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1 Some History

1.1 Hamilton’s Discovery and Subsequent Vandalism

Having seen that complex numbers of unit modulus rotate the complex plane
via multiplication, Irish mathematician William Rowan Hamilton sought an
analogous structure to provide rotaions of R3. His introduction of a second imag-
inary unit, to produce numbers of the form x0 +x1i+x2j, where i2 = j2 = −1,
was not enough.

After more than ten years of consideration, Hamilton had an epiphany on
October 16th, 1843, as he and his wife were walking past Broome Bridge in
Dublin. He realized that a system with three imaginary units would suffice, and
he carved

i2 = j2 = k2 = −1
ij = k ji = −k

into the stone of the bridge. He created the label quaternion for numbers of the
form q = ai + bj + ck, where a, b, c, and d are real. I’ll show later on how the
quaternions provide rotations of R3.

1.2 Quaternions versus Vectors

Note that addition of quaternions is as simple as addition of complex num-
bers, but that multiplication is not commutative, thanks to the properties of
the imaginary units i, j, k:
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ij = −ji = k

jk = −kj = i

ki = −ik = j

Compare these relations to the cross products i×j, j×k, and k×i of elementary
vector calculus.

Consider the product of two quaternions u = u0 + u1i + u2j + u3k and
v = v0 + v1i + v2j + v3k:

uv = (u0 + u1i + u2j + u3k)(v0 + v1i + v2j + v3k)
= u0v0 − u1v1 − u2v2 − u3v3

(u0v1 + u1v0 + u2v3 − u3v2)i
(u0v2 + u2v0 + u3v1 − u1v3)j
(u0v3 + u3v0 + u1v2 − u2v3)k

Hamilton’s first interest was in using quaternions to model rotations of R3.
He labeled quaternions with zero real part (u = u1i+u2j+u3k) pure quaternions
or vectors. The product of two vectors is found by setting u0 = v0 = 0 in the
previous result:

uv = (u1i + u2j + u3k)(v1i + v2j + v3k)
= (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v3)k − (u1v1 + u2v2 + u3v3)

Compare this to the dot product and cross product of two elements of R3:

 u1

u2

u3

 ·

 v1

v2

v3

 = u1v1 + u2v2 + u3v3 u1

u2

u3

×

 v1

v2

v3

 =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


The algebra of quaternions indirectly includes all of the algebra of elements

of R3, and more. But quaternions fell out of favor after Josiah Willard Gibbs
of Yale University introduced the dot product and cross product in 1881, in his
text The Elements of Vector Analysis. Hamilton, who had died in 1865, had
labored for years on extending the theory of quaternions and the rotations they
represent, but he had constructed a difficult noitational structure and had made
some fundamental errors in describing which rotation a quaternions represents.
Hamilton staunchly defended his anlysis and alienated some in the process.
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Nevertheless, some stood by quaternions, and for some the preference of one
system versus the other became a partisan split:

”Even Prof. Willard Gibbs must be ranked as one the retarders of
quaternions progress, in virtue of his pamphlet on Vector Analysis,
a sort of hermaphrodite monster, compounded of the notation of
Hamilton and Grassman.”
—Peter Guthrie Tait (one of Hamilton’s former students), 1890

”Quaternions came from Hamilton after his really good work had
been done; and, though beautifully ingenious, have been an unmixed
evil to those who have touched them in any way, including Clerk
Maxwell.”
—William Thomson, Baron Kelvin of Largs, 1892

The International Association for Promoting the Study of Quaternions and
Allied Systems of Mathematics published a bulletin from 1900 to 1923, but
Gibbs’s notation by and large replaced quaternions. The overwhelming major-
ity of texts of introductory vector algebra or vector calculus make no mention
of the quaternions. They are mentioned in Herbert Goldstein’s classic Classical
Mechanics (on the reading list of every graduate student of physics), but only
in a dismissive footnote in the lesson on representing rotation of R3 with Pauli
spin matrices:

The connossieur of somewhat musty mathematics will recognize in
Eq. (4-74) a representation of Q as a matrix quaternion, a quantity
invented by Sir William R. Hamilton in 1843.

