Point Cloud Collision Detection

- Modern acquisition methods lead to modern object representations.
- Efficient rendering (splatting & ray-tracing).
- Only little work on interaction.

Goals
- Fast collision detection between point clouds.
- No polygonal reconstruction.

Surface Definition

- Approximate surface by implicit function
 \[S = \{ x : f(x) = 0, x \in \mathbb{R}^3 \} \]
- Define \(n(x) \) by weighted least squares.
- Weight
 \[\theta(x, p) = e^{-\frac{d(x, p)^2}{h^2}} \]
 \[d(x, p) = \text{some distance measure} \]
- \(f(x) = n(x) \cdot (a(x) - x) \)
- Which distance measure to use?
Geometric proximity graph:
- nodes = points
- edges = "neighboring" points

- Approximate geodesic distance by shortest path.

- Properties:
 - Nice surface
 - Efficient evaluation
 - Implicit function throughout space
 - Surface with boundaries allowed

[Klein & Zachmann, 2004]

Contributions

- Novel, fast intersection computation for point clouds
- Utilizes proximity graph
- Runtime $O(\log \log N)$, if constant number of intersection points is sufficient.
- Quality/resolution of output is adjustable.
Problem Statement

- Given two point clouds A and B (or subsets thereof),
 - decide if there is an intersection
 - construct a sampling of

\[Z = \{ x \mid f_A(x) = f_B(x) = 0 \}. \]

Overview

1. Bracket intersections by pairs of points.
2. Find approximate intersection point (AIP) by interpolation search.
3. Refine AIP by (randomized) sampling.
1. Root Bracketing

- Goal:
 - The pairs should evenly sample the surface.
 - The two points should not be too far apart.
 - Do it without explicit spatial data structure!
- Task: construct \(n \) pairs of points (to be root brackets)

- Thought experiment:
 - Assume surface is covered by \(\alpha \) surfels.
 - Cover each surfel with at least one point from \(A \) (candidate points for root brackets)
 - For each point: try to find another point from \(A \) lying on the other side of \(B \). (completing the brackets)

Covering the Surfels

Avoid spatial data structure \(\rightarrow \) pursue probabilistic approach: occupy all \(\alpha \) surfels with high probability!

- Assumption: \(A \) is uniformly sampled.
- Lemma from paper \(\rightarrow \)
 draw \(O(\alpha \ln \alpha) \) random and independent points from \(A \cap \text{Vol}(A \cap B) \).
 Proof: see paper.

Premise: number of intersection points should be bounded by a constant.

Consequence: choose \(\alpha \) constant, or choose \(\alpha \) depending on surfels size and surface area
Completing the Brackets

• Use $f_B(p_i) - f_B(p_j) < C$ as an indicator.
• Test only points p_j that
 - belong to the randomly chosen points
 - are close to each other
• Solution: SIG

Finding brackets:
$O(a \cdot \log^* d)$, where $d = \text{max. out-degree}$;
average-ase: $O(1)$

2. Interpolation Search

• Find $\hat{p} \in A$ along shortest path $\overline{p_i \hat{p}}$ in the geometric proximity graph, such that $|f_B(\hat{p})|$ is minimal.
• Utilize interpolation search! $\Rightarrow O(\log \log m)$, $m = \# \text{ elements}$
Interpolation Search

- Assumptions:
 - Shortest path are precomputed and stored in LUT.
 - f_B is monotone along shortest path.

```
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
|_l = 1                      |_r = 11
```

- Interpolation parameter: $x = l + \left\lfloor \frac{-f_B(P_i)}{f_B(P_r) - f_B(P_l)}(r - l) \right\rfloor$

- Large point clouds:
 - Memory consumption could be too high.
 → compute paths on-the-fly.
 - In practice: runtime still behaves sublinear.

3. Precise Intersection Points

- Refine approximate intersection point.
 → Details: see paper...

Runtime: $O(a \ln a)$
Complexity Considerations

- constant number of brackets, as \(\alpha \) is constant
- Interpolation search: \(O(\alpha \ln a \log \log m) = O(\log \log N) \)
 (\(m = \) length of paths, is not constant!)
- Precise intersection points: \(O(\alpha \ln a) = O(1) \).
- \(f(x) \) can be evaluated in \(O(1) \).

Overall runtime: \(O(\log \log N) \)

Benchmark Scenario

- Objects are scaled uniformly \(\rightarrow \) cube size \(2^5 \)
- Perform a full tumbling turn by a fixed, large number (5000) of small steps.
- Average collision detection time for a complete revolution.
Minimal Bracket Density

- If number of surfels is too small → influencing spheres in the graph are too large → likelihood increases that \(n(x) \) flips its sign without \(x \) changing sides.

- Use boolean collision queries to measure error.

![Graph showing error percentage over distance](image)

Complexity

- Theoretical complexity: \(O(\log \log N) \).

- Experimental complexity:

![Graph showing average time per million seconds](image)
Timings

- Benchmarking old vs. new method:
 - Old (RST) = brute-force sampling [EG’04]
 - iSearch = new

![Graph showing time vs. distance for RST (old) and iSearch (new)](image)

- 28,000 points

Conclusion

- **Technique:**
 - utilizes a proximity graph for collision detection and surface definition.
 - needs no BV hierarchies and no spatial partitioning data structure.
 - any BV hierarchy can be augmented by new technique to increase performance.

- **Runtime:**
 - fast (approximate) collision detection
 - overall runtime: $O(\log \log N)$ in average case.
 - speedup of factor 5–10 compared to "old" technique.

- **Quality/resolution of output (intersection points) can be adjusted**
 (\rightarrow surfel radius)
Future Work

- Deformable point clouds, SIG can be updated in $O(\log^3 N)$.
- More rigorous estimation of minimal bracket density.
- Consistency of $n(x)$.
- Out-of-core collision detection.

Thank you!

Jan Klein
Heinz Nixdorf Institute and
Institute of Computer Science
University of Paderborn, Germany
janklein@uni-paderborn.de

Dr. Gabriel Zachmann
Dept. of Computer Graphics and
Virtual Reality
University of Bonn, Germany
zach@cs.uni-bonn.de