging extensions

3D textures

Example libraries pdb and isfast implement this notion of characterizing mode combinations. These libraries
can be found by searching the OpenGL web site www.opengl.org and can be downloaded at the time of writing
from http://reality.sgi.com/gold/OpenGL/isfast.html.

19.2 Windows and UNIX Portability

When writing samples and prototype code and even production applications, keep in mind that different UNIX
implementations and Windows 95/NT have different APIs, provide different system services, and can even provide
substantially different development environments (such as contents of include files, location of libraries, etc.).
Here are a few things to look out for when writing a program under UNIX with the intent to port to Windows or
other UNIX operating systems:

The Win32 versions of the OpenGL and GLU header files depend on macros defined by including the
<windows.h> header file. This forces you to do the following for Win32 portability:10

#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN /* somewhat limit Win32 pollution */
#include <windows.h>
#endif
#include <GL/gl.h>
#include <GL/glu.h>

Unfortunately, including <windows.h> has the unfortunate side effect of introducing literally thousands of
macros and type declarations into your compilation environment. This undesirable “name space pollution”
can sometimes affect source code portability by conflicting with your program’s own macros and types.
This can particularly be a problem for UNIX programmers that are not familiar with all the junk that comes
with including <windows.h>.

One alternative is to include the <GL/glut.h> header. The GLUT header automatically includes
<GL/gl.h> and <GL/glu.h> and guarantees to include these headers in a way that avoids introducing

10According to Microsoft’s documentation, the pre-defined WIN32 macro is “Defined for applications for Win32. Always defined.” This
macro is therefore the most automatic way to conditionally compile code just for Win32 programs.

233

Programming with OpenGL: Advanced Rendering

the name space pollution of including <windows.h>. If you use GLUT, your programs will automati-
cally be more portable by simply including <GL/glut.h> and not including <GL/gl.h> or <GL/glu.h>
directly (simply letting <GL/glut.h> include them).

Avoid the identifiers near and far, which are reserved words in most Intel and Windows compilers. Com-
mon replacements are nnear and ffar.

The math constant M PI and related constants such as M PI 2 are not provided by at least one Win32 devel-
opment environment. You may find adding the following code after #include <math.h> to be helpful:

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

Do not #include <unistd.h> as it contains UNIX-specific definitions. At the very least, check with
your Windows environment before using functions or constants from <unistd.h>.

The ANSI C library defined constants EXIT SUCCESS and EXIT FAILURE may not be available. You could
include code to define these constants similar to the above code for M PI.

Single-precision versions of trigonometric functions such as sinf and cosfwhile desirable for performance
may not be available on all platforms.

If you need to generate random numbers, use the ANSI C function rand. Do not use the traditional UNIX
functions random or drand48 since they are not supported by Win32.

When opening binary files such as an image file with fopen, be sure to use a mode string of "wb" for
writing or "rb" for reading. Without the b option (it stands for binary), Win32 opens the file for access as a
text file and performs translations of formfeed and linefeed characters. Using the b option suppresses these
translations.

If you use the GLU tessellator, use the CALLBACK calling convention identifier (this is really just a macro
for the calling convention keyword cdecl in Win32). You must do this for the callbacks to work correctly
under Win32. For the benefit of UNIX environments that do not define a CALLBACK macro (because they
do not need it!), after including <GL/glu.h>, include the following:

#ifndef CALLBACK
#define CALLBACK
#endif

Then using a GLU tessellator begin callback as an example say:

static void CALLBACK
begin(GLenum type, void *polyData)
{

glBegin(type);
}

When registering the callback, say:

gluTessCallback(tess, GLU_TESS_BEGIN_DATA,
(void (CALLBACK*)()) &begin);

This advice also applies to the other GLU routines that require callback functions to be supplied. These
other routines are gluQuadricCallback and gluNurbsCallback.

234

Programming with OpenGL: Advanced Rendering

It is sometimes tempting in graphics programs to name a variable quad, short for quadrilateral. Avoid the
temptation. Some operating systems such as IBM’s AIX variant of UNIX define quad to be 64-bit data type
in <sys/types.h> which is often implicitly included by many system header files.

A more in-depth list of portability considerations is available in the file Portability.txt in the GLUT source
code distribution. GLUT is described in more detail in Appendix B.

19.3 3D Texture Portability

With the release of OpenGL 1.2, 3D texturing is now core feature of OpenGL, but the functionality is also available
via the EXT texture3D extension. Even when 3D texture maps are supported, the application writer must be
careful to consider the level of support present in the application. Texture map size may be limited, and 3D
mipmapping is sometimes not supported in hardware. Available internal and external formats and types may be
restricted. All of these restrictions can be queried at run time, and with care, portable code can be produced.

Consider writing your 3D texture applications so that they revert to a 2D texturing mode if 3D textures are not
supported. See Section 16.2 for an example of a 3D texture algorithm that will work, with lower quality, using 2D
textures.

235

Programming with OpenGL: Advanced Rendering

20 Using OpenGL Extensions

OpenGL is an extensible API, and these notes make references to OpenGL extensions that enhance OpenGL’s base
functionality.

By design, OpenGL implementors are free to extend OpenGL’s basic rendering functionality with new rendering
operations. This extensibility was one of OpenGL’s original design goals. Scores of OpenGL extensions have
been specified and implemented. These extensions provide OpenGL application developers with new rendering
features above and beyond the features specified in the official OpenGL standard. OpenGL extensions keep the
OpenGL API current with the latest innovations in graphics hardware and rendering algorithms.

This section describes the OpenGL extension mechanism. You will learn not just how extensions are used and
documented but also how to use extensions portably in your programs. Particular attention is paid to using OpenGL
extensions in the Win32 environment because of the additional hoops that Win32 makes you jump through.

20.1 How OpenGL Extensions are Documented

An OpenGL extension is defined by its specification. These specifications are typically written as standard ASCII
text files. OpenGL extension specifications are written by and for OpenGL implementors. A well-written OpenGL
specification is documented to the level of detail needed for a hardware designer and/or OpenGL library engineer
to implement unambiguously the extension. This means that OpenGL application programmers should not expect
an extension’s specification to justify fully why the functionality exists or explain how an OpenGL application
would go about using the functionality. An OpenGL extension specification is not a tutorial on how to use the
particular extension. Still, being able to read and understand an OpenGL extension specification helps you, the
application programmer, fully understand an OpenGL extension’s functionality.

20.2 Finding OpenGL extension specifications

The latest public OpenGL specifications can be found on the www.opengl.org web site. Note that extension
specifications are updated from time to time based on reviews and implementation feedback. In the case of certain
proprietary OpenGL extensions, it may be necessary to contact the OpenGL vendor that developed the extension
for the extension’s specification.

20.3 How to Read an OpenGL Extension Specification

When reading an OpenGL extension specification, it helps to be familiar with the original OpenGL specification.
The operation of an OpenGL extension is described as additions and changes to the core OpenGL specification.
Having a copy of the core OpenGL specification handy is a good idea when reviewing an OpenGL specification.

OpenGL extension specifications consist of multiple sections. There is a common form established by convention
used by nearly all OpenGL extension specifications. Often within a specification, the gl and GL prefixes on routine
names and tokens are assumed. The following describes the purpose of the most common sections in the order
that they normally appear in extension specifications:

Name Lists the official name of the extension. This name uses underscores instead of spaces between words.
The name also begins with a prefix that indicates who developed the extension. This prefix helps to avoid
naming conflicts if two independent groups implement a similar extension. It also helps identity who is
promoting use of the extension. For example: SGIS point parameters was an extension proposed by
Silicon Graphics. The SGIS prefix belongs to Silicon Graphics. SGI uses the SGIS prefix to indicate that
the extension is specialized and may not be available on all SGI hardware. Other prefixes in use are:

ARB - Extensions officially approved by the OpenGL Architectural Review Board

236

Programming with OpenGL: Advanced Rendering

EXT - Extensions agreed upon by multiple OpenGL vendors

ES - Evans and Sutherland

HP - Hewlett-Packard

IBM - International Business Machines

INTEL - Intel

KTX - Kinetix (maker of 3D Studio Max)

MESA - Brian Paul’s freeware portable OpenGL implementation

NV - NVIDIA Corporation

SGI - Silicon Graphics

SGIS - Silicon Graphics (limited set of machines)

SGIX - Silicon Graphics (experimental)

SUN - Sun Microsystems

WIN - Microsoft

Note that the SGIS point parameters extension has since been standardized by other OpenGL vendors.
So now there is also an EXT point parameters extension with the same basic functionality as the SGIS
version. The EXT prefix indicates that multiple vendors have agreed to support the extension. Successful
OpenGL extensions are often promoted to EXT or ARB extensions or made an official part of OpenGL in a
future revision to the core OpenGL specification. Almost all of the new functionality in OpenGL 1.1 and
1.2 showed up first as OpenGL extensions.

Name Strings The name string or strings is used to indicate that the extension is supported by a given OpenGL
implementation. Applications can query the GL EXTENSIONS string with OpenGL’s glGetString to deter-
mine what extensions are available. OpenGL also supports the idea of window system dependent extensions.
Core OpenGL extension name strings are generally prefixed with GL while window system dependent ex-
tensions are prefixed with GLX for the X Window System or WGL for Win32 based on what window system
to which the extension applies. Note that there may be multiple strings if the extension provides both core
OpenGL rendering functionality and window system dependent functionality.

In the case of the X Window System, support for GLX extensions is indicated by listing the GLX extension
name in the string returned by glxQueryExtensionsString. Querying the core OpenGL extension string
that requires an OpenGL rendering context be created and made current (calling glGetString assumes a
current OpenGL context). However, using glxQueryExtensionString only requires a connection to an
X server. Because the X Window System is client/server based, the OpenGL client library may support
different extensions than the OpenGL server. For this reason, it is also possible to query the extensions
supported by the client or server individually using glxQueryClientString and glxQueryServer-
String respectively. To actually use most GLX extensions, a GLX extension must be supported by both
the OpenGL client and server (it is possible for an extension to be a pure client-side extension though). For
this reason, the strings returned by glxQueryClientString and glxQueryServerString are intended
for informational use only. The string returned by glxQueryExtensionsString is typically intersection
of the extensions supported by both the client and server. This is the string you should check before you use
a GLX extension.

WGL extensions are advertised through OpenGL’s core extension string, the one returned by glGetString.

Version A source code control revision string to keep track of what version of the specification the given text file
represents. It is important to make sure that you have the latest version of the extension specification in case
there are any important changes. Normally the version string has the date the extension was last updated.

Number Each OpenGL extension is assigned a unique number. Silicon Graphics allocates these numbers to
ensure that OpenGL extensions do not overlap in their usage of enumerants or protocol tokens. This number
is only important to extension implementors.

237

Programming with OpenGL: Advanced Rendering

Dependencies Often an extension specification builds on the functionality of pre-existing extensions. This sec-
tion documents other extensions upon which the specified extension depends. Dependencies indicate that
another extension “is required” to support the specified extension or that the specified extension “affects”
the specification of another extension. When an extension affects the specification of another extension, the
affecting extension is responsible for fully documenting the interactions between the two extensions.

The dependencies section often also indicates which version of the OpenGL core standard that the extension
specification is based on. Later sections specify the extension based on updates to the relevant section of the
particular OpenGL specification that the extension is based on.

You can often tell how important a given extension is to the evolution of OpenGL based on how many other
extensions are listed that depend on or are affected by the given extension.

Overview The section provides a description, often terse and without justification, for the extension’s specified
functionality. If you are trying to figure out what the extension does, this is the most useful section of an
OpenGL extension specification. Do not expect a tutorial though.

Issues Often there are issues that need to be resolved in the specification of an extension. This section documents
open issues and states the resolution to resolved issues. These issues are often things of interest to the
extension implementor, but can also help a programmer understand how the extension really works.

New Procedures and Functions This section lists the function prototypes for any new procedures and functions
that the extension adds. Keep in mind that specifications often leave out the gl prefix when discussing
routines. Also note that the extension’s new functions will be suffixed with the same letters used as the
prefix for the extension name.

New Tokens This section lists the tokens (also called enumerants) that the extension adds. The routines that
accept each set of new enumerants are documented. The integer value of the enumerants is documented
here. These values should be added to <GL/gl.h>. Keep in mind that specifications often leave out the GL
prefix when discussing enumerants. Also note that the extension’s new enumerants will be suffixed with the
same letters used as the prefix for the extension name.

Additions to Chapter XX of the 1.X Specification (XXX) These sections document how the core OpenGL spec-
ification should be amended to add the extension’s functionality to the core OpenGL functionality. Notice
that the exact version of the core OpenGL specification (such as 1.0, 1.1, or 1.2) is documented. The chapters
typically amended by an extension specification are:

Chapter 2 - OpenGL Operations

Chapter 3 - Rasterization

Chapter 4 - Fragments and the Framebuffer

Chapter 5 - Special Functions

Chapter 6 - State and State Requests

These sections are quite legalistic. They indicate precisely how the OpenGL specification wording should
be amended or changed. Often tables within the specification are amended as well.

Additions to the GLX Specification If an extension has any window system dependent functionality affecting
the GLX interface to the X Window System, these issues would be documented here.

GLX Protocol When implementing the extension for the X Window System, if any special X11 extension pro-
tocol for the GLX extension is required to support the extension, the protocol would be documented in this
section. This section is only interesting to GLX protocol implementors because the GLX protocol is hidden
from application programmers beneath the OpenGL API.

238

Programming with OpenGL: Advanced Rendering

Dependencies on XXX These sections describe how the extension depends on some other extension that was
listed in the Dependencies section. Usually the wording says that if the other extension is not supported,
simply ignore the portion of this extension dealing with the dependent extension’s state and functionality.

Errors If the extension introduces any new error conditions particular to the extension, they are documented here.

New State Extensions typically add new state variables to OpenGL’s state machine. These new variables are
documented in this section. The variable’s get enumerant, type, get command, initial value, description,
section of the specification describing the state variable’s function, and the attribute group that the state
belongs to are all documented in tables in this section.

New Implementation Dependent State Extensions may add implementation dependent state. These are typi-
cally maximum and minimum supported ranges for the extension functionality. For example, what is the
widest line size supported by the extension. These values can be queried through OpenGL’s glGet family
of routines.

Backward Compatibility If the extension supersedes an older extension, issues surrounding backward compati-
bility with the older extension are documented in this section.

Note that these sections are merely established by convention. While the conventions for OpenGL extension
specifications are normally followed, extensions vary in how closely they stick to the conventions. Generally,
the more preliminary an extension is, the more loosely specified it is. Hopefully after sufficient review and even
implementation, the specification language and format is improved to provide an unambiguous final specification.

20.4 Portably Using OpenGL Extensions

The advantage of using OpenGL extensions is getting access to cutting edge rendering functionality so you appli-
cation can achieve higher performance and higher quality rendering. OpenGL extensions give you access to the
latest features of the hottest new graphics hardware. The problem with OpenGL extensions is that lots of OpenGL
implementations, particularly older implementations, will not support the extensions that you would like to use.
When you write an OpenGL application that uses extensions, you should make sure that your application still
works when the extension is not supported. At the very least your program should report that it requires whatever
extension is missing and exit without crashing.

The first step to using OpenGL extensions is to locate the copy of the <GL/gl.h> header file that advertises the API
interfaces for the extensions that you plan to use. Typically you can get this from your OpenGL implementation
vendor or OpenGL driver vendor. You could also get the API interface prototypes and macros directly from the
extension specifications, but getting the right <GL/gl.h> from your OpenGL vendor is definitely the preferred
way.

You will notice that <GL/gl.h> sets C preprocessor macros to indicate whether the header advertises the interface
of a particular extension or not. For example, the basic <GL/gl.h> supplied with Microsoft Visual C++ 4.2 has a
section reading:

/* Extensions */
#define GL_EXT_vertex_array 1
#define GL_WIN_swap_hint 1
#define GL_EXT_bgra 1
#define GL_EXT_paletted_texture 1
#define GL_EXT_clip_disable 1

These macros indicate that the header file advertises the above five extensions. The EXT bgra extension lets you
read and draw pixels in the Blue, Green, Red, Alpha component order as opposed to OpenGL’s standard RGBA

239

Programming with OpenGL: Advanced Rendering

color component ordering.11 If you wanted to write a program to use the EXT bgra extension, you could test that
the extension is supported at compile time like this:

#ifdef GL_EXT_bgra
glDrawPixels(width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);

#endif

When GL EXT bgra is defined, you can expect to find the GL BGRA EXT enumerant defined. Note that if the
EXT bgra extension is not supported, expect the glDrawPixels line above to generate a compiler error because
the standard unextended OpenGL header does not define the GL BGRA EXT enumerant.

So based on the extension name #define in <GL/gl.h>, you can write your code so that it can compile in the
extension functionality if your development environment supports the extension’s interfaces. The next problem
is that even though your development environment may support the extension’s interface at compile-time, at run-
time, the target system where you run your application may not support the extension. In UNIX environments,
different systems with different graphics hardware often support different sets of extensions. Likewise, in the
Win32 environment, different OpenGL accelerated graphics boards will support different OpenGL extensions
because they have different OpenGL drivers. The point is that you can not just assume a given extension is
supported. You must make a run-time check to verify that the extension you wish to use is supported.

Assuming that your application thread is made current to an OpenGL rendering context, the following routine can
be used to determine at run-time if the OpenGL implementation really supports a particular extension:

#include <GL/gl.h>
#include <string.h>

int
isExtensionSupported(const char *extension)
{
const GLubyte *extensions = NULL;
const GLubyte *start;
GLubyte *where, *terminator;

/* Extension names should not have spaces. */
where = (GLubyte *) strchr(extension, ’ ’);
if (where || *extension == ’\0’)

return 0;

extensions = glGetString(GL_EXTENSIONS);

/* It takes a bit of care to be fool-proof about parsing the
OpenGL extensions string. Don’t be fooled by sub-strings,
etc. */

start = extensions;
for (;;) {

where = (GLubyte *) strstr((const char *) start, extension);
if (!where)

break;
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ’ ’)

if (*terminator == ’ ’ || *terminator == ’\0’)
return 1;

start = terminator;
}

11The functionality of the EXT bgra extension is now an official part of OpenGL 1.2. The BGRA color component ordering is important
because it matches the color component ordering of Win32’s GDI 2D API and therefore many PC-based file formats use it.

240

Programming with OpenGL: Advanced Rendering

return 0;
}

With the isExtensionSupported routine, you can check if the current OpenGL rendering context supports a
given OpenGL extension. To make sure that the EXT bgra extension is supported before using it, you can do the
following:

/* At context initialization. */
int hasBGRA = isExtensionSupported("GL_EXT_bgra");

/* When trying to use EXT_bgra extension. */
#ifdef GL_EXT_bgra
if (hasBGRA) {

glDrawPixels(width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, pixels);
} else

#endif
{

/* No EXT_bgra so bail (or implement software workaround). */
fprintf(stderr, "Needs EXT_bgra extension!\n");
exit(1);

}

Notice that if the EXT bgra extension is lacking at either run-time or compile-time, the code above will detect the
lack of EXT bgra support. Sure the code is a bit messy, but the code above works. You can skip the compile-time
check if you know what development environment you are using and you do not expect to ever compile with a
<GL/gl.h> that does not support the extensions that your application uses. But the run-time check really should
be performed since who knows on what system your program may end up getting run on.

20.5 Win32’s Scheme for Getting Extension Function Pointers

Most OpenGL implementations support extension commands just like core commands. Assuming your OpenGL
header file provides the function prototypes and enumerants for the extension you want to use, you simply compile
your executable assuming the extension routines exist. The assumption then is that before calling any extension
routines, your program will first check the GL EXTENSIONS string value to verify that the OpenGL extension is
supported. If the extension is supported, you can then safely call the extension’s routines and use its enumerants.
If not supported, your program must avoid usting the extension.

In the case of using an extension’s new routines, this works because most operating systems today support flexible
shared libraries. A shared library delays the binding of a routine name to its executable function until the routine
is first called when your program runs. This is known as a run-time link instead of a compile-time link. A problem
occurs if you call an OpenGL extension routine that is not supported by your OpenGL run-time library. The
result is a run-time link error that is generally a fatal program error. This is why it is so important to check the
GL EXTENSIONS string before using any extension. If you have first verified the extension is supported, then your
program can safely call the extension’s routines in full expectation that the system’s run-time linker will invoke
the extension routine correctly.

Unfortunately, the world’s most popular operating system does not work so nicely. Win32 operating systems
require special care to invoke OpenGL extension routines. Win32 programs using OpenGL link with a Microsoft-
supplied shared library called OPENGL32.DLL. Because the library is supplied by Microsoft, OpenGL hardware
vendors are not at liberty to change it to add extensions. Instead, OpenGL hardware vendors implement another
hidden shared library known as an ICD or Installable Client Driver. When an ICD is installed the OPENGL32.DLL
library passes most OpenGL calls directly to the driver. Unfortunately, because extension routines are not present
in the OPENGL32.DLL shared library that OpenGL programs actually link with, is no way for the Win32 run-time

241

Programming with OpenGL: Advanced Rendering

linker to call the driver’s extension routine automatically. The bottom line is that this makes using extensions more
difficult in the Win32 environment.

The EXT bgra example above showing how to safely detect and use the extension at run-time and compile-time
is straightforward because the EXT bgra simply adds two new enumerants (GL BGRA EXT and GL BGR EXT) and
does not require any new routines.

Using an extension that includes new function call entry-points is harder in Win32 because you must first explicitly
request the function pointer from the OpenGL ICD before you can call the OpenGL function.

The EXT point parameters extension provides eye-distance attenuation of OpenGL’s point primitive. Sec-
tion 17.9.2 discusses the extension as a means to render particle systems. Indeed, the extension is used by Id
Software in Quake 2 for rendering particle systems. With the extension, firing weapon and explosions are ren-
dered as huge clusters of OpenGL point primitives with OpenGL automatically adjusting the point size based
on the distance of the particles from the viewer. Closer particles appear bigger; particles in the distance appear
smaller. A particle whose size would be smaller than a pixel is automatically faded based on its sub-pixel size.
Anyone that wants to see the improvement this extension brings to a 3D game should play Quake 2 on a PC with an
OpenGL driver supporting the EXT point parameters extension. Start a gun battle and check out the particles!

The EXT point parameters extension adds two new OpenGL entry points called glPointParameterfEXT
and glPointParameterfvEXT. These routines allow the application to specify the attenuation equation parame-
ters and fade threshold. As explained, because of the way Microsoft chose to support OpenGL extension functions,
an OpenGL application cannot simply link with these functions. The application must first use the wglGetPro-
cAddress routine to query the function address and then call through the returned address to call the extension
function.

First, declare function prototype typedefs that match the extension’s entry points. For example:

#ifdef _WIN32
typedef void (APIENTRY * PFNGLPOINTPARAMETERFEXTPROC)

(GLenum pname, GLfloat param);
typedef void (APIENTRY * PFNGLPOINTPARAMETERFVEXTPROC)

(GLenum pname, const GLfloat *params);
#endif

Your <GL/gl.h> header file may already have these typedefs declared if your <GL/gl.h> defines the
GL EXT point parametersmacro. Now declare global variables of the type of these function prototype typedefs
like this:

#ifdef _WIN32
PFNGLPOINTPARAMETERFEXTPROC glPointParameterfEXT;
PFNGLPOINTPARAMETERFVEXTPROC glPointParameterfvEXT;
#endif

The names above exactly match the extension’s function names. Once we use wglGetProcAddress to assign
these function variables the address of the OpenGL driver’s extension functions, we can call glPointParame-
terfEXT and glPointParameterfvEXT as if they were normal functions. You pass wglGetProcAddress the
name of the routine as an ASCII string. Verify that the extension is supported and, if so, initialize the function
variables like this:

int hasPointParams = isExtensionSupported("GL_EXT_point_parameters");
#ifdef _WIN32
if (hasPointParams) {

glPointParameterfEXT = (PFNGLPOINTPARAMETERFEXTPROC)
wglGetProcAddress("glPointParameterfEXT");

glPointParameterfvEXT = (PFNGLPOINTPARAMETERFVEXTPROC)

242

Programming with OpenGL: Advanced Rendering

wglGetProcAddress("glPointParameterfvEXT");
}

#endif

Note that before the code above is called, you should have a current OpenGL rendering context.

With the function variables properly initialized to the extension entry-points, you can use the extension like this:

if (hasPointParams) {
static GLfloat quadratic[3] = { 0.25, 0.0, 1/60.0 };
glPointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT, quadratic);
glPointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0);

}

Be careful because the function returned by wglGetProcAddress is only guaranteed to work for the pixel format
type of the OpenGL rendering context that was current when wglGetProcAddress was called. If you have
multiple contexts created for different pixel formats, then keeping a single function addresses in a global variable
as shown above may create problems. You may need to maintain distinct function addresses on a per-pixel format
basis. Specifically, the Microsoft documentation for wglGetProcAddress warns:

The [Microsoft] OpenGL library supports multiple implementations of its functions. Extension
functions supported in one rendering context are not necessarily available in a separate rendering
context. Thus, for a given rendering context in an application, use the function addresses returned by
the wglGetProcAddress function only.

The spelling and the case of the extension function pointed to by string must be identical to that
of a function supported and implemented by OpenGL. Because extension functions are not exported
by OpenGL, you must use wglGetProcAddress to get the addresses of vendor-specific extension
functions.

The extension function addresses are unique for each pixel format. All rendering contexts of a
given pixel format share the same extension function addresses.

Win32’s requirement that you use wglGetProcAddress is a real drag, but if you do everything right, using
OpenGL extensions works and gives you access to amazing new OpenGL features. And let’s be honest; wglGet-
ProcAddress is hardly the only annoying and awkward thing about programming with the Win32 API. Still,
by using the C preprocessor and coding carefully, you actually can write OpenGL programs that use OpenGL
extensions and compile from the same source code for both UNIX and Win32 environments.

243

Programming with OpenGL: Advanced Rendering

A List of Demo Programs

This list shows the demonstration programs available on the Programming with OpenGL: Advanced Rendering
web site at:

http://www.sgi.com/software/opengl/courses.html

The programs are grouped by the sections in which they’re discussed. Each line gives a short description of the
program.