1.3 Some Prehistory

Although these quantities are most often called Hamilton’s quaternions,
Hamilton was not the first to discover or even the first to publish results related
to them. A look at Gauss’s notes reveals that Gauss discovered the quaternions
in 1819 but never bothered to publish.

In his doctoral thesis, Benjamin Olinde Rodrigues produced an integral for-
mula, now presented as Rodrigues’s formula in many texts of complex analysis,
for the Legendre polynomials. Although he has left mathematics for banking
long before 1840, in that year he pubslihed a paper that addressed vectorial rep-
resentations of rotations of R3. He employed spherical trigonometry to produce a
formula for the axis and angle of the single rotatcreatedproduced a parametriza-
tion of the quaternions. Though his results preceded those of Hamilton, he was
long ignored. But today Rodrigues gets much credit in the history of quater-
nions.
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2 Some Algebra of the Quaternions

The quaternions have addition, defined just as in the complex numbers. Quater-
nion addition satisfies all the usual requirements of associativity and commuta-
tivity. The quaternion 0 is the additive identity element, and each quaternion
has an additive inverse. One can also show that the quaternions form a linear
(vector) space over the reals.

The quaternion 1 is the multiplicative identity element and is distinct from
the additive identity element 0. We will use the notation ||q|| for the norm of a
quaternion q: ||q|| = (q2

0 + q2
1 + q2

2 + q2
3)1/2. With this, we can find a formula for

the multplicative inverse of any nonzero quaternion q. Let q̄ = q0−q1i−q2j−q3k.
Then

q
q̄

||q||2
= (q0 + q1i + q2j + q3k) · (q0 − q1i− q1j − q2k)

||q||2

=
q2
0 − q0(q1i + q2j + q3k) + q0(q1i + q2j + q3k)− q2

1i2 − q2
2j2 − q2

3k2

||q||2

=
q2
0 + q2

1 + q2
2 + q2

3

||q||2
= 1

Hence, every nonzero quaternion has a multiplicative inverse. Scalar mutli-
plication is distributive and commutes with quaternion multiplication, just as
for the complex numbers. The one aspect of the complex numbers that the
quaternions lack is commutativity of multiplication. The quaternions satisfy
every requirement of a field except that. Such structures are called division
rings, division algebras, or skew fields.

3 Quaternions as Rotations

Note that Hamilton’s algebra for the quaternions treats each quaternion as
both an operator and an operand. Left multiplication by a quaternion q is
a linear map u 7→ qu from the quaternions into the quaternions, as is right
multiplication, u 7→ uq. Since these multiplications are linear maps from four-
dimensional vector space into itself, we can find a matrix representation of each.
We will avoid some headaches in the following analysis if we do so.

Let the quaternion u be represented by the real vector (u0, u1, u2, u3)T . Note
that the norm of the quaternion is easily related to this dot product of the real
vector with itself:
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||u||2 = u2
0 + u2

1 + u2
2 + u2

3 =


u0

u1

u2

u3

 ·


u0

u1

u2

u3


Since left- and right-muliplication are linear transformations on a four-dimensional

vector space, we should be able to represent the products qu and uq by prod-
ucts Lqu and Rqu, where Lq and Rq are real 4×4 matrices. The nth column of
L should represent the image of the nth unit multiplied on the left by q. For
example,

qi = q0i + q1ii + q2ji + q3ki = −q1 + q0i + q3k − q2k,

and since i is the second unit, the second column of Lq should be
−q1

q0

q3

−q2

 .

