News

Jun 17, 2017: Haptic and hand tracking demos at the Open Campus 2017.

Feb-Apr 2017: David Vilela (Mechanical Engineering Laboratory, University of Coruna, Spain) visit our Workgroup from February to April. His main work is to compare different intersection calculation methods in collisions, and also different force models.

Feb 2017: G. Zachmann and J. Teuber visited the Mahidol University in Bangkok, Thailand as part of a delegation from the University of Bremen. The goal of the visit was to foster the cooperation between the two universities and lay ground-work for future colaborations.

Jun 2016: Radio Bremen visits our lab to film the works of the Creative Unit "Intra-Operative Information" for a news magazine on the local TV station. Click here for the film at Radio Bremen. And Click here for the same film on our Website.

May 16, 2016: Patrick Lange was honored with the SIGSIM Best PhD Award at the ACM SIGSIM PADS Conference 2016.

Jun 19-21, 2015: G. Zachmann gives invited talk at the DAAD-Stipendiatentreffen in Bremen, Germany.

Jun 2015: Haptic and hand tracking demos at the Open Campus 2015.

Dec 08-10, 2014: ICAT-EGVE 2014 and EuroVR 2014 conferences at the University of Bremen organized by G. Zachmann.

Sep 25-26, 2014: GI VR/AR 2014 conference at the University of Bremen organized by G. Zachmann.

Sep 24-25, 2014: VRIPHYS 2014 conference