
Prof. G. Zachmann
P. Lange

University of Bremen
School of Computer Science

CGVR Group
April 30, 2014

Summer Semester 2014

Assignment on Advanced Computer Graphics - Sheet 2

Due Date 15. 05. 2014

Exercise 1 (Raytracing Basics, 10 Credits)

In this exercise, you will complete our raytracing framework. To do that, you have to implement
some functions in this framework.

First, please take some time to become familiar with the structure of the framework. The hints given
in the lab class, but also the comments in the code should help you.

Basically, the framework consists of four essential components:

• GUI: The GUI is based on Qt4. In order to compile the framework you will need a version of the
Qt-framework to be installed on your PC (http://qt-project.org/). In the window on the right
side, the GUI shows the resulting image that is generated via raytracing. The window on the left
side shows an OpenGL rendering of the scene. You can use it for debugging and for a comparison
between the global illumination generated by raytracing and the local OpenGL lighting.

However, OpenGL and Qt are not necessary for the understanding of the raytracer; therefore, you
should simply ignore this part of the code.

• XML Parser: The program reads 3D scenes in a simple XML format. We use a freely available
XML library for parsing. You will find a pre-compiled version for windows in the zip-file. If you
use Linux or Apple, you have to compile the library from the sources. You can find a Makefile

in the xmlParser sub-folder.

The XML file format should be almost self-explanatory. However, you don’t have to create
scenes by your own, you can simply use the pre-defined example scenes (objects.xml, glass-
spheres.xml, metal-spheres.xml or steinbach.xml).

• Mathematical Helper Classes: You will find some simple template classes to simplify mathe-
matical computations:

– VectorT: template for n-dimensional vector computations

– MatrixT: template for quadratic n×n matrices

– Matrix33T: specialisation of MatrixT for 3×3 matrices

– ColorT: template for RGB color computations

• Raytracer: The basic components of the raytracer are concentrated in the Raytracer class:

– Raytracer::render(): generates a ray for each pixel.

– Raytracer::traceRay(): traces the ray through the scene.

– Raytracer::shade(): This function should compute the local (Phong) shading for a point in
the scene. Moreover, it should test whether or not the point is in the shadow.

1



The PinholeCamera class implements a simple pinhole camera. The most important function is
PinholeCamera::generateRay(). It generates a ray from the eye point through the pixel (x,y)
in the image plane.

The Ray class represents such a ray. Basically, rays are defined by their starting point and a
direction. Moreover, the class includes functions to compute the reflected and refracted rays.

All classes for entities in the scene (geometry, materials, light sources) are derived from their
respective virtual base classes:

– Surface: virtual base class for geometric objects. All derived classes implement their own
intersect() function that computes the intersection between the objects and a ray. The
derived classes Plane, Sphere and Checkerboard are fully implemented.

– Shader: Virtual base class for materials. The derived class PhongShader is fully implemented.
The function PhongShader::shade() computes the local Phong model.

– Light: Virtual base class for light sources. The derived classes PointLight and Direction-

alLight are fully implemented.

Your tasks:

1. Implement the function Raytracer::shade() in the file Raytracer.cpp. In this function, you
should test whether or not the pixel is in the shadow. If the pixel is not in the shadow, you have
to set its color to the appropriate (Phong) lighting.

If you implement this function correctly, the resulting image should look almost like the OpenGL
rendering on the left side of the GUI.

2. In order to realize a real raytracer, we have to trace also reflected rays. To do that, you should
implement the function Ray::reflectedRay() in Ray.cpp.

Moreover, you have to use this function in Raytracer::traceRay() to recursively compute the
reflected color (that has to be added to the current color value).

3. Finally, we also want to include refractions into our raytracer. Therefore, you have to implement
the function Ray::refractedRay() in Ray.cpp. It should, depending on the refraction index of
the material, return the refracted ray.

As in the previous part, you also have to trace the refracted ray recursively through the scene in
Raytracer::traceRay() to compute the appropriate amount of color.

2



Figure 1: Correct example rendering of the metal-spheres.xml scene

3