Further steps will reveal that the appropriate matrices are

Lq =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0



Rq =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0


Note that Lq and Rq are not transposes of each other. One is converted to

the other by transposition of the lower right 3×3 submatrix. Note also that

LT
q Lq =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0



=


q2
0 + q2

1 + q2
2 + q2

3 0 0
0 q2

0 + q2
1 + q2

2 + q2
3 0 0

0 0 q2
0 + q2

1 + q2
2 + q2

3 0
0 0 0 q2

0 + q2
1 + q2

2 + q2
3


= ||q||2I
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RT
q Rq =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



=


q2
0 + q2

1 + q2
2 + q2

3 0 0
0 q2

0 + q2
1 + q2

2 + q2
3 0 0

0 0 q2
0 + q2

1 + q2
2 + q2

3 0
0 0 0 q2

0 + q2
1 + q2

2 + q2
3


= ||q||2I

For a quaternion u, let [u] be the corresponding element of R4. Then ||u||2 =
[u] · [u] = [u]T [u], where [u]T is the transpose of [u]. We will now show that
the norm of a product is equal to the product of norms. Let v = qu. Then
[v] = Lq[u], and

||qu||2 = ||v||2

= [v]T [v]
= (Lq[u])T Lq[u]
= [u]T LT

q Lq[u]

= [u]T ||q||2I[u]
= ||q||2[u]T [u]
= ||q||2||u||2

The same result holds for uq.

We can show by iteration that ||qup|| = ||q|| · ||u|| · ||p||. Hence, for any
quaternions q, u,

||quq−1|| = ||q|| · ||u|| · ||q−1|| = ||u|| · ||qq−1|| = ||u|| · ||1|| = ||u||

In the language of geometry, the map u 7→ puq−1 is a congruence of Euclidean
four-space.

What effect does such a transformation have on the pure quaternions, which
we treat as R3? First note that such a map fixes 1: 1 7→ q1q1 = 1. If such a
map also fixes the pure quaternions, then it is also a congruence of Euclidean
three-space. We will show that such a map sends the orthogonal complement
of span1 (a slight abuse of notation, as the dot product is not really defined on
the quaternions themselves) back into itself. That is, if u is a pure quaternion,
then so is quq−1.

Suppose u is a pure quaternion. Then [u] is orthogonal to [1]: [u]T [1] = 0.
Now consider the quaternion quq−1, whose representative in R4 is [quq−1] =
LqRq−1 [u]. Note also that since 1 is fixed by such maps, [1] = LqRq−1 [1].
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[quq−1]T [1] = (LqRq−1 [u])T LqRq−1 [1]

= [u]T RT
q−1LT

q LqRq−1 [1]

= [u]T RT
q−1 ||q||1IRq−1 [1]

= ||q||2[u]T RT
q−1Rq−1 [1]

= ||q||2[u]T ||q−1||2I[1]
= ||q||2||q−1||2[u]T [1]
= [u]T [1]
= 0

So far we have seen that u 7→ quq−1 preserves norm and maps vectors (pure
quaternions) to vectors. We can show that it preserves the angle between two
vectors. Recall that the vector θ between elements u,v of R3 satisfies

cos θ =
u · v

||u|| · ||v||

Given nonzero vectors u, v, with representations [u], [v], let θ be the angle
between them, i.e.

cos θ =
[u]T [v]

||[u]|| · ||[v]||

Then the cosine of the angle between quq−1 and qvq−1 is

(LqRq−1 [u])T LqRq−1 [v]
||LqRq−1 [u]|| · ||LqRq−1 [v]||

=
[u]T RT

q−1LT
q LqRq−1 [v]

||[u]|| · ||[v]||

=
||q||2||q−1||2[u]T [v]

||[u]|| · ||[v]||

=
[u]T [v]

||[u]|| · ||[v]||
= cos θ

The angle between any two vectors is preserved.

If q is a vector, then we can easily show that the map u 7→ quq−1 fixes some
vector: qqq−1q (it also fixes any real multiple of q). But the map fixes some
vector whether or not q is itself a vector. Before we prove this, note that

quq−1 =
quq̄

||q||2
=

q

||q||
u

q−1

||q||
,

where q̄ = q0 − q1i − q2j − q3k is the quaternion conjugate and has the same
norm as q. We see from this that the map u 7→ quq−1 is also achieved by the
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normalized vector q/||q||. Henceforth any quaternions used to form such maps
are assumed to have unit norm. This will simplify the work significantly. With
this assumption, we have q−1 = q̄ = q0 − q1i− q2j − q3k.

