University of Bremen
Prof. G. Zachmann School of Computer Science
P. Lange CGVR Group
July 11, 2014

Summer Semester 2014

Assignment on Advanced Computer Graphics - Sheet 6

Due Date 24. 07. 2014

Exercise 1 (Procedural Brick Texture, 3 Credits)

In the Advanced Shader Techniques lecture a procedural brick texture was introduced:

BrickPercent.x
e

I
1
_______ .
I 1
I 1

|-
BrickStepSize.x

= Simplification &
parameters:

= Goal:
Brick texture

Figure 1: Procedural brick texture approach from the lecture.

Re-implement the idea in Ogre within the given framework:

e UseBrickFramework: :generateBrickTexture(double BrickStepSizeX, double BrickPercentX,
double BrickStepSizeY, double BrickPercentY, Ogre::TexturePtr MortarColar, Ogre::TexturePtr
BrickColor) to generate a brick texture.

e Implement the functions BrickFramework: : generateMortar and BrickFramework: : generateBrick,
which should generate the texture for the mortar as well as brick.

e For the brick and mortar texture use the SimpleNoise class or your favourite noise library to gen-
erate some interesting brickwalls. Also add some ‘shadow’ directly on the brick texture. Assume,
that no lighting/shader/bump mapping/displacement mapping will create some shadows. See the
example picture below for some reference of the bricks.

o The generated texture should be applied to the given Ogre: :Plane, document your results with
some screenshots.

Figure 2: Simple brick example.

Exercise 2 (Simple Clustered Backface Tagging, 5 Credits)

In the Advanced Visibility Computations lecture some methods for culling were introduced, one
was the hierarchical clustered culling approach. Implement the following algorithm which should
cluster a geometry and tag invisible triangles. The approach is as follows: First, it clusters the
triangles of a given 3D model into a given number of smaller chunks. These chunks are organized in
a hierarchical tree structure. In a second step, the visibility properties of the tree nodes are computed
which determine the visibility of the geometry.

Your tasks in detail:

e Use ClusterFramework: :prepareModel() to load and render the 3D model from disk. The
Ogre: :MeshManager can load the corresponding .mesh file with the 1oad function. The Ogre: :EdgeData
with the normals, vertices and triangles can be retrieved via the resulting Ogre: :MeshPtr from the
read process. Draw only the triangle lines of the 3D model with the ClusterFramework: :draw3DLine (
std::string name, Ogre::Vector3 from, Ogre::Vector3 to, std::string materialName).
Render the original 3D model besides for comparison. Use this to check if you do not miss any
triangles for your clustering process.

e Complete the simple tree structure ClusterGeometry which represents the hierarchical clusters
of the geometry. Extend the given structure for your needs. It may be useful to add a list of
triangles to ClusterNode and ClusterLeaf

o Cluster all triangles of the 3D model via implementing the ClusterFramework: : cluster(Ogre: :EdgeData
modelData, int amountOfClusters, Ogre::Vector3 cameraPosition, Ogre::Vector3 viewDi-
rection) function. It should create the hierarchical cluster of the geometry via using the Clus-
terGeometry class. The structure should have amount0fClusters. Therefore, you should try to
equally distribute the n triangles of the mesh to the amountOfClusters clusters. The triangles
should be inserted into the clusters with respect to the triangle position in z and camera position,
expressed by the cameraPosition and viewDirection. Triangles which are close to the camera
should be at the top of the tree structure, triangles which are far away from the camera should
be at the bottom of the hierarchy. It may be useful to use a "layer-approach” which cuts the
geometry in z direction in equal slices. These slices can be further splitted for better clustering
(e.g. in x or y axis).

e Compute for each cluster if it is back-facing or not: ClusterFramework: :facing(ClusterNode
xcn, double alpha, Ogre::Vector3 cameraPosition, Ogre::Vector3 viewDirection). If
it is back-facing, use the ClusterFramework: :draw3DLine function to colorize the triangle lines
in red. For front-facing clusters, colorize the triangle lines green. It may be useful to use an angle
« for a conservative set of triangles. You can use this angle when comparing the triangle normal
with the camera view direction for better results. You should start with the root of the Cluster-
Geometry. Use the triangles visibility properties from parent ClusterNodes to derive visibility
properties for child ClusterNodes instead of computing the visibility check for every triangle of
every cluster.

e Determine (in theory) if your approach needs less visibility checks for the mesh when compared
to an iterative approach, which would check every triangle. Argue, which cluster size m should be
used for a mesh with n triangles when using your implemented clustering approach with visibility
checks.

e Document your results with some screenshots.

Exercise 3 (Cube Maps, 2 Credits)

Given the (s,t,r) texture coordinates of a vertex, assume that |s| is the largest component by value,
i.e., OpenGL will have to project (s, t,7) onto the side z = 1 of the unit cube (which is the parameter
domain for cube maps).

Write down the calculations needed to compute the (u,v) pair on that cube side.

