
A Brief OpenGL Shading Tutorial
Marc Olano

University of Maryland, Baltimore County

1 Overview
There are two main pieces to using the OpenGL Shading language in an
application, the language itself, and the portions of the OpenGL API that
control that language. The language is similar in many respects to the
other real-time shading languages presented here, Cg and HLSL, though
we will highlight some of the similarities and differences. It is in the API
that the difference is most evident.

2 The OpenGL API
As of OpenGL 2.0, the shading language features are a required part of
the core API. If you have OpenGL 2.0, you need not worry about whether
your particular card and driver support the shading language — they
must. In OpenGL 1.5, the shading language features were an ARB-
approved optional extension. The OpenGL ARB is the standards body that
determines what is officially part of OpenGL, as compared to vendor-
defined extensions that don't need ARB approval. As an ARB-approved
extension, you know that anyone who does support it will support the
same interface and language [Lichtenbelt and Rost 2004]. You can check
if an OpenGL 1.5 driver supports the shading language by checking for
the GL_ARB_shader_objects extension string in the glGetString()
results.

We will present the OpenGL 2.0 versions of the calls. In most cases, the
ARB_shader_object versions just add an ARB extension, so functions
like glCreateShaderObject() become glCreateShaderObjectARB()
and symbols like GL_VERTEX_SHADER become GL_VERTEX_SHADER_ARB.
The definitive source for the OpenGL 2.0 API is the specification [Segal
and Akeley 2004]. The OpenGL specification used to be a rather difficult
document to use for all but the most determined, but as a searchable
PDF, it is actually not too difficult to use it directly as a reference.

The main difference between OpenGL and the other languages is that
the OpenGL shading language and compiler are built directly into the
OpenGL API and provided by the graphics card vendor as part of their
driver. There is no intermediate low-level code to get from the compiler
and hand to the API. This has some potential hidden advantages as well.
The instruction sets actually executed by the graphics hardware already
different from the standard instructions sets. For example, even if the
hardware can execute up to four independent arithmetic operations in a
single 'instruction', the low-level instruction sets only support executing

SIGGRAPH 2006 4 - 1 Course 3, GPU Shading and Rendering

the same operation on the same data. A final optimization on the low-
level code can find and fix these, but the high-level language compiler is
left to try to match a pattern that the low-level optimizer will recognize
and fix. There's some chance this will work if both come from your
hardware vendor, but it's easy to get non-optimal code. By hiding any
low-level translation, the shading compiler built into OpenGL is free to
target whatever the hardware really does, and the hardware vendors are
more free to change it later to improve their hardware without worrying
about matching that hardware to the language. Note that Direct3D is
moving to this model as well [Blythe 2004].

2.1 The Interface
The OpenGL shading interface has two important concepts, shader
objects and program objects. Shader objects hold a single high-level
(vertex or fragment) shader, while program objects contain the collection
of shader objects used to render an object. Shader types for other future
kinds of shaders have not yet been defined (e.g. for geometry shaders
[Blythe 2004]), but would fit cleanly into this interface.

To create, load from a single C-style string, and compile a vertex and
fragment shader object, you could use code like this:

vert = glCreateShaderObject(GL_VERTEX_SHADER);
glShaderSource(vert, 1,(const GLcharARB**)&vString,NULL);
glCompileShader(vert);

frag = glCreateShaderObject(GL_FRAGMENT_SHADER);
glShaderSource(frag, 1,(const GLcharARB**)&fString,NULL);
glCompileShader(frag);

These two can be joined into a single program object like this:

prog = glCreateProgramObject();
glAttachObject(prog,vert);
glAttachObject(prog,frag);
glLinkProgramObject(prog);

Whenever you want to use this set of shaders on an object, you just tell
OpenGL that you want to start using it.

glUseProgramObject(prog);

SIGGRAPH 2006 4 - 2 Course 3, GPU Shading and Rendering

2.2 Alternatives for Loading
The interface for loading shader source is quite flexible, allowing many
variations for how your program handles its shaders. The actual
parameters are

glShaderSource(object,segments,stringArray,lengthArray)

The arrays (containing segments entries; one in the example above) allow
shaders to be stored as a set of lines or code segments, which need not
be null-terminated. If any length is -1, OpenGL assumes that segment is
a null-terminated string and computes the length. If the pointer to the
length array is NULL, OpenGL assumes every segment in the array is null-
terminated.

Having an array of lengths means the segments need not be null-
terminated if that isn't convenient. In particular, if you have the ability to
map a file directly to memory, you could use code similar to this:

fd = open(vsname.c_str(), O_RDONLY, 0);
fstat(fd,&sb);
sh = (char*)mmap(0,sb.st_size,PROT_READ,MAP_FILE,fd,0);
glShaderSource(vert, 1, (const GLcharARB**)&sh,
 (const GLint*)&sb.st_size);

This code relies on fstat(), which reports information on a file,
including its size, and mmap(), which maps a file directly into memory,
potentially more efficiently than reading it in.