If q is a unit quaternion, then q2
0 + q2

1 + q3
2 + q2

3 = 1, so q0 = cos2 θ and
q2
1 + q2

2 + q3
3 = sin2 θ for some real θ. Hence,

v =
q1i + q2j + q3k

| sin θ|

is a pure quaternion with unit norm. Since |q0| = | sin θ|, q0 = ± cos θ. If
q0 = − cos θ, then q0 = cos(θ + π) = cos θ′, and q = cos θ′ + sin θ′v. Such an
expression can be found for any unit quaternion q. The expresion for q−1 is
cos θ − sin θv, as q−1 = q0 − q1i− q1j − q3k for unit quaternions.

We will use this above expresion to show that each map u 7→ quq−1 fixes a
pure quaternion. Suppose q = cos θ + sin θv. The unit vector v is mapped to

(cos θ + sin θv)v(cos θ − sin θv) = cos2 θv + sin θ cos θv − cos θ sin θv − sin2 θvvv

= cos2 θ − sin2 θvvv

We can find vv by computing Lv[v]:

Lv[v] =


0 −v1 −v2 −v3

v1 0 −v3 v2

v2 v3 0 −v1

v3 −v2 v1 0




0
v1

v2

v3



=


−v2

1 − v2
2 − v2

3

0
0
0

 =


−1
0
0
0

 , (1)

which corresponds to the quaternion -1. Thus, vvv = −v

Hence, the image of v is

cos2 θv − sin2 θ(−v) = cos2 θv + sin2 θv = v

This result has concrete geometric siginificance. It tells us that the map
u 7→ quq−1 is a rotation of R3, but it also tells us that the axis of rotation
lies along the pure vector v. Now, given any quaternion, we can immedi-
ately determine the axis of rotation of the corresponding rotation.

What is the angle of rotation? Since v is fixed by the rotation, it is the
plane perpendicular to v (another abuse of notation) that is rotated, as angles
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(including right angles) are preserved by the map. Let’s look at a specific,
convenient example. Suppose that v = i, and that p is a unit vector in the plane
orthogonal to i (another slight abuse of notation). Then p = cos αj + sinαk.

qpq−1 = (cos θ + sin θi)(cos αj + sinαk)(cos θ − sin θi)
= (cos θ cos αj + cos θ sinαk + sin θ cos αij + sin θ sinαik)(cos θ − sin θi)
= (cos θ cos αj + cos θ sinαk + sin θ cos αk − sin θ sinαj)(cos θ − sin θi)
= (cos(θ + α)j + sin(α + θ)k)(cos θ − sin θi)
= cos(θ + θ) sin θki

= cos(α + θ) cos θj − cos(α + θ) sin θk + sin(α + θ) cos θk − sin(α + θ) sin θj

= cos(α + 2θ)j + sin(α + 2θ)k

The map rotates the orthogonal plane by an angle of 2θ. We can show
that this holds in general. We can map i to general vector u = qiq−1 by some
quaternion q; under this map, every vector p orthogonal to i is mapped to a
vector w orthogonal to u. Then the rotation corresponding to u = qiq−1 is

w = qpq−1 7→ uwu−1

= qiq−2qpq−1(qiq−1)−2

= qipq−1qi−1q−1

= qipi−1q−1

= q(cos(α + 2θ)j + sin(α + 2θ)k)q−1

Since these maps preserve angles, the angle between w and qwq−1 is equal to
the angle between the respective pre-images p and ipi−1: 2θ.

Now, given a quaternion q, we can determine the axis of rotation and the
rotation angle caused by the map u 7→ quq−1 on the vectors. Better yet, since
we have a simple way to multiply quaternions, if we have two rotations
achieved by quaternion conjugation, we can quickly determine the
single rotation equivalent to a composition of the rotations. This re-
sult removes much of the complexity of analysizing the composition
of rotations. Programmers working in computer graphics have made
great use of these results.

