
1

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

1 / 19

Point Cloud Collision Detection

• Modern acquisition methods lead to modern object representations.
• Efficient rendering (splatting & ray-tracing).
• Only little work on interaction.

Goals
• Fast collision detection between point clouds.
• No polygonal reconstruction.

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

2 / 19

• Define by weighted least squares.

original surface

Surface Definition

• Weight

• Approximate surface by implicit function

•

• Which distance measure to use?

2

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

3 / 19

• Geometric proximity graph:
– nodes = points
– edges = "neighboring" points

• Approximate geodesic distance by shortest path.

• Properties:
– Nice surface
– Efficient evaluation
– Implicit function throughout space
– Surface with boundaries allowed

[Klein & Zachmann, 2004]

Sphere-of-Influence graph (SIG)

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

4 / 19

Contributions

• Novel, fast intersection computation for point clouds
• Utilizes proximity graph
• Runtime O(log log N), if constant number of intersection points is sufficient.
• Quality/resolution of output is adjustable.

3

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

5 / 19

Problem Statement

• Given two point clouds A and B (or subsets thereof),

– decide if there is an intersection

– construct a sampling of

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

6 / 19

Overview

1. Bracket intersections by pairs of points.

2. Find approximate intersection point (AIP) by interpolation search.

3. Refine AIP by (randomized) sampling.

A

B

4

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

7 / 19

1. Root Bracketing

• Goal:

- The pairs should evenly sample the surface.

- The two points should not be too far apart.

- Do it without explicit spatial data structure!

• Task: construct pairs of points (to be root brackets)

• Thought experiment:

• Assume surface is covered by surfels.

• Cover each surfel with at least one point from A.
(candidate points for root brackets)

• For each point: try to find another point from A
lying on the other side of B.

(completing the brackets)

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

8 / 19

Covering the Surfels

Avoid spatial data structure → pursue probabilistic
approach: occupy all surfels with high probability!

• Assumption: is uniformly sampled.

• Lemma from paper →

draw random and independent points

from .

Proof: see paper.

Premise: number of intersection points should be bounded by a constant.

Consequence: choose constant, or choose depending on surfels size
and surface area

5

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

9 / 19

Completing the Brackets

• Use as an indicator.

• Test only points that

- belong to the randomly chosen points

- are close to each other

• Solution: SIG

Finding brackets:
O(a ln a * d),
where d = max. out-degree;
average-ase: O(1)

Only a few points have to
be tested!

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

10 / 19

2. Interpolation Search

• Find along shortest path in the geometric proximity graph,

such that is minimal.

• Utilize interpolation search! → O(log log m), m = # elements

Calculating
fB(…) …

Calculating
fB(…) …

Calculating
fB(…) …Calculating

fB(…) …Calculating
fB(…) …

AB

6

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

11 / 19

• Assumptions:

- Shortest path are precomputed and stored in LUT.

- is monotone along shortest path.

• Interpolation parameter:

• Large point clouds:

- Memory consumption could be too high.

→ compute paths on-the-fly.
- In practice: runtime still behaves sublinear.

Interpolation Search

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

12 / 19

3. Precise Intersection Points

• Refine approximate intersection point.
→ Details: see paper…

Runtime: O(a ln a)

7

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

13 / 19

Complexity Considerations

• constant number of brackets, as is constant

• Interpolation search: O(a ln a log log m) = O (log log N)

(m= length of paths, is not constant!)

• Precise intersection points: O(a ln a) = O(1).

• f(x) can be evaluated in O(1).

Overall runtime: O(log log N)

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

14 / 19

Benchmark Scenario

• Objects are scaled uniformly → cube size 23

• Perform a full tumbling turn by a fixed, large number (5000) of small steps.

• Average collision detection time for a complete revolution.

8

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

15 / 19

Minimal Bracket Density

• If number of surfels is too small → influencing spheres in the graph are too large
→ likelihood increases that

n(x) flips its sign without x changing sides.

• Use boolean collision queries to measure error.

happy budha

0

3

6

9

12

15

0 0,5 1 1,5 2 2,5
distance (relative to bbox size)

er
ro

r/
%

n=20
n=50
n=100
n=150

60
,0

00
 p

oi
nt

s

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

16 / 19

Complexity

• Theoretical complexity: .

• Experimental complexity:

m
ax

. 6
0,

00
0

po
in

ts

0

0 ,5

1

1,5

2

2,5

1000 2500 4000 5500 7000 8500

d ens ity / po in ts pe r vo lum e un it

a
v

g
.

ti
m

e
/

m
s

e
c

.

b u d d h a

a p h ro d i te

m
ax

. 9
0,

00
0

po
in

ts

Pentium-IV, 2.4GHz

9

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

17 / 19

Timings

28,000 points

0

5

10

15

20

25

0 0,5 1 1,5 2 2,5 3

dis tance (re la tive to bbox s ize)

tim
e

/
m

s
e

c
.

R S T (old)

iS earch (new)

• Benchmarking old vs. new method:
– Old (RST) = brute-force sampling [EG’04]
– iSearch = new

Pentium-IV, 2.4GHz

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

18 / 19

Conclusion

• Technique:

- utilizes a proximity graph for collision detection and surface definition.

- needs no BV hierarchies and no spatial partitioning data structure.

- any BV hierarchy can be augmented by new technique to increase

performence.

• Runtime:

- fast (approximate) collision detection

- overall runtime: O(log log N) in average case.

- speedup of factor 5–10 compared to “old” technique.

• Quality/resolution of output (intersection points) can be adjusted

(→ surfel radius)

10

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

19 / 19

Future Work

• Deformable point clouds, SIG can be updated in O(log3 N).

• More rigorous estimation of minimal bracket density.

• Consistency of n(x).

• Out-of-core collision detection.

HEINZ NIXDORF INSTITUTE
University of Paderborn

Algorithms and Complexity
Jan Klein

Jan Klein

Heinz Nixdorf Institute and
Institute of Computer Science
University of Paderborn, Germany

janklein@uni-paderborn.de

Thank you!

Dr. Gabriel Zachmann

Dept. of Computer Graphics and
Virtual Reality
University of Bonn, Germany

zach@cs.uni-bonn.de