2.3 Compile Errors
The above code may be fine for production use, once the shaders are
known to be error-free, but no one is capable of writing error-free code
every time. After the glCompileShader(), you can find out if the shader
compiled successfully with

glGetShaderiv(vert, GL_COMPILE_STATUS, &result);

result will be true (non-zero) if the shader compiled successfully. To
find out what is wrong with a shader that didn’t compile, check the info
log:

glGetShaderInfoLog(vert, bufsize, NULL, buffer);

Similarly, glGetProgramiv() and glGetProgramInfoLog() can tell you
about the success (or failure) of the progam linking step.

SIGGRAPH 2006 4 - 3 Course 3, GPU Shading and Rendering

2.4 Shading Parameters
Of course, once you can load and use a shader, you still need a means to
control it. Since the OpenGL shading language is built into OpenGL, every
vertex shader has access to all of the usual OpenGL vertex attributes
(position, color, normal, etc.), and all shaders have access to the built-in
OpenGL state (light positions, matrices, etc.). Shaders access all of these
using special pre-defined names in the shading language. However, any
shader can also define additional attributes and state that it would like to
use. You can find out the index for a per-vertex attribute with

index = glGetAttribLocation(prog, "vertexAttribute");

and set a value using one of the glVertexAttrib*() functions. For
example

glVertexAttrib3f(index, 0,.5,1);

All vertex attributes, whether built-in ones like glColor or user-defined
must be set before the corresponding glVertex call.

A similar set of functions exist for any user-defined uniform state. The
uniform state affects the current program, so switch programs before you
start setting the state.

index = glGetUniformLocation(prog, "uniformVariable");
glUniform4f(index, .2,.4,.6,1);

The string name used to identify a variable can be more than the variable
name alone. It can include array indexing and structure dereferencing
operations to allow you to set a single element. For example,

index = glGetUniformLocation(prog,
 "structArray[2].element");
glUniformMatrix4fv(index, 1,0, matrix);

3 Shading Language
Many excellent references exist for the OpenGL Shading Language exist,
so this document will not attempt to exhaustively list every feature. For
more details, refer to one of the other sources [Kessenich et al. 2004;
Rost 2004]. Many of the features of the OpenGL shading language, are
similar if not identical to the other shading language options. All have
you write vertex and fragment/pixel shaders (as opposed to the
RenderMan model of displacement, surface, light, volume and imager).
All inherit many syntactic features from C, including if, while, for, the

SIGGRAPH 2006 4 - 4 Course 3, GPU Shading and Rendering

use of "{", "}", and ";", and the existence of structs and arrays for
grouping data. They also share certain features of all shading languages
(even non-real-time languages like RenderMan), in having small vectors
and matrices as built-in types, and a common set of math and shading
functions. Like other real-time languages, screen-space derivatives are
available (through the dFdx() and dFdy() functions), a struct-like
notation is used for swizzling vector components and writing to only
specific vector components. For example

vec2.xzw = vec1.yyw;

assigns vec1's y value to vec2's x and z component and vec1's w value
to vec2's w component. vec2's z component keeps whatever value it had
before the assignment.

3.1 Notable Differences
Probably the first difference you'd notice between the OpenGL Shading
Language and either Cg or HLSL is the important part that virtualization
plays in the OpenGL language philosophy. If all of the programs running
on your CPU exceed the available physical memory, the operating system
can make it seem as if you have a much larger pool of virtual memory by
swapping some stuff off to disk. It's not as fast switching between
applications as if you had a larger pool of physical memory, but in most
instances it's much better than crashing or not letting you switch back
and forth between two applications.

Similarly, the OpenGL shading language defines some minimum
features (and some features like instruction count for which there are no
defined limits). A working OpenGL Shading Language implementation is
required to make it seem as if you're running on that ideal hardware. It
may switch to running multiple passes, it may run some things in
software, but they will always run. This means one code base may run in
a two passes on one machine, in three on another, or in one on a future
machine that didn't even exist when you wrote the shader. Splitting
shaders into multiple passes is hard to do by hand, especially when you
are writing high-level code, so it makes much more sense to let the
shading compiler use one of the multi-passing compilation techniques
[Foley et al. 2004; Riffel et al. 2004] than for you to try to do it twelve
different ways by hand.

The second notable difference is that in the OpenGL Shading Language,
vertex to fragment communication is determined by the vertex shader
writing to a varying variable and the fragment shader using it. The
compiler chooses the interpolator to use. From the language standpoint,
it's just data.

SIGGRAPH 2006 4 - 5 Course 3, GPU Shading and Rendering

There are other minor differences in the names of some of the data
types (OpenGL's vec4 vs. Cg or HLSL's float4). Those are usually pretty
obvious and easy to translate from one to the other. One that may catch
more users is that in OpenGL, matrix*vector is a matrix/vector product
and matrix*matrix is a linear algebraic matrix product, as compared to
Cg where you use the mul() function and matrix*matrix gives a
component-wise multiply (there's a function for that in OpenGL). They're
the same operations, just with syntax that differs in a way that may
surprise the unsuspecting.