Modeling

tvertex.c - show problems caused by t-vertices

quad decomp.c - shows example of quadrilateral decomposition

tess.c - shows examples of sphere tessellation

cap.c - shows how to cap the region exposed by a clipping plane

csg.c - shows how to render CSG solids with the stencil buffer

gen normals.c - shows how to generate correct normals

Geometry and Transformations

depth.c - compare screen and eye space z

decal.c - shows how to decal coplanar polygons with the stencil buffer

hiddenline.c - shows how to render wireframe objects with hidden lines

stereo.c - shows how to generate stereo image pairs

tile.c - shows how to tile images

raster.c - shows how to move the current raster position off-screen

frustum z.c - shows an object and its place in view frustum

inaccuracies.c - provides examples of precision inaccuracy problems

hidden.c - shows how polygon offset works with depth range

stereoview.c - shows how to do stereo viewing right

clipwide.c - shows how to avoid clipping wide lines and points

distort.c - shows how to correct projection distortion using texture

locate.c - shows how to pick objects and highlight them

Occlusion Culling

occull.c - shows how to compute an occlusion map and test against it

Texture Mapping

mipmap lines.c - shows different mipmap generation filters

244

Programming with OpenGL: Advanced Rendering

genmipmap.c - shows how to use the OpenGL pipeline to generate mipmaps

textile.c - shows how to tile textures

texpage.c - shows how to page textures

mippage.c - shows how to page a mipmapped texture

textrim.c - shows how to trim textures

textext.c - shows how draw characters with texture maps

terrain.c - shows how to do elevation color coding and metrics

contour.c - shows hot to do contouring

projtex.c - shows how to use projective textures

cyl billboard.c - shows how to do cylindrical billboards

sph billboard.c - shows how to do spherical billboards

warp.c - shows how to warp images with textures

noise.c - shows how to make a filtered noise function

spectral.c - shows how to make a spectral function from filtered noise

spotnoise.c - shows how to use spot noise

tex3dsolid.c - renders a solid image with a 3d texture

tex3dfunc.c - creates a 2d texture that varies with r value

makedetail.c - shows how to create a detail texture

detail.c - shows how to use a detail texture

aniso.c - shows how to create and use anisotropic textures

cutaway.c - shows how to create a gradual cutaway

Line Rendering Techniques

haloed.c - shows how to draw haloed lines using the depth buffer

silhouette.c - shows how to draw the silhouette edge of an object with the stencil buffer

solid to line.c - shows how to draw solid objects as lines

overlap.c - shows how to draw wide, smoothed line loops with rounded edges

245

Programming with OpenGL: Advanced Rendering

Blending and Compositing

comp.c - shows Porter/Duff compositing

transp.c - shows how to draw transparent objects

imgproc.c - shows image processing operations

transparent.c - shows transparency, ordering, culling interactions

zcomposite.c - shows how to composite depth-buffered images

Antialiasing

lineaa.c - shows how to draw antialiased lines

texaa.c - shows how to antialias with texture

accumaa.c - shows how to antialias a scene with the accumulation buffer

aalines.c - more on antialiased lines

aasolid.c - shows how to antialias solids

Lighting Techniques

envphong.c - shows how to draw phong highlights with environment mapping

lightmap2d.c - shows how to do 2D texture lightmaps

lightmap3d.c - shows how to do 3D texture lightmaps

bumpmap.c - shows how to bumpmap with texture

fresnel.c - shows an example of how to render Fresnel reflections

anisolight.c - shows an example of how to render anisotropic reflections

Scene Realism

genspheremap.c - shows how to generate sphere maps

mirror.c - shows how to do planar mirror reflections

projshadow.c - shows how to render projection shadows

shadowvol.c - shows how to render shadows with shadow volumes

shadowmap.c - shows how to render shadows with shadow maps

softshadow.c - shows how to do soft shadows with the accumulation buffer by jittering light sources

softshadow2.c - shows how to do soft shadows by creating lighting textures with the accumulation buffer

Transparency

screendoor.c - shows how to do screen-door transparency

alphablend.c - shows how to do transparency with alpha blending

246

Programming with OpenGL: Advanced Rendering

Image Processing

convolve.c - shows how to convolve with the accumulation buffer

cmatrix - shows how to modify colors with a color matrix

Special Effects

dissolve.c - shows how to do dissolves with the stencil buffer

motionblur.c - shows how to do motion blur with the accumulation buffer

field.c - shows how to achieve depth of field effects with the accumulation buffer with the stencil buffer

Illustration and Artistic Techniques

npr.c - shows how to implement a non-photorealistic lighting model

hatch.c - shows how to do 3D cross-hatching

2d.c - shows how to do 2D rendering

join.c - shows how to do various styles of line joins

paint.c - shows how to generate an abstract image from a source image

Scientific Visualization Techniques

plate.c - shows simple scalar field visualization

vol2dtex.c - volume visualization with 2D textures

vol3dtex.c - volume visualization with 3D textures

lic.c - shows how to compute a line integral convolution

illumline.c - shows how to use lit stream lines for vector field visualization

Natural Phenomena

smoke.c - shows how to render smoke

smoke3d.c - shows how to render 3D smoke using volumetric techniques

vapor.c - shows how render a vapor trail

texmovie.c - shows how to create a texture movie

fire.c - shows how to animate fire

explode.c - shows how to create an explosion

dscloud.c - create a cloud image using diamond-square technique

cloud.c - shows how to render a cloud layer

cloudlayer.c - shows how to create ground fog

cloud3d.c - shows how to render a 3D cloud using volumetric techniques

247

Programming with OpenGL: Advanced Rendering

fire.c - shows how to render fire using movie loops

water.c - shows an example water rendering technique

bubble.c - shows an example of how to render a bubble

underwater.c - shows an example of rendering an underwater scene

lightpoint.c - shows how to render point light sources

particle.c - shows how to create particle systems

snow.c - shows an example of rendering falling snow

rain.c - shows an example of rendering falling rain

Application Tuning

complexity.c - shows how to visualize depth complexity for a scene

248

Programming with OpenGL: Advanced Rendering

B GLUT, the OpenGL Utility Toolkit

The example programs for these notes use ”GLUT”, a utility toolkit created by Mark Kilgard [55] and contributed
to widely by the graphics community.

GLUT is easy to use and simple, so it may appeal to beginning OpenGL users. OpenGL users of all experience
levels can use GLUT to rapidly prototype an algorithm using OpenGL and not spend time writing the code to
configure an X Window, setting up a Win32 color map, etc.

The GLUT library provides a number of convenience functions for handling window systems and input devices.
Applications can request an OpenGL visual using a set of attributes and manipulate the window that provides that
visual through a window-system-independent API.

GLUT provides pop-up menu support and device handling support for a variety of devices such as keyboard,
mouse, and trackball, and invokes user-supplied callbacks to handle window events such as exposure and resizing.

GLUT also offers utility routines for drawing several geometric shapes as solids or wireframe models, including
spheres, tori, and teapots.

Text rendering is also simplified by GLUT. Several bitmap and stroke fonts are provided with the GLUT distribu-
tion.

GLUT is available on most UNIX platforms, MacOS, and Windows NT/95, and other operating systems. It can
be downloaded from http://www.opengl.org/Developers/Documentation/glut.html.

249

Programming with OpenGL: Advanced Rendering

C Equations

This section describes some important formula and matrices referred to in the text.

C.1 Projection Matrices

C.1.1 Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates , where:

and

is defined as long as , , and .

C.1.2 Orthographic Projection

The call glOrtho(l, r, b, t, u, f) generates , where:

and

is defined as long as , , and .

C.1.3 Perspective z-Coordinate Transformations

The value in eye coordinates, , can be computed from the window coordinate value, , using the
near and far plane values, and , from the glFrustum command and the viewport near and far values,

and , from the glDepthRange command using the equation:

The window coordinate is computed from the eye coordinate using the equation:

C.2 Lighting Equations

C.2.1 Attenuation Factor

The attenuation factor is defined to be:

attenuation factor

where

250

Programming with OpenGL: Advanced Rendering

distance between the light’s position and the vertex

GL CONSTANT ATTENUATION

GL LINEAR ATTENUATION

GL QUADRATIC ATTENUATION

If the light is directional, the attenuation factor is 1.

C.2.2 Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on whether the light is actually a spotlight
and whether the vertex lies inside or outside the cone of illumination produced by the spotlight:

1 if the light isn’t a spotlight (GL SPOT CUTOFF is 180.0).

0 if the light is a spotlight but the vertex lies outside the cone of illumination produced by the spotlight.

where: is the unit vector that points from the
spotlight (GL POSITION) to the vertex.

is the spotlight’s direction (GL SPOT DIRECTION), assuming the light is a spotlight and the
vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectors and varies as the cosine of the angle between them; hence, objects
directly in line get maximum illumination, and objects off the axis have their illumination drop as the cosine
of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates
where and are as defined above. If this value is less than the cosine of the spotlight’s cutoff angle
(GL SPOT CUTOFF), then the vertex lies outside the cone; otherwise, it’s inside the cone.

C.2.3 Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambient ambient

C.2.4 Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diffuse color of the light,
and the diffuse material property:

diffuse diffuse

where:

is the unit vector that points from the vertex to the light position (GL POSITION).

is the unit normal vector at the vertex.

251

Programming with OpenGL: Advanced Rendering

C.2.5 Specular Term

The specular term also depends on whether light falls directly on the vertex. If is less than or equal to zero,
there is no specular component at the vertex. (If it’s less than zero, the light is on the wrong side of the surface.)
If there’s a specular component, it depends on the following:

The unit normal vector at the vertex .

The sum of the two unit vectors that point between (1) the vertex and the light position and (2) the vertex and
the viewpoint (assuming that GL LIGHT MODEL LOCAL VIEWER is true; if it’s not true, the vector is
used as the second vector in the sum). This vector sum is normalized (by dividing each component by the
magnitude of the vector) to yield .

The specular exponent (GL SHININESS).

The specular color of the light (GL SPECULAR).

The specular property of the material (GL SPECULAR).

Using these definitions, here’s how OpenGL calculates the specular term:

specular specular

However, if , the specular term is .

C.2.6 Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the entire lighting
calculation in RGBA mode.

vertex color emission

ambient ambient

spotlight effect

ambient ambient

diffuse diffuse

specular specular

252

Programming with OpenGL: Advanced Rendering

References

[1] J. Airey, B. Cabral, and M. Peercy. Explanation of bump mapping with texture. Personal Communication,
1997.

[2] K. Akeley. The hidden charms of z-buffer. Iris Universe, (11):31–37, 1990.

[3] K. Akeley. OpenGL philosophy and the philosopher’s drinking song. Personal Communication, 1996.

[4] K. Akeley. Algorithm for drawing boundary plus silhouette edges for a solid. Personal Communication,
1998.

[5] Y. Attarwala. Rendering hidden lines. Iris Universe, Fall:39, 1988.

[6] Y. Attarwala and M. Kong. Picking from the picked few. Iris Universe, Summer:40–41, 1989.

[7] Michael Bailey and Dru Clark. Encoding 3d surface information in a texture vector. Journal of Graphics
Tools, 2(3):29–35, 1997. http://www.sdsc.edu/tmf/texvec.pdf.

[8] P. Bergeron. A general version of crow’s shadow volumes. IEEE Computer Graphics and Applications,
6(9):17–28, 1986.

[9] James F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (SIGGRAPH ’78 Proceedings),
volume 12, pages 286–292, August 1978.

[10] Jim Blinn. Me and my (fake) shadow. IEEE Computer Graphics and Applications, January 1988. reprinted
in the book Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, 1996.

[11] Jim Blinn and Martin Newell. Texture and reflection in computer generated images. Communications of
the ACM, 19:456–547, 1976. Reprinted in Tutorial: Computer Graphics, 2nd ed., Editors John Beatty and
Kellogg Booth, IEEE Computer Society, 1982.

[12] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley, second edition edition,
1997. ISBN 0-201-46140-4.

[13] A. Bourgoyne, R. Bornstein, and D. Yu. Silicon Graphics Visual Workstation OpenGL Programming Guide
For Windows NT. Silicon Graphics, Mountain View, CA, 1999. https://www.sgi.com/developers/nt/sdk/.

[14] Lynee Shapiro Brotman and Norman Badler. Generating soft shadows with a depth buffer algorithm. IEEE
Computer Graphics and Applications, October 1984.

[15] Jim Bushnell and Jason Mitchell. Advanced multitexture effects with direct3d and opengl. In Game Devel-
opers Conference Proceedings 99, pages 81–99, March 1999.

[16] Brian Cabral and Leith (Casey) Leedom. Imaging vector fields using line integral convolution. In James T.
Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 263–272, August
1993.

[17] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Harcourt Brace &
Company, 1993.

[18] The VRML Consortium. The virtual reality modeling language specification. web site, August 1996.
http://vag.vrml.org.

[19] S. Coorg and S. Teller. A spatially and temporally coherent object space visibility algorithm. Technical
Report TM 546, Laboratory for Computer Science, Massachusetts Institute of Technology, 1996.

[20] F. C. Crow. A comparison of antialiasing techniques. IEEE Computer Graphics and Applications, 1(1):40–
48, January 1981.

253

Programming with OpenGL: Advanced Rendering

[21] J. D. Cutnell and K. W. Johnson. Physics. John Wiley & Sons, 1989.

[22] Michael F. Deering. High resolution virtual reality. In Edwin E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 195–202, July 1992.

[23] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In John Dill, editor, Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 65–74, August 1988.

[24] Tom Duff. Compositing 3-D rendered images. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH
’85 Proceedings), volume 19, pages 41–44, July 1985.

[25] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley. Texturing and Modeling: A Pro-
cedural Approach. Academic Press, October 1994. ISBN 0-12-228760-6.

[26] Francine Evans, Steven Skiena, and Amitabh Varshney. Optimizing triangle strips for fast rendering. In
Proceedings of Visualization 96, pages 319–326, 1996. http://www.cs.sunysb.edu/ evans/stripe.html.

[27] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley Publishing Company, 1990.

[28] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, and Richard L. Phillips. Introduction
to Computer Graphics. Addison-Wesley Publishing Company, 1994.

[29] A. Fournier, D. Fussell, and L. Carpenter. Computer rendering of stochastic models. Communications of
the ACM, 25(6):371–384, June 1982.

[30] Alain Fournier and William T. Reeves. A simple model of ocean waves. In David C. Evans and Russell J.
Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 75–84, August 1986.

[31] Geoffrey Y. Gardner. Visual simulation of clouds. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH
’85 Proceedings), volume 19, pages 297–303, July 1985.

[32] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufman Publishers, Inc., 1995.

[33] Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs. Fast constructive-solid geometry display in the
Pixel-Powers graphics system. In David C. Evans and Russell J. Athay, editors, Computer Graphics (SIG-
GRAPH ’86 Proceedings), volume 20, pages 107–116, August 1986.

[34] Ronald Goldman. Matrices and transformations. In Andrew Glassner, editor, Graphics Gems, page 474.
Academic Press, 1990.

[35] Rafael C. Gonzalez and Paul Wintz. Digital Image Processing (2nd Ed.). Addison-Wesley, Reading, MA,
1987.

[36] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic lighting model for automatic technical
illustration. In Michael F. Cohen, editor, Computer Graphics (SIGGRAPH ’98 Proceedings), volume 25,
pages 447–452, July 1998.

[37] B. Gooch, P. Sloan, A. Gooch, P. SHirley, and R. Riesenfield. Interactive technical illustration. In J. Hodgins
and J. Foley, editors, Proceedings of the 1999 symposium on Interactive 3D Graphics, pages 31–38, April
1999.

[38] H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers, C-20(6):623–629,
June 1971.

[39] P. Haeberli. Matrix operations for image processing. web site, November 1993.
http://www.sgi.com/grafica/matrix/index.html.

254

Programming with OpenGL: Advanced Rendering

[40] P. Haeberli and D. Voorhies. Image processing by linear interpolation and extrapolation. Iris Universe,
(28):8–9, 1994.

[41] Paul Haeberli and Mark Segal. Texture mapping as a fundamental drawing primitive. In Michael F. Cohen,
Claude Puech, and Francois Sillion, editors, Fourth Eurographics Workshop on Rendering, pages 259–266.
Eurographics, June 1993. held in Paris, France, 14–16 June 1993.

[42] Paul E. Haeberli. Paint by numbers: Abstract image representations. In Forest Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 207–214, August 1990.

[43] Paul E. Haeberli and Kurt Akeley. The accumulation buffer: Hardware support for high-quality rendering.
In Forest Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 309–318,
August 1990.

[44] Peter M. Hall and Alan H. Watt. Rapid volume rendering using a boundary-fill guided ray cast algorithm. In
N. M. Patrikalakis, editor, Scientific Visualization of Physical Phenomena (Proceedings of CG International
’91), pages 235–249. Springer-Verlag, 1991.

[45] Roy Hall. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, 1989.
includes C code for radiosity algorithms.

[46] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG painting and texturing on 3D shapes. In Forest
Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 215–223, August
1990.

[47] Paul S. Heckbert and Michael Herf. Fast soft shadows. In Visual Proceedings, SIGGRAPH 96, page 145.
ACM Press, 1996. ISBN 0-89791-784-7.

[48] Paul S. Heckbert and Michael Herf. Shadow generation algorithms. web site, April 1997.
http://www.cs.cmu.edu/ ph/shadow.html.

[49] T. Heidmann. Real shadows real time. Iris Universe, (18):28–31, 1991.

[50] Wolfgang Heidrich and Hans-Peter Seidel. Efficient rendering of anisotropic surfaces using computer
graphics hardware. In Image and Multi-dimensional Digital Signal Processing Workshop (IMDSP), 1998.

[51] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environment maps. In Proceedings of
the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 1998. http://www9.informatik.uni-
erlangen.de/eng/research/rendering/envmap.

[52] Russ Herrell, Joe Baldwin, and Chris Wilcox. High quality polygon edging. IEEE Computer Graphics and
Applications, 15(4):68–74, July 1995.

[53] Tobias Huttner. High resolution textures. In Proceedings of IEEE Visualization 98, October 1998.
http://davinci.informatik.uni-kl.de/vis98/archive/lbht/papers/huettnerA4.pdf.

[54] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graphics. In Forest Baskett,
editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 49–57, August 1990.

[55] Mark J. Kilgard. Programming OpenGL for the X Window System. Addison-Wesley, 1996. ISBN 0-201-
48359-9.

[56] Mark J. Kilgard. Realizing opengl: Two implementations of one architecture. In
Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 1997.
http://reality.sgi.com/mjk/twoimps/twoimps.html.

[57] Mark J. Kilgard. A simple opengl-based api for texture mapped text. web site, 1997.
http://reality.sgi.com/opengl/tips/TexFont/TexFont.html.

255

Programming with OpenGL: Advanced Rendering

[58] John-Peter Lewis. Algorithms for solid noise synthesis. In Jeffrey Lane, editor, Computer Graphics (SIG-
GRAPH ’89 Proceedings), volume 23, pages 263–270, July 1989.

[59] Terence Lindgren and John Weber. Measuring the quality of antialiased line drawing algorithms. In
Michael F. Cohen, Claude Puech, and Francois Sillion, editors, Fourth Eurographics Workshop on Ren-
dering, pages 157–174. Eurographics, June 1993. held in Paris, France, 14–16 June 1993.

[60] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of potentially visible sets. In
Proceedings of the 1995 symposium on Interactive 3D Graphics, page 105, 1995.

[61] Kwan-Liu Ma, Brian Cabral, Hans-Christian Hege, Detlev Stalling, and Victoria L. Interrante. Texture
Synthesis with Line Integral Convolution. ACM SIGGRAPH, Los Angeles, 1997. Siggraph ’97 Conference
Course Notes.

[62] L. Markosian, M. Kowalski, S. Trychin, L. Bourdev, Goldstein D, and J. Hughes. Real-time nonphotoreal-
istic rendering. In Turner Whitted, editor, Computer Graphics (SIGGRAPH ’97 Proceedings), volume 24,
pages 415–420, August 1997.

[63] Gavin S. P. Miller. The definition and rendering of terrain maps. In David C. Evans and Russell J. Athay,
editors, Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 39–48, August 1986.

[64] Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer graphics. In John Dill, editor,
Computer Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 221–228, August 1988.

[65] John Montrym, Dan Baum, Dave Dignam, and Chris Migdal. Infinitereality: A real-time graphics system.
In Turner Whitted, editor, Computer Graphics (SIGGRAPH ’97 Proceedings), pages 293–302, August
1997.

[66] H. R. Myler and A. R. Weeks. The Pocket Handbook of Image Processing Algorithms in C. University of
Central Florida Department of Electrical & Computer Engineering, 1993.

[67] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison-Wesley, second edition edition,
1997. ISBN 0-201-46138-2.

[68] Scott R. Nelson. Twelve characteristics of correct antialiased lines. Journal of Graphics Tools, 1(4):1–20,
1996.

[69] Scott R. Nelson. High quality hardware line antialiasing. Journal of Graphics Tools, 2(1):29–46, 1997.

[70] Tomoyuki Nishita and Eihachiro Nakamae. Method of displaying optical effects within water using ac-
cumulation buffer. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 373–381. ACM SIG-
GRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[71] Eyal Ofek. Modeling and Rendering 3-D Objects. PhD thesis, Institute of Computer Science, The Hebrew
University, 1998.

[72] Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. In Michael F. Cohen, editor,
Computer Graphics (SIGGRAPH ’98 Proceedings), pages 333–342, July 1998.

[73] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[74] Hewlett Packard. Opengl implementation guide. web site, June 1998.
http://www.hp.com/unixwork/products/grfx/OpenGL/Web/ImpGuide.html.

[75] Darwyn R. Peachey. Modeling waves and surf. In David C. Evans and Russell J. Athay, editors, Computer
Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 65–74, August 1986.

256

Programming with OpenGL: Advanced Rendering

[76] M. Peercy. Explanation of sphere mapping. Personal Communication, 1997.

[77] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hardware. In Computer Graphics
(SIGGRAPH ’97 Proceedings), 1997.

[78] Bui-T. Phong. Illumination for computer generated pictures. Communications of the ACM, 18(6):311–317,
June 1975.

[79] Thomas Porter and Tom Duff. Compositing digital images. In Hank Christiansen, editor, Computer Graph-
ics (SIGGRAPH ’84 Proceedings), volume 18, pages 253–259, July 1984.

[80] Franco P. Preparata and Michael Ian Shamos. Computation Geometry. Springer-Verlag, New York, 1985.

[81] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth
maps. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages
283–291, July 1987.

[82] David F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill, second edition edition, 1997.

[83] John Rohlf and James Helman. IRIS performer: A high performance multiprocessing toolkit for real–Time
3D graphics. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series, pages 381–395. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0.

[84] P. Rustagi. Silhouette line display from shaded models. Iris Universe, Fall:42–44, 1989.

[85] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D shapes. In Forest Baskett,
editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 197–206, August 1990.

[86] John Schlag. Fast Embossing Effects on Raster Image Data. Academic Press, Cambridge, 1994.

[87] M. Schulman. Rotation alternatives. Iris Universe, Spring:39, 1989.

[88] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification (Version 1.2.1). Sil-
icon Graphics, Inc., Mountain View, CA, October 1998. includes the ARB multitexture specification;
ftp://sgigate.sgi.com/pub/opengl/doc/opengl1.2/opengl1.2.1.pdf.

[89] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul E. Haeberli. Fast shadows and
lighting effects using texture mapping. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH
’92 Proceedings), volume 26, pages 249–252, July 1992.

[90] Peter-Pike J. Sloan, David Weinstein, and J. Dean Brederson. Importance driven texture co-
ordinate optimization. Submitted to SIGGRAPH ’97, 1997. http://www.cs.utah.edu/ de-
johnso/workshop/talks/sloan/sloan.html.

[91] Cyril Soler and Francois Sillion. The clipmap: A virtual mipmap. In Michael F. Cohen, editor, Computer
Graphics (SIGGRAPH ’98 Proceedings), pages 321–332, July 1998.

[92] D. Stalling, M. Zockler, and H.-C. Hege. Fast display of illuminated field lines. In IEEE Transactions on
Visualization and Computer Graphics, volume 3, pages 118–128, 1997.

[93] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit. In Edwin E. Catmull, editor,
Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 341–349, July 1992.

[94] Chris Tanner, Chris Migdal, and Michael Jones. The clipmap: A virtual mipmap. In Michael F. Cohen,
editor, Computer Graphics (SIGGRAPH ’98 Proceedings), pages 151–158, July 1998.

[95] M. Teschner. Texture mapping: New dimensions in scientific and technical visualization. Iris Universe,
(29):8–11, 1994.

257

Programming with OpenGL: Advanced Rendering

[96] T. Tessman. Casting shadows on flat surfaces. Iris Universe, Winter:16, 1989.

[97] Jarke J. van Wijk. Spot noise-texture synthesis for data visualization. In Thomas W. Sederberg, editor,
Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 309–318, July 1991.

[98] Douglas Voorhies and Jim Foran. Reflection vector shading hardware. In Andrew Glassner, editor,Proceed-
ings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual
Conference Series, pages 163–166. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[99] Bruce Walter, Gun Alppay, Eric Lafortune, Sebastian Fernandez, and Donald P. Greenberg. Fitting virtual
lights for non-diffuse walkthroughs. In Computer Graphics (SIGGRAPH ’97 Proceedings), volume 31,
pages 45–48, August 1997.

[100] Mark Watt. Light-water interaction using backward beam tracing. In Forest Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 377–385, August 1990.

[101] T. F. Wiegand. Interactive rendering of csg models. In Computer Graphics Forum, volume 15, pages
249–261, 1996.

[102] Tim Wiegand. Cadlab open inventor node library: csg. web site, April 1998.
http://www.arct.cam.ac.uk/research/cadlab/inventor/csg.html.

[103] Lance Williams. Pyramidal parametrics. In Computer Graphics (SIGGRAPH ’83 Proceedings), volume 17,
pages 1–11, July 1983.

[104] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow algorithms. IEEE Computer Graphics
and Applications, November 1990.

[105] H. Zhang, D. Manocha, T. Hudson, and K. Hoff III. Visibility culling using hierarchical occlusion maps.
In Turner Whitted, editor, Computer Graphics (SIGGRAPH ’97 Proceedings), volume 24, pages 77–88,
August 1997.

[106] Hansong Zhang. Effective occlusion culling for the interactive display of arbitrary models. Doc-
toral dissertation, Department of Computer Science, University of North Carolina at Chapel Hill, 1998.
http://www.cs.unc.edu/ zhangh/dissertation.pdf.

258

2
3

1
2

Viewing Direction

A

B
A B

Af B Bb A

Af

Bb

A B=

0

1

2

0

1

2

Trim EvenTrim Odd

Classify Classify

U

U

BC

D
E

A
Group 0

Group 1 Group 2

Group 3 Group 4

BC

D
E

A
F

Cached

Uncached
.

Move

(b) (A B) (C D)

(f) (A B) C ... H (g) A2 B (h) A2 X B C ...

(d) (A B) (A C)
 (A D) (A E)
 (A F G H ...)

U

U U

U

(a) A B

U

(e) (A D B) (C D)U

U U

(c) ((A B) (A C))
 ((A D) (A E))
 ((A F) (A G))U

U
U

U

U
UU
U

U U
U UU U

U U

U U

Appeared in Proc. Fourth Eurographics Workshop on Rendering,
Michael Cohen, Claude Puech, and Francois Sillion, eds.

Paris, France, June, 1993. pp. 259-266.

Texture Mapping
as a

Fundamental Drawing Primitive

Paul Haeberli
Mark Segal

Silicon Graphics Computer Systems

Abstract
Texture mapping has traditionally been used to add
realism to computer graphics images. In recent years,
this technique has moved from the domain of software
rendering systems to that of high performance graphics
hardware.
But texture mapping hardware can be used for many

more applications than simply applying diffuse pat-
terns to polygons.
Wesurvey applicationsof texturemapping including

simple texturemapping, projective textures, and image
warping. We thendescribe texturemapping techniques
for drawing anti-aliased lines, air-brushes, and anti-
aliased text. Next we show how texture mapping may
be used as a fundamental graphics primitive for volume
rendering, environment mapping, color interpolation,
contouring, and many other applications.

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing, texture-mapping,
line drawing, and anti-aliasing

1 Introduction
Texture mapping[Cat74][Hec86] is a powerful tech-
nique for adding realism to a computer-generated
scene. In its basic form, texture mapping lays an image
(the texture) onto an object in a scene. More general
forms of texture mapping generalize the image to other
information; an “image” of altitudes, for instance, can
be used to control shading across a surface to achieve
such effects as bump-mapping.
Because texture mapping is so useful, it is being

provided as a standard rendering technique both in
graphics software interfaces and in computer graph-
ics hardware[HL90][DWS 88]. Texture mapping can

2011N. Shoreline Blvd., Mountain View, CA 94043 USA

therefore be used in a scene with only a modest in-
crease in the complexity of the program that generates
that scene, sometimeswith little effect on scene genera-
tion time. The wide availability and high-performance
of texture mappingmakes it a desirable rendering tech-
nique for achieving a number of effects that are nor-
mally obtained with special purpose drawing hard-
ware.
After a brief review of the mechanics of texture map-

ping, we describe a few of its standard applications.
We go on to describe some novel applications of tex-
ture mapping.

2 Texture Mapping
Whenmapping an image onto an object, the color of the
object at each pixel ismodified by a corresponding color
from the image. In general, obtaining this color from
the image conceptually requires several steps[Hec89].
The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the
samples. Next, the image must be warped to match
any distortion (caused, perhaps, by perspective) in the
projected object being displayed. Then this warped
image is filtered to remove high-frequency components
thatwould lead to aliasing in the final step: resampling
to obtain the desired color to apply to the pixel being
textured.
In practice, the required filtering is approximated by

one of several methods. One of the most popular is
mipmapping[Wil83]. Other filtering techniquesmay also
be used[Cro84].
There are a number of generalizations to this basic

texture mapping scheme. The image to be mapped
need not be two-dimensional; the sampling and fil-
tering techniques may be applied for both one- and
three-dimensional images[Pea85]. In the case of a three-
dimensional image, a two-dimensional slice must be
selected to be mapped onto an object’s boundary, since
the result of rendering must be two-dimensional. The

1

image may not be stored as an array but may be pro-
cedurally generated[Pea85][Per85]. Finally, the image
may not represent color at all, but may instead describe
transparency or other surface properties to be used in
lighting or shading calculations[CG85].

3 Previous Uses of Texture Map-
ping

In basic texturemapping, an image is applied to a poly-
gon (or some other surface facet) by assigning texture
coordinates to the polygon’s vertices. These coordi-
nates index a texture image, and are interpolated across
the polygon to determine, at each of the polygon’s pix-
els, a texture image value. The result is that some por-
tion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical
two-dimensional images in this application are images
of bricks or a road surface (in this case the texture image
is often repeated across a polygon); a three-dimensional
image might represent a block of marble from which
objects could be “sculpted.”

3.1 Projective Textures
A generalization of this technique projects a texture
onto surfaces as if the texture were a projected slide or
movie[SKvW 92]. In this case the texture coordinates
at a vertex are computed as the result of the projection
rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re-
projection of a photograph of an object back onto that
object’s geometry.
Projective textures are also useful for simulating

shadows. In this case, an image is constructed that rep-
resents distances from a light source to surface points
nearest the light source. This image can be computed by
performing -buffering from the light’s point of view
and then obtaining the resulting -buffer. When the
scene is viewed from the eyepoint, the distance from
the light source to each point on a surface is computed
and compared to the corresponding value stored in the
texture image. If the values are (nearly) equal, then
the point is not in shadow; otherwise, it is in shadow.
This technique should not use mipmapping, because
filtering must be applied after the shadow comparison
is performed[RSC87].