That the map rotates by 2θ may come as a surprise. Hamilton himself ap-
pears not to have made this connection. He viewed quaternion multiplication
(u 7→ qu), not quaternion conjugation (u 7→ quq−1), as a rotation operation.
Hamilton believed his work and its relation to geometry to have cosmic signif-
icance, and he held fast to his interpretations. His refusal to budge from this
view contributed to quaternions’ fall from favor. One may find it interesting
that Rodrigues, forgotten or ignored for a long time, understood the relation
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between the quaternion angle θ and the angle of the corresponding rotation.

4 Quaternions as Examples in Advanced Math-
ematics

4.1 Unit Quaternions Form a Lie Group

The quaternions can be used to classify wide variety of discrete symmetry
groups of R3. But showing that the unit quaternions form a very special group
is easier. Note that the unit quaternions form a group (albeit not an abelian
one) under multiplication, and that when viewed as the unit sphere in R4, they
form a smooth parametrized surface. We can show without much effort that
multiplication of the unit quaternions is smooth, so the unit quaternions form a
Lie group. The only unit spheres that are Lie Groups are S1 (the unit complex
numbers), S3 (the unit quaternions), and S7. We will see later on how inimately
these three are related, via algebraic and geometric properties.

4.2 Vectors (Pure Quaternions) Form a Lie Algebra

Consider the commutator [q, p] = qp− pq of two vectors (pure quaternions)
q, p.

qp = (q2p3 − q3p2)i + (q3p1 − q1p3)j + (q1p2 − q2p1)k − q1p1 − q2p2 − q3p3

pq = (p2q3 − p3q2)i + (p3q1 − p1q3)j + (p1q2 − p2q1)k − p1q1 − p2q2 − p3q3

[q, p] = qp− pq = 2(q2p3 − q3p2)i + 2(q3p1 − q1p3)j + 2(q1p2 − q2p1)k
[p, q] = pq − qp = −(qp− pq) = −[q, p]

Note that the bracket of two vectors is a vector. We can add and subtract
and scale vectors, and now we have a way to multiply them and stay within the
space of vectors (vector-vector multiplication will yield a non-pure quaternion).
We say that the vectors form an algebra because we have both well-defined
addition and multiplication on them. The vectors are called skew-commutative
with respect to the bracket because [q, p] = −[p, q] (this may seem trivial, but
it isn’t always). Now consider

[p, [q, r]] + [q, [r, p]] + [r, [p, q]] = [p, qr − rq] + [q, rp− pr] + [r, pq − qp]
= (pqr − qrp) + (qrp− rpq) + (rpq − pqr)
= 0

[p, [q, r]] + [q, [r, p]] + [r, [p, q]] = 0 is called the Jacobi identity.
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Any algebra that is skew-commutative (with respect to the bracket) and
satisfies the Jacobi identity is called a Lie algebra.

Someone who has studied Lie groups will probably not be surprised that
the vector form a Lie algebra. Note that the space of vectors is orthogonal to
1, the multiplicative identity element of the unit quaternions. Since the unit
quaternions form a Lie group, the tangent space at the (multiplicative) group
unit is a Lie algebra; this is true for every Lie group. Every quaternion in the
tangent space at 1 has the form 1 + u, where u is a vector. Hence, this tangent
space (where we treat the bracket as the multiplication operation) is isomorphic
to the space of vectors (where the bracket is the multiplication operation). We
can conclude that the space of vectors is a Lie algebra, which he have already
verified independently.

We could have found directly that the vectors form a Lie algebra by com-
puting the bracket of elements of R3. Recall that the cross product on R3

maps each pair of elements of R3 back into R3, and that the cross-product is
skew-commutative (x× y = −y × x).

[x,y] = x× y − y × x

= 2x× y

[y,x] = y × x− x× y

= 2y × x

= −2[x,y],

so R3 is skew-commutative with respect to the bracket. We can also show that
the elements of R3 satisfy the Jacobi identity.

Since there is an isomorphism between the vectors (where multiplication is
considered the bracket) and the matrices Lu where u is a vector, those matrices
also form a Lie algebra. The same is true of the matrices Ru, with u a vector,
for the same reason. These sets are called matrix Lie algebras.
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