4 Example
This example shows a simple single-light diffuse shading computed per
vertex and applied to a 3D noise fragment shader

Vertex shader:
// noise input to fragment shader
varying vec3 Nin;

void main()
{
 // transform vertices into projection space
 gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex;

 // vertex in view space for lighting

vec4 viewPos = gl_ModelViewMatrix*gl_Vertex;

// normalized normal, also in view space

 vec3 nn = normalize(gl_NormalMatrix*gl_Normal);

 // handle directional and point lights together
 vec3 nl =
 normalize(gl_LightSource[0].position.xyz*viewPos.w
 - viewPos.xyz*gl_LightSource[0].position.w);

 // add ambient and diffuse lighting
 gl_FrontColor =
 gl_FrontMaterial.ambient*gl_LightSource[0].ambient
 +gl_FrontMaterial.diffuse*gl_LightSource[0].diffuse
 * max(0.,dot(nn,nl));

 // compute scaled noise input
 Nin = gl_Vertex.xyz*.1;
}

SIGGRAPH 2006 4 - 6 Course 3, GPU Shading and Rendering

Fragment Shader:
// vertex to fragment communication for noise shaders
varying vec3 Nin;

// 2D noise texture
uniform sampler2D ntex;

// modulus for random hash
const float modulus = 61.;

void
main()
{
 // integer and fractional components of input
 float fracArg = fract(modulus*Nin.z);
 float intArg = floor(modulus*Nin.z);

 // hash z & z+1 to get offsets for noise slices
 // compared to the noise described in the Modified
 // Noise paper, I found that including a small
 // mutually prime multiplier improved the visual
 // quality of the hash near 0. I believe this is
 // because 0^2, 1^2, 2^2 are well under the hash
 // modulus and close enough to appear correlated
 // so… 3*(z+1) = 3*z + 3
 vec2 hash = mod(vec2(3.*intArg)+vec2(0.,3.),modulus);

hash = mod(hash*hash,modulus)/modulus;

 // look up noise and blend slices
 vec2 g0, g1;
 g0 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.x)).ra*2.-1.;
 g1 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.y)).ra*2.-1.;
 float noise = mix(g0.x+g0.y*fracArg,

 g1.x+g1.y*(fracArg-1.),
 smoothstep(0.,1.,fracArg));

 // combine with lighting
 gl_FragColor = (noise*.5+.5)*gl_Color;
}

The results of this vertex and fragment shader is shown in Figure 1.

 a b c

Figure 1. a) red component of texture. b) alpha component of texture.
c) Teapot rendered with resulting appearance

SIGGRAPH 2006 4 - 7 Course 3, GPU Shading and Rendering

References
[Blythe 2004] David Blythe, "Windows Graphics Foundation", WinHEC 2004
presentation, May 2004.
[Foley et al. 2004] Tim Foley, Mike Houston and Pat Hanrahan, "Efficient Partitioning of
Fragment Shaders for Multiple-Output Hardware", Proceedings of
Eurographics/SIGGRAPH Graphics Hardware 2004, July 2004.
[Kessenich et al. 2004] John Kessenich, Dave Baldwin and Randi Rost, The OpenGL
Shading Language, Language Version 1.10, OpenGL ARB, April 2004.
[Lichtenbelt and Rost 2004] Barthold Lichtenbelt and Randi Rost,
"ARB_shader_objects", OpenGL extension document, OpenGL ARB, June 2004.
[Riffel et al. 2004] Andrew T. Riffel, Aaron E. Lefohn, Kiril Vidimce, Mark Leone and
John D. Owens, "Mio: Fast Multipass Partitioning via Priority-Based Instruction
Scheduling", Proceedings of Eurographics/SIGGRAPH Graphics Hardware 2004, July
2004.
[Rost 2004] Randi Rost, OpenGL Shading Language, Addison Wesley, 2004.

[Segal and Akeley 2004] Mark Segal and Kurt Akeley, The OpenGL® Graphics System:
A Specification, Version 2.0, Editors Jon Leech and Pat Brown, OpenGL ARB, October
2004.

SIGGRAPH 2006 4 - 8 Course 3, GPU Shading and Rendering

Graphics Hardware (2005)

M. Meissner, B.- O. Schneider (Editors)

Modified Noise for Evaluation on Graphics Hardware

Marc Olano†

UMBC

Abstract

Perlin noise is one of the primary tools responsible for the success of procedural shading in production rendering.

It breaks the crisp computer generated look by adding apparent randomness that is controllable and repeatable.

Both Perlin’s original noise algorithm and his later improved noise were designed to run efficiently on a CPU.

These algorithms do not map as well to the design and resource limits of the typical GPU. We propose two

modifications to Perlin’s improved noise that make it much more suitable for GPU implementation, allowing

faster direct computation. The modified noise can be totally evaluated on the GPU without resorting to texture

accesses or “baked” into a texture with consistent appearance between textured and computed noise. However,

it is most useful for 3D and 4D noise, which cannot easily be stored in reasonably-sized textures. We present one

implementation of our modified noise using computation or direct texturing for 1D and 2D noise, and a procedural

combination of 2D textures for the 3D noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image genera-

tion; Display algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; Color, shading,

shadowing and texture

1. INTRODUCTION

Procedural shading allows a programmer or technical artist

to write short procedures called shaders in a shading lan-

guage to define how surfaces will appear. This general tech-

nique has proved hugely successful in production rendering,

appearing in almost every CGI film and effects shots, from

Toy Story [Pix95] to Lord of the Rings [New01].