3.2 Image Warping
Imagewarpingmaybe implementedwith texturemap-
ping by defining a correspondence between a uni-
form polygonal mesh (representing the original im-
age) and a warped mesh (representing the warped

image)[OTOK87]. The warp may be affine (to gen-
erate rotations, translations, shearings, and zooms) or
higher-order. The points of the warped mesh are as-
signed the corresponding texture coordinates of the
uniform mesh, and the mesh is texture mapped with
the original image. This technique allows for easily-
controlled interactive image warping. The technique
can also be used for panning across a large texture im-
age by using a mesh that indexes only a portion of the
entire image.

3.3 Transparency Mapping
Texture mapping may be used to lay transparent or
semi-transparent objects over a scene by representing
transparency values in the texture image as well as
color values. This technique is useful for simulating
clouds[Gar85] and trees for example, by drawing ap-
propriately textured polygons over a background. The
effect is that the background shows through around
the edges of the clouds or branches of the trees. Texture
mapfiltering applied to the transparency and color val-
ues automatically leads to soft boundaries between the
clouds or trees and the background.

3.4 Surface Trimming
Finally, a similar technique may be used to cut holes
out of polygons or perform domain space trimming on
curved surfaces[Bur92]. An image of the domain space
trim regions is generated. As the surface is rendered, its
domain space coordinates are used to reference this im-
age. The value stored in the image determineswhether
the corresponding point on the surface is trimmed or
not.

4 Additional Texture Mapping Ap-
plications

Texture mappingmay be used to render objects that are
usually rendered by other, specializedmeans. Since it is
becoming widely available, texture mapping may be a
good choice to implement these techniques even when
these graphics primitives can be drawn using special
purpose methods.

4.1 Anti-aliased Points and Line Segments
One simple use of texture mapping is to draw anti-
aliased points of any width. In this case the texture
image is of a filled circle with a smooth (anti-aliased)
boundary. When a point is specified, it’s coordinates
indicate the center of a square whose width is deter-
mined by the point size. The texture coordinates at the

2

Figure 1. Anti-aliased line segments.

square’s corners are those corresponding to the corners
of the texture image. This method has the advantage
that any point shape may be accommodated simply by
varying the texture image.
A similar technique can be used to draw anti-aliased,

line segments of any width[Gro90]. The texture image
is a filtered circle as used above. Instead of a line seg-
ment, a texture mapped rectangle, whose width is the
desired line width, is drawn centered on and aligned
with the line segment. If line segments with round
ends are desired, these can be added by drawing an
additional textured rectangle on each end of the line
segment (Figure 1).

4.2 Air-brushes
Repeatedly drawing a translucent image on a back-
ground can give the effect of spraying paint onto a
canvas. Drawing an image can be accomplished by
drawing a texture mapped polygon. Any conceivable
brush “footprint”, even a multi-colored one, may be
drawn using an appropriate texture image with red,
green, blue, and alpha. The brush image may also eas-
ily be scaled and rotated (Figure 2).

4.3 Anti-aliased Text
If the texture image is an image of a character, then a
polygon textured with that image will show that char-
acter on its face. If the texture image is partitioned
into an array of rectangles, each of which contains the
image of a different character, then any character may
be displayed by drawing a polygon with appropriate
texture coordinates assigned to its vertices. An advan-
tage of this method is that strings of characters may

be arbitrarily positioned and oriented in three dimen-
sions by appropriately positioning and orienting the
textured polygons. Character kerning is accomplished
simply by positioning the polygons relative to one an-
other (Figure 3).
Antialiased characters of any size may be obtained

with a single texturemap simply by drawing a polygon
of the desired size, but care must be taken if mipmap-
ping is used. Normally, the smallest mipmap is 1 pixel
square, so if all the characters are stored in a single tex-
ture map, the smaller mipmaps will contain a number
of characters filtered together. This will generate unde-
sirable effects when displayed characters are too small.
Thus, if a single texture image is used for all characters,
then each must be carefully placed in the image, and
mipmaps must stop at the point where the image of a
single character is reduced to 1 pixel on a side. Alterna-
tively, each character could be placed in its own (small)
texture map.

4.4 Volume Rendering

There are three ways in which texture mapping may be
used to obtain an image of a solid, translucent object.
The first is to draw slices of the object from back to
front[DCH88]. Each slice is drawn by first generating
a texture image of the slice by sampling the data rep-
resenting the volume along the plane of the slice, and
thendrawing a texturemappedpolygon to produce the
slice. Each slice is blended with the previously drawn
slices using transparency.
The secondmethoduses 3D texturemapping[Dre92].

In this method, the volumetric data is copied into the
3D texture image. Then, slices perpendicular to the
viewer are drawn. Each slice is again a texturemapped

3

Figure 2. Painting with texture maps.

Figure 3. Anti-aliased text.

polygon, but this time the texture coordinates at the
polygon’svertices determine a slice through the 3D tex-
ture image. Thismethod requires a 3D texturemapping
capability, but has the advantage that texture memory
need be loaded only once no matter what the view-
point. If the data are too numerous to fit in a single
3D image, the full volumemay be rendered in multiple
passes, placing only a portion of the volume data into
the texture image on each pass.
A third way is to use texture mapping to implement

“splatting” as described by[Wes90][LH91].

4.5 Movie Display

Three-dimensional texture images may also be used to
display animated sequences[Ake92]. Each frame forms
one two-dimensional slice of a three-dimensional tex-

ture. A frame is displayed by drawing a polygon with
texture coordinates that select the desired slice. This
can be used to smoothly interpolate between frames of
the stored animation. Alpha values may also be asso-
ciated with each pixel to make animated “sprites”.

4.6 Contouring

Contour curves drawn on an object can provide valu-
able information about the object’s geometry. Such
curves may represent height above some plane (as in a
topographicmap) that is either fixed or moveswith the
object[Sab88]. Alternatively, the curves may indicate
intrinsic surface properties, such as geodesics or loci of
constant curvature.
Contouring is achieved with texturemapping byfirst

defining a one-dimensional texture image that is of con-

4

Figure 4. Contouring showing distance from a plane.

stant color except at some spot along its length. Then,
texture coordinates are computed for vertices of each
polygon in the object to be contoured using a texture co-
ordinate generation function. This functionmay calculate
the distance of the vertex above some plane (Figure 4),
ormaydependoncertain surfaceproperties toproduce,
for instance, a curvature value. Modular arithmetic is
used in texture coordinate interpolation to effectively
cause the single linear texture image to repeat over and
over. The result is lines across the polygons that com-
prise an object, leading to contour curves.
A two-dimensional (or even three-dimensional) tex-

ture image may be used with two (or three) texture
coordinate generation functions to produce multiple
curves, each representing a different surface character-
istic.

4.7 Generalized Projections

Texture mapping may be used to produce a non-
standard projection of a three-dimensional scene, such
asa cylindrical or sphericalprojection[Gre86]. The tech-
nique is similar to image warping. First, the scene is
rendered six times from a single viewpoint, but with
six distinct viewing directions: forward, backward, up,
down, left, and right. These six views form a cube en-
closing the viewpoint. The desired projection is formed
by projecting the cube of images onto an array of poly-
gons (Figure 5).

4.8 Color Interpolation in non-RGB Spaces
The texture image may not represent an image at all,
but may instead be thought of as a lookup table. In-
termediate values not represented in the table are ob-
tained through linear interpolation, a feature normally
provided to handle image filtering.
Oneway to usea three-dimensional lookup table is to

fill it with RGB values that correspond to, for instance,
HSV (Hue, Saturation, Value) values. The H, S, and V
values index the three dimensional tables. By assigning
HSV values to the vertices of a polygon linear color in-
terpolationmaybe carried out inHSV space rather than
RGB space. Other color spaces are easily supported.

4.9 Phong Shading
Phong shading with an infinite light and a local viewer
may be simulated using a 3D texture image as follows.
First, consider the function of , , and that assigns
a brightness value to coordinates that represent a (not
necessarily unit length) vector. The vector is the reflec-
tion off of the surface of the vector from the eye to a
point on the surface, and is thus a function of the nor-
mal at that point. The brightness function depends on
the location of the light source. The 3D texture image
is a lookup table for the brightness function given a re-
flection vector. Then, for each polygon in the scene, the
reflection vector is computed at each of the polygon’s
vertices. The coordinates of this vector are interpolated

5

Figure 5. 360 Degree fisheye projection.

across the polygon and index the brightness function
stored in the texture image. The brightness value so
obtained modulates the color of the polygon. Multi-
ple lights may be obtained by incorporating multiple
brightness functions into the texture image.

4.10 Environment Mapping
Environment mapping[Gre86] may be achieved
through texture mapping in one of two ways. The first
way requires six texture images, each corresponding to
a face of a cube, that represent the surrounding environ-
ment. At each vertex of a polygon to be environment
mapped, a reflection vector from the eye off of the sur-
face is computed. This reflection vector indexes one of
the six texture images. As long as all the vertices of the
polygon generate reflections into the same image, the
image ismapped onto the polygonusing projective tex-
turing. If a polygon has reflections into more than one
face of the cube, then the polygon is subdivided into
pieces, each of which generates reflections into only
one face. Because a reflection vector is not computed at
each pixel, this method is not exact, but the results are
quite convincing when the polygons are small.
The second method is to generate a single texture

image of a perfectly reflecting sphere in the environ-
ment. This image consists of a circle representing the
hemisphere of the environment behind the viewer, sur-
rounded by an annulus representing the hemisphere in
front of the viewer. The image is that of a perfectly
reflecting sphere located in the environment when the
viewer is infinitely far from the sphere. At each polygon
vertex, a texture coordinate generation function gen-
erates coordinates that index this texture image, and
these are interpolated across the polygon. If the (nor-
malized) reflection vector at a vertex is ,
and , then the generated coordinates
are and when the texture image is indexed

Texture
Image

(0,0,1)

(x, y, z)

z+1
2()xt , yt ,

(xt , yt)

2(z+1)
xxt =

2(z+1)
yyt =

Note:
2(z+1)x2 + y2 + (z + 1)2 =

Figure 6. Spherical reflection geometry.

by coordinates ranging from -1 to 1. (The calculation
is diagrammed in Figure 6). This method has the dis-
advantage that the texture image must be recomputed
whenever the view direction changes, but requires only
a single texture image with no special polygon subdi-
vision (Figure 7).

4.11 3D Halftoning

Normal halftoned images are created by thresholding
a source image with a halftone screen. Usually this
halftone pattern of lines or dots bears no direct rela-
tionship to the geometry of the scene. Texture map-
ping allows halftone patterns to be generated using a
3D spatial function or parametric lines of a surface (Fig-
ure 8). This permits us to make halftone patterns that
are bound to the surface geometry[ST90].

6

Figure 7. Environment mapping.

Figure 8. 3D halftoning.

5 Conclusion
Many graphics systems now provide hardware that
supports texture mapping. As a result, generating a
texture mapped scene need not take longer than gener-
ating a scene without texture mapping.
We have shown that, in addition to its standard uses,

texture mapping can be used for a large number of
interesting applications, and that texture mapping is a
powerful and flexible low level graphics drawing prim-
itive.

References
[Ake92] Kurt Akeley. Personal Communication,

1992.

[Bur92] Derrick Burns. Personal Communication,
1992.

[Cat74] Ed Catmull. A Subdivision Algorithm for
Computer Display of Curved Surfaces. PhD
thesis, University of Utah, 1974.

[CG85] Richard J. Carey and Donald P. Green-
berg. Textures for realistic image synthe-
sis. Computers & Graphics, 9(3):125–138,
1985.

[Cro84] F. C. Crow. Summed-area tables for texture
mapping. Computer Graphics (SIGGRAPH
’84 Proceedings), 18:207–212, July 1984.

[DCH88] Robert A. Drebin, Loren Carpenter, and
Pat Hanrahan. Volume rendering. Com-
puter Graphics (SIGGRAPH ’88 Proceed-
ings), 22(4):65–74, August 1988.

[Dre92] Bob Drebin. Personal Communication,
1992.

7

[DWS 88] Michael Deering, Stephanie Winner, Bic
Schediwy, Chris Duffy, and Neil Hunt.
The triangle processor and normal vector
shader: A VLSI system for high perfor-
mance graphics. Computer Graphics (SIG-
GRAPH ’88 Proceedings), 22(4):21–30, Au-
gust 1988.

[Gar85] G. Y. Gardner. Visual simulation of clouds.
ComputerGraphics (SIGGRAPH’85Proceed-
ings), 19(3):297–303, July 1985.

[Gre86] NedGreene. Applications ofworld projec-
tions. Proceedings of Graphics Interface ’86,
pages 108–114, May 1986.

[Gro90] Mark Grossman. Personal Communica-
tion, 1990.

[Hec86] Paul S. Heckbert. Survey of texture map-
ping. IEEE Computer Graphics and Applica-
tions, 6(11):56–67, November 1986.

[Hec89] Paul S. Heckbert. Fundamentals of tex-
ture mapping and image warping. M.sc.
thesis, Department of Electrical Engineer-
ing and Computer Science, University of
California, Berkeley, June 1989.

[HL90] Pat Hanrahan and Jim Lawson. A lan-
guage for shading and lighting calcula-
tions. Computer Graphics (SIGGRAPH ’90
Proceedings), 24(4):289–298, August 1990.

[LH91] David Laur and Pat Hanrahan. Hierar-
chical splatting: A progressive refinement
algorithm for volume rendering. Com-
puter Graphics (SIGGRAPH ’91 Proceed-
ings), 25(4):285–288, July 1991.

[OTOK87] Masaaki Oka, Kyoya Tsutsui, Akio Ohba,
and Yoshitaka Kurauchi. Real-time ma-
nipulation of texture-mapped surfaces.
Computer Graphics (Proceedings of SIG-
GRAPH ’87), July 1987.

[Pea85] D. R. Peachey. Solid texturing of complex
surfaces. Computer Graphics (SIGGRAPH
’85 Proceedings), 19(3):279–286, July 1985.

[Per85] K. Perlin. An image synthesizer. Com-
puter Graphics (SIGGRAPH ’85 Proceed-
ings), 19(3):287–296, July 1985.

[RSC87] William Reeves, David Salesin, and Rob
Cook. Rendering antialiased shadows
with depth maps. Computer Graphics (SIG-
GRAPH ’87 Proceedings), 21(4):283–291,
July 1987.

[Sab88] Paolo Sabella. A rendering algorithm
for visualizing 3d scalar fields. Com-
puter Graphics (SIGGRAPH ’88 Proceed-
ings), 22(4):51–58, August 1988.

[SKvW 92] Mark Segal, Carl Korobkin, Rolf van
Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadows and lighting effects using
texture mapping. Computer Graphics (SIG-
GRAPH ’92 Proceedings), 26(2):249–252,
July 1992.

[ST90] Takafumi Saito and Tokiichiro Takahashi.
Comprehensible rendering of 3-d shapes.
ComputerGraphics (SIGGRAPH’90Proceed-
ings), 24(4):197–206, August 1990.

[Wes90] Lee Westover. Footprint evaluation for
volume rendering. Computer Graphics
(SIGGRAPH ’90 Proceedings), 24(4):367–
376, August 1990.

[Wil83] Lance Williams. Pyramidal parametrics.
ComputerGraphics (SIGGRAPH’83Proceed-
ings), 17(3):1–11, July 1983.

8

1 SGI, August 4, 1995Version 1.0

Texture Mapping in Technical, Scientific and Engineering
Visualization

Michael Teschner1 and Christian Henn2

1Chemistry and Health Industry Marketing,
Silicon Graphics Basel, Switzerland

2Maurice E. Mueller Institute for Microscopy,
University of Basel, Switzerland

Executive Summary

As of today, texture mapping is used in visual simulation and computer animation to reduce geometric
complexity while enhancing realism. In this report, this common usage of the technology is extended by
presenting application models of real time texture mapping that solve a variety of visualization problems in
the general technical and scientific world, opening new ways to represent and analyze large amounts of
experimental or simulated data.

The topics covered in this report are:

• Abstract definition of the texture mapping concept
• Visualization of properties on surfaces by color coding
• Information filtering on surfaces
• Real time volume rendering concepts
• Quality enhanced surface rendering

In the following sections, each of these aspects will be described in detail. Implementation techniques are
outlined using pseudo code that emphasizes the key aspects. A basic knowledge in GL programming is
assumed. Application examples are taken from the chemical market. However, for the scope of this report
no particular chemical background is required, since the data being analyzed can in fact be replaced by any
other source of technical, scientific or engineering information processing.

Note, that this report discusses the potential of released advanced graphics technology in a very detailed
fashion. The presented topics are based on recent and ongoing research and therefore subjected to change.

The methods described are the result of a team work involving scientists from different research areas and
institutions, and is called the Texture Team, consisting of the following members:

• Prof. Juergen Brickmann, Technische Hochschule, Darmstadt, Germany
• Dr. Peter Fluekiger, Swiss Scientific Computing Center, Manno, Switzerland
• Christian Henn, M.E. Mueller Institute for Microscopy, Basel, Switzerland
• Dr. Michael Teschner, Silicon Graphics Marketing, Basel, Switzerland

Further support came from SGI’s Advanced Graphics Division engineering group.

Colored pictures and sample code are available from sgigate.sgi.com via anonymous ftp. The files will be
there starting November 1st 1993 and will be located in the directory pub/SciTex.

For more information, please contact:

Michael Teschner (41) 61 67 09 03 (phone)
SGI Marketing, Basel (41) 61 67 12 01 (fax)
Erlenstraesschen 65
CH 4125 Riehen, Switzerland micha@basel.sgi.com (email)

2 SGI, August 4, 1995Version 1.0

1 Introduction

2 Abstract definition of the texture mapping concept

3 Color coding based application solutions
3.1 Isocontouring on surfaces
3.2 Displaying metrics on arbitrary surfaces
3.3 Information filtering
3.4 Arbitrary surface clipping
3.5 Color coding pseudo code example

4 Real time volume rendering techniques
4.1 Volume rendering using 2 D textures
4.2 Volume rendering using 3 D textures

5 High quality surface rendering
5.1 Real time Phong shading
5.1 Phong shading pseudo code example

6 Conclusions

3 SGI, August 4, 1995Version 1.0

1 Introduction

Texture mapping [1,2] has traditionally been used to add realism in computer generated images. In recent
years, this technique has been transferred from the domain of software based rendering systems to a
hardware supported feature of advanced graphics workstations. This was largely motivated by visual
simulation and computer animation applications that use texture mapping to map pictures of surface texture
to polygons of 3 D objects [3].

Thus, texture mapping is a very powerful approach to add a dramatic amount of realism to a computer
generated image without blowing up the geometric complexity of the rendered scenario, which is essential
in visual simulators that need to maintain a constant frame rate. E.g., a realistically looking house can be
displayed using only a few polygons with photographic pictures of a wall showing doors and windows
being mapped to. Similarly, the visual richness and accuracy of natural materials such as a block of wood
can be improved by wrapping a wood grain pattern around a rectangular solid.

Up to now, texture mapping has not been used in technical or scientific visualization, because the above
mentioned visual simulation methods as well as non interactive rendering applications like computer
animation have created a severe bias towards what texture mapping can be used for, i.e. wooden [4] or
marble surfaces for the display of solid materials, or fuzzy, stochastic patterns mapped on quadrics to
visualize clouds [5,6].

It will be demonstrated that hardware supported texture mapping can be applied in a much broader range of
application areas. Upon reverting to a strict and formal definition of texture mapping that generalizes the
texture to be a general repository for pixel based color information being mapped on arbitrary 3 D
geometry, a powerful and elegant framework for the display and analysis of technical and scientific
information is obtained.

2 Abstract definition of the texture mapping concept

In the current hardware implementation of SGI [7], texture mapping is an additional capability to modify
pixel information during the rendering procedure, after the shading operations have been completed.
Although it modifies pixels, its application programmers interface is vertex based. Therefore texture
mapping results in only a modest or small increase in program complexity. Its effect on the image
generation time depends on the particular hardware being used: entry level and interactive systems show a
significant performance reduction, whereas on third generation graphics subsystems texture mapping may
be used without any performance penalty.
Three basic components are needed for the texture mapping procedure: (1) the texture, which is defined in
the texture space, (2) the 3 D geometry, defined on a per vertex basis and (3) a mapping function that links
the texture to the vertex description of the 3 D object.

The texture space [8,9] is a parametric coordinate space which can be 1,2 or 3 dimensional. Analogous to
the pixel (picture element) in screen space, each element in texture space is called texel (texture element).
Current hardware implementations offer flexibility with respect to how the information stored with each
texel is interpreted. Multi channel colors, intensity, transparency or even lookup indices corresponding to a
color lookup table are supported.

In an abstract definition of texture mapping, the texture space is far more than just a picture within a
parametric coordinate system: the texture space may be seen as a special memory segment, where a variety
of information can be deposited which is then linked to object representations in 3 D space. Thus this
information can efficiently be used to represent any parametric property that needs to be visualized.

Although the vertex based nature of 3 D geometry in general allows primitives such as points or lines to
be texture mapped as well, the real value of texture mapping emerges upon drawing filled triangles or
higher order polygons.

The mapping procedure assigns a coordinate in texture space to each vertex of the 3 D object. It is
important to note that the dimensionality of the texture space is independent from the dimensionality of the
displayed object. E.g., coding a simple property into a 1 D texture can be used to generate isocontour lines
on arbitrary 3 D surfaces.

4 SGI, August 4, 1995Version 1.0

Figure 1: Color coding with RGB interpolation (left) and texture mapping (right).

This problem can be solved by storing the color ramp as a 1 D texture. In contrast to the above described
procedure, the scalar property information is used as the texture coordinates for the surface vertices. The
color interpolation is then performed in the texture space, i.e. the coloring is evaluated at every pixel
(Figure 1 right). High contrast variation in the color code is now possible, even on sparsely tessellated
surfaces.

It is important to note that, although the texture is one dimensional, it is possible to tackle a 3 D problem.
The dimensionality of texture space and object space is independent, thus they do not affect each other.
This feature of the texture mapping method, as well as the difference between texture interpolation and
color interpolation is crucial for an understanding of the applications presented in this report.

3 Color coding based application solutions

Color coding is a popular means of displaying scalar information on a surface [10]. E.g., this can be used
to display stress on mechanical parts or interaction potentials on molecular surfaces.

The problem with traditional, Gouraud shading based implementations occurs when there is a high
contrast color code variation on sparsely tesselated geometry: since the color coding is done by assigning
RGB color triplets to the vertices of the 3 D geometry, pixel colors will be generated by linear
interpolation in RGB color space.

As a consequence, all entries in the defined color ramp laying outside the linear color ramp joining two
RGB triplets are never taken into account and information will be lost. In Figure 1, a symmetric grey scale
covering the property range is used to define the color ramp. On the left hand side, the interpolation in the
RGB color space does not reflect the color ramp. There is a substantial loss of information during the
rendering step.

With a highly tessellated surface, this problem can be reduced. An alignment of the surface vertices with
the expected color code change or multi pass rendering may remove such artifacts completely. However,
these methods demand large numbers of polygons or extreme algorithmic complexity, and are therefore
not suited for interactive applications.

5 SGI, August 4, 1995Version 1.0

Figure 2: Electrostatic potential coded on the solvent accessible surface of ethanol.

Figure 2 shows the difference between the two procedures with a concrete example: the solvent accessible
surface of the ethanol molecule is colored by the electrostatic surface potential, using traditional RGB color
interpolation (left) and texture mapping (right).

The independence of texture and object coordinate space has further advantages and is well suited to
accommodate immediate changes to the meaning of the color ramp. E.g., by applying a simple 3 D
transformation like a translation in texture space the zero line of the color code may be shifted. Applying a
scaling transformation to the texture adjusts the range of the mapping. Such modifications may be
performed in real time.

With texture mapping, the resulting sharp transitions from one color value to the next significantly
improves the rendering accuracy. Additionally, these sharp transitions help to visually understand the
object’s 3 D shape.

3.1 Isocontouring on surfaces

Similar to the color bands in general color coding, discrete contour lines drawn on an object provide
valuable information about the object’s geometry as well as its properties, and are widely used in visual
analysis applications. E.g., in a topographic map they might represent height above some plane that is either
fixed in world coordinates or moves with the object [11]. Alternatively, the curves may indicate intrinsic
surface properties, such as an interaction potential or stress distributions.

With texture mapping, discrete contouring may be achieved using the same setup as for general color
coding. Again, the texture is 1 D, filled with a base color that represents the objects surface appearance. At
each location of a contour threshold, a pixel is set to the color of the particular threshold. Figure 3 shows an
application of this texture to display the hydrophobic potential of Gramicidine A, a channel forming
molecule as a set of isocontour lines on the surface of the molecular surface.

Scaling of the texture space is used to control the spacing of contour thresholds. In a similar fashion,
translation of the texture space will result in a shift of all threshold values. Note that neither the underlying
geometry nor the texture itself was modified during this procedure. Adjustment of the threshold spacing is
performed in real time, and thus fully interactive.

6 SGI, August 4, 1995Version 1.0

Figure 4: Display of metrics on a Zeolithe’s molecular surface with a 2 D texture.

Figure 3: Isocontour on a molecular surface with different scaling in texture space.

3.2 Displaying metrics on arbitrary surfaces

An extension of the concept presented in the previous section can be used to display metrics on an arbitrary
surface, based on a set of reference planes. Figure 4 demonstrates the application of a 2 D texture to attach
tick marks on the solvent accessible surface of a zeolithe.

In contrast to the property based, per vertex binding of texture coordinates, the texture coordinates for the
metric texture are generated automatically: the distance of an object vertex to a reference plane is
calculated by the harware and on the fly translated to texture coordinates. In this particular case two
orthogonal planes are fixed to the orientation of the object’s geometry. This type of representation allows
for exact measurement of sizes and distance units on a surface.

7 SGI, August 4, 1995Version 1.0

Figure 5: Solvent accessible surface of Gramicidine A, showing the ESP filtered with the MLP.

The surface is color coded, or grey scale as in the printed example, only at those loactions, where the
surface has a certain lipophobicity. The surface parts with lipophilic behavior are clamped to white. In this
example the information is filtered using a delta type function, suppressing all information not exceeding a
specified threshold. In other cases, a continouos filter may be more appropriate, to allow a more fine
grained quantification.

3.3 Information filtering

The concept of using a 1 D texture for color coding of surface properties may be extended to 2 D or even
3 D. Thus a maximum of three independent properties can simultaneously be visualized. However,
appropriate multidimensional color lookup tables must be designed based on a particular application,
because a generalization is either non trivial or eventually impossible. Special care must be taken not to
overload the surface with too much information.

One possible, rather general solution can be obtained by combining a 1 D color ramp with a 1 D threshold
pattern as presented in the isocontouring example, i.e. color bands are used for one property, whereas
orthogonal, discrete isocontour lines code for the second property. In this way it is possible to display two
properties simultaneously on the same surface, while still being capable of distinguishing them clearly.

Another approach uses one property to filter the other and display the result on the objects surface,
generating additional insight in two different ways: (1) the filter allows the scientist to distinguish between
important and irrelevant information, e.g. to display the hot spots on an electrostatic surface potential, or (2)
the filter puts an otherwise qualitative property into a quantitative context, e.g., to use the standard deviation
from a mean value to provide a hint as to how accurate a represented property actually is at a given location
on the object surface.

A good role model for this is the combined display of the electrostatic potential (ESP) and the molecular
lipophilic potential (MLP) on the solvent accessible surface of Gramicidine A. The electrostatic potential
gives some information on how specific parts of the molecule may interact with other molecules, the
molecular lipophilic potential gives a good estimate where the molecule has either contact with water
(lipophobic regions) or with the membrane (lipophilic regions). The molecule itself is a channel forming
protein, and is loacted in the membrane of bioorganisms, regulating the transport of water molecules and
ions. Figure 5 shows the color coding of the solvent accessible surface of Gramicidine A against the ESP
filtered with the MLP. The texture used for this example is shown in Figure 8.

8 SGI, August 4, 1995Version 1.0

Figure 6: Clipping of the solvent accessible surface of Gramicidine A according to the MLP.

There is a distinct advantage in using alpha texture as a component for information filtering: irrelevant
information can be completely eliminated, while geometric information otherways hidden within the
surface is revealed directly in the context of the surface. And again, it is worthwhile to mention, that by a
translation in texture space, the clipping range can be changed interactively!

Another useful application is to filter the electrostatic potential with the electric fileld. Taking the absolute
value of the electric field, the filter easily pinpoints the areas of the highest local field gradient, which helps
in identifying the binding site of an inhibitor without further interaction of the scientist. With translation in
the texture space, one can interactively modify the filter threshold or change the appearance of the color
ramp.

