University of Bremen

Prof. G. Zachmann School of Computer Science
P. Lange CGVR Group
June 1, 2015

Summer Semester 2015

Assignment on Advanced Computer Graphics - Sheet 5

Due Date 16. 06. 2015 11:59pm
lange@cs.uni-bremen.de

Exercise 1 (Procedural Generation of Asteroids: Noisy Mesh, 4 Cred-
its)

Implement an algorithm which procedurally generates asteroid-like meshes. For reference, have a
look at the picture below:

Figure 1: Real asteroids: Mathilde, Vesta, Eros and Itokawa.

The result of your algorithm from this task should look similar to this rendering:

Figure 2: Example rendering of an asteroid from the first exercise.

To do that, you can use the provided framework or you can implement your idea from scratch with
your favourite rendering library.



The provided framework is written in Ogre3D version 1.9. You can find the corresponding down-
load for your operating system at http://www.ogre3d.org/download. Additionally, a guide for
configuring your IDE can be found at http://www.ogre3d.org/tikiwiki/tiki-index.php7page=
Setting+Up+An+Application&structure=Development.

The framework is a minimalistic Ogre class named AsteroidFramework with the following function-
alities, which are already implemented:

e Configuring Ogre: All configuration of Ogre is done in AsteroidFramework: : configureOgre (void)
like enabling resource groups or starting the rendering window. A configuration window will be
displayed where you can adjust your settings (resolution, graphics library, etc.).

e Inputs: The framework handles mouse and keyboard inputs. You can:
-Move inside the environment with WASD movement.
-You can orientate the field of view with your mouse.
-Change the rendering view with 'R’ to see the textured mesh,
the vertices of the mesh or the points of the mesh. You can use this for debugging purposes.

e Scene Management: The overall scene is created in AsteroidFramework: :createScene() which
also already calls your asteroid generation methods. Additionally, the camera and lighting is al-
ready defined. The most important instance variable of the framework used here is the Ogre: : SceneManager,
which manages all scene nodes (Ogre: :SceneNode).

e The Framework also comes with a noise function. You can use the noise function via using the class
SimpleNoise: :GetHeight (x,y) which returns the noise for a given x and y coordinate. You can
also use the libnoise library, which can be downloaded at http://libnoise.sourceforge.net/.

Your tasks in detail:

1. Implement a suitable algorithm which procedurally generates asteroid-like meshes in OgreFrame-
work: :createAsteroidMesh() from a unit sphere. Propose a suitable algorithm which gets as
input several parameters: the maximum size (e.g. between 1 and 50), surface roughness (between
0.0 and 1.0 for very smooth and very rough) and elongations (a multiplier, e.g. between 1 and
3) for each of the three axes. Remark that the size and the elongations could also be achieved
with a parent Ogre: : SceneNode which could scale your asteroid but in this task you should really
generate and operate on the mesh vertices.

2. You can find an example implementation for generating a sphere mesh in OgreFramework: : createSphere ().
It is probably helpful for you if you look at this example and start your implementation from there.
It uses spherical coordinates to create sphere mesh and also creates texture coordinates.

3. With the proposed spherical approach you will get some spheres which will look like deformed
ellipsoids. Use SimpleNoise: :getHeight () to apply noise to your generated mesh to make the
mesh more interesting. The generated meshes should have a very strong resemblance to asteroids!
Have a look at the reference pictures of real asteroids.

4. Generate 5 different asteroids and document your results with screenshots. Give also a range
for each of your input parameters which creates meshes which have a strong resemblance to real
asteroids.


http://www.ogre3d.org/download
http://www.ogre3d.org/tikiwiki/tiki-index.php?page=Setting+Up+An+Application&structure=Development
http://www.ogre3d.org/tikiwiki/tiki-index.php?page=Setting+Up+An+Application&structure=Development
http://libnoise.sourceforge.net/

Exercise 2 (Procedural Generation of Asteroids: Enhanced Mesh, 5 Cred-
its)

With the proposed method above, all of your generated meshes will have a strong resemblance of
spheres, even with the noise applied. However, real asteroids can have also a banana-like form:

Figure 3: Close-up of Eros.

Your task:

e Improve your algorithm of exercise 1 to generate asteroid meshes that resemble real asteroids
more closely. In the lab meeting, we will discuss some possibilities how to do that, but we will
appreciate it very much if you invent your own methods. Probably, you will need to add more
parameters to OgreFramework: : createAsteroidMesh().

e Generate 5 different asteroids and document your results with screenshots. Give also a range
for each of your input parameters which creates meshes which have a strong resemblance to real
asteroids.



Exercise 3 (Procedural Generation of Asteroids: Surface , 3 Credits)

In order to generate really interesting asteroids, realistic surfaces should be generated:

100m

Figure 4: Close-up of the surface of Itokawa.

In order to generate such surfaces, procedurally generate suitable height maps which can have arbi-
trary amount of craters, varying in their size. The pictures below show how such a height map could
look like.

Figure 5: Example height map without craters. Similar height maps can be generated with the
framework noise class or with the libnoise library.

Figure 6: Example height map with some craters.



Your tasks in detail:

1. Implement a suitable algorithm which procedurally generates such a height map. Your algorithm
should get several input parameters: the amount of craters as well as the minimum and maximum
size of each of them.

2. In the first step you should use a noise to generate a height map like in Figure Second,
you should place some ellipsoid-based craters. For better results you should blur the transitions
between generated craters and underlying height map.

3. Use your generated height map to create an Ogre: :ManualObject which represents your surface.
In order to do so, create a simple plane and modify the vertex data in accordance to your generated
height map.

4. Generate 2 different asteroid surfaces and document your results with screenshots.