Arguably, one of the main reasons for the realism associ-

ated with procedural shading, and its popularity in produc-

tion rendering, is the Perlin noise function. Noise was intro-

duced as part of Perlin’s Image Synthesizer [Per85]. In 1997

he received a Technical Achievement Academy Award for

its development and the impact it has had on movie effects.

The Perlin noise function adds randomness to procedural

shaders, and is commonly used both as a surface appearance

modeling tool and as a means to add dust, scuffs, or other

imperfections to otherwise pristine surfaces [EMP∗02].

The key aspects of Perlin noise are that it is determin-

† email:olano@umbc.edu

istic and frequency band-limited. Determinism allows it to

be reliably used in animation. Thus, the appearance of an

object will not change unexpectedly from frame to frame.

The frequency band limits allow it to be used in a control-

lable fashion. Perlin’s noise function has most of its energy

between .5 and 1 cycles per input unit. A shader-writer de-

siring higher or lower frequencies simply scales the noise

inputs to produce the desired frequency profile. More com-

plex frequency profiles can be synthesized by adding several

octaves, as with the fractional Brownian motion (fBm) and

turbulence functions [Per85].

A number of noise variants are used, with varying input

dimension (usually 1D-4D), and varying output dimension

(usually 1D or 3D). 3D-output noise can be built from three

offset 1D-output noise functions. Consequently, as Perlin

did, we concern ourselves with 1D (single float) output. In

the remainder of this paper, n-D noise refers to a noise func-

tion with n-dimensional input and 1D output.

Perlin’s formulation uses several chained table lookups,

operations that are relatively fast on a CPU, but can be a

bottleneck on a GPU [Wei04]. We present a modified noise

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 9 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

oNoise1@xD oNoise2@x, 0D

(a) Original Perlin noise

iNoise1@xD iNoise2@x, 0D

(b) Perlin improved noise

cNoise1@xD cNoise2@x, 0D

(c) Corner-gradient noise

mNoise1@xD mNoise2@x, 0D

(d) Modified noise

Figure 1: Plots of 1D noise functions and a 1D slice through

their 2D counterparts. Note that the dimension reducible

property, makes noise1[x] and noise2[x,0] match

for (c) and (d)

function with no table lookups. It may be accelerated with

textures to hold evaluated results of 2D subexpressions, but

unlike the original noise formulation, they are neither re-

quired, nor do they form a dependent chain.

Section 2 explores prior work in noise construction. Sec-

tion 3 introduces our modifications and compare them to

Perlin’s noise functions. As is seen in Figure 1(b), Perlin’s

improved noise sometimes exhibits artifacts that the original

did not, so we compare our modified noise to both (in fact,

these artifacts were the original inspiration for this work).

2. PRIOR WORK

Peachy [EMP∗02] created a useful taxonomy for noise func-

tions. The most common choice in production rendering is

gradient noise: a repeatable function is used to choose a ran-

dom gradient at each point on an integer lattice. Between the

lattice points, polynomial interpolation produces a smooth

noise function with the desired gradient at each lattice point.

Perlin’s original noise was of this form [Per85], using a hash

of the lattice point locations to choose random gradients

from a pre-computed table.

Lewis [Lew89] instead used sparse convolution to con-

struct a noise function. Sparse convolution noise avoids

grid artifacts common with grid-based noise synthesis ap-

proaches, but is more computationally expensive to evaluate

on the fly. Van Wijk’s Spot Noise is similar, but modifies the

noise by changing the spot shapes [vW91].

Perlin’s simplex noise variant also reduces grid artifacts

by using an n-simplex as the basic grid (i.e. triangle rather

than square, tetrahedron rather than cube) [Per01]. There is a

GPU implementation by Gustavson [Gus05]. Simplex noise

has the advantage of only combining n + 1 gradients rather

than 2n for n-D noise, but is otherwise independent of any

modifications we propose here.

Most real-time systems have elected to use the inferior

Figure 2: Comparison of computed (light) and sampled

(dark) noise for different texture sizes: 2 samples/unit = tex-

ture size 2×period; 3 samples/unit = texture size 3×period;

or 4 samples/unit = texture size 4×period.

value noise [LMOW95, Har01]. Value noise interpolates be-

tween random noise values defined at each lattice point The

maximum frequency of value noise is 1/2 Hz, but contains

significant lower-frequency energy. Combined with the more

prevalent grid artifacts, this makes value noise a poor visual

choice. It is, however, exceptionally easy to compute.

Recently, Perlin [Per02] introduced an improvement to his

original noise. The improved version is still a lattice gradient

noise, with two changes. It uses a higher order interpolant

for a smoother look, and rather than hashing lattice points

into a table of gradients, one of a fixed set of gradients is

computed from the hash value itself. There is an optimized

GPU implementation by Green [Gre05].