3.4 Arbitrary surface clipping

Color coding in the sense of information filtering affects purely the color information of the texture map.
By adding transparency as an additional information channel, a lot of flexibility is gained for the
comparison of multiple property channels. In a number of cases, transparency even helps in geometrically
understanding of a particular property. E.g., the local flexibility of a molecule structure according to the
crystallographically determined B factors can be visually represented: the more rigid the structure is, the
more opaque the surface will be displayed. Increasing transparency indicates higher floppyness of the
domains. Such a transparency map may well be combined with any other color coded property, as it is of
interest to study the dynamic properties of a molecule in many different contexts.

An extension to the continuous variation of surface transparency as in the example of molecular flexibility
mentioned above is the use of transparency to clip parts of the surface away completely, depending on a
property coded into the texture. This can be achieved by setting the alpha values at the appropriate vertices
directly to zero. Applied to the information filtering example of Gramicidine A, one can just clip the surface
using a texture where all alpha values in the previously white region a set to 0, as is demonstrated in Figure
6.

9 SGI, August 4, 1995Version 1.0

Figure 7: Example of a 2 D texture used for information filtering, with different transformations applied:
original texture (left), translation in s coordinates to adjust filter threshold (middle) and scaling along in t

coordinates to change meaning of the texture colors (right).

The texture environment defines how the texure modifies incoming pixel values. In this case we want to
keep the information from the lighting calculation and modulate this with the color coming from the
texture image:

3.5 Color coding pseudo code example

All above described methods for property visualization on object surfaces are based upon the same texture
mapping requirements. Neither are they very demanding in terms of features nor concerning the amount of
texture memory needed.

Two options are available to treat texture coordinates that fall outside the range of the parametric unit
square. Either the texture can be clamped to constant behaviour, or the entire texture image can be
periodically repeated. In the particular examples of 2 D information filtering or property clipping, the
parametric s coordinate is used to modify the threshold (clamped), and the t coordinate is used to change the
appearance of the color code (repeated). Figure 7 shows different effects of transforming this texture map,
while the following pseudo code example expresses the presented texture setup. GL specific calls and
constants are highlighted in boldface:

texParams = {
TX_MINIFILTER, TX_POINT,
TX_MAGFILTER, TX_POINT,
TX_WRAP_S, TX_CLAMP,
TX_WRAP_T, TX_REPEAT,
TX_NULL

};

texdef2d(
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

texbind(texIndex);

The texture image is an array of unsigned integers, where the packing of the data depends on the number of
components being used for each texel.

1 0 SGI, August 4, 1995Version 1.0

Figure 8: Schematic representation of the drawTexturedSurface() routine.

texEnvParams = {
TV_MODULATE, TV_NULL

};

tevdef(texEnvIndex,numTexEnvParams,texEnvParams);
tevbind(texEnvIndex);

Matrix transformations in texture space must be targeted to a matrix stack that is reserved for texture
modifications:

mmode(MTEXTURE);
translate(texTransX,0.0,0.0);
scale(1.0,texScaleY,1.0);

mmode(MVIEWING);

The drawing of the object surface requires the binding of a neutral material to get a basic lighting effect.
For each vertex, the coordinates, the surface normal and the texture coordinates are traversed in form of
calls to v3f, n3f and t2f.

The afunction() call is only needed in the case of surface clipping. It will prevent the drawing of any
part of the polygon that has a texel color with alpha = 0:

pushmatrix();
loadmatrix(modelViewMatrix);
if(clippingEnabled) {

afunction(0,AF_NOTEQUAL);
}
drawTexturedSurface();

popmatrix();

v3f(coo)

n3f (norm)

for (all vertices) { n3f(), t2f(), v3f() }

t2f(quality)

1 1 SGI, August 4, 1995Version 1.0

4 Real time volume rendering techniques

Volume rendering is a visualization technique used to display 3 D data without an intermediate step of
deriving a geometric representation like a solid surface or a chicken wire. The graphical primitives being
characteristic for this technique are called voxels, derived from volume element and analog to the pixel.
However, voxels describe more than just color, and in fact can represent opacity or shading parameters as
well.

A variety of experimental and computational methods produce such volumetric data sets: computer
tomography (CT), magnetic resonance imaging (MRI), ultrasonic imaging (UI), confocal light scanning
microscopy (CLSM), electron microscopy (EM), X ray crystallography, just to name a few. Characteristic
for these data sets are a low signal to noise ratio and a large number of samples, which makes it difficult to
use surface based rendering technique, both from a performance and a quality standpoint.

The data structures employed to manipulate volumetric data come in two flavours: (1) the data may be
stored as a 3 D grid, or (2) it may be handled as a stack of 2 D images. The former data structure is often
used for data that is sampled more or less equally in all the three dimensions, wheras the image stack is
preferred with data sets that are high resolution in two dimensions and sparse in the third.

Historically, a wide variety of algorithms has been invented to render volumetric data and range from ray
tracing to image compositing [12]. The methods cover an even wider range of performance, where the
advantage of image compositing clearly emerges, where several images are created by slicing the volume
perpendicular to the viewing axis and then combined back to front, thus summing voxel opacities and colors
at each pixel.

In the majority of the cases, the volumetric information is stored using one color channel only. This allows
to use lookup tables (LUTs) for alternative color interpretation. I.e., before a particular entry in the color
channel is rendered to the frame buffer, the color value is interpreted as a lookup into a table that aliases the
original color. By rapidly changing the color and/or opacity transfer function, various structures in the
volume are interactively revealed.

By using texture mapping to render the images in the stack, a performance level is reached that is far
superior to any other technique used today and allows the real time manipulation of volumetric data. In
addition, a considerable degree of flexibility is gained in performing spatial transformations to the volume,
since the transformations are applied in the texture domain and cause no performance overhead.

4.1 Volume rendering using 2 D textures

As a linear extension to the original image compositing algotrithm, the 2 D textures can directly replace the
images in the stack. A set of mostly quadrilateral polygons is rendered back to front, with each polygon
binding its own texture if the depth of the polygon corresponds to the location of the sampled image.
Alternatively, polygons inbetween may be textured in a two pass procedure, i.e. the polygon is rendered
twice, each time binding one of the two closest images as a texture and filtering it with an appropriate linear
weighting factor. In this way, inbetween frames may be obtained even if the graphics subsystem doesn’t
support texture interpolation in the third dimension.

The resulting volume looks correct as long as the polygons of the image stack are alligned parallel to the
screen. However, it is important to be able to look at the volume from arbitrary directions. Because the
polygon stack will result in a set of lines when being oriented perpendicular to the screen, a correct
perception of the volume is no longer possible.

This problem can easily be soved. By preprocessing the volumetric data into three independent image stacks
that are oriented perpendicular to each other, the most appropriate image stack can be selected for rendering
based on the orientation of the volume object. I.e., as soon as one stack of textured polygons is rotated
towards a critical viewing angle, the rendering function switches to one of the two additional sets of
textured polygons, depending on the current orientation of the object.

1 2 SGI, August 4, 1995Version 1.0

Figure 9: Slice plane through the water density surrounding a sugar molecule.

4.2 Volume rendering using 3 D textures

As described in the previous section, it is not only possible, but almost trivial to implement real time
volume rendering using 2 D texture mapping. In addition, the graphics subsystems will operate at peak
performance, because they are optimized for fast 2 D texture mapping. However, there are certain
limitations to the 2 D texture approach: (1) the memory required by the triple image stack is a factor of
three larger than the original data set, which can be critical for large data sets as they are common in medical
imaging or microscopy, and (2) the geometry sampling of the volume must be aligned with the 2 D textures
concerning the depth, i.e. arbitrary surfaces constructed from a triangle mesh can not easily be colored
depending on the properties of a surrounding volume.

For this reason, advanced rendering architectures support hardware implementations of 3 D textures. The
correspondence between the volume to be rendered and the 3 D texture is obvious. Any 3 D surface can
serve as a sampling device to monitor the coloring of a volumetric property. I.e., the final coloring of the
geometry reflects the result of the intersection with the texture. Following this principle, 3 D texture
mapping is a fast, accurate and flexible technique for looking at the volume.

The simplest application of 3 D textures is that of a slice plane, which cuts in arbitrary orientations through
the volume, which is now represented directly by the texture. The planar polygon being used as geometry in
this case will then reflect the contents of the volume as if it were exposed by cutting the object with a knife,
as shown in Figure 9: since the transformation of the sampling polygon and that of the 3 D texture is
independent, it may be freely oriented within the volume. The property visualized in Figure 9 is the
probability of water beeing distributed around a sugar molecule. The orientation of the volume, that means
the transformation in the texture space is the same as the molecular structure. Either the molecule, together
with the volumetric texture, or the slicing polygon may be reoriented in real time.

An extension of the slice plane approach leads to complete visualization of the entire volume. A stack of
slice planes, oriented in parallel to the computer screen, samples the entire 3 D texture. The planes are
drawn back to front and in sufficiently small intervals. Geometric transformations of the volume are
performed by manipulating the orientation of the texture, keeping the planes in screen parallel orientation,
as can be seen in Figure 10, which shows a volume rendered example of a medical application.

This type of volume visualization is greatly enhanced by interactive updates of the color lookup table used
to define the texture. In fact a general purpose color ramp editor may be used to vary the lookup colors or
the transparency based on the scalar information at a given point in the 3 D volume.

1 3 SGI, August 4, 1995Version 1.0

Figure 10: Volume rendering of MRI data using a stack of screen parallel sectioning planes,
which is cut in half to reveal detail in the inner part of the object.

5 High quality surface rendering

The visualization of solid surfaces with a high degree of local curvature is a major challenge for accurate
shading, and where the simple Gouraud shading [13] approach always fails. Here, the lighting calculation is
performed for each vertex, depending on the orientation of the surface normal with respect to the light
sources. The output of the lighting calculations is an RGB value for the surface vertex. During rasterization
of the surface polygon the color value of each pixel is computed by linear interpolation between the vertex
colors. Aliasing of the surface highlight is then a consequence of undersampled surface geometry, resulting
in moving Gouraud banding patterns on a surface rotating in real time, which is very disturbing. Moreover,
the missing accuracy in shading the curved surfaces often leads to a severe loss of information on the
object’s shape, which is not only critical for the evaluation and analysis of scientific data, but also for the
visualization of CAD models, where the visual perception of shape governs the overall design process.

Figure 11 demonstrates this problem using a simple example: on the left, the sphere exhibits typical
Gouraud artifacts, on the right the same sphere is shown with a superimposed mesh that reveals the
tessellation of the sphere surface. Looking at these images, it is obvious how the shape of the highlight of
the sphere was generated from linear interpolation. When rotating the sphere, the highlight begins to
oscillate, depending on how near the surface normal at the brightest vertex is with respect to the precise
highlight position.

The slice plane concept can be extended to arbitrarily shaped objects. The idea is to probe a volumetric
property and to display it wherever the geometric primitives of the probing object cut the volume. The
probing geometry can be of any shape, e.g. a sphere, collecting information about the property at a certain
distance from a specified point, or it may be extended to describe the surface of an arbitrary object.

The independence of the object’s transformation from that of the 3 D texture, offers complete freedom in
orienting the surface with respect to the volume. As a further example of a molecular modeling
application, this provides an opportunity to look at a molecular surface and have the information about a
surrounding volumetric property updated in real time, based on the current orientation of the surface.

1 4 SGI, August 4, 1995Version 1.0

Figure 12: Phong shaded sphere using surface normals as a lookup for the texture coordinate.

Figure 11: Gouroud shading artifacts on a moderately tessellated sphere.

Correct perception of the curvature and constant, non oscillating highlights can only be achieved with
computationally much more demanding rendering techniques such as Phong shading [14]. In contrast to
linear interpolation of vertex colors, the Phong shading approach interpolates the normal vectors for each
pixel of a given geometric primitive, computing the lighting equation in the subsequent step for each pixel.
Attempts have been made to overcome some of the computationally intensive steps of the procedure [15],
but their performance is insufficient to be a reasonable alternative to Gouraud shading in real time
applications.

5.1 Real time Phong shading

With 2 D texture mapping it is now possible to achieve both, high performance drawing speed and highly
accurate shading. The resulting picture compares exactly to the surface computed with the complete Phong
model with infinite light sources.

The basic idea is to use the image of a high quality rendered sphere as texture. The object’s unit length
surface normal is interpreted as texture coordinate. Looking at an individual triangle of the polygonal
surface, the texture mapping process may be understood as if the image of the perfectly rendered sphere
would be wrapped piecewise on the surface polygons. In other words, the surface normal serves as a lookup
vector into the texture, acting as a 2 D lookup table that stores precalculated shading information.

The advantage of such a shading procedure is clear: the interpolation is done in texture space and not in
RGB, therefore the position of the highlight will never be missed. Note that the tessellation of the texture
mapped sphere is exactly the same as for the Gouraud shaded reference sphere in Figure 11.

1 5 SGI, August 4, 1995Version 1.0

Figure 13: Application of the texture mapped Phong shading to a complex surface representing a
biomolecular structure. The closeups demonstrate the difference between Gouraud shading (above right) and

Phong shading (below right) when implemented using texture mapping

5.2 Phong shading pseudo code example

The setup for the texture mapping as used for Phong shading is shown in the following code fragment:

texParams = {
TX_MINIFILTER, TX_POINT,
TX_MAGFILTER, TX_BILINEAR,
TX_NULL

};

texdef2d(
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

As previously mentioned, this method of rendering solid surfaces with highest accuracy can be applied to
arbitrarily shaped objects. Figure 13 shows the 3 D reconstruction of an electron microscopic experiment,
visualizing a large biomolecular complex, the asymmetric unit membrane of the urinary bladder. The
difference between Gouraud shading and the texture mapping implementation of Phong shading is obvious,
and for the sake of printing quality, can be seen best when looking at the closeups. Although this trick is so
far only applicable for infinitely distant light sources, it is a tremendous aid for the visualization of highly
complex surfaces.

1 6 SGI, August 4, 1995Version 1.0

Figure 15: Schematic representation of the drawTexPhongSurface() routine.

6 Conclusions

Silicon Graphics has recently introduced a new generation of graphics subsystems, which support a variety
of texture mapping techniques in hardware without performance penalty. The potential of using this
technique in technical, scientific and engineering visualization applications has been demonstrated.

Hardware supported texture mapping offers solutions to important visualization problems that have either
not been solved yet or did not perform well enough to enter the world of interactive graphics applications.
Although most of the examples presented here could be implemented using techniques other than texture
mapping, the tradeoff would either be complete loss of performance or an unmaintainable level of
algorithmic complexity.

Most of the examples were taken from the molecular modelling market, where one has learned over the

texbind(texIndex);

texEnvParams = { TV_MODULATE, TV_NULL };

tevdef(texEnvIndex,numTexEnvParams,texEnvParams);
tevbind(texEnvIndex);

As texture, we can use any image of a high quality rendered sphere either with RGB or one intensity
component only. The RGB version allows the simulation of light sources with different colors.

The most important change for the vertex calls in this model is that we do not pass the surface normal data
with the n3f command as we normally do when using Gouraud shading. The normal is passed as texture
coordinate and therefore processed with the t3f command.

Surface normals are transformed with the current model view matrix, although only rotational components
are considered. For this reason the texture must be aligned with the current orientation of the object. Also,
the texture space must be scaled and shifted to cover a circle centered at the origin of the s/t coordinate
system, with a unit length radius to map the surface normals:

mmode(MTEXTURE);
loadmatrix(identityMatrix);
translate(0.5,0.5,0.0);
scale(0.5,0.5,1.0);
multmatrix(rotationMatrix);

mmode(MVIEWING);

drawTexPhongSurface();
v3f(coo)

t3f (norm)

for (all vertices) { t3f(), v3f() }

1 7 SGI, August 4, 1995Version 1.0

years to handle complex 3 D scenarios interactively and in an analytic manner. What has been shown here
can also be applied in other areas of scientific, technical or engineering visualization. With the examples
shown in this report, it should be possible for software engineers developing application software in other
markets to use the power and flexibility of texture mapping and to adapt the shown solutions to their
specific case.

One important, general conclusion may be drawn from this work: one has to leave the traditional mind set
about texture mapping and go back to the basics in order to identify the participating components and to
understand their generic role in the procedure. Once this step is done it is very simple to use this technique
in a variety of visualization problems.

All examples were implemented on a Silicon Graphics Crimson Reality Engine [7] equipped with two raster
managers. The programs were written in C, either in mixed mode GLX or pure GL.

7 References

[1] Blinn, J.F. and Newell, M.E. Texture and reflection in computer generated images, Communications
of the ACM 1976, 19, 542 547.

[2] Blinn, J.F. Simulation of wrinkled surfaces Computer Graphics 1978, 12, 286 292.

[3] Haeberli, P. and Segal, M. Texture mapping as a fundamental drawing primitive, Proceedings
of the fourth eurographics workshop on rendering, 1993, 259 266.

[4] Peachy, D.R. Solid texturing of complex surfaces, Computer Graphics 1985, 19, 279 286.

[5] Gardner, G.Y. Simulation of natural scenes using textured quadric surfaces, Computer
Graphics 1984, 18, 11 20.

[6] Gardner, G.Y. Visual simulations of clouds, Computer Graphics 1985, 19, 279 303.

[7] Akeley, K. Reality Engine Graphics, Computer Graphics 1993, 27, 109 116.

[8] Catmull, E.A. Subdivision algorithm for computer display of curved surfaces, Ph.D. thesis
University of Utah, 1974.

[9] Crow, F.C. Summed area tables for texture mapping, Computer Graphics 1984, 18, 207 212.

[10] Dill, J.C. An application of color graphics to the display of surface curvature, Computer
Graphics 1981, 15, 153 161.

[11] Sabella, P. A rendering algorithm for visualizing 3d scalar fields, Computer Graphics, 1988
22, 51 58.

[12] Drebin, R. Carpenter, L. and Hanrahan, P. Volume Rendering, Computer Graphics, 1988,
22, 65 74.

[13] Gouraud, H. Continuous shading of curved surfaces, IEEE Transactions on Computers,
1971, 20, 623 628.

[14] Phong, B.T. Illumination for computer generated pictures, Communications of the ACM
1978, 18, 311 317.

[15] Bishop, G. and Weimer, D.M. Fast Phong shading, Computer Graphics, 1986, 20, 103 106.

Efficient Bump Mapping Hardware

Mark Peercy
John Airey

Brian Cabral
Silicon Graphics Computer Systems

Abstract
We present a bump mapping method that requires minimal hard-
ware beyond that necessary for Phong shading. We eliminate the
costly per-pixel steps of reconstructing a tangent space and perturb-
ing the interpolated normal vector by a) interpolating vectors that
have been transformed into tangent space at polygon vertices and b)
storing a precomputed, perturbed normal map as a texture. The sav-
ings represents up to a factor of two in hardware or time compared
to a straightforward implementation of bump mapping.
CR categories and subject descriptors: I.3.3 [Computer

Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION
Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colors interpolated and composited with a texture.
The drawbacks of Gouraud interpolation [9] are well known and in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by the relatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

The division of a computation into per-vertex and per-pixel com-
ponents is a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of a feature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of a new feature tends to be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify because it lays idle in applica-
tions that do not leverage it. And in low-end or game systems,where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An alternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

peercy,airey,cabral @sgi.com
2011 N. Shoreline Boulevard
Mountain View, California 94043-1389

Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
world space or interpolated, either of which requires their normal-
ization for a local viewer and light. Figure 1 shows rasterization

H interp

L interp

N interp normalize

normalize

normalize

illumination

Figure 1. One implementation of Phong shading hardware.

hardware for one implementation of Phong shading, upon which
we base this discussion. This adds significant cost to rasterization
hardware. However higher quality lighting is almost universally
desired in three-dimensional graphics applications, and advancing
semiconductor technology is making Phong shading hardware more
practical. We take Phong shading and texture mapping hardware as
a prerequisite for bump mapping, assuming they will be standard in
graphics hardware in the future.

Bump mapping [3] is a technique used in advancedshading appli-
cations for simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, ,
is interpreted as a height field that perturbs the surface along its nor-
mal vector, , at each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the and parametric directions (and), and the
partial derivatives of the image height field in and (and),
a perturbed normal vector is given by [3]:

(1)where
(2)

In these equations, and are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surface scale because changes at a different rate than . If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggests one way to enforce a constant bump height.

A full implementation of these equations in a rasterizer is imprac-
tical, so the computation is divided among a preprocessing step, per-
vertex, and per-pixel calculations. A natural method to implement
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute , , and

at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized as in
Equation 1, with and read from a texture map. The resulting
normal vector is used in an illumination model.

The hardware for this method is shown in Figure 2. Because

Several different implementations of Phong shading have been suggested
[11][10][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we use this form as well as Blinn’s introduction of
the halfangle vector for clarity.

wide interp

H interp

L interp normalize illumination

N x Pu
wide interp

texture

Pv x N

N

fu , fv

wide interp

*

* +

wide normalize

normalize

Figure 2. A suggested implementationof bumpmapping hard-
ware.

and are unbounded, the three interpolators, the vector addition,
vector scaling, and normalization must have much greater range and
precision than those needed for bounded vectors. These require-
ments are noted in the figure. One approximation to this implemen-
tation has been been proposed [8], where and are
held constant across a polygon. While avoiding their interpolation,
this approximation is known to have artifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either a large in-
vestment in special purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Because illumination
models are a function of vector operations (such as the dot product)
between the perturbed normal vector and other vectors (such as the
light and halfangle), they can be computed relative to any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
a result, minimal hardware is added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM
We proceed by recognizing that the original bump mapping approx-
imation [3] assumes a surface is locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, , a tangent vector,

, and a binormal vector, . , , and
form an orthonormal coordinate system in which we perform the

bump mapping. In this space, the perturbed normal vector is (see
appendix):

(3)

(4)
(5)
(6)

The coefficients , , and are a function of the surface itself (via
and) and the height field (via and). Provided that the

bump map is fixed to a surface, the coefficients can be precomputed
for that surface at each point of the height field and stored as a texture
map (we discuss approximations that relax the surface dependence
below). The texel components lie in the range -1 to 1.

The texture map containing the perturbed normal vector is filtered
as a simple texture using, for instance, tri-linear mipmap filtering.
The texels in the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing the texels directly from Equations 3-6. It is well
known that this filtering step tends to average out the bumps at large

minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
ize it prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectors into tangent space via a
matrix whose columns are , , and . For instance, the light vec-
tor, , is transformed by

(7)

Now the diffuse term in the illumination model can be computed
from the perturbed normal vector from the texture map and the trans-
formed light: . The same consideration holds for the
other terms in the illumination model.

The transformations of the light and halfangle vectors should be
performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, a good approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
This is frequently a good assumption because tangent space changes
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfaces more finely in those regions to reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blake to reduce the hardware required for Phong shading
[11]. Rather than specifying a tangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectors in the same direction (such as). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have a result similar to their approximation. It should
be noted that the highlight in this case is slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing a separate map for each surface. However, it requires only a mul-
tiplexer beyondPhong shading, avoids the interpolation of
and , the perturbation of the normal vector at each pixel,
and the extended range and precision needed for arithmetic on un-
bounded vectors. Effectively, we have traded per-pixel calculations
cast in hardware for per-vertex calculations done in the general ge-
ometry processor. If the application is limited by the rasterization, it
will run at the same speed with bump mapping as with Phong shad-
ing.

interp

interp

N interp normalize

normalize

normalize

illumination

texture

H
TS

L
TS

N’
TS

Figure 3. One implementationof our bumpmappingalgorithm.

Figure 4.The pinwheelheight field is usedasabumpmap for the
tesselated, bicubic surface.

2.1 Object-Space Normal Map
If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
stores the perturbed normal vectors in object space, and the light and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
to the light and halfangle vectors is shared by all vertices, rather than
one transformation for each vertex. This implementation keeps the
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence
The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yet in ad-
dition, our texture map is a function of the surface, so the height field
can not be shared among surfaces with different parameterizations.
This is particularly problematic when texture memory is restricted,
as in a game system, or during design when a bump map is placed
on a new surface interactively.

All of the surface dependencies can be eliminated under the as-
sumption that, locally, the parameterization is the same as a square
patch (similar to, yet more restrictive than, the assumption Blinn
makes in removing the scale dependence [3]). Then, and
are orthogonal () and equal in magnitude
(). To remove the bump dependence on surface scale,

Figure 4. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 3-6.

we simply choose , where is a constant giving
a relative height of the bumps. This, along with the orthogonality
condition, reduce Equations 3-6 to

(8)

(9)
(10)

(11)

The texture map becomes a function only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption holds for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
faces because the further and are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to a surface. This warping is typically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES
Figures 5-7 compare software simulations of the various bump map-
ping implementations. All of the images, including the height field,
have a resolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 8-11.

chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensure that and

deviate appreciably from orthogonal. The texture maps were fil-
tered with trilinear mipmapping.

Figure 5 shows the image computed from the implementation of
bump mapping from Figure 2. The partial derivatives, and , in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of and for the bicu-
bic patch. The difference between this image and Figure 5 is almost
imperceptible, even under animation, as can be seen in the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seen in the rendered image compared to Figures 5 and
6; some are visible in the inset. All three implementations have sim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION
We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

precompute a texture of the perturbed normal in tangent space
transform all shading vectors into tangent space per vertex
interpolate and renormalize the shading vectors
fetch and normalize the perturbed normal from the texture
compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardware in the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It is important to note that the method of transforming into tangent
space for bump mapping is independent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector is trans-
formed into tangent space and interpolated rather than the halfan-
gle. As long as all necessary shading vectors for the illumination
model are transformed into tangent space and interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectors rather than partial illumination
results. We have presented a Phong shading circuit where almost no
new hardware is required, but other implementations may need extra
hardware. For example, if the light and halfangle vectors are com-
puted directly in eye space, interpolators must be added to support
our algorithm. The additional cost still will be very small compared
to a straightforward implementation.

Phong shading likely will become a standard addition to hardware
graphics system because of its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.

5 ACKNOWLEDGEMENTS
This work would not have been possible without help, ideas, conver-
sations and encouragement from Pat Hanrahan, Bob Drebin, Kurt
Akeley, Erik Lindholm and Vimal Parikh. Also thanks to the anony-
mous reviewers who provided good and insightful suggestions.

APPENDIX
Here we derive the perturbed normal vector in tangent space, a ref-
erence frame given by tangent, ; binormal,

; and normal, , vectors. is in the plane of the tangent
and binormal, and it can be written:

(12)

Therefore

(13)

The normal perturbation (Equation 2) is:

(14)
(15)

Substituting the expression for and
into Equation 1, normalizing, and taking ,

, and leads directly to Equations 3-6.

References

[1] AKELEY, K. RealityEngine graphics. In Computer Graphics
(SIGGRAPH ’93 Proceedings) (Aug. 1993), J. T. Kajiya, Ed.,
vol. 27, pp. 109–116.

[2] BISHOP, G., AND WEIMER, D. M. Fast Phong shading.
In Computer Graphics (SIGGRAPH ’86 Proceedings) (Aug.
1986), D. C. Evans and R. J. Athay, Eds., vol. 20, pp. 103–106.

[3] BLINN, J. F. Simulation of wrinkled surfaces. In Computer
Graphics (SIGGRAPH ’78 Proceedings) (Aug. 1978), vol. 12,
pp. 286–292.

[4] CLAUSSEN, U. Real time phong shading. In Fifth Euro-
graphics Workshop on Graphics Hardware (1989), D. Grims-
dale and A. Kaufman, Eds.

[5] CLAUSSEN, U. On reducing the phong shading method. Com-
puters and Graphics 14, 1 (1990), 73–81.

[6] COSMAN, M. A., AND GRANGE, R. L. CIG scene realism:
The world tomorrow. In Proceedings of I/ITSEC 1996 on CD-
ROM (1996), p. 628.

[7] DEERING, M. F., WINNER, S., SCHEDIWY, B., DUFFY,
C., AND HUNT, N. The triangle processor and normal vec-
tor shader: A VLSI system for high performance graphics.
In Computer Graphics (SIGGRAPH ’88 Proceedings) (Aug.
1988), J. Dill, Ed., vol. 22, pp. 21–30.

[8] ERNST, I., JACKEL, D., RUSSELER, H., AND WITTIG, O.
Hardware supported bump mapping: A step towards higher
quality real-time rendering. In 10th Eurographics Workshop
on Graphics Hardware (1995), pp. 63–70.

[9] GOURAUD, H. Computer display of curved surfaces. IEEE
Trans. Computers C-20, 6 (1971), 623–629.

[10] JACKEL, D., AND RUSSELER, H. A real time rendering sys-
tem with normal vector shading. In 9th Eurographics Work-
shop on Graphics Hardware (1994), pp. 48–57.

[11] KUIJK, A. A. M., AND BLAKE, E. H. Faster phong shad-
ing via angular interpolation. Computer Graphics Forum 8, 4
(Dec. 1989), 315–324.

[12] MAILLOT, J., YAHIA, H., AND VERROUST, A. Interactive
texture mapping. InComputerGraphics (SIGGRAPH ’93 Pro-
ceedings) (Aug. 1993), J. T. Kajiya, Ed., vol. 27, pp. 27–34.