One common optimization for hardware is baking the

noise function into a texture. Close viewing requires a tex-

ture at least 3-4 times the noise period (Figure 2). Traditional

Perlin noise has a period of 256, requiring 7682 or 10242 tex-

tures to accurately represent the 2D noise or 7683 − 10243

for 3D noise!

Perlin has also presented a technique to greatly re-

duce these memory requirements for one 3D noise [Per04]

(though the method could apply for 1D-3D noise). He gener-

ates a small 3D complex-number noise texture, then extends

the period of this repeating texture by rotating the com-

plex output according to a second, low-frequency, 3D noise

(which can use the same texture). The final noise value is the

real component of the output. His version uses a 253 texture

with a base period of 8 to achieve noise with a period of 72.

The noise created through this method does not match any of

the previous computed noises, though its statistical charac-

ter is similar. The complex rotation uses trigonometric func-

tions, and computing a matching noise is problematic, but

the memory compression is excellent.

3. MODIFYING NOISE

As our first modification, we would like the lower-

dimensional noise functions to be a direct slice from their

higher-dimensional counterpart. We will refer to noise with

this property as dimension reducible. Textured implemen-

tations of a dimension-reducible noise can make particularly

efficient use of the available texture memory. In our final im-

plementation, we use single 2562 texture for 2D noise with a

period of 61. 1D noise is just one line from the same texture

(see Figure 1).

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 10 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

Second, while the noise function derived here may be used

directly from a texture, we feel it is important that it also be

computable without textures or table lookups. We will re-

fer to noise with this property as purely computable. In our

implementation, the noise textures are generated by direct

GPU computation into a texture. In addition, purely com-

putable noise allows a partial precomputation into textures,

as presented in Section 3.4.

Finally, even if textures are to be used in the implementa-

tion, we would like to avoid dependent texturing. Hardware

limiting the number of dependent lookups does still exist, so

it is good shader citizenship not to use all of them in imple-

menting the noise function. Even on hardware that does not

limit the number of dependent lookups, chains of lookups

make it more difficult to hide the texture fetch latency.

We present our modifications along with an overview of

Perlin’s original and improved noise. We will refer to these

as oNoise and iNoise respectively. This comparison will

serve to highlight the areas of flexibility in defining a noise

with the same general characteristics as oNoise and iNoise.

3.1. Commonalities

Given an input point, both algorithms locate the 2n surround-

ing lattice points. For 2D, the points surrounding ~p are

~pi; jk =

(

⌊~px⌋+ j

⌊~py⌋+ k

)

; j,k ∈ {0,1}

Through some method (differing for each noise), a gradi-

ent vector is computed at each ~pi, and a function with the

desired gradient constructed

~p f = ~p−~pi

grad(~pi,~p f) = gradient(~pi)•~p f

The nearest lattice gradient functions are blended using a

smooth interpolation. The most common method factors a

smooth fade function into the interpolation parameter of a

linear, bilinear or trilinear interpolation.

fade(t) =

{

3t2 −2t3 for oNoise

10t3 −15t4 +6t5 for iNoise

flerp(t,a,b) = (1− fade(t)) a+ fade(t) b

We can choose either fade function (or even a linear fade)

to balance computation and appearance. Except where indi-

cated, images here were produced using the cubic fade func-

tion. oNoise, iNoise and our modifications all differ only in

the choice of fade function and gradient vectors. Thus, the

2D noise equation for all is

noise2(~p) = flerp(~p
y
f ;00,flerp(~px

f ;00,grad(~pi;00,~p f ;00),

grad(~pi;10,~p f ;10)
flerp(~px

f ;00,grad(~pi;01,~p f ;01),

grad(~pi;11,~p f ;11))

(a) 3D (b) 2D

(c) 3D→2D

(d) 2D→1D

Figure 3: Noise gradients. a,b) direct; c,d) from a slice of

higher-dimensional noise. Small/Black: oNoise gradients on

a unit n-sphere; Large/Medium: iNoise gradients at the edge

centers of a unit n-cube; Small/Light: cNoise and mNoise

gradients at the corners of a unit n-cube

iNoise cNoise

3D: (±x,±y,0),(±x,0,±z),(0,±y,±z) (±x,±y,±z)
3D→2D: (±x,±y),(±x,0),(0,±y) (±x,±y)]2D: (±x,±y),(±x,0),(0,±y) (±x,±y)
2D→1D: (±x),(0) (±x)]1D: (±x),(0) (±x)

Table 1: grad functions for Perlin’s improved noise (iNoise)

and our cNoise. Notice that the projection to a lower di-

mension produces spurious gradients in iNoise, but projects

cleanly in cNoise

3.2. Gradients

The noise functions begin to differ with their selection of

random gradients. oNoise chooses lattice gradient values

from a unit n-sphere, while iNoise instead chooses gradients

at the center of the edges of a unit n-cube. The values of these

gradients are shown in Figure 3 and (for iNoise) Table 1. Fig-

ures 3(c) and 3(d) show the effective gradient distribution for

a 2D or 1D slice of a higher dimensional noise.

Figure 1 shows that these gradient distributions result in

noise functions that look similar at the intended dimension-

ality, but appear quite different for lower-dimensional slices.