[13] PHONG, B.-T. Illumination for computer generated pictures.
Communications of the ACM 18, 6 (June 1975), 311–317.

 View independent
 Non diffuse
Global Illumination
 Solution

 Each Object is Fitted
 with Virtual Lights that
Reproduce its Appearance

Results Suitable for Rapid
 Display using Current
 Graphics Systems

Light
Light

Exact Diffuse Specular

T

L
N’

Interactive Reflections on Curved Objects

Eyal Ofek Ari Rappoport

Institute of Computer Science, The Hebrew University

Abstract

Global view-dependent illumination phenomena, in particular re-
flections, greatly enhance the realism of computer-generated im-
agery. Current interactive rendering methods do not provide satis-
factory support for reflections on curved objects.

In this paper we present a novel method for interactive computation
of reflections on curved objects. We transform potentially reflected
scene objects according to reflectors, to generate virtual objects.
These are rendered by the graphics system as ordinary objects, cre-
ating a reflection image that is blended with the primary image. Vir-
tual objects are created by tessellating scene objects and computing
a virtual vertex for each resulting scene vertex. Virtual vertices are
computed using a novel space subdivision, the reflection subdivi-
sion. For general polygonal mesh reflectors, we present an associ-
ated approximate acceleration scheme, the explosion map. For spe-
cific types of objects (e.g., linear extrusions of planar curves) the
reflection subdivision can be reduced to a 2-D one that is utilized
more accurately and efficiently.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

Keywords: ray tracing, interactive reflections, virtual objects
method, reflection subdivision, explosion map.

1 Introduction

Interactive photo-realistic rendering is a major goal of computer
graphics. Global view-dependent illumination phenomena greatly
enhance image quality. An extremely important type of view-
dependent phenomenon is reflection. Reflections on curved object
are not supported well by current interactive rendering techniques.
In this paper we address the problem of interactive rendering of
reflections on curved objects.

Background. Current interactive graphics systems utilize hardware
acceleration that directly supports hidden surfaces removal, sim-
ple local shading models and texture mapping. While the polygon
throughput of these systems is impressive, the range of shading ef-
fects they provide hasn’t changed much since their introduction. In
particular, they lack support for global illumination phenomena in

Institute of Computer Science, The Hebrew University, Jerusalem 91904,
Israel. http://www.cs.huji.ac.il/ arir, eyalp arir,eyalp@cs.huji.ac.il

dynamic scenes.

Global illumination phenomena greatly enhance the quality of syn-
thetic imagery. They can be coarsely classified to view-independent
and view-dependent phenomena. Among the former, diffuse illumi-
nation in static scenes [Sillion89] and shadows [Segal92] can be in-
teractively rendered using current hardware. However, global view-
dependent phenomena are crucial for providing life-like realism.
When only view-independent effects are provided, the visual na-
ture of the result can be dull and lifeless, even when the scene is
dynamic.

An extremely important view-dependent illumination phenomenon
is reflection. The dominant method for generating reflections is ray
tracing [Whitted80, Glassner89]. In spite of extensive work on ray
tracing acceleration schemes, [Jansen93] states that the only hope
for interactive ray tracing lies in massively parallel computers, and
even then satisfactory performance is not guaranteed.

Environment mapping [Blinn76, Greene86, Haeberli93,
Voorhies94] generates at interactive rates reflections that are
approximately correct when the reflected objects are relatively far
from the reflector. However, when this condition is violated the
results are of very poor accuracy.

It is well-known that reflections on planar surfaces can be generated
by (1) mirroring the viewer along the reflecting plane, (2) creating a
reflection image by rendering the scene from the new point of view,
and (3) merging the main image with the visible portion of the re-
flector in the reflection image. Surprisingly, although this method
can significantly accelerate ray tracing, it has been accurately doc-
umented only recently. The descriptions in [Foley90] (in which the
method is called ‘reflection mapping’) and [McReynolds96] are
correct only when the original viewer and all objects lie on the
same side of the reflecting plane. A correct description is given in
[Hall96]. [Diefenbach97] shows how to use variants of this method
for interactive simulation of various general reflectance functions
of planar objects. The concept of a reflected virtual world was also
used in [Rushmeier86, Wallace87, Sillion89] for supporting specu-
lar reflections from planar objects in a radiosity context.

Contribution. In this paper we present a method for interactive ren-
dering of reflections on curved objects, based on merging a primary
image and a reflection image. The reflection image is generated by
creating and rendering virtual objects corresponding to reflections
of scene objects. Virtual objects are rendered like ordinary poly-
gons, thus taking advantage of the features supported by the graph-
ics system. They are created using a structure called the reflection
subdivision and an associated approximate acceleration scheme, the
explosion map.

The method presents a novel approach to the computation of re-
flections in computer graphics, and is unique in providing approx-
imate reflections on curved objects at interactive rates. Moreover,
the rendered scenes can be completely dynamic; no pre-processing
is necessary. The method provides higher quality than environment
mapping, because it allows reflected objects to be nearby the reflec-
tor and it supports equally well reflectors having a large curvature.
For scenes in which reflected images of objects occupy more than a

few pixels and in which the depth complexity of the reflection im-
age is not large, the method is much more efficient than ray tracing,
because it efficiently exploits the spatial coherency of the reflec-
tion image. The price paid for the advantages of the method is that
its performance is less efficient than that of environment mapping
and the generated images are only polygonal approximations (as in
most interactive systems). In addition, its accuracy depends upon
the geometric nature of the reflector.

The paper is structured as follows. Section 2 gives an overview of
the method. Sections 3, 4 and 5 deal with convex reflectors, dis-
cussing respectively the reflection subdivision, the explosion map,
and special reflectors. Section 6 deals with non-convex reflectors.
Results and an in-depth discussion are given in Sections 7 and 8.

2 Method Overview

In this section we give an overview of the virtual objects method.
We present the general idea (2.1), image merging alternatives (2.2),
a brief discussion on planar reflectors (2.3), and a high-level outline
on non-planar reflectors (2.4).

2.1 General Idea

The virtual objects method is inspired by the following observation.
Consider an image containing reflections. Two kinds of entities are
visible: reflecting objects, or reflectors, and reflected images of re-
flected 3-D objects. When the reflector is a perfect planar one, the
geometry of the reflected images is identical to images of the re-
flected objects from some other viewpoint. In fact, we cannot dis-
tinguish between ‘real’ objects and reflected images of objects. In-
terior designers utilize this phenomenon when covering walls with
mirrors in order to make rooms seem larger. For non-planar reflec-
tors, the appearance of reflected objects is a deformed version of
their ordinary appearance. In general, there is no viewpoint from
which they appear identical to their reflected images. The nature of
the deformation depends upon the geometry of the reflector. Con-
vex reflectors deform reflected objects to seem smaller, and concave
reflectors produce reflected images that may seem larger than the
reflected object or degenerate into strange chaotic images.

This observation inspires the following algorithm for generation of
reflections (Figure 1): for every reflector and every object poten-
tially reflected in it, compute a 3-D virtual object, that, when ren-
dered using ordinary 3-D rendering methods, will produce an image
having a visual appearance similar to the object’s reflected image. If
depth relationships between the virtual objects are still correct, the
rendered images of the virtual objects can be merged together us-
ing some hidden surfaces removal algorithm. The result can now be
alpha blended with a reflector image containing view-independent
lighting to produce the final image. The alpha blending coefficients
are determined by the relative reflectivity of the reflector.

SceneRender (Scene S, View E):
(1) Render S without reflections into primary image I.
(2) For every visible reflector R S
(3) For every potentially reflected object O S
(4) O VirtualObject (R,O,E).
(5) Render O into a reflection image I .
(6) If multiple levels of reflections are desired

Call the algorithm recursively.
(7) Alpha blend I and I, according to

the reflectivity of R.

Figure 1 The virtual objects method.

When virtual objects can be computed efficiently, the resulting
method is very attractive, since reflected images are generated at
the object, rather than the pixel, level. Most of this paper deals with
step 4, efficient generation of virtual objects. Naturally, only visible
reflectors are considered, and the scene can be stored in a data struc-
ture that supports culling of scene objects that cannot be reflected.

A comment about shading: for planar reflectors we can reflect the
light sources as well as the scene objects and simply use the re-
flected ones. For non-planar reflectors, it is more accurate to com-
pute shading values for vertices at the world coordinate system, and
then use these values for the virtual vertices. On current architec-
tures, this shading is most efficiently computed in software, and the
hardware is used for rasterization and texturing.

2.2 Image Merging

The primary and reflection images can be merged in two ways.
First, the reflection image can be used as a texture when render-
ing a reflector. Alternatively, the reflection image can be directly
rendered on the screen (using a stencil bit-plane defining the screen
image of the reflector.) The view-independent component of the re-
flector is now rendered, alpha blending it with the reflection image.

Texture mapping and stencil-guided image merging are standard
features in interactive graphics systems, even current low-end ones.
The choice of method depends on the actual graphics architecture
available, especially on its memory organization. For more details,
see [Ofek98, McReynolds96, Hall96].

2.3 Planar Reflectors

The method of [McReynolds96, Hall96, Diefenbach97] is a special
case of the virtual objects method, when the reflectors are planar
and when we consider the objects, rather than the viewpoint, as
being mirrored. Note that in this case the method is essentially an
image-space version of beam tracing [Heckbert84]. An attractive
property of planar reflectors is that the location of a virtual point is a
simple affine transformation, mirroring, of the real point. Moreover,
this transformation does not depend on the viewer location, only on
that of the reflector. In Figure 2(a), the location of the virtual image
Q of a scene point Q remains constant for two viewpoints E1 and
E2. Hence, the same simple affine transformation can be used for
all reflected polygons. Full details on how to generate the mirroring
transformation are given in the above references.

E2
E1

N N

Q E2
E1

N1
N2

Q

Q’1

Q’2Q’

(a) (b)

J1 J2

Figure 2 For planar reflectors, the virtual location of a point does
not depend upon the viewpoint (a). This does not hold for curved
reflectors (b).

Note that as presented so far, the method produces correct results
only when the viewpoint and the reflected polygon are on the same
side of the reflector. Consider a polygon lying on the other side of
the reflector. After the mirroring transformation, it can erroneously
obscure the reflector from the viewer, because they lie on the same

side of it. This problem can be overcome by not mirroring a poly-
gon if all of its vertices lie behind the reflector. The test is done by
plugging the vertex coordinates into the reflector plane equation and
testing the sign of the result. However, this method does not solve
the case when the polygon lies only partially behind the reflector.
In many cases such polygons do not cause incorrect results because
the virtual front part falls outside of the reflector stencil anyway.
For planar reflectors, the problem can be solved very efficiently by
defining the reflector plane as a front clipping plane.

2.4 Non-Planar Reflectors

Generation of virtual objects for non-planar reflectors is more dif-
ficult than for planar reflectors, because the main property of the
planar case does not hold: the location of a virtual point is not
a simple affine transformation independent of the viewer position
(Figure 2(b)). In general, every reflected point is transformed dif-
ferently.

Our approach is outlined in Figure 3. The reflected object is tes-
sellated into polygons (step 1). The fineness of the tessellation de-
pends upon the desired accuracy of the resulting reflection image.
Tessellations are further discussed in Sections 7 and 8. In steps 2–5,
virtual polygons are generated by computing virtual vertices for the
tessellation vertices. The collection of all virtual polygons forms
the desired virtual object rendered in step 5 of Figure 1. The main
step is 4, computing a single virtual vertex; its description occupies
much of the rest of the paper.

VirtualObject (Reflector R, Object O, View E):
(1) Tessellate O into polygons.
(2) For each polygon P
(3) For each vertex Q of P
(4) Q VirtualVertex (R,Q,E).
(5) Connect the Q s to form a virtual polygon P .
(6) Connect the P s to form the virtual object O .

Figure 3 Computing a virtual object O for a potentially reflected
object O on a non-planar reflector R.

Rendered polygons are consistent and possess no holes, because
virtual objects are formed by connecting virtual vertices. Visibility
relationships between virtual objects are preserved due to the usage
of a hidden surfaces removal mechanism (in practice, a z-buffer) for
them.

3 The Reflection Subdivision

In this section we start detailing our approach towards computing
virtual vertices for curved reflectors. We assume here that the re-
flector is convex. Concave and other non-convex reflectors are dis-
cussed in Section 6. Our approach is based on approximating the
reflector by a polygonal mesh. In many cases this is the format in
which objects are given anyway; when they are given in a higher-
level representation (e.g., a NURBS surface) they are tessellated.
For simplicity, we assume that mesh polygons are triangles, but this
is not necessary.

Intuition. Given a reflector R and an arbitrary scene point Q, we
want to generate the corresponding virtual point Q (consult Fig-
ure 2(b)). If we knew the point of reflection J and normal N on the
boundary surface of R, we could easily compute Q by mirroring Q
along the tangent plane to R at J. In some cases, when we know the
geometric nature of the reflector (e.g., a sphere), J can be computed

by a direct formula. However, for a general convex polygonal mesh
there is no direct formula.

We use an approximation. Every reflector triangle defines two space
cells: a reflected cell and a hidden cell. Suppose that we can find
the cell C, defined by triangle T , in which the scene point Q lies. A
naive method would mirror Q across the plane containing T . How-
ever, this would clearly show the linear approximation of the reflec-
tor (imagine a reflecting sharply cut diamond!). Instead, we use the
relative location of Q inside C to define a triplet of barycentric coef-
ficients. These coefficients are used to interpolate the three tangent
planes at the vertices of T , yielding a new tangent plane that is now
used for mirroring Q.

In this section we study the space subdivision defined by the re-
flector and also explain why we need to compute virtual points for
points that are not reflected. The full details of the computation are
given in Sections 4 and 5.

The subdivision. Each vertex Vi of the tessellated reflector pos-
sesses a normal Ni. Reflector vertices are either front-facing or
back-facing, according to whether their normals point towards or
away from the viewer (a normal orthogonal to the line of sight is
considered front-facing). Due to the convexity of the reflector, ev-
ery front-facing vertex is visible by the viewer (when there are no
other obscuring objects). Note that back-facing vertices might still
be visible (this is a tessellation artifact). When all vertices of a mesh
triangle are front-facing (back-facing), we refer to the triangle as
being front-facing (back-facing). Otherwise we say that the triangle
is a profile triangle.

For each front-facing vertex Vi we define two rays: (1) a reflection
ray Ri, mirroring the ray from Vi to the viewer across the normal Ni,
and (2) a hidden ray Hi, originating at Vi and extending to infinity
in the opposite direction to that of the viewer. Figure 4 shows a 2-D
version of the situation. In (a), reflection rays are shown in red and
hidden rays in blue.

E

Ci

Vi+1

Ni

Ni+1

(a)

Vi

Di Z2

Z1

Z
Hi

Hi+1

Ri

Ri+1

E

Ci

Vi

Vi+1

Q1

Q1’

Q2’

Q2

(b)

Dk

Vk

Ri+1

Ri

Figure 4 (a) The reflection subdivision in 2-D. Ci and Di are the
reflected and hidden cells defined by reflector vertices Vi, Vi+1. The
ray Z bisects the unreflected region on the right into two parts Z1, Z2.
(b) Computation of virtual vertices: the point Q1 in the reflected cell
Ci is transformed to Q1 inside the hidden cell Di; the point Q2 in
the hidden cell Dk is transformed to Q2 outside the reflector in the
reflected cell Ck .

Two reflection rays Ri,Rj corresponding to adjacent front-facing
mesh vertices Vi,Vj define a ruled bi-linear parametric surface
s(Vi + tRi) + (1 s)(Vj + tRj). Note that in general this surface is
not planar, because the two rays are usually not co-planar. The two
hidden rays Hi,Hj span an infinite truncated triangle containing the
edge Vi,Vj.

Now consider the three vertices Vi,Vj,Vk of a front-facing mesh
triangle Vijk. The triangle induces two space regions: (1) A reflected
cell Cijk bounded by the three ruled surfaces corresponding to the
triangle edges and by Vijk itself (figure 10). (2) A hidden cell Dijk,

which is the infinite part of the truncated pyramid bounded by Vijk

and the triangles spanned by the hidden rays. We refer to the union
of the reflected (hidden) cells as the reflected (hidden) region.

An important property of the reflected and hidden cells is that they
do not intersect each other, since the reflector is convex. Therefore,
we can define the reflection subdivision as the subdivision of space
induced by these cells. Note, however, that these cells do not cover
space; we call the part of space not covered by reflection or hidden
cells the unreflected region. In Figure 4(a), the part of the unre-
flected region lying on the right side of the reflector is the union
of Z1, Z2 (the reason for subdividing this region and the meaning
of the ray Z are explained below). Points in the unreflected region
can (in principle) be seen by the viewer, but cannot be reflected by
the reflector. A point is potentially reflected by the reflector if and
only if it lies in the reflected region. We say ‘potentially’ because
its reflection may be obscured by the reflection of another point.

The unreflected and hidden regions. We compute virtual images
for vertices of potentially reflected scene polygons (Figure 3, step
4). These virtual vertices are connected in order to generate virtual
polygons, which are then rendered to create the reflection image
(Figure 1, step 5). Scene polygons that lie completely in the hidden
or unreflected regions can be discarded. However, mixed polygons,
lying partially in these regions and partially in the reflected region,
pose a problem. For such polygons, we would like to render the re-
flection of the part that lies in the reflected region. However, if we
compute only one or two virtual vertices, we would not be able to
connect these in order to generate virtual polygons. In some sense,
the vertices lying in hidden or unreflected regions are representa-
tives of a polygon area that we want to see reflected.

A naive way to deal with mixed polygons is to intersect them (ex-
actly or approximately) with the region boundaries, thus forcing
them to have a uniform classification. However, this is inefficient
because the regions depend on the viewpoint. Another way is to
subdivide them into smaller polygons, effectively doing an adap-
tive tessellation of scene objects. Subdivision is stopped when the
‘lost’ areas are deemed to be small enough.

A more efficient and elegant method is to define a virtual vertex for
every polygon vertex, even for hidden and unreflected ones (e.g.,
vertex Q2 in Figure 4(b)). These doubly virtual vertices are not real
reflections; their sole purpose is to ‘close’ virtual polygons so that
the graphics system could render them. In general, they lie outside
the image of the reflector. Note that this actually is the approach
taken in the planar reflector case. Hidden cells are easy to take care
of, because there is a one-to-one correspondence between hidden
and reflected cells. Moreover, it is possible to define a transforma-
tion that maps a reflected cell to exactly cover the corresponding
hidden cell, and maps a hidden cell to exactly cover its correspond-
ing reflected cell (see Section 4.2).

The unreflected region is more problematic. We would like to define
a transformation for this region such that (1) the part of the region
adjacent to a reflected cell will be transformed to be adjacent to its
corresponding hidden cell (and vice versa), and (2) there is some
continuity of the transformation between the unreflected and the
reflected regions. To achieve such a transformation, we define for
every contour edge of the reflector an auxiliary bisecting surface
Z, which extends the edge into the unreflected region. Figure 4(a)
shows a 2-D example. In 2-D we have a contour vertex and not a
contour edge (it is simply the extreme vertex Vi+1), and the bisecting
surface is simply a ray Z. Z is orthogonal to the normal Ni+1 at
Vi+1 and extends Vi+1 into the unreflected region, thus bisecting the
region into two parts Z1,Z2. The desired transformation is simply
a linear mirroring transformation that mirrors Z1 into Z2 and vice
versa. In 3-D, the bisecting surface is non-linear, and we do not

define it explicitly; it is defined implicitly by the transformation we
use for computing virtual vertices (Section 4.2).

As in the planar case, doubly virtual vertices might cause their vir-
tual polygon to obscure the reflector. The solution in the planar case,
a front clipping plane, can be generalized to non-planar reflectors
by utilizing a second z-buffer containing the reflector’s geometry.
Every pixel generated during rendering of the virtual polygons will
be tested twice: once against the ordinary z-buffer, in order to pro-
duce correct depth relationships between all virtual polygons, and
once against the reflector z-buffer, to ensure that pixels in front of
the reflectors are discarded.

A second z-buffer is not easy to define efficiently on today’s graph-
ics architectures. Alternatives that are currently more practical are:
(1) do not do anything, anticipating that the obscuring pixels will
fall outside the screen mask of the reflector, (2) approximate the re-
flector using six clipping planes, an option available on standard ar-
chitectures, and (3) tessellate the scene so that mixed polygons are
very small. Surprisingly, the first approach works well in the vast
majority of cases, due to the way objects are usually positioned rel-
ative to each other and the way they are viewed. The second option
reduces the problem but does not guarantee the resulting quality.
The third option also reduces the problem, but requires more com-
putations since there are more virtual vertices to compute. Tessella-
tions are discussed in Sections 7 and 8.

4 The Explosion Map Acceleration Method

In some cases it is very efficient to compute the reflection subdivi-
sion and search it to find the cell in which a point lies (Section 5).
In the general 3-D case, a faster indexing scheme is preferable.

In this section we describe an approximation method, the explosion
map, which is a data structure for accelerating the computation of
virtual vertices. It is prepared for each reflector separately, and re-
computed whenever the viewpoint or the reflector are moved. The
map is an image whose pixel values hold IDs of reflector triangles,
and which represents a spherical 2-D cross section of the subdi-
vision. To compute a virtual image of a scene point, we compute
explosion map coordinates for it, thus yielding the ID of a specific
triangle. The virtual image is computed using that triangle.

The explosion map is somewhat similar to a circular environment
map [Haeberli93] in that it is an image in which a circle corresponds
to the reflection directions (Figure 5(b)). However, it is unlike an en-
vironment map in that the latter contains renderings of other scene
objects, while the explosion map contains only the reflector (Fig-
ure 5(a)). We next detail the computation (4.1) and utilization (4.2)
of the map.

4.1 Computing an Explosion Map

An explosion map is a function of the tessellated reflector, the view-
point, a 3-D sphere, and a desired resolution. The sphere should be
centered at a point that is an intuitive ‘center’ of the reflector (as
in environment mapping), and its radius should be large enough so
that it bounds the reflector (actually, a sphere is not essential; we
need any convex geometric object that approximates the reflector’s
shape). The map resolution should be large enough so that there are
substantially more map pixels than reflector triangles. In practice,
a resolution of 2002 is sufficient when the reflector has been tes-
sellated into several hundred triangles. The depth resolution of the
map should have enough bits to hold unique IDs for all reflector
vertices plus one more bit (needed to distinguish between ordinary
triangles and extension polygons, defined below).

The basic operation in computing the map, MapCoords, involves

A

B

C

D

O

F

E

(a) (b)

F

Figure 5 Explosion map: (a) reflection rays and intersection points
on a bounding sphere; (b) the resulting map. C and D are extension
vertices of A and B.

deriving the map coordinates T = (tx, ty) corresponding to a nor-
malized direction vector N = (x, y, z) going from the center of the
sphere to an arbitrary direction. If the resolution of the map is r2,
N is mapped to T = (sx

(2(z+1))1 2 + s 2, sy
(2(z+1))1 2 + s 2), where s is a

number a little smaller than r. This mapping is similar to that used
for generating a circular environment map from a map rendered on
the faces of a box [Haeberli93]. The pixels to which directions are
mapped all fall inside a circle of radius s 2. The circle represents
all possible reflection directions.

The map itself is computed as follows (Figure 6). For every front-
facing reflector vertex, we compute map coordinates by intersecting
its reflection ray with the sphere and calling MapCoords with the
direction from the sphere’s center to the intersection point (step 3).
Back-facing vertices are denoted as such (step 4) to facilitate fast
identification of profile triangles in step 6. For each front-facing
reflector triangle (recall that a triangle is called front-facing if all
its vertices are front-facing, and is called profile if only some of
its vertices are front-facing), the corresponding triangle defined by
the map coordinates is filled on the map, using its unique ID as
color (step 5). Polygon fill can be done by the graphics hardware.
For profile triangles, the normals of their back-facing vertices are
projected in the direction of the viewer such that they are orthogonal
to the line from the viewer through the vertex (step 7). The triangles
thus become front-facing, and are now filled on the map as done for
triangles that were front-facing originally (step 8).

So far, the interior of a map circle of radius s 2 has been partially
filled, but not completely. This is due to the existence of the unre-
flected region and the fact that the filled map triangles are linear.
As we explained in Section 3, we want the directions into the un-
reflected region to be filled on the map as well so that we could
use it to compute doubly virtual vertices. To ensure that all direc-
tions are filled on the map, in ExtendMap the map is extended to
cover the circle as follows. For each profile triangle Vijk having two
back-facing vertices (say Vi,Vj), we define an extension polygon Eij

in map coordinates and fill it with the ID of Vijk. The vertices of
Eij are Ti, Tj, and extensions of each of these vertices in the direc-
tion away from the circle’s center (in Figure 5(b), the extensions of
vertices A,B are C,D). The extensions should be long enough so
that the circle is completely covered. In practice, it is enough that
the length of the segment from the center to each extended vertex
is 0. 6s. Extension polygons effectively comprise an implicit repre-
sentation of the bisecting surfaces Z explained in Section 3. Other
methods for representing the unreflected region on the map are dis-
cussed in [Ofek98].

ExplosionMap (Reflector R, View E, Center C, Distance d,
Resolution r):

(1) Let S be a sphere centered at C having radius d.
(2) Let M be an image of size r r.
(3) For each reflector vertex Vi

If Vi is front-facing
Let Ri be the reflection ray of Vi.
Let Ii be the intersection of Ri with S.
Let Ji be the normalized direction from C to Ii.
Ti MapCoords (Ji, r).

Else
(4) Denote Vi as back-facing.
(5) For each reflector triangle Vijk

If Vijk is front-facing
Fill the triangle Ti, Tj, Tk on M,
using the ID of Vijk as the color.

(6) Else if Vijk is a profile triangle
(7) Fix its back-facing normals.
(8) Compute and fill Ti,Tj,Tk as before.
(9) ExtendMap (R, M).

Figure 6 Computing an explosion map.

4.2 Computing Virtual Vertices

The explosion map circle represents a mapping of all possible re-
flection directions. We use it to directly generate the final virtual
vertex Q corresponding to a potentially reflected scene vertex Q.
For each reflector we compute two explosion maps: a near map and
a far map. The near map is computed using a sphere that bounds
the object but does not intersect any other object, and the far map is
computed using a sphere that bounds all the scene. It is important to
understand that although the topologies of the two maps are quite
similar (because cells do not intersect each other), their geometries
are different; reflection rays, which determine the geometry of map
vertices, evolve non-linearly.

In addition to the explosion maps, we store a hidden map and an
auxiliary z-buffer of the reflector. The hidden map is simply an item
buffer of the visible mesh triangles. In other words, it is a discrete
map in which a visible mesh triangle is mapped to a 2-D triangle
filled by the ID of the mesh triangle. The map resolution can be
smaller than that of the frame buffer (say, 2002).

The basic operation needed is MapToVirtualVertex, whose argu-
ments are a map M, a 3-D point Q and a corresponding map point
I. Assume that the ID in M(I) is that of an ordinary mesh triangle
V (not an extension polygon) having 2-D vertices A,B,C (these are
the Ti’s computed in step 3 of Figure 6). The output is the virtual
point Q . The operation is implemented in three steps: (1) compute
barycentric coordinates s, t of I relative to V by solving the two lin-
ear equations in two variables (1 (s+ t))A+ sB+ tC = I; (2) use s, t
as weights in a weighted average of the 3-D vertices and normals
of V that yields a plane of reflection U; and (3) mirror Q across U
to produce Q . Note that negative barycentric coordinates are per-
fectly acceptable. The computation can be performed in integers
or floating point, to reduce aliasing artifacts resulting from the dis-
crete nature of the map. Extension polygons are handled similarly,
using four bilinear coordinates instead of three. This treatment of
extension polygons effectively implements the non-linear mirror-
ing transformation of the unreflected region motivated in Section 3.

Computation of virtual vertices for a scene vertex Q is shown in
Figure 7. We first determine if Q is hidden (steps 1, 2), by testing
it in screen coordinates against the reflector’s z-buffer. If it is, Q’s
virtual image is computed by the hidden map (step 3). Note that an
obvious optimization here is to do this only for hidden vertices that
belong to mixed polygons, since we don’t need virtual images for
polygons that are hidden completely.

VirtualVertex (Reflector R, Point Q, View E):
(1) Let I be the screen coordinates of Q (using E).
(2) If Q is hidden by a mesh triangle V
(3) Return MapToVirtualVertex (HiddenMap, Q, I).
(4) Let c be the direction from the center of R to Q.
(5) T MapCoords (c, r).
(6) Qn MapToVirtualVertex (NearMap,Q, T).

Qf MapToVirtualVertex (FarMap, Q,T).
(7) Let dn, df be the relative distances of Q from

the near and far spheres.

Return
Qn dn+Qf df

1 dn+1 df
.

Figure 7 Computing virtual vertices using the explosion and hidden
maps.