From Figure 3 and Table 1, we observe that the problem

arises when a gradient vector in one noise does not project

down to the gradient that would be chosen in the lower-D

noise. iNoise is closer to resolving the problem, with only a

few problem gradients preventing degree reducibility. These

problem gradients result in the flat stretches in Figure 1(b)

(which will average one out of every four unit intervals!).

We solve the problem by changing the gradient selection

rules. Rather than choose gradients on the edge centers as

iNoise does, we choose gradients on at the cube corners.

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 11 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

(a) Original Perlin (b) Perlin Improved

(c) cNoise (d) mNoise

Figure 4: Comparison of 2D noise functions

This new noise will be referred to as cNoise. Perlin notes

the possibility of axis-aligned clumping with this distribu-

tion [Per02], but as can be seen in Figure 3, iNoise still ends

up using these same corner gradients in lower-dimensional

slices of the noise. Comparing the noise results (Figure 4),

we see that the clumping artifacts are not severe. We feel the

dimension reducibility far outweighs any minor artifacts.

Note that the gradient vectors will differ for 3D, 2D,

and 1D, but the grad function will produce identical re-

sults. For example, gradient vectors (1,1,1), (1,1), 1 are not

even the same dimensonality. But the 3D grad function is

~px
f +~p

y
f +~pz

f . In any integer-z plane (including z=0), this

becomes ~px
f +~p

y
f +0, which is exactly equal to the 2D grad

function, ~px
f +~p

y
f . Similarly, for integer-z and integer-y, the

3D grad is ~px
f +0+0.

3.3. Hashing

Gradients for oNoise and iNoise are both chosen using the

same hashing function; oNoise from a table of unit gradient

vectors, and iNoise from bits of the hash. Each lattice point

~pi is hashed using repeated applications of a small permu-

tation table. This table is precomputed to map each integer

from 0-255 to a unique new integer between 0 and 255. The

final single hash value is

hash3(~pi) = permute(permute(permute(~px
i)+~p

y
i)+~pz

i)

Note that the lower-dimensional hash functions are just

a slice out of the higher dimensional hash, offset by

permute−1(0):

hash2(~pi) = permute(permute(~px
i)+~p

y
i)

= hash3(permute−1(0),~px
i ,~p

y
i)

hash1(~px) = permute(~px)

= hash2(permute−1(0),~px)

cNoise uses this same hash function as well — the only dif-

ference from iNoise is in the gradient vector selection. Com-

puted gradients eliminate one possible lookup into precom-

puted values, but the hash itself is a major bottleneck for

GPU computation [Wei04]. The permutation table must be

computed in advance and stored, either into large 2D and

3D textures, or needing multiple chained lookups.

If we instead had a hash function that could be computed

on the fly, we could achieve the goal of a purely computable

noise. The requirements for a computed hash function are

that it take few instructions, be repeatable, and that there be

no noticeable correlation between nearby values. Note that,

while the permutation table hash is one-to-one for values be-

tween 0 and 255, this is not a necessity.

Quasi-random number generators, such as Sobel or Hal-

ton sequences, are common for jittered sampling in Monte-

Carlo methods [MC95]. They are easy to compute, but prove

far too correlated for our purposes. Pseudo-random number

generators have many of the features we desire, but tend

to be designed to have little correlation between successive

values [Cov60], so random number n is uncorrelated to ran-

dom number n+1. To use as a good hash function, we need

a way to jump to step 50 without having to call the random

number generator 50 times, or we need it to be uncorrelated

relative to successive seeds. These constraints rule out many

of the common generators.

Linear congruential generators [Knu81] appear too cor-

related when using successive seeds. The high-order bits of

successive values would work, and a closed form to jump

to value n does exist, but is expensive to compute robustly

due to the large exponents involved. Lagged Fibonicci gen-

erators [Knu81] have similar characteristics, but the closed

form to jump to value n involves a matrix exponentiation.

We observed better success with a modification of

the Blum Blum Shub (BBS) pseudo-random generator

[BBS86]. The BBS generator computes

xi+1 = x
2
i mod M

Where M = pq, for large primes p and q. The low order bit

or bits form the random output, and are all we need to gen-

erate gradients by the same method as cNoise. The period of

the resulting noise would be M. In CPU applications, BBS

is generally regarded as cryptographically secure, but too ex-

pensive for non-cryptographic use [Jun99]. We observe ex-

cellent results in CPU simulation when using the lattice lo-

cation as the seed and performing only one or two steps of

the generator, achievable in 4-5 low-level shading instruc-

tions per step. Note that GPU color-channel parallelism al-

lows computation of hash values for four lattice points si-

multaneously.

The five instruction version implements i mod M as i−
floor(i/M) ∗M. The four instruction version implements it

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 12 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

as frac(i/M) ∗M, but suffers from precision problems. The

latter version produces visually acceptable noise results, but

numerical inaccuracies result in a noise that does not repeat

at M as it should. We can use the first, exact, mod to compute

2D noise (where matching along texture seams is desirable),

but the latter, inexact, mod for 3D noise, where the noise

repeat factor is less of an issue.

Since current GPUs perform even integer computation in

floating point, reasonable values for M are simply too large

for small-format floating point numbers to hold without loss

of precision in intermediate computation. While it removes

any claim to cryptographic quality, we found a sufficient lack

of correlation for several prime M of a size small enough to

prevent the chance of overflow. All examples shown here use

M = 61. The maximum intermediate value of 612 = 3721 is

well within the range exactly representable as an integer on

these machines. This choice is a tradeoff between portability

(to small floats) and quality.

Like the Perlin noise functions, we construct a multidi-

mensional hash as follows.

hash3(~pi) = hash(~px
i +hash(~p

y
i +hash(~pz

i)))

hash(x) = x2 mod M

We call the resulting modified noise, combining corner-

based gradients and the computed hash, mNoise. An exam-

ple of mNoise is shown in Figure 5. mNoise is compared to

several other noise functions in Table 2.

3.4. Separable Computation

While the modified noise can be computed totally in a GPU

vertex or fragment shader, our low-level OpenGL shading

code for 2D noise is 45 instructions. That is simply too

many for many applications, especially for a function typ-

ically used several times in a single shader. Instead, we pre-

fer to use texture lookup for 1D and 2D noise. Results for 2D

mNoise for both a 1282 and 2562 texture are shown in Fig-

ure 2. Note that, while 1282 is above the Nyquist limit, it is

not sufficient to capture the character of the noise function.

The 3D noise is still large to store as a full texture, but

even more expensive for pure computation. Instead, we fac-

tor the 3D noise into groups of x-y expressions. The resulting

form involves two x-y terms for the integer z value below the

noise argument, and two for the integer z above. Thanks to

the dimension reducibility, one of these terms is exactly the

2D noise function! The other is the z component of the gra-

dient (missing in the 2D noise) blended in x-y according to

the flerp function.

We can store each of these x-y terms (2D noise and z-

gradient) into a single 2562 texture, accessed using:

~c0 = (~px,~py +hash(~pz
i))

~c1 = (~px,~py +hash(~pz
i +1))

The final 3D noise using separate 2D noise and z-gradient

textures is

f lerp(~pz
f , mNoise2(~c0)+~pz

f ∗ zgrad(~c0),

mNoise2(~c1)+~pz
f ∗ zgrad(~c1))

Or, with a single combined 2-channel texture, we see com-

putation similar to computed 1D noise (Figure 6)

f lerp(~pz
f , (1,~pz

f)• tex(~c0), (1,~pz
f)• tex(~c1))

4D is similar to computed 2D noise, using a 3-channel 2D

texture containing noise, z-gradient, and w-gradient.

flerp(~pw
f ,flerp(~pz

f , (1,z,w)• tex(~c00), (1,z,w)• tex(~c01))

flerp(~pz
f , (1,z,w)• tex(~c10), (1,z,w)• tex(~c11)))

where

~c jk = (~px,~py +hash(~pz
i + k +hash(~pw

i + j)))
j,k ∈ {0,1}

4. Using mNoise

It is common to combine several octaves of noise in order to

produce a random function with a more complex spectrum.

One of the most common such compositions is turbulence

[Per85], constructed as

‖noise(~p)‖+
1

2
‖noise(

1

2
~p)‖+

1

4
‖noise(

1

4
~p)‖+ ...

While we can perform independent calls to the noise func-

tion, the common computation allows for a more efficient

single turbulence function. For a 3D turbulence built from

2D noise textures, we can compute the hash function for

up to two octaves together, and the flerp and sum for up

to four octaves together. Figure 7(a) shows 4-octave turbu-

lence. Figures 7(b) and 7(c) show examples of 3D wood and

marble shaders using the 3D turbulence function based on

a 2D noise texture. All figures and video were generated

with an ATI 9700-equipped laptop running OpenGL 1.5 us-

ing single-pass fragment shaders.

5. CONCLUSIONS AND FUTURE WORK

We have presented two modifications to Perlin’s improved

noise function that increase its potential for hardware-based

implementation. The resulting noise is simple and inex-

pensive to evaluate and produces results comparable to the

original CPU noise functions. In addition, our noise has

the advantage that the same noise function can be com-

puted without any texture, or efficiently evaluated with a

single texture usable for all dimensions of noise. Sam-

ple implementations and more details are are online at

www.umbc.edu/˜olano/noise/.

In the future, we would like to explore more fully other

factorizations for the turbulence and fBm functions. We

would also like to apply our computed hash function to

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 13 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

noise period dimension texture sizes texture longest computation

(p) (n) (size×components) accesses chain notes

any, baked to texture any 1−3 values: ≥ (3p)n ×1 1 1 no computation

[Per85] 256 1−4+ hash: p×1; grad: p×1 2n+1 −2 n expensive

[Per02],cNoise 256 1−4+ hash: p×1 2n+1 −2 n similar to [Per85]

[Gre05] 256 3 hash: p2 ×4; grad: p×n 8 2 merge lookups to 2D textures

[Per04] 72 1−3 complex values: ≥ 25n ×2 2 1 simple (w/ trig);

kn|k = 3q+1;q · (q+1) = p to match without 3D texture,

need 4 3D noise calls

computed mNoise 61 1−4+ — — — similar to [Per85];

no lookups

mixed mNoise 61 3+ value+grad: ≥ (3p)2 × (n−1) 2 1 like (n-2)-D iNoise;

matches computed

Table 2: Comparison of texture-based noise implementations

other hash-based procedural primitives, including cellnoise

[Ups90], Worley’s n-th closest point cellular texture basis

function [Wor96], or tiled texture mapping [Wei04].