When Q is not hidden we use the explosion maps. The normalized
direction from the center of the reflector to Q is used to obtain map
coordinates, in the same way used for creating the maps (steps 4,
5). Note that the map coordinates T are the same for both maps, but
the triangle IDs found at T are different. In general, none of these
triangles corresponds to the correct reflection cell in which Q is lo-
cated, because we approximated the correct ray of reflection of Q
by a ray from the center of the reflector (when higher accuracy is
desired, we can use an improved approximation or locally search
the correct cell [Ofek98].) Each of these triangles defines an auxil-
iary virtual vertex (step 6), and a weighted average of those is taken
to obtain the final virtual vertex (step 7). There may be other ways
to choose the weights than the obvious one shown. Figure 13 shows
near and far explosion maps, in which polygon IDs are encoded by
colors for visualization purposes.

5 Improved Efficiency for Linear Extrusions

For some common reflectors, it is possible to compute virtual ver-
tices more efficiently than the explosion map, by directly utilizing
the reflection subdivision to find the cell in which a scene point
lies. Among these reflector are linear extrusions of planar curves
(e.g., cylinders) and cones. For spheres, there is an efficient method
that does not use the reflection subdivision at all. In general, if an
implicit equation defining the reflector is available, the reflection
point can be computed as in [Hanrahan92] (although this method is
slow). Below we detail the case of an extruded reflector. The direct
computation for cones and spheres is simple and given in [Ofek98].

Consider a 2-D reflection subdivision, as shown for example in Fig-
ure 4. We can optimize the step of identifying the cell in which a
point lies by organizing the reflection cells in a hierarchy. DefineCi,j

to be the region bounded by reflection rays Ri,Rj and the line seg-
ment (Vi,Vj). Note that Ci,j contains every cell Ck,r, i k r j.
Classifying a point with respect to a cell Ci,j amounts to a few ‘line
side’ tests, implemented by plugging the point into the line’s equa-
tion and testing the sign of the result. If we find that the point is
not contained in Ci,j, we know that it is outside all contained cells
Ck,r. A binary search can thus be performed on the hierarchy. Note
that there are no actual computations involved in generating the hi-
erarchy, since it is implicitly represented by the numbering of the
reflector vertices. A similar hierarchy can be defined for the hidden
cells as well. Membership in the two (at most) unreflected cells can
be tested easily. Consequently, the cell in which a point is located
can be found using a small number (O(log n) where n is the reflector
tessellation resolution) of ‘line side’ tests.

Suppose that the reflector is a linear extrusion of a convex 2-D pla-
nar curve. We can reduce the computation of a virtual vertex to 2-D
by (1) projecting the viewer and all scene points onto the plane,

(2) performing the 2-D computation, obtaining a line of reflection
LQ for each scene vertex, (3) extruding LQ to 3-D to form a plane
of reflection T , and (4) computing a final virtual vertex by mirror-
ing the original vertex across T . The screen in Figure 17 is a linear
extrusion of a convex planar curve.

6 Non-Convex Reflectors

Concave reflectors. The computations we perform for concave re-
flectors are identical to those for convex ones, but it is interesting to
note that concave reflectors produce significantly more complicated
visual results. In Figure 8 we see a viewer E in front of a concave
reflector and three reflection rays. The reflection of an object lo-
cated in region A (left) looks like an enlarged, deformed version of
the object. The reflection of an object located in region B (middle)
looks like an enlarged, deformed, upside-down version of the ob-
ject. The reflection of objects located in region C (right) is utterly
chaotic. This chaotic nature is inherent in the physics of reflections
and is not an artifact of computations or approximations.

E

Q1

Q2

Q’1 Q’2
Q’1

E Q1
Q2

Q’2
Q’1

E

Q1Q2

Q’1
Q’2

C

A

B

Figure 8 Behavior of reflections on concave reflectors.

Reflections of objects lying in regions A and B can be computed
exactly as for convex reflectors, because in these regions the reflec-
tion subdivision is well-defined (since the reflection cells are dis-
joint). Reflections of objects lying in region C or intersecting that
region are unpredictable and chaotic anyway, so almost any policy
for computing virtual vertices will be satisfactory. In particular, we
can simply use the value computed by the explosion map, thereby
treating concave reflectors exactly as convex ones.

Figure 11 shows a concave reflector. On the right, we see the re-
flector, the reflection rays, a reflected planar object, and the com-
puted virtual object, all these from a point of view different from the
viewer’s. On the left we see the final image from the viewer’s point
of view. The two explosion maps and the hidden map are shown at
the bottom right. Note that reflected objects must be very close to
this reflector to cross from region B to regions A or C.

Reflectors of mixed convexity. Reflectors that are neither con-
vex nor concave should be decomposed into convex and concave
parts. For many objects this can be done fully automatically [Span-
guolo92]. Some polygonal surfaces contain saddles, resulting in a
decomposition that is too fine. In such cases it is advised that users
decompose the object manually. Note that the actual requirement
is not of pure convexity of concavity, but rather that the reflec-
tion cells would not self-intersect in areas where reflected objects
lie. Devising automatic algorithms that take this into consideration
when decomposing the object is an interesting topic for future work.
When manual decomposition is used, reflectors cannot dynamically
change their shape in an arbitrary way, but the scene can still be dy-
namic. Figure 9 shows a reflector with a convex part (red) and a
concave part (green). Note the seamless transition of the reflection
image between the convex and concave parts.

7 Results

We have implemented our algorithms using OpenGL on SGIs run-
ning Irix and on PCs running Windows ’95 and NT. Figure 12
shows a cylinder reflector modeled as a linear extrusion of a circle.
Figure 13 demonstrates the effect of varying reflector tessellation
resolution. The bottom part shows the near and far explosion maps.
We see that using 128 triangles the reflection image already has an
approximately correct geometric form, and that using 2048 rather
than 512 triangles barely makes a difference. Figure 14 shows the
effect of varying the tessellation of the reflected object (using 512
reflector triangles). A tessellation of 7x7 is sufficient. A lower res-
olution would suffice for objects farther away from the reflector,

Figure 16 shows a scene with four reflecting spheres, a table, and
a window, rendered by our method (top) and by Rayshade, a well-
known raytracer (bottom). A checkerboard texture was used in or-
der to emphasize the reflections. The geometric shapes of the re-
flections in the two images are visually very similar. The texture in
the bottom image is sharper because we use the graphics hardware
for texture mapping.

On an SGI O2, the top image required less than a second, and the
bottom one required 50 seconds. For Rayshade, we turned off shad-
ows rays, highlights, and anti-aliasing, and we used a single sam-
ple per pixel and a manually tuned uniform grid as an acceleration
scheme. Image resolution is 5122.

Figure 15 shows the same scene, from a slightly different view-
point and using real textures. The shadows are pre-computed tex-
tures. Figure 17 shows a reflecting TV modeled as an extrusion of
a convex planar curve. Figure 18 shows recursive reflections on a
planar mirror. Figure 19 shows a mask composed of several con-
vex and concave pieces. Note the correct reflections of the red and
green spheres on both ‘cheeks’ of the mask and on the nose. Fig-
ure 20 shows several reflecting polyhedra and a reflecting sphere.
All of these scenes (except Figure 19) are displayed in real-time on
an SGI Infinite Reality. We haven’t tried the scene of Figure 19 on
such a machine; on an SGI O2, Figure 19 requires about a second
with our method, and 1.5 minutes using Rayshade.

8 Discussion

The virtual objects method is the first method capable of accurately
approximating reflections on curved objects at interactive rates. In
this paper we presented the basic method for a single level of reflec-
tion and its implementation for general polygonal meshes and for
linear extrusions. Clearly, the method possesses both advantages
and disadvantages. We discuss these below, both in isolation and in
the context of other methods.

Quality. In general, the quality produced by the method is satisfac-
tory, especially for interactive use. The explosion map gives good
results even for planar or nearly planar reflectors. Like any approx-
imation method, ours might produce visible artifacts. The most no-
ticeable ones occur when objects are not tessellated finely enough,
in which case their reflections look too much like their real-world
images and are not deformed according to the geometry of the re-
flector. In addition, reflections might be slightly translated inaccu-
rately because we do not compute the exact explosion map cells to
which vertices are mapped.

Other visible artifacts can be seen near the boundaries of the reflec-
tor, when the transformation used to create doubly virtual vertices
is not a good approximation to the correct reflection. In this case the
seam between convex and concave regions might be visible. Even
in this case, reflections are self-consistent and do not exhibit holes.

When the reflector shape on the explosion map is far from con-
vex, our heuristic for representing the unreflected region (extension
polygons) might yield visible artifacts. Obviously, doubly virtual
vertices might still hide the reflector when not using a second z-
buffer. However, as we noted earlier, this usually does not happen
because their screen images tend to fall outside the screen image of
the reflector.

An attractive property of the method that has not been mentioned so
far is that it supports interactive rendering of refractions, by using
refraction rays instead of reflection rays. There are some additional
differences, detailed in [Ofek98].

Tessellation strategies. As shown in Section 7, some tessellation
of reflected objects is usually essential for providing sufficient ac-
curacy. The finer the tessellation, the more accurate the reflections.
At the same time, increasing the tessellation has an adverse impact
on performance. These considerations are identical to those em-
ployed in interactive rendering of curved objects in general. There
are two standard approaches: (1) usage of uniform tessellations,
pre-computed such that quality is satisfactory, and (2) usage of hi-
erarchical tessellations (levels of detail, etc).

Both approaches can be taken in our case as well. When the dis-
tances from a reflector to reflected objects and viewer remain ap-
proximately constant, we can pre-compute a uniform tessellation.
The tessellation resolution of the reflected object should be chosen
such that its virtual polygons cover several dozen pixels. Otherwise,
hierarchical tessellations can be used. These can exhibit the same
artifacts as when they are used for ordinary objects, e.g. discontinu-
ities during animation. Note that the reflector tessellation resolution
can be lower than that used when rendering its view-independent
image. Using hierarchical tessellations is a topic for future work.

Performance. In the worst-case, all scene points can indeed be re-
flected on every convex part and every concave part of every re-
flector. Denote by r the number of visible reflectors and by n(n)
the number of vertices in the original (tessellated) scene. The time
complexity of the method is O(r n), which is thus worst-case
optimal for a given degree of tessellation. For a single reflector, the
step of computing the explosion and hidden maps is linear in the
size of the reflector and is roughly equivalent to rendering the re-
flector three times at low resolution. The step of computing a virtual
vertex for a scene vertex requires a relatively small constant num-
ber of operations. Moreover, the operations performed are highly
regular, and are probably not too difficult to parallelize or imple-
ment in hardware. The cost of rendering virtual polygons is similar
to rendering the whole scene. If deforming reflectors are desired,
they should be subdivided into convex and concave parts on each
frame, which costs time linear in their size. Naturally, as the depth
complexity of the reflection image increases, the time complexity
of our method diverges from the optimal.

The scenes shown in this paper run interactively (1-30 frames per
second) on an SGI O2 workstation. This performance was achieved
without any optimization; in particular, no method for culling ob-
jects that cannot be reflected has been used. On today’s systems,
without further optimizations the number of reflected objects can-
not be much larger than shown while still guaranteeing interactive
performance.

Comparison to other methods. We can compare our method to
environment mapping or ray tracing, which are currently the only
techniques capable of computing reflections on curved objects.
Both visual accuracy and efficiency should be considered.

Environment mapping is relatively accurate only when reflected ob-

jects are relatively far from the reflector and when the curvature of
the reflector is not large. When the scene is static, time complexity
is linear in the size of the reflector, because the map can be pre-
computed. This is in general much faster than our method. When
the scene is dynamic, the map must be recomputed on each frame
for each reflector. This also holds when only the viewer changes,
unless the special hardware of [Voorhies94] is used. Complexity is
r n, which is closer to our method but still more efficient. To what
degree depends on the amount of tessellation. However, environ-
ment mapping simply does not provide realistic accuracy. Seeing
reflections of objects that are nearby as if they are very far creates
an uneasy feeling and definitely cannot be qualified as realistic.

Ray tracing obviously produces higher quality images than our
method and supports a wider range of illumination phenomena. Re-
garding efficiency, the relevant characteristics of our method are:
(1) it operates at the object level rather than the pixel level (we
have an object and we want to know where it is reflected, rather
than having the point of reflection and seeking an object), (2) it
transforms the problem into one that standard graphics systems can
handle, (3) it transforms the computation into a local one involv-
ing a single reflector-reflected pair, instead of the global ray trac-
ing computation (‘find the nearest object’); global visibility rela-
tionships are automatically handled by the z-buffer, and (4) it uses
both the CPU and the graphics system, dividing (but not necessar-
ily balancing) the load between them. When these properties are
significant, our method is more efficient than ray tracing. Ray trac-
ing can be expected to perform better when (1) reflected objects
do not cover many pixels, (2) there are many curved reflectors, or
(3) the depth complexity of the reflected images is large. It may or
may not be faster when there is no graphics hardware. Note that our
method scales much better than ray tracing to larger image resolu-
tions, while ray tracing scales better with scene depth complexity.

It is very difficult to predict the point from which ray tracing is
more efficient. On the relatively simple scenes shown in this paper,
the method is at least an order of magnitude more efficient than
Rayshade, a well-known available ray tracer, even when it uses a
manually tuned acceleration scheme.

Future work. Both efficiency and quality issues should be further
investigated. Efficiency issues include: acceleration using global
scene organization techniques, hierarchical tessellations, possible
hardware implementation, acceleration using time coherence, and
usage of the method to accelerate other illumination methods. Qual-
ity issues include refining the initial approximation given by the ex-
plosion map, improved methods for filling the unreflected region
on the map, using the method for rendering refractions, automatic
decomposition of reflectors of mixed convexity, quantifying the de-
gree of error introduced by our approximations, and additional lev-
els of recursive reflections.

Conclusion. We feel that correct reflections from small objects are
not very important. Such reflections, reflections on complex mixed
convexity objects, and reflections of distant objects can be convinc-
ingly emulated using environment mapping. High quality reflec-
tions are therefore needed for relatively large objects with relatively
uniform convexity (or concavity). A typical scene does not contain
too many curved objects like these. As a result, although the time
complexity of the method is theoretically quadratic in the number
of reflectors, in practice its complexity is linear in the size of the
scene (it can be sub-linear if scene databases are used for culling
objects). Applicability will increase with increases in processing
power and graphics hardware. Even today, there are many applica-
tions in which the number of objects in the scene is less important
than the rendering quality. In these cases, our method is at least

an order of magnitude faster than ray tracing and provides higher
visual quality than environment mapping.

Our experience is that interacting with scenes containing reflections
is immensely more enjoyable than with scenes without reflections.
Reflections bring dull and lifeless scenes to life.

Acknowledgements. We thank Dani Lischinski for commenting on
a draft of this paper and for fruitful discussions. We also thank
Amichai Nitsan for his involvement in part of the implementation.
Lastly, we warmly thank Leo Krieger for his continuous support.

References

[Blinn76] Blinn, J., Newell, M., Texture and reflection in computer gener-
ated images. Comm. ACM, 19:542–546, 1976.

[Diefenbach97] Diefenbach, P.J., Badler, N.I., Multi-pass pipeline render-
ing: realism for dynamic environments. Proceedings, 1997 Sympo-
sium on Interactive 3D Graphics, ACM Press, 1997.

[Foley90] Foley, J.D., Van Dam A., Feiner, S.K., Hughes, J.F., Computer
Graphics: Principles and Practice, 2nd ed., Addison-Wesley, 1990.

[Glassner89] Glassner, A. (ed), An Introduction to Ray Tracing. Academic
Press, 1989.

[Greene86] Greene, N., Environment mapping and other applications of
world projections. IEEE CG&A, 6(11), Nov. 1986.

[Haeberli93] Haeberli, P., Segal, M., Texture mapping as a fundamental
drawing primitive. Proceedings, Fourth Eurographics Workshop on
Rendering, Cohen, Puech, Sillion (eds), 1993, pp. 259–266.

[Hall96] Hall, T., Tutorial on planar mirrors in OpenGL, posted to
comp.graphics.api.opengl, Aug. 1996.

[Hanrahan92] Hanrahan, P., Mitchell, D., Illumination from curved reflec-
tors. Proceedings, Siggraph ’92, ACM Press, pp. 283–291.

[Heckbert84] Heckbert, P.S., Hanrahan, P., Beam tracing polygonal ob-
jects. Computer Graphics, 18:119–127, 1984 (Siggraph ’84).

[Jansen93] Jansen, F.W., Realism in real-time? Proceedings, Fourth Euro-
graphics Workshop on Rendering, Cohen, Puech, Sillion (eds), 1993.

[McReynolds96] McReynolds, T., Blythe, D., Programming with
OpenGL: Advanced Rendering, course #23, Siggraph ’96.

[Ofek98] Ofek, E., Modeling and Rendering 3-D Objects. Ph.D. thesis,
Institute of Computer Science, The Hebrew University, 1998.

[Rushmeier86] Rushmeier, H.E., Extending the radiosity method to trans-
mitting and specularly reflecting surfaces. Masters’s thesis, Cornell
University, 1986.

[Segal92] Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., Haeberli,
P., Fast shadows and lighting effects using texture mapping.Computer
Graphics, 26:249–252, 1992 (Siggraph ’92).

[Sillion89] Sillion, F., Puech, C., A general two-pass method integrating
specular and diffuse reflection. Computer Graphics, 23(3):335–344
(Siggraph ’89).

[Spanguolo92] Spanguolo, M., Polyhedral surface decomposition based
on curvature analysis. In: Modern Geometric Computing for Visual-
ization, T.L. Kunii and Y. Shinagawa (Eds.), Springer-Verlag, 1992.

[Voorhies94] Voorhies, D., Foran, J., Reflection vector shading hardware.
Proceedings, Siggraph ’94, ACM Press, pp. 163–166.

[Wallace87] Wallace, J.R., Cohen, M.F., Greenberg, D.P, A two-pass solu-
tion to the rendering equation: a synthesis of ray tracing and radiosity
methods. Computer Graphics, 21:311–320, 1987 (Siggraph ’87).

[Whitted80] Whitted, T., An improved illumination model for shaded dis-
play. Comm. of the ACM, 23(6):343–349, 1980.

Q

E

Fig. 10: A 3 D reflected cell.

Fig. 11: Virtual object and reflection rays.

Fig. 13: Varying the tessellation resolution of the reflector.

32 128 512 2048

Fig. 14: Varying the tessellation resolution of the reflected object.

7x7 13x133x3none

Fig. 9: Mixed convexity reflector, with
seamless reflections.

Fig. 12: Linear extrusion.

Fig. 15: Four reflecting
 spheres.

Fig. 19: Reflector containing several convex and
concave pieces.

Fig. 17: TV.

Fig. 18: Recursive reflections.

Fig. 20: Polyhedra and sphere.

Fig. 16: Top: our method.
Bottom: Rayshade.

Light Viewpoint

Texture

Screen

Eye View
(screen)

Light View
(texture)

Object Geometry

yt

xt

zt
ys

xs
zs

(x,y,z,w)

(xl/wl,yl/wl)

(xl,yl,zl,wl)

(x/w,y/w)

Ep

Lp

Q1

Q2
Q

Simulating Soft Shadows
with Graphics Hardware

Paul S. Heckbert and Michael Herf
January 15, 1997
CMU-CS-97-104

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

email: ph@cs.cmu.edu, herf+@cmu.edu
World Wide Web: http://www.cs.cmu.edu/ ph

This paper was written in April 1996. An abbreviated version appeared in [Michael Herf and Paul S. Heckbert, Fast
Soft Shadows, Visual Proceedings, SIGGRAPH 96, Aug. 1996, p. 145].

Abstract

This paper describes an algorithm for simulating soft shadows at interactive rates using graphics hardware. On current graphics
workstations, the technique can calculate the soft shadows cast by moving, complex objects onto multiple planar surfaces in
about a second. In a static, diffuse scene, these high quality shadows can then be displayed at 30 Hz, independent of the number
and size of the light sources.

For a diffuse scene, the method precomputes a radiance texture that captures the shadows and other brightness variations on
each polygon. The texture for each polygon is computed by creating registered projections of the scene onto the polygon from
multiple sample points on each light source, and averaging the resulting hard shadow images to compute a soft shadow image.
After this precomputation, soft shadows in a static scene can be displayed in real-time with simple texture mapping of the
radiance textures. All pixel operations employed by the algorithm are supported in hardware by existing graphics workstations.
The technique can be generalized for the simulation of shadows on specular surfaces.

This work was supported by NSF Young Investigator award CCR-9357763. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of NSF or the U.S. government.

Keywords: penumbra, texture mapping, graphics workstation,
interaction, real-time, SGI Reality Engine.

1 Introduction
Shadows are both an important visual cue for the perception of

spatial relationships and an essential component of realistic images.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

The real world contains mostly soft shadows due to the finite size
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it simulates
shadows at all. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visualization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for a large number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
is proportional to the number of light source samples, but while the
scene is static, it can be redisplayed in time independent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to a large number of point sources. The memory
requirements of the algorithm are also independent of the number
of light source samples.

1.1 The Idea
For diffuse scenes, our method works by precomputing, for each

polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In a diffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity algorithm. Unlike a radiosity algorithm,
however, our algorithm can compute this texture almost entirely in
hardware.

The key idea is to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with a number of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a special projective
projection from the point of view of each light sample. These views
are registered so that corresponding pixels map to identical points on

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenes in more detail,
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 Previous Work
2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
active rates. Shadow algorithms can be divided into three categories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

Computation on the Fly. Simple ray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be simulated by
tracing rays to a number of points distributed across the light source
[8].

The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann’s algorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly simple
scene required several seconds with his algorithm. His method
appears to be one of the algorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. This algorithm effectively multiplies the number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typically practical only for very small numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extra clipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow algorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final

1

Figure 1: Hard shadow images from 2 2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2 2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 16 sampling). This image is used as the texture on the receiver at left.

pass to determine if a given 3-D point is illuminated with respect to
each light source. The transformation of points from one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows can be generated on a graphics workstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for simple
scenes. Drettakis and Fiume used more sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from a light source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be done in hardware. Radiosity meshes typically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen’s incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objects to a plane.

2.2 Graphics Hardware
Current graphics hardware, such as the Silicon Graphics Reality

Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.

Typically, such hardware supports arbitrary 4 4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) is not possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading

2

can be simulated by splitting polygons into small pieces on input. A
common, general form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with a texture
mapped reflectance function and attenuation:

cos cos
2

where is color channel index (r, g, or b), is the pixel
value at screen space , is a texture parameterized
by texture coordinates , which are a projective transform of

, is the polar angle for the ray to light source , is the
angle away from the directional axis of the light source, is the
spotlight exponent, is the radiance of light , is distance to
light source , and , , and are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems also support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typically identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that is true only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, is hardware that allows a linear combination of images
to be easily computed. It is capable of computing expressions of
the general form:

where is a channel of image , and is a channel of the
accumulator array.

3 Diffuse Scenes
Our shadow generation method for diffuse scenes takes advantage

of these hardware capabilities.
Direct illumination in a scene of opaque surfaces that emit or

reflect light diffusely is given by the following formula:

a
lights

cos+ cos+

2

where, as shown in Figure 3,
is a 3-D point on a reflective surface, and is

a point on a light source,
is polar angle (angle from normal) at , is the angle at ,
is the distance between and ,
, , and are functions of and ,

is outgoing radiance at point for color channel , due
to either emission or reflection, a is ambient radiance,

is reflectance,
is a Boolean visibility function that equals 1 if point

is visible from point , else 0,
cos+ max cos 0 , for backface testing, and
the integral is over all points on all light sources, with respect
to , which is an infinitesimal area on a light source.

The inputs to the problem are the geometry, the reflectance ,
and emitted radiance on all light sources, the ambient radi-
ance a , and the output is the reflected radiance function .

receiver R

x'li x
'

light l

r

Figure 3: Geometry for direct illumination. The radiance at point
on the receiver is being calculated by summing the contributions

from a set of point light sources at on light .

3.1 Approximating Extended Light Sources
Although such integrals can be solved in closed form for planar

surfaces with no occlusion (1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source by a set of point light sources:

1

where is a 3-D Dirac delta function, is sample point on
light source , and is the area associated with this sample point.
Typically, each sample on a light source has equal area: ,
where is the area of light source .

With this approximation, the radiance of a reflective surface point
can be computed by summing the contributions over all sample
points on all light sources:

a

1

cos+ cos+

2

(1)

The formulas above can be generalized to linear and point light
sources, as well as area light sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function , since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing is necessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

3.2 Soft Shadows in Hardware
Equation (1) can be rewritten in a form suitable to hardware

computation:

a

1

cos+ cos+

2

(2)

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at , where is
a function of screen .

That summand consists of the product of three factors. The first
one, which is an area times the reflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light

3

x 0

b

b ex

b ey

b ex ey

a x w

y w

y 0

w
1

w
0

xo

yo

zo

Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by 2. This
can be computed in hardware by rendering the receiver polygon
with a single spotlight at turned on, using a spotlight exponent
of 1 and quadratic attenuation. On machines that do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on a light source and each
point on the receiver. Visibility can be computed by projecting all
polygons between light source point and the receiver onto the
receiver.

We want to simulate soft shadows as quickly as possible. To take
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixels in each hard shadow image map to the same surface point in
3-D. This would be very slow. A faster alternative is to choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point as its apex,
there is a 4 4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point on light is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon is illuminated by the ambient light
plus a single point light source at , using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light:

r ar g ag b ab . This is most quickly done with z-buffering
off, and clipping to a pyramid with the receiver polygon as its base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because all polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box
We want a projective (perspective) transformation that maps a

pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates o o o . It

has apex and its parallelogram base has one vertex at and edge
vectors x and y (bold lower case denotes a 3-D point or vector).
The parallelepiped lies in what we will call unit screen space, with
coordinates u u u . Viewed from the apex, the left and right
sides of the pyramid map to the parallel planes u 0 and u 1,
the bottom and top map to u 0 and u 1, and the base plane and
a plane parallel to it through the apex map to u 1 and u ,
respectively. See figure 4.

A 4 4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

00 01 02 03

10 11 12 13

0 0 0 1
30 31 32 33

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:

1

o

o

o

1

and
u

u

u 1

The third row of matrix takes this simple form because a constant
u value is desired on the base plane. The homogeneous screen

coordinates , , and are each affine functions of o, o, and o

(that is, linear plus translation). The constraints above specify the
value of each of the three coordinates at four points in space – just
enough to uniquely determine the twelve unknowns in .

The coordinate, for example, has value 1 at the points ,
x, and y, and value 0 at . Therefore, the vector w

y x is normal to any plane of constant , thus fixing the first
three elements of the last row of the matrix within a scale factor:

30 31 32 w w. Setting to 0 at and 1 at constrains
33 w w and w 1 w w, where w . The first

two rows of can be derived similarly (see figure 4). The result
is:

x xx x xy x xz x x

y yx y yy y yz y y

0 0 0 1
w wx w wy w wz w w

where

x w y

y x w

w y x

and
x 1 x x

y 1 y y

w 1 w w

Blinn [3] uses a related projective transformation for the genera-
tion of shadows on a plane, but his is a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for
clipping.

3.4 Using the Transformation
To use this transformation in our shadow algorithm, we first fit

a parallelogram around the receiver polygon. If the receiver is a
rectangle or other parallelogram, the fit is exact; if the receiver is
a triangle, then we fit the triangle into the lower left triangle of the
parallelogram; and for more general polygons with four or more
sides, a simple 2-D bounding box in the plane of the polygon can
be used. It is possible to go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL, for example).
We assume for simplicity, however, that the transformation between
texture space (the screen space in these light source projections) and
object space is affine, and so we restrict ourselves to parallelograms.

4

3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon

choose resolution for receiver’s texture (x y pixels)
clear accumulator image of x y pixels to black
create temporary image of x y pixels
for each light source

first backface test: if is entirely behind
or is entirely behind , then skip to next

for each sample point on light source
second backface test: if xli is behind then skip to next
compute transformation matrix M, where a xli,

and the base parallelogram fits tightly around
set current transformation matrix to scale x y 1 M
set clipping planes to u near 1 and u far big
draw with illumination from xli only, as described in

equation (2), into temp image
for each other object in scene

draw object with ambient color into temp image
add temp image into accumulator image with weight

save accumulator image as texture for polygon

A hard shadow image is computed in each iteration of the loop.
These are averaged together to compute a soft shadow image, which
is used as a radiance texture. Note that objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering
for each object in scene

if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 Backface Testing
The cases where cos+ cos+ 0 can be optimized using backface

testing.
To test if polygon is behind polygon , compute the signed

distances from the plane of polygon to each of the vertices of
(signed positive on the front of and negative on the back). If

they are all positive, then is entirely in front of , if they are all
nonpositive, is entirely in back, otherwise, part of is in front of

and part is in back.
To test if the apex of the pyramid is behind the receiver that

defines the base plane, simply test if w w 0.
The above checks will ensure that cos 0 at every point on the

receiver, but there is still the possibility that cos 0 on portions
of the receiver (i.e. that the receiver is only partially illuminated by
the light source). This final case should be handled at the polygon
level or pixel level when shading the receiver in the algorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources
The set of samples used on each light source greatly influences the

speed and quality of the results. Too few samples, or a poorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If a uniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of

samples is used on a parallelogram light source, an occluder
edge coplanar with one of the light source edges will cause big

steps, while an occluder edge in general position will cause 2

small steps.
Stochastic sampling [8] with the same number of samples yields

smoother penumbra than a uniform grid, because the steps no longer
coincide. We use a jittered uniform grid because it gives good results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of a light source is most important when the
light source subtends a large solid angle from the point of view of
the receiver, since that is when the penumbra is widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The algorithm can easily handle diffuse (non-directional) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samples in the regions
of the light source with highest radiance.

3.8 Texture Resolution
The resolution of the shadow texture should be roughly equal to

the resolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution results in visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon’s
texture, in each dimension, proportional to its size in world space us-
ing a “desired pixel size” parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texture memory for triangles can be further optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
size is too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve a good approximation.

3.9 Complexity
We now analyze the expected complexity of our algorithm (worst

case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set

5

plane R

light
sample

object

Figure 5: Shadows are computed on plane and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with surfaces (polygons), a total of light
source samples, a total of radiance texture pixels, and the output
images are rendered with pixels. We assume the depth complexity
of the scene (the average number of surfaces intersecting a ray) is
bounded, and that and are roughly linearly related. The average
number of texture pixels per polygon is .

With our technique, preprocessing renders the scene times.
A painter’s algorithm rendering of polygons into an image of
pixels takes time for scenes of bounded depth complexity.
The total preprocessing time is thus 2 , and the required
texture memory is . Display requires only z-buffered texture
mapping of polygons to an image of pixels, for a time cost
of . The memory for the z-buffer and output image is

.
Our display algorithm is very fast for complex scenes. Its cost is

independent of the number of light source samples used, and also
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because all of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in , however. In such
cases, performance can be improved by calculating shadows only on
a small number of surfaces in the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost to t ,
where t is the number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with 1, t small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
with large, t large) is computed when they complete a movement,
and then top speed rendering (display with texture mapping) is used
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only a small fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatial data structures, entire objects can be culled with a few
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from

to , where 3 or so.
An alternative optimization, which would make the algorithm

more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with a single rendering, but its disadvantage is that
self-shadowing of concave objects is not simulated.

3.10 Comparison to Other Algorithms
We can compare the complexity of our algorithm to other algo-

rithms capable of simulating soft shadows at near-interactive rates.
The main alternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segal et al., and hardware hemicube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is , making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are . This makes the algorithm
awkward for many point light sources or extended light sources
with many samples (large). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display process is so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elements are needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our algorithm can be done in hardware, but
this is not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Scenes with General Reflectance
Shadows on specular surfaces, or surfaces with more general

reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illumination factors at vertices only. This method costs t

for precomputation, and for display.
Shadows from multiple point light sources can also be simulated.

After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to light
sources can be calculated by rendering the scene times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
is one-bit texture pixels and display time.

Generalizing this method to extended light sources in the case of
general reflectance is more difficult, as the computation involves the
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF’s are spiky, so careful integration is required or the highlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF’s, soft shadows on surfaces with general reflectance
could be displayed with memory and time.

5 Implementation
We implemented our diffuse algorithm using the OpenGL sub-

routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4 4 matrices, and we intentionally cast our

6

shading formulas in a form that maps cleanly into OpenGL’s model.
The source code is about 2,000 lines of C++. Our implementation
renders at about 900 900 resolution, and uses 24-bit textures at
sizes of 2 x 2 y pixels, for 2 x y 8. Phong shading is
simulated by subdividing each receiver polygon into a grid of 8 8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with 749 polygons, t 3 of them textured,
with two area light sources sampled with 8 points total, gen-
erating textures with about 200 000 pixels total, and a final
picture of about 810 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz rates in most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminate it. The floor and walls, for example, might specify many
light source samples, while table and chairs might specify a single
light source sample. To facilitate further testing of shadow sampling,
a slider that acts as a multiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results
The color figures illustrate high quality results achievable in a few

seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using 32 light samples total on two light sources.
Figure 7 illustrates the calculation of shadows on more complex
objects, with a total of t 25 shadowed polygons. For this image,
7 7 light sampling was used when shadowing the walls and floor,
while 3 3 sampling was used to compute shadows on the table top,
and 2 2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. This image was calculated in
13 seconds.

7 Conclusions
We have described a simple algorithm for generating soft shadows

at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve real time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. In coming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. This will run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity , but we believe this can be reduced to about 1 3 ,
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.

8 Acknowledgments & Notes
We thank Silicon Graphics for the gift of a Reality Engine, which

made this work possible. Jeremiah Blatz and Michael Garland
provided modeling assistance. This paper grew out of a project by
Herf in a graduate course on Rendering taught by Heckbert, Fall
1995.

References
[1] Kurt Akeley. RealityEngine graphics. In SIGGRAPH ’93 Proc., pages

109–116, Aug. 1993.

[2] James Arvo and David Kirk. A survey of ray tracing acceleration
techniques. In Andrew S. Glassner, editor, An introduction to ray
tracing, pages 201–262. Academic Press, 1989.

[3] James F. Blinn. Me and my (fake) shadow. IEEE Computer Graphics
and Applications, 8(1):82–86, Jan. 1988.

[4] Lynne Shapiro Brotman and Norman I. Badler. Generating soft shad-
ows with a depth buffer algorithm. IEEE Computer Graphics and
Applications, 4(10):5–24, Oct. 1984.

[5] Shenchang Eric Chen. Incremental radiosity: An extension of pro-
gressive radiosity to an interactive image synthesis system. Com-
puter Graphics (SIGGRAPH ’90 Proceedings), 24(4):135–144, Au-
gust 1990.

[6] Norman Chin and Steven Feiner. Fast object-precision shadow gen-
eration for area light sources using BSP trees. In 1992 Symp. on
Interactive 3D Graphics, pages 21–30. ACM SIGGRAPH, Mar. 1992.

[7] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A ra-
diosity solution for complex environments. Computer Graphics (SIG-
GRAPH ’85 Proceedings), 19(3):31–40, July 1985.

[8] Robert L. Cook. Stochastic sampling in computer graphics. ACM
Trans. on Graphics, 5(1):51–72, Jan. 1986.

[9] George Drettakis and Eugene Fiume. A fast shadow algorithm for area
light sources using backprojection. In SIGGRAPH ’94 Proc., pages
223–230, 1994. http://safran.imag.fr/Membres/George.Drettakis/
pub.html.

[10] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, Jr., John G. Eyles, and John Poulton. Fast
spheres, shadows, textures, transparencies, and image enhancements
in Pixel-Planes. Computer Graphics (SIGGRAPH ’85 Proceedings),
19(3):111–120, July 1985.

[11] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (SIGGRAPH
’90 Proceedings), 24(4):309–318, Aug. 1990.

[12] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray trac-
ing. Computer Graphics (SIGGRAPH ’90 Proceedings), 24(4):145–
154, Aug. 1990.

[13] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28–31,
1991. Silicon Graphics, Inc.

[14] Karol Myszkowski and Tosiyasu L. Kunii. Texture mapping as an
alternative for meshing during walkthrough animation. In Fifth Euro-
graphics Workshop on Rendering, pages 375–388, June 1994.

[15] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming
Guide. Addison-Wesley, Reading MA, 1993.

[16] Tomoyuki Nishita and Eihachiro Nakamae. Half-tone representation
of 3-D objects illuminated by area sources or polyhedron sources. In
COMPSAC ’83, Proc. IEEE 7th Intl. Comp. Soft. and Applications
Conf., pages 237–242, Nov. 1983.

7

[17] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul
Haeberli. Fast shadows and lighting effects using texture mapping.
Computer Graphics (SIGGRAPH ’92 Proceedings), 26(2):249–252,
July 1992.

[18] Lance Williams. Casting curved shadows on curved surfaces. Com-
puter Graphics (SIGGRAPH ’78 Proceedings), 12(3):270–274, Aug.
1978.

[19] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow
algorithms. IEEE Computer Graphics and Applications, 10(6):13–32,
Nov. 1990.

8

Figure 6: Shadows on walls and floor, computed in 5.5 seconds.

Figure 7: Shadows on walls, floor, and table, computed in 13 seconds.

9

A Non-Photorealistic Lighting Model For Automatic Technical Illustration

Amy Gooch Bruce Gooch Peter Shirley Elaine Cohen

Department of Computer Science
University of Utah

http: www.cs.utah.edu

Abstract

Phong-shaded 3D imagery does not provide geometric information
of the same richness as human-drawn technical illustrations. A
non-photorealistic lighting model is presented that attempts to nar-
row this gap. The model is based on practice in traditional tech-
nical illustration, where the lighting model uses both luminance
and changes in hue to indicate surface orientation, reserving ex-
treme lights and darks for edge lines and highlights. The light-
ing model allows shading to occur only in mid-tones so that edge
lines and highlights remain visually prominent. In addition, we
show how this lighting model is modified when portraying models
of metal objects. These illustration methods give a clearer picture
of shape, structure, and material composition than traditional com-
puter graphics methods.

CR Categories: I.3.0 [Computer Graphics]: General; I.3.6 [Com-
puter Graphics]: Methodology and Techniques.

Keywords: illustration, non-photorealistic rendering, silhouettes,
lighting models, tone, color, shading

1 Introduction

The advent of photography and computers has not replaced artists,
illustrators, or draftsmen, despite rising salaries and the decreasing
cost of photographic and computer rendering technology. Almost
all manuals that involve 3D objects, e.g., a car owner’s manual, have
illustrations rather than photographs. This lack of photography is
present even in applications where aesthetics are a side-issue, and
communication of geometry is the key. Examining technical man-
uals, illustrated textbooks, and encyclopedias reveals illustration
conventions that are quite different from current computer graphics
methods. These conventions fall under the umbrella term technical
illustrations. In this paper we attempt to automate some of these
conventions. In particular, we adopt a shading algorithm based on
cool-to-warm tones such as shown in the non-technical image in
Figure 1. We adopt this style of shading to ensure that black sil-
houettes and edge lines are clearly visible which is often not the
case when they are drawn in conjunction with traditional computer
graphics shading. The fundamental idea in this paper is that when
silhouettes and other edge lines are explicitly drawn, then very low

Figure 1: The non-photorealistic cool (blue) to warm (tan) tran-
sition on the skin of the garlic in this non-technical setting is an
example of the technique automated in this paper for technical il-
lustrations. Colored pencil drawing by Susan Ashurst.

dynamic range shading is needed for the interior. As artists have
discovered, adding a somewhat artificial hue shift to shading helps
imply shape without requiring a large dynamic range. This hue shift
can interfere with precise albedo perception, but this is not a major
concern in technical illustration where the communication of shape
and form are valued above realism. In Section 2 we review previ-
ous computer graphics work, and conclude that little has been done
to produce shaded technical drawings. In Section 3 we review the
common technical illustration practices. In Section 4 we describe
how we have automated some of these practices. We discuss future
work and summarize in Section 5.

2 Related Work

Computer graphics algorithms that imitate non-photographic tech-
niques such as painting or pen-and-ink are referred to as non-
photorealistic rendering (NPR). The various NPR methods differ
greatly in style and visual appearance, but are all closely related to
conventional artistic techniques (e.g., [6, 8, 10, 13, 14, 16, 20, 26]).
An underlying assumption in NPR is that artistic techniques devel-
oped by human artists have intrinsic merit based on the evolution-
ary nature of art. We follow this assumption in the case of technical
illustration.

NPR techniques used in computer graphics vary greatly in their
level of abstraction. Those that produce a loss of detail, such as
semi-randomized watercolor or pen-and-ink, produce a very high
level of abstraction, which would be inappropriate for most techni-
cal illustrations. Photorealistic rendering techniques provide little
abstraction, so photorealistic images tend to be more confusing than
less detailed human-drawn technical illustrations. Technical illus-
trations occupy the middle ground of abstraction, where the im-

portant three-dimensional properties of objects are accented while
extraneous detail is diminished or eliminated. Images at any level
of abstraction can be aesthetically pleasing, but this is a side-effect
rather than a primary goal for technical illustration. A rationale for
using abstraction to eliminate detail from an image is that, unlike
the case of 3D scene perception, the image viewer is not able to use
motion, accommodation, or parallax cues to help deal with visual
complexity. Using abstraction to simplify images helps the user
overcome the loss of these spatial cues in a 2D image.

In computer graphics, there has been little work related to techni-
cal illustration. Saito and Takahashi [19] use a variety of techniques
to show geometric properties of objects, but their images do not fol-
low many of the technical illustration conventions. Seligmann and
Feiner present a system that automatically generates explanation-
based drawings [21]. Their system focuses primarily on what to
draw, with secondary attention to visual style. Our work deals pri-
marily with visual style rather than layout issues, and thus there
is little overlap with Seligmann and Feiner’s system, although the
two methods would combine naturally. The work closest to our own
was presented by Dooley and Cohen [7] who employ a user-defined
hierarchy of components, such as line width, transparency, and line
end/boundary conditions to generate an image. Our goal is a sim-
pler and more automatic system, that imitates methods for line and
color use found in technical illustrations. Williams also developed
similar techniques to those described here for non-technical appli-
cations, including some warm-to-cool tones to approximate global
illumination, and drawing conventions for specular objects [25].

3 Illustration Techniques

Based on the illustrations in several books, e.g. [15, 18], we con-
clude that illustrators use fairly algorithmic principles. Although
there are a wide variety of styles and techniques found in technical
illustration, there are some common themes. This is particularly
true when we examine color illustrations done with air-brush and
pen. We have observed the following characteristics in many illus-
trations:

edge lines, the set containing surface boundaries, silhouettes,
and discontinuities, are drawn with black curves.

matte objects are shaded with intensities far from black or
white with warmth or coolness of color indicative of surface
normal; a single light source provides white highlights.

shadowing is not shown.

metal objects are shaded as if very anisotropic.

We view these characteristics as resulting from a hierarchy of
priorities. The edge lines and highlights are black and white, and
provide a great deal of shape information themselves. Several stud-
ies in the field of perception have concluded that subjects can rec-
ognize 3D objects at least as well, if not better, when the edge lines
(contours) are drawn versus shaded or textured images [1, 3, 5, 22].
However, when shading is added in addition to edge lines, more
information is provided only if the shading uses colors that are vi-
sually distinct from both black and white. This means the dynamic
range available for shading is extremely limited. In most technical
illustrations, shape information is valued above precise reflectance
information, so hue changes are used to indicate surface orientation
rather than reflectance. This theme will be investigated in detail in
the next section.

A simple low dynamic-range shading model is consistent with
several of the principles from Tufte’s recent book [23]. He has a
case-study of improving a computer graphics animation by lower-
ing the contrast of the shading and adding black lines to indicate

direction. He states that this is an example of the strategy of the
smallest effective difference:

Make all visual distinctions as subtle as possible, but
still clear and effective.

Tufte feels that this principle is so important that he devotes an en-
tire chapter to it. The principle provides a possible explanation of
why cross-hatching is common in black and white drawings and
rare in colored drawings: colored shading provides a more subtle,
but adequately effective, difference to communicate surface orien-
tation.

4 Automatic Lighting Model

All of the characteristics from Section 3 can be automated in a
straightforward manner. Edge lines are drawn in black, and high-
lights are drawn using the traditional exponential term from the
Phong lighting model [17]. In Section 4.1, we consider matte ob-
jects and present reasons why traditional shading techniques are
insufficient for technical illustration. We then describe a low dy-
namic range artistic tone algorithm in Section 4.2. Next we provide
an alogrithm to approximate the anisotropic appearance of metal
objects, described in Section 4.3. We provide approximations to
these algorithms using traditional Phong shading in Section 4.4.

4.1 Traditional Shading of Matte Objects

In addition to drawing edge lines and highlights, we need to shade
the surfaces of objects. Traditional diffuse shading sets luminance
proportional to the cosine of the angle between light direction and
surface normal:

max (1)

where is the RGB color to be displayed for a given point on the
surface, is the RGB diffuse reflectance at the point, is the
RGB ambient illumination, is the unit vector in the direction of
the light source, and is the unit surface normal vector at the point.
This model is shown for and in Figure 3. This
unsatisfactory image hides shape and material information in the
dark regions. Additional information about the object can be pro-
vided by both highlights and edge lines. These are shown alone in
Figure 4 with no shading. We cannot effectively add edge lines and
highlights to Figure 3 because the highlights would be lost in the
light regions and the edge lines would be lost in the dark regions.

To add edge lines to the shading in Equation 1, we can use either
of two standard heuristics. First we could raise until it is large
enough that the dim shading is visually distinct from the black edge
lines, but this would result in loss of fine details. Alternatively,
we could add a second light source, which would add conflicting
highlights and shading. To make the highlights visible on top of
the shading, we can lower until it is visually distinct from white.
An image with hand-tuned and is shown in Figure 5. This
is the best achromatic image using one light source and traditional
shading. This image is poor at communicating shape information,
such as details in the claw nearest the bottom of the image. This
part of the image is colored the constant shade regardless of
surface orientation.

4.2 Tone-based Shading of Matte Objects

In a colored medium such as air-brush and pen, artists often use
both hue and luminance (greyscale intensity) shifts. Adding blacks
and whites to a given color results in what artists call shades in the
case of black, and tints in the case of white. When color scales are

+

=

pure blue to yellow

pure black to object color

darken

select

final tone

Figure 2: How the tone is created for a pure red object by summing
a blue-to-yellow and a dark-red-to-red tone.

created by adding grey to a certain color they are called tones [2].
Such tones vary in hue but do not typically vary much in luminance.
When the complement of a color is used to create a color scale, they
are also called tones. Tones are considered a crucial concept to il-
lustrators, and are especially useful when the illustrator is restricted
to a small luminance range [12]. Another quality of color used by
artists is the temperature of the color. The temperature of a color
is defined as being warm (red, orange, and yellow), cool (blue, vi-
olet, and green), or temperate (red-violets and yellow-greens). The
depth cue comes from the perception that cool colors recede while
warm colors advance. In addition, object colors change tempera-
ture in sunlit scenes because cool skylight and warm sunlight vary
in relative contribution across the surface, so there may be ecolog-
ical reasons to expect humans to be sensitive to color temperature
variation. Not only is the temperature of a hue dependent upon
the hue itself, but this advancing and receding relationship is ef-
fected by proximity [4]. We will use these techniques and their
psychophysical relationship as the basis for our model.

We can generalize the classic computer graphics shading model
to experiment with tones by using the cosine term () of Equa-
tion 1 to blend between two RGB colors, and :

(2)

Note that the quantity varies over the interval . To ensure
the image shows this full variation, the light vector should be per-
pendicular to the gaze direction. Because the human vision system
assumes illumination comes from above [9], we chose to position
the light up and to the right and to keep this position constant.

An image that uses a color scale with little luminance variation
is shown in Figure 6. This image shows that a sense of depth can be
communicated at least partially by a hue shift. However, the lack
of a strong cool to warm hue shift and the lack of a luminance shift
makes the shape information subtle. We speculate that the unnatural
colors are also problematic.

In order to automate this hue shift technique and to add some lu-
minance variation to our use of tones, we can examine two extreme
possibilities for color scale generation: blue to yellow tones and
scaled object-color shades. Our final model is a linear combination
of these techniques. Blue and yellow tones are chosen to insure a
cool to warm color transition regardless of the diffuse color of the
object.

The blue-to-yellow tones range from a fully saturated blue:
in RGB space to a fully saturated yel-

low: . This produces a very sculpted
but unnatural image, and is independent of the object’s diffuse re-
flectance . The extreme tone related to is a variation of dif-

fuse shading where is pure black and . This
would look much like traditional diffuse shading, but the entire ob-
ject would vary in luminance, including where . What we
would really like is a compromise between these strategies. These
transitions will result in a combination of tone scaled object-color
and a cool-to-warm undertone, an effect which artists achieve by
combining pigments. We can simulate undertones by a linear blend
between the blue/yellow and black/object-color tones:

(3)

Plugging these values into Equation 2 leaves us with four free pa-
rameters: , , , and . The values for and will determine the
strength of the overall temperature shift, and the values of and
will determine the prominence of the object color and the strength
of the luminance shift. Because we want to stay away from shad-
ing which will visually interfere with black and white, we should
supply intermediate values for these constants. An example of a
resulting tone for a pure red object is shown in Figure 2.

Substituting the values for and from Equation 3
into the tone Equation 2 results in shading with values within the
middle luminance range as desired. Figure 7 is shown with ,

, , and . To show that the exact values are
not crucial to appropriate appearance, the same model is shown in
Figure 8 with , , , and . Unlike
Figure 5, subtleties of shape in the claws are visible in Figures 7
and 8.

The model is appropriate for a range of object colors. Both tra-
ditional shading and the new tone-based shading are applied to a
set of spheres in Figure 9. Note that with the new shading method
objects retain their “color name” so colors can still be used to differ-
entiate objects like countries on a political map, but the intensities
used do not interfere with the clear perception of black edge lines
and white highlights.

4.3 Shading of Metal Objects

Illustrators use a different technique to communicate whether or
not an object is made of metal. In practice illustrators represent
a metallic surface by alternating dark and light bands. This tech-
nique is the artistic representation of real effects that can be seen
on milled metal parts, such as those found on cars or appliances.
Milling creates what is known as “anisotropic reflection.” Lines are
streaked in the direction of the axis of minimum curvature, parallel
to the milling axis. Interestingly, this visual convention is used even
for smooth metal objects [15, 18]. This convention emphasizes that
realism is not the primary goal of technical illustration.

To simulate a milled object, we map a set of twenty stripes of
varying intensity along the parametric axis of maximum curvature.
The stripes are random intensities between 0.0 and 0.5 with the
stripe closest to the light source direction overwritten with white.
Between the stripe centers the colors are linearly interpolated. An
object is shown Phong-shaded, metal-shaded (with and without
edge lines), and metal-shaded with a cool-warm hue shift in Fig-
ure 10. The metal-shaded object is more obviously metal than the
Phong-shaded image. The cool-warm hue metal-shaded object is
not quite as convincing as the achromatic image, but it is more vi-
sually consistent with the cool-warm matte shaded model of Sec-
tion 4.2, so it is useful when both metal and matte objects are shown
together. We note that our banding algorithm is very similar to the
technique Williams applied to a clear drinking glass using image
processing [25].

4.4 Approximation to new model

Our model cannot be implemented directly in high-level graphics
packages that use Phong shading. However, we can use the Phong
lighting model as a basis for approximating our model. This is
in the spirit of the non-linear approximation to global illumination
used by Walter et al. [24]. In most graphics systems (e.g. OpenGL)
we can use negative colors for the lights. We can approximate
Equation 2 by two lights in directions and with intensities

and respectively, and an
ambient term of . This assumes the object color
is set to white. We turn off the Phong highlight because the neg-
ative blue light causes jarring artifacts. Highlights could be added
on systems with accumulation buffers [11].

This approximation is shown compared to traditional Phong
shading and the exact model in Figure 11. Like Walter et al., we
need different light colors for each object. We could avoid these
artifacts by using accumulation techniques which are available in
many graphics libraries.

Edge lines for highly complex objects can be generated inter-
actively using Markosian et al.’s technique [14]. This only works
for polygonal objects, so higher-order geometric models must be
tessellated to apply that technique. On high-end systems, image-
processing techniques [19] could be made interactive. For metals
on a conventional API, we cannot just use a light source. However,
either environment maps or texture maps can be used to produce
alternating light and dark stripes.

5 Future Work and Conclusion

The shading algorithm presented here is exploratory, and we ex-
pect many improvements are possible. The most interesting open
ended question in automatic technical illustrations is how illustra-
tion rules may change or evolve when illustrating a scene instead
of single objects, as well as the practical issues involved in viewing
and interacting with 3D technical illustrations. It may also be pos-
sible to automate other application-specific illustration forms, such
as medical illustration.

The model we have presented is tailored to imitate colored tech-
nical drawings. Once the global parameters of the model are set,
the technique is automatic and can be used in place of traditional il-
lumination models. The model can be approximated by interactive
graphics techniques, and should be useful in any application where
communicating shape and function is paramount.

Acknowledgments

Thanks to Bill Martin, David Johnson, Brian Smits and the mem-
bers of the University of Utah Computer Graphics groups for help
in the initial stages of the paper, to Richard Coffey for helping to get
the paper in its final form, to Bill Thompson for getting us to reex-
amine our interpretation of why some illustration rules might apply,
to Susan Ashurst for the sharing her wealth of artistic knowledge,
to Dan Kersten for valuable pointers into the perception literature,
and to Jason Herschaft for the dinosaur claw model. This work was
originally inspired by the talk by Jane Hurd in the SIGGRAPH 97
panel on medical visualization. This work was supported in part
by DARPA (F33615-96-C-5621) and the NSF Science and Tech-
nology Center for Computer Graphics and Scientific Visualization
(ASC-89-20219). All opinions, findings, conclusions or recom-
mendations expressed in this document are those of the author and
do not necessarily reflect the views of the sponsoring agencies.

References
[1] Irving Biederman and Ginny Ju. Surface versus Edge-Based Determinants of

Visual Recognition. Cognitive Psychology, 20:38–64, 1988.

[2] Faber Birren. Color Perception in Art. Van Nostrand Reinhold Company, 1976.

[3] Wendy L. Braje, Bosco S. Tjan, and Gordon E. Legge. Human Efficiency
for Recognizing and Detecting Low-pass Filtered Objects. Vision Research,
35(21):2955–2966, 1995.

[4] Tom Browning. Timeless Techniques for Better Oil Paintings. North Light
Books, 1994.

[5] Chris Christou, Jan J. Koenderink, and Andrea J. van Doorn. Surface Gradients,
Contours and the Perception of Surface Attitude in Images of Complex Scenes.
Perception, 25:701–713, 1996.

[6] Cassidy J. Curtis, Sean E. Anderson, Kurt W. Fleischer, and David H. Salesin.
Computer-Generated Watercolor. In SIGGRAPH 97 Conference Proceedings,
August 1997.

[7] Debra Dooley and Michael F. Cohen. Automatic Illustration of 3D Geometric
Models: Surfaces. IEEE Computer Graphics and Applications, 13(2):307–314,
1990.

[8] Gershon Elber and Elaine Cohen. Hidden Curve Removal for Free-Form Sur-
faces. In SIGGRAPH 90 Conference Proceedings, August 1990.

[9] E. Bruce Goldstein. Sensation and Perception. Wadsworth Publishing Co., Bel-
mont, California, 1980.

[10] Paul Haeberli. Paint By Numbers: Abstract Image Representation. In SIG-
GRAPH 90 Conference Proceedings, August 1990.

[11] Paul Haeberli. The Accumulation Buffer: Hardware Support for High-Quality
Rendering. SIGGRAPH 90 Conference Proceedings, 24(3), August 1990.

[12] Patricia Lambert. Controlling Color: A Practical Introduction for Designers and
Artists, volume 1. Everbest Printing Company Ltd., 1991.

[13] Peter Litwinowicz. Processing Images and Video for an Impressionistic Effect.
In SIGGRAPH 97 Conference Proceedings, August 1997.

[14] L. Markosian, M. Kowalski, S. Trychin, and J. Hughes. Real-Time Non-
Photorealistic Rendering. In SIGGRAPH 97 Conference Proceedings, August
1997.

[15] Judy Martin. Technical Illustration: Materials, Methods, and Techniques, vol-
ume 1. Macdonald and Co Publishers, 1989.

[16] Barbara J. Meier. Painterly Rendering for Animation. In SIGGRAPH 96 Con-
ference Proceedings, August 1996.

[17] Bui-Tuong Phong. Illumination for Computer Generated Images. Communica-
tions of the ACM, 18(6):311–317, June 1975.

[18] Tom Ruppel, editor. The Way Science Works, volume 1. MacMillan, 1995.

[19] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering of 3D
Shapes. In SIGGRAPH 90 Conference Proceedings, August 1990.

[20] Mike Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin. Ori-
entable Textures for Image-Based Pen-and-Ink Illustration. In SIGGRAPH 97
Conference Proceedings, August 1997.

[21] Doree Duncan Seligmann and Steven Feiner. Automated Generation of Intent-
Based 3D Illustrations. In SIGGRAPH 91 Conference Proceedings, July 1991.

[22] Bosco S. Tjan, Wendy L. Braje, Gordon E. Legge, and Daniel Kersten. Human
Efficiency for Recognizing 3-D Objects in Luminance Noise. Vision Research,
35(21):3053–3069, 1995.

[23] Edward Tufte. Visual Explanations. Graphics Press, 1997.

[24] Bruce Walter, Gun Alppay, Eric P. F. Lafortune, Sebastian Fernandez, and Don-
ald P. Greenberg. Fitting Virtual Lights for Non-Diffuse Walkthroughs. In SIG-
GRAPH 97 Conference Proceedings, pages 45–48, August 1997.