References

[BBS86] BLUM L., BLUM M., SHUB M.: A simple

unpredictable pseudo-random number generator. SIAM

Journal on Computing 15, 2 (May 1986), 364–383.

[Cov60] COVEYOU R. R.: Serial correlation in the gen-

eration of pseudo-random numbers. J. ACM 7, 1 (1960),

72–74.

[EMP∗02] EBERT D. S., MUSGRAVE F. K., PEACHEY

D., PERLIN K., WORLEY S.: Texturing and Modeling: A

Procedural Approach, third ed. Morgan Kaufmann, 2002.

[Gre05] GREEN S.: Implementing improved perlin noise.

In GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005,

ch. 26.

[Gus05] GUSTAVSON S.: Simplex noise demystified,

March 2005. http://www.itn.liu.se/˜stegu/simplexnoise/.

[Har01] HART J. C.: Perlin noise pixel shaders.

In Graphics Hardware 2001 (Los Angeles, CA, Au-

gust 2001), Akeley K., Neumann U., (Eds.), SIG-

GRAPH/EUROGRAPHICS, ACM, New York, pp. 87–

94.

[Jun99] JUNOD P.: Cryptographic secure pseudo-

random bits generation : the blum-blum-shub generator.

http://crypto.junod.info/bbs.pdf, 1999.

[Knu81] KNUTH D.: The Art of Computer Programming,

Volume 2: Seminumerical Algorithms. Addison-Wesley,

Reading, MA., 1981.

[Lew89] LEWIS J. P.: Algorithms for solid noise synthe-

sis. In SIGGRAPH ’89: Proceedings of the 16th annual

conference on Computer graphics and interactive tech-

niques (1989), ACM Press, pp. 263–270.

[LMOW95] LASTRA A., MOLNAR S., OLANO M.,

WANG Y.: Real-time programmable shading. In SI3D

’95: Proceedings of the 1995 symposium on Interactive

3D graphics (1995), ACM Press, pp. 59–ff.

[MC95] MOROKOFF W. J., CAFLISCH R. E.: Quasi-

Monte Carlo integration. J. Comp. Phys. 122 (1995), 218–

230.

[New01] NEW LINE CINEMA: Lord of the rings. Motion

Picture, 2001.

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH

’85: Proceedings of the 12th annual conference on Com-

puter graphics and interactive techniques (1985), ACM

Press, pp. 287–296.

[Per01] PERLIN K.: Noise hardware. In Real-Time Shad-

ing SIGGRAPH Course Notes (2001), Olano M., (Ed.).

[Per02] PERLIN K.: Improving noise. In SIGGRAPH ’02:

Proceedings of the 29th annual conference on Computer

graphics and interactive techniques (2002), ACM Press,

pp. 681–682.

[Per04] PERLIN K.: Implementing improved perlin noise.

In GPU Gems, Fernando R., (Ed.). Addison-Wesley,

2004, ch. 5.

[Pix95] PIXAR/DISNEY: Toy story. Motion Picture, 1995.

[Ups90] UPSTILL S.: The RenderMan companion: A

Programmer’s Guide to Realistic Computer Graphics.

Addison-Wesley, 1990.

[vW91] VAN WIJK J.: Spot noise - texture synthesis for

data visualization. In Computer Graphics (Proceedings of

ACM SIGGRAPH 91) (July 1991), Sederberg T. W., (Ed.),

pp. 309–318. ISBN 0-201-56291-X.

[Wei04] WEI L.-Y.: Tile-based texture mapping on

graphics hardware. In Graphics Hardware (August

2004), Akenine-Mol̈ler T., McCool M., (Eds.), Euro-

graphics/ACM SIGGRAPH, ACM Press.

[Wor96] WORLEY S.: A cellular texture basis function.

In SIGGRAPH ’96: Proceedings of the 23rd annual con-

ference on Computer graphics and interactive techniques

(1996), ACM Press, pp. 291–294.

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 14 Course 3, GPU Shading and Rendering

M. Olano / Modified Noise for Evaluation on Graphics Hardware

Figure 5: 2D mNoise, mapped onto a teapot. Note the

changes in density with texture parameterization

Figure 6: 3D mNoise built from two accesses to one 2562

texture. Noise is uniform in size throughout and continuous

even across the junction between pot and spout.

(a) (b) (c)

Figure 7: 3D mNoise turbulence, and wood and marble shaders built using it

c© The Eurographics Association 2005.

SIGGRAPH 2006 4 - 15 Course 3, GPU Shading and Rendering

	mNoise.pdf
	INTRODUCTION
	PRIOR WORK
	MODIFYING NOISE
	Commonalities
	Gradients
	Hashing
	Separable Computation

	Using mNoise
	CONCLUSIONS AND FUTURE WORK
	References