[25] Lance Williams. Shading in Two Dimensions. Graphics Interface ’91, pages
143–151, 1991.

[26] Georges Winkenbach and David H. Salesin. Computer Generated Pen-and-Ink
Illustration. In SIGGRAPH 94 Conference Proceedings, August 1994.

Figure 3: Diffuse shaded image using Equation 1 with and
. Black shaded regions hide details, especially in the small

claws; edge lines could not be seen if added. Highlights and fine
details are lost in the white shaded regions.

Figure 4: Image with only highlights and edges. The edge lines
provide divisions between object pieces and the highlights convey
the direction of the light. Some shape information is lost, especially
in the regions of high curvature of the object pieces. However, these
highlights and edges could not be added to Figure 3 because the
highlights would be invisible in the light regions and the silhouettes
would be invisible in the dark regions.

Figure 5: Phong shaded image with edge lines and and
. Like Figure 3, details are lost in the dark grey regions,

especially in the small claws, where they are colored the constant
shade of regardless of surface orientation. However, edge
lines and highlights provide shape information that was gained in
Figure 4, but couldn’t be added to Figure 3.

Figure 6: Approximately constant luminance tone rendering. Edge
lines and highlights are clearly noticeable. Unlike Figures 3 and 5
some details in shaded regions, like the small claws, are visible.
The lack of luminance shift makes these changes subtle.

Figure 7: Luminance/hue tone rendering. This image combines the
luminance shift of Figure 3 and the hue shift of Figure 6. Edge lines,
highlights, fine details in the dark shaded regions such as the small
claws, as well as details in the high luminance regions are all vis-
ible. In addition, shape details are apparent unlike Figure 4 where
the object appears flat. In this figure, the variables of Equation 2
and Equation 3 are: , , , .

Figure 8: Luminance/hue tone rendering, similar to Figure 7 except
, , , . The different values of

and determine the strength of the overall temperature shift, where
as and determine the prominence of the object color, and the
strength of the luminance shift.

Figure 9: Top: Colored Phong-shaded spheres with edge lines and highlights. Bottom: Colored spheres shaded with hue and luminance
shift, including edge lines and highlights. Note: In the first Phong shaded sphere (violet), the edge lines disappear, but are visible in the
corresponding hue and luminance shaded violet sphere. In the last Phong shaded sphere (white), the highlight vanishes, but is noticed in the
corresponding hue and luminance shaded white sphere below it. The spheres in the second row also retain their “color name”.

Figure 10: Left to Right: a) Phong shaded object. b) New metal-shaded object without edge lines. c) New metal-shaded object with edge
lines. d) New metal-shaded object with a cool-to-warm shift.

Figure 11: Left to Right: a) Phong model for colored object. b) New shading model with highlights, cool-to-warm hue shift, and without
edge lines. c) New model using edge lines, highlights, and cool-to-warm hue shift. d) Approximation using conventional Phong shading, two
colored lights, and edge lines.

Interactive Visualization Of 3D-Vector Fields

Using Illuminated Stream Lines

Malte Zöckler, Detlev Stalling, Hans-Christian Hege

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Abstract

A new technique for interactive vector field visualization us-
ing large numbers of properly illuminated stream lines is
presented. Taking into account ambient, diffuse, and spec-
ular reflection terms as well as transparency, we employ a
realistic shading model which significantly increases quality
and realism of the resulting images. While many graphics
workstations offer hardware support for illuminating surface
primitives, usually no means for an accurate shading of line
primitives are provided. However, we show that proper illu-
mination of lines can be implemented by exploiting the tex-
ture mapping capabilities of modern graphics hardware. In
this way high rendering performance with interactive frame
rates can be achieved. We apply the technique to render
large numbers of integral curves in a vector field. The im-
pression of the resulting images can be further improved by
making the curves partially transparent. We also describe
methods for controlling the distribution of stream lines in
space. These methods enable us to use illuminated stream
lines within an interactive visualization environment.

1 Introduction

The visual representation of vector fields is subject of on-
going research in scientific visualization. A number of so-
phisticated methods has been proposed to tackle this prob-
lem, ranging from particle tracing [7, 15, 11] over icon based
methods [8, 13] to texture based approaches [3, 2, 4, 14, 9].
A straightforward, popular and still very powerful method is
the concept of depicting stream lines. However, when using
stream lines for visualization the user is confronted with a
number of problems. First, on a common graphics worksta-
tion stream lines either have to be displayed using flat-shaded
line segments, impairing the spatial impression of the image,
or they have to be represented by polygonal tubes, strongly
limiting the number of stream lines that can be displayed in
a scene. Second, it is usually not quite obvious how to dis-
tribute stream lines in space in order to get expressive pic-
tures without missing important details of the field.

In this paper we present ideas that can help to overcome
both problems. To achieve a fast and accurate illumination

1Takustr. 7, D-14195 Berlin, Germany
E-mail: zoeckler,stalling,hege @zib-berlin.de

of line segments we exploit the texture mapping capabili-
ties of modern graphics hardware. We apply this new shad-
ing technique to render large numbers of stream lines dis-
tributed throughout a vector field. Taking into account light
reflection on stream lines is of great significance for scien-
tific visualization because it very much increases the spa-
tial impression of the resulting images. Image quality can
be further improved by making parts of a stream line semi-
transparent. This allows us to get a better understanding of
the inner structure of a field. It also makes it possible to
distinguish between forward and backward direction. To fa-
cilitate the placement of a large number of stream lines we
employ statistical methods. Given some scalar quantity that
loosely describes the degree of interest in the vector field
at some location, stream lines are placed automatically such
that the relative degree of interest is matched qualitatively.

It is a well-known fact that quality and realism of com-
puter generated images depend to a high degree on the ac-
curate modeling of light interacting with the objects in a
scene. Shading effects are perhaps the most important cue
for spatial perception. Consequently much research has
been performed to develop realistic illumination and reflec-
tion models in computer graphics. A widely used compro-
mise between computational complexity and resulting real-
ism is Phong’s reflection model [12] which assumes point
light sources and approximates the most important reflec-
tion terms by simple expressions. Traditionally the model
is applied to surface elements. Today many graphics work-
stations offer hardware support for this kind of illumination.
However, the model can also be generalized to line primi-
tives, and in this paper we will make direct use of such a
generalization.

In scientific visualization the goal is not to render natu-
ral scenes in a photo-realistic way, but to generate images
which provide maximal insight into numerical or experimen-
tal data. Nevertheless, shading effects are at least as impor-
tant for the spatial interpretation of artificial images as in tra-
ditional computer graphics. Shading provides the observer
with a minimum of realism in a world of cutting planes,
isosurfaces, and symbols. Unfortunately there are a num-
ber of visualization techniques which aren’t based on sur-
face primitives, and which therefore can’t make use of the
hardware shading capabilities of current graphics worksta-
tions. As an example consider the various volume rendering
techniques. While interactive frame rates can be achieved

L

V

R
RN

T

normal space

Figure 1: For line primitives there are infinitely many possi-
ble reflection vectors lying on a cone around . For the
actual lighting calculation we choose the one contained in
the - -plane.

for simple emission-absorption models by exploiting graph-
ics hardware, in general this isn’t yet possible if some sort of
gradient dependent shading is included. Although rendering
of line primitives is not as complex as volume rendering, the
situation is similar. Traditionally, either flat shading has to be
used or significant parts of the illumination calculation have
to be computed without support by dedicated hardware.

After discussing illumination of line primitives in more
detail, in section 3 we show how it can be implemented us-
ing texture mapping techniques. In section 4 we describe
how to distribute stream lines in space in order to enhance
interesting features within a vector field. In the final sections
we present results and conclusions.

2 Illumination of Lines

Surfaces can be characterized locally by a distinct outward
normal vector . This normal vector plays an important
role when describing the interaction of light with surface el-
ements. In the following we will shortly review the popular
reflection model of Phong. Let denote the light direction,

the viewing direction and the unit reflection vector (the
vector in the - -plane with the same angle to the surface
normal as the incident light). Then light intensity at a partic-
ular surface point is given by

ambient diffuse specular

(1)

The first term, a global one, represents the ambient light in-
tensity due to multiple reflections in the environment. The
second term describes diffuse reflection due to Lambert’s
law. Diffuse light intensity does not depend on the view-
ing vector, i.e. diffuse reflecting objects look equally bright
from all directions. The last term in Eq. (1) describes specu-
lar reflections on a surface. Specular reflections or highlights
are centered around the reflection vector . The width of the
highlights is controlled by the exponent , also called shini-
ness.

T

L

LT

LN

normal space

Figure 2: The light vector can be decomposed into two or-
thogonal components and corresponding to the pro-
jection on the line’s tangent and normal space, respectively.

Let us now consider line primitives. In this case we can
no longer define unique normal and reflection vectors. In-
stead there are two-dimensional manifolds containing in-
finitely many possible normal and reflection vectors. Mathe-
matically lines in are said to have codimension 2. Fortu-
nately common surface reflection models can be generalized
to higher codimensions in a straightforward way. These gen-
eralizations have been discussed in detail by Banks [1]. For
lines in the results are quite obvious. From all possi-
ble normal vectors we simply have to select the one which
is coplanar to the light vector and the tangent vector .
Taking this particular normal vector we compute the diffuse
reflection term as for surfaces using Eq. (1). Likewise, from
all possible reflection vectors we choose the one coplanar to

and . Again, taking this particular reflection vector we
use Eq. (1) to compute the specular reflection term. The rel-
evant vectors for line illumination are illustrated in Fig. 1.

Instead of relying onto a specially selected normal vec-
tor we would rather like to express diffuse light intensity
for line segments solely in terms of and . Therefore
we first project the light vector into the line’s normal and
tangent spaces, yielding an orthogonal decomposition

. As illustrated in Fig. 2, by applying Pythagoras’s
theorem we obtain

(2)

Using similar arguments we can express the inner product
responsible for specular reflection solely in terms of

, , and , i.e. without refering to . First, observe that
and . We therefore have

(3)

Here we have replaced by Eq. (2). A similar expression
has been used to rewrite .

3 Rendering

Despite the fact that the illuminationequation looks the same
for lines and surfaces, use of standard hardware shading
techniques is impaired because for each new view or light di-
rection a suitable normal vector has to be computed without
utilizing graphics hardware. In the following we show how
Eqs. (2) and (3) can be effectively evaluated using texture
mapping capabilities of modern graphics hardware, avoiding
the need of explicit normal vector computation. The tech-
nique allows us to achieve high frame rates even when large
numbers of line segments have to be rendered.

3.1 Texture Mapping

We assume to have a graphics API available similar to
OpenGL. In this graphics library at each vertex a homoge-
neous vector of texture coordinates can be specified. Usually
the first components of this vector are taken as indices into a
one-, two-, or three-dimensional texture map. A texture map
may contain colors and/or transparencies which can be used
to modify in various ways the original color of a fragment in
the graphics pipeline. In addition it is possible to change tex-
ture coordinates using a texture transformation matrix.
This texture transformation is the key feature which makes
it possible to employ texture mapping hardware for shading
calculations.

3.2 Diffuse Reflection

Looking at Eq. (2) we note that the diffuse light intensity of a
line segment is a function of only. Specifying a texture
vector equal to the line’s tangent vector at each vertex,
this inner product can be computed in hardware using the
following texture transformation matrix:

The first component of the transformed homogeneous texture
vector then evaluates to

Note, that always lies in the range . Therefore this
value can be used as an index into a one-dimensional tex-
ture map . The value of the texture map at location

is chosen such that it resembles the diffuse light intensity
corresponding to , namely

diffuse (4)

Using a texture mode which takes the color of a line fragment
to be equal to its texture color we obtain an image
which accurately shows line segments diffusely illuminated
by a single point light source. If the light direction changes
we simply have to update the texture transformation matrix.
Vertices and texture coordinates of the line segments remain
constant. This means that we can make use of OpenGL dis-
play lists to further increase rendering speed. Display lists
allow one to specify multiple vertex and texture definitions
using a single graphics library call.

3.3 Specular Reflection

The specular reflection term does not only depend on
but also on , as can be seen from Eq. (3). To compute
this additional inner product we initialize the second column
of the texture transformation matrix with the current viewing
direction:

While the first transformed texture component remains the
same, for the second component we now get

In order to obtain the correct light intensity corresponding
to and we can use a
two-dimensional texture map . Adding a constant
ambient term as well as the diffuse contribution from Eq.
(4) we can perform the whole shading calculation for a single
light source in texture hardware. Fig. 3 shows an example of
a resulting two-dimensional texture map. One can clearly
identify the highlight appearing at different angle positions
on top of a diffuse background. If no highlight was present
color would not depend on the viewing direction , as stated
by Lambert’s law.

It is worthwhile to note that there is an important special
case, which allows one to use a one-dimensional texture even
when specular reflection is present. This is the case of a
headlight, i.e. a point light source located at the same po-
sition as the camera. In this case light vector and viewing
vector are identical. Equation (3) simplifies to

Headlights are quite useful because they always guarantee
an adequate illumination of the scene, irrespectively of the
actual viewing direction. The user has not to bother with
a tedious setup of light conditions. In fact, all of the color
plates in this paper were rendered using a headlight.

Of course it is also possible to use the third column of the
texture transformation matrix to compute an additional inner
product. This would require the use of a three-dimensional
texture map. Three different inner products would allow the

-1 0 1

-1

0

1

L T

V T

Figure 3: Two-dimensional texture map used to implement
Phong’s reflection model for line segments. Parameter val-
ues are , and .

illumination of lines by two point light sources located at ar-
bitrary positions including specular reflection. Alternatively
one might discard specular reflection and instead introduce a
third purely diffuse illuminating light source.

3.4 Color Coding

Color coding is a common method in visualization. Apply-
ing color to individual field lines would enable us to de-
pict some scalar quantity in addition to vector field struc-
ture. Such a quantity could be field magnitude or poten-
tial strength, or something more unrelated like pressure in
a fluid flow. Ideally we would like to modify the curve’s
ambient and diffuse color components according to a given
color lookup table. However, in our case color is directly
taken from a texture map. Since we use the same texture
map for all field lines it is not possible to set these com-
ponents locally in a straight-forward way. Nevertheless, by
using an alternative texture mapping mode it is possible to
modulate, i.e. multiply, texture color with the object’s base
color. The latter can be defined for each vertex separately.
This yields the desired effect with the restriction that also
the specular highlight gets colored instead of remaining con-
stant. Fig. 7 suggests that this is only a minor limitation.
Despite being differently colored the highlight can be iden-
tified clearly throughout the whole image while still improv-
ing spatial perception. At the same time color accurately
encodes an additional scalar variable.

3.5 Excess Brightness

Banks [1] pointed out that there is a general problem when
illuminating objects with codimension . The overall in-

tensity of an image increases and becomes more uniform,
thus disturbing spatial perception. In case of lines in this
can be understood by the following consideration: We know
that the normal vector is not a constant one, but is given by
the projection of the light vector into the line’s normal space.
Choosing such a vector means minimizing the angle between
light vector and normal. Therefore in general the angle be-
tween these two vectors is smaller compared to the case of
a fixed normal. This results in a more uniform brightness
than we are used to perceive in real world. As suggested by
Banks, we compensate the effect qualitatively by exponenti-
ating the diffuse intensity term:

diffuse (5)

In [1] a value of was proposed. For the images in
this paper we have used a value of , which produced
nicer results.

3.6 Transparency

Shading of line segments as described above provides im-
portant cues for the spatial impression of stream line images.
However, image quality can be further improved by use of
transparency. Let us imagine the image of a stream line is
produced by a small particle traversing the vector field and
leaving a veil of haze. Assuming that the haze disappears
according to an exponential law, opacity or alpha value for a
point at the curve is given by

(6)

Here the factor controls how much of the haze disappears
per unit step. A resulting semi-transparent stream line is il-
lustrated in the following figure:

s1
s2

s3sn

Use of transparency has two advantages: First, stream lines
near to the camera do not completely hide those being more
far away. This allows the observer to gain deeper insight into
the inner structure of the vector field. Second, the sign of
vector field direction becomes visible in a static image. This
is not the case when stream lines are rendered symetrically
in forward and backward direction.

Drawing a transparent pixel of opacity and color
causes the current color in the frame buffer to be updated
according to

new old (7)

In general if multiple transparent objects are present the fi-
nal color depends on the ordering of the individual objects.
Correct results are obtained using a back to front traversal.
The situation is simplified if all objects are of equal color .

In this case all traversal orders yield the same result. This
has been exploited by Max, Crawfis, and Grant [10], who
applied constant shaded line bundles for vector field visual-
ization. However, for illuminated lines color isn’t constant
anymore. Therefore individual lines have to be rendered in a
depth-sorted way.

In general it is impossible to achieve an exact depth or-
dering for extended curves in 3D, because mutual coverings
may occur. Therefore we split each stream line into many
small line segments, which are sorted and rendered individ-
ually. To avoid resorting line segments each time the view
direction changes we use the following simplified algorithm:
Three lists of pointers to stream line segments are created.
The lists are sorted in order of increasing -, -, and -
coordinates, respectively. During rendering the list that most
closely resembles the viewing direction is traversed, either
from back to front or from front to back. Although this
method is not exact, it produces excellent results which can
not be distinguished from the exact images visually. Exper-
iments have shown, that only about 1% of all pixels receive
somewhat incorrect color values.

3.7 Stream Line Animation

Animated particles provide a very intuitive mean of visual-
ization, especially when velocity fields are to be visualized.
Following the idea of particles leaving a veil of haze, anima-
tion sequences can be obtained in the following way.

Stream lines are created at different times with an initial
length of 0. In each time step, all stream lines are extended
by one point, while opacity of all the points already drawn
is modified by the factor (compare Eq. (7)). This gives the
illusion of moving particles producing a slowly disappearing
veil of haze, like comets. A periodic animation sequence can
be created by assuring that the period is long enough so
that points on a stream line can disappear completely within
this interval (i.e.). Then a stream line that has been
created at time can be restarted at the same location at
time , since it is no longer visible then. This results in
a continuous animation loop of period .

4 Distributing Stream Lines

When using stream lines for vector field visualization a com-
mon problem is to select proper seed points for path tracking.
The fast texture based shading technique described above
allows us to render images containing thousands of stream
lines at interactive rates. Working with a large number of
stream lines has the advantage, that the positioning of an in-
dividual line becomes less important. Instead we can apply
statistical methods to distribute seed points throughout the
field. In particular we would like the distribution to resem-
ble some sort of scalar quantity , which loosely corresponds
to the degree of interest the user wants to put in some region.

For example a constant would result in a homogenous dis-
tribution of seed points, while a value of proportional to
vector magnitude would have the effect that more seed points
are placed in regions of large magintude.

4.1 Monte-Carlo Selection

To generate seed points with a density proportional to , we
subdivide to whole data volume into uniform cells. For
each cell we compute a value describing the local degree
of interest for that cell. The accumulated degree of interest
is defined by

(8)

We assume all cells being arranged in a sequence based on
some arbitrary numbering. We choose cells randomly with
a probability proportional to . This is done by taking a
random number uniformly distributed in the range .
The first value determines which cell is taken.

0 i 1 i

pi

n

Within a selected cell we place a new seed point at a random
position. Because the values are monotonely increasing,
the cell lookup procedure has a complexity of and
therefore can be performed quite fast.

4.2 An Equalization Strategy

In general it is not a trivial task to find a good scalar quantity
. For example, choosing equal to vector field magnitude

may not have the desired effect when this quantity varies
over multiple orders of magnitude. Instead of exactly be-
ing proportional to , we would rather like to have a density
distribution which resembles vector field magnitude qualita-
tively, but in general places seed points more homogenously.
Such an effect can be obtained using a histogram equaliza-
tion approach. This technique is well known from the image
processing literature [6], but in our case may also be used
to modify the degree of interest in a suitable way. Let us
define a sum histogram in the following way:

number of cells with
total number of cells

(9)

Based on the sum histogram we can assign each cell a new
equalized degree of interest,

(10)

Of course other probability distributions can be used to
emphasize special features of the field. We have imple-
mented a symbolic interface which allows us to specify as

a function of vector field magnitude and other optional scalar
fields. Within this interface analytic functions like logarithm
or square root as well as threshold operators can be used to
modify . Together with a three-dimensional selection box,
which may be positioned interactively to spatially confine
the region of interest, it is possible to explore very quickly
the overall characteristics as well as the details of a vector
field.

4.3 Divergence Compensation

If the vector field has a divergence different from zero, the
stream line density will not remain constant even if the seed
points are distributed uniformily. In some areas stream lines
will run together, resulting in an increased local density. In
other areas they will expand, resulting in a decreased local
density. In our case stream lines are computed with a fixed
maximum length. Experience shows that a sufficiently uni-
form stream line density is obtained by placing seed points in
the middle of a stream line segment, and integrating equally
far in forward and backward direction. Of course, better re-
sults could be obtained by adaptively terminating existing
lines or creating new ones based on local stream line density.

4.4 Streamline Computation

For numerical stream line integration we use a fourth-order
Runge-Kutta method with error monitoring and adaptive step
size control, as described in [14]. Use of an adaptive method
allows us to control the error of the solution. Such meth-
ods are also necessary to detect singularities. At these points
stream line integration has to be terminated. Singularities,
i.e. sinks and sources, commonly occur for example in elec-
trostatic fields. Examples are shown in Figs. 4-7.

5 Interaction

Due to its high rendering speed our method is dedicated to be
used in an interactive visualization framework. To interac-
tively define regions of interest we apply so-called draggers
which are provided by the Open Inventor graphics toolkit.
Two such box-type draggers are depicted in Fig. 4. Each
dragger defines an rectangular or spherical volume in which
stream lines are seeded.

We have also implemented methods to place seed points
along curves. The curves may be created by intersecting an
arbitrary geometry, e.g. an isosurface, and a user-defineable
plane. This method is particularly suited to highlight possi-
ble symmetries within the data set.

Further refinements can be achieved by using scalar fields
that define local seed point density or local degree of interest.
Such fields can be obtained from numerical simulation. In
addition we use a symbolic interface to define such fields in
terms of vector field magnitude, cartesian coordinates and
other available quantities.

Figure 4: Interactive definition of seed volumes using Open
Inventor draggers.

6 Results

The algorithms presented in this paper have been imple-
mented in C++ by subclassing the Open Inventor toolkit.
Using Inventor makes it easy to display shaded stream lines
in combination with other geometries. The shading itself
makes use of the OpenGL graphics library.

On a SGI Indigo desktop workstationwith Maximum Im-
pact graphics and a 250 MHz R4400 CPU scenes contain-
ing 3000 stream lines each consisting of 120 transparent line
segments can be rendered at a rate of 10 frames per second.
These results can be improved by 10%-20% if OpenGL dis-
play lists are used. However, display lists cause the rendering
to be delayed when the scene is drawn the first time. There-
fore, in our implementation the user can choose whether to
use display lists or not. Also, the integration of our algorithm
into the Open Inventor rendering scheme may be further op-
timized.

We have applied our methods to visualize vector fields
from various disciplines like computational fluid dynamics,
quantum chemistry, and medicine. In most cases the default
values for seed point distribution (eventually accompanied
with the histogram equalization technique) provide a good
first impression of the vector field. The fast rendering speed
offers the possibility to interactively rotate and zoom the ge-
ometry. This is an important feature for an improved spatial
perception.

Fig. 5 and 6 show the electrostatic field of a benzene
molecule. The field is computed using the NAO-PC method
(Natural Atomic Orbitals - Point Charge). This quantum-

classical method aproximates atomic orbitals by a set of dis-
crete fractional point charges. The location of some of these
point charges can be clearly identified in the images.

Fig. 7 also depicts parts of an electrostatic field of a
molecule. In addition stream lines have been color coded
as described in section 3.4. In this example color depicts the
electrostatic potential. The field lines connect several pos-
itive point charges (magenta) with a single negative charge
(green-orange).

An example of a velocity field from a CFD application
is shown in Fig. 8. The data represents a fluid flow over
a backward facing step. The turbulent region emphasized
by the visualization is characterized by a very complex field
structure.

Finally Fig. 9 illustrates the power of accurate line shad-
ing: While only a poor three-dimensional impression is ob-
tained from the middle and right images, the spatial structure
of the field is clearly revealed in the left image.

7 Conclusion

The visual representation of 3D vector fields is one of the
current challenges in scientific visualization. Of particular
interest are methods that provide an overview of the global
field structure and that also depict fine details.

In this paper we have presented a fast method for visual-
izing 3D vector fields based on the display of stream lines,
i.e. integral curves of the field. The method gives a good
impression ofthe field structure and enables us to resolve vi-
sually rather fine details, like small vortices. A texture map-
ping technique is used to accurately illuminate the stream
lines. Light reflection on stream lines improves spatial per-
ception and thereby facilitates the understanding of the inner
structure of a field.

We have shown how high quality stream line images can
be generated at interactive speed using hardware supported
texture mapping. This offers new opportunities for interac-
tive visualization. Using a simple Monte-Carlo method lines
are placed automatically such that the relative degree of in-
terest, defined by some scalar field, is matched qualitatively.
Additional use of of a histogram equalization approach al-
lows us to automatically place stream line segments more
homogenously.

Some interesting topics of further research are improve-
ment of the seed point selection strategies such that charac-
teristic features of the field are detected and enhanced auto-
matically or the application of the shading technique to time
dependent vector fields. In the latter case particle paths or
streak lines should be used in favour of stream lines.

References

[1] D.C. Banks, Illumination in Diverse Codimensions,
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July

24-29, 1994). In Computer Graphics Annual Confer-
ence Series, 1994, ACM SIGGRAPH, pp. 327-334.

[2] B. Cabral, L. Leedom, Imaging vector fields using line
integral convolution, Proceedings of SIGGRAPH ’93
(Anaheim, California, August 1-6, 1993). In Computer
Graphics 27, 1993, ACM SIGGRAPH, pp. 263-272.

[3] Roger Crawfis, Nelson Max, Textured Splats for 3D
Scalar and Vector Field Visualization, Proceedings of
Visualization ’93, Nielson and Bergeron, Eds., IEEE
Computer Society Press, 1993, pp. 261-272.

[4] L.K. Forsell, Visualizing Flow over Curvilinear Grid
Surfaces unsing Line Integral Convolution, Proceed-
ings of Visualization ’94, Bergeron and Kaufman, Eds.,
IEEE Computer Society Press, 1994, pp. 240-247.

[5] Allen Van Gelder, Jane Wilhelms, Interactive Animated
Visualization of Flow Fields, Proceedings of ACM
Workshop on Volume Visualization, 1992, pp. 47-54.

[6] R.C. Gonzales, P. Wintz, Digital Image Processing,
Addison Wesley, Second Edition, 1987, pp. 146–152.

[7] Andrea J. S. Hin and Frits H. Post, Visualization of tur-
bulent flow with particles. In Visualization ’93, IEEE
Computer Society Press, pp. 46-52.

[8] W.C. de Leeuw, J.J. van Wijk, A probe for local flow
field visualization, Proceedings of Visualization ’93,
Nielson and Bergeron, Eds., IEEE Computer Society
Press, 1993, 39-45.

[9] W.C. de Leeuw, J.J. van Wijk, Enhanced Spot Noise
for Vector Field Visualization, Proceedings of Visual-
ization ’95, Nielson and Silver, Eds., IEEE Computer
Society Press, 1995, pp. 233-239.

[10] N. Max, R. Crawfis, C. Grant, Visualizing 3D Velocity
Fields Near Contour Surfaces, Proceedings of Visual-
ization ’94, Bergeron and Kaufman, Eds., IEEE Com-
puter Society Press, 1994, pp. 248-255.

[11] Kwan-Liu Ma and Philip J. Smith, Virtual smoke: An
interactive 3d flow visualization technique, In Visual-
ization ’92, IEEE Computer Society Press, pp. 46-52.

[12] Bui-T. Phong, Illumination for Computer Generated
Pictures, Communications of the ACM, June 1975,
pp. 311-317.

[13] F.J. Post, T. van Walsum, F.H. Post, Iconic Techniques
for Feature Visualization, Nielson and Silver, Eds., Pro-
ceedings of Visualization ’95, pp. 288-295.

[14] D. Stalling, H.C. Hege, Fast and Resolution Indepen-
dent Line Integral Convolution, Proceedings of SIG-
GRAPH ’95 (Los Angeles, California, August 6-11,
1995). In Computer Graphics Annual Conference Se-
ries, 1995, ACM SIGGRAPH, pp. 249-256.

[15] Jarke J. van Wijk, Rendering surface-particles, In Visu-
alization ’92, IEEE Computer Society Press, pp. 54-61.

Fig.5: Electrostatic field of a benzene molecule. Fig.6: Detail view of the benzene.

Fig.7: Example of illuminated colored stream lines. Fig.8: Velocity field from a CFD application.

Fig.9: (a) Illuminated stream lines. (b) Flat shaded transparent stream lines. (c) Flat shaded opaque stream lines.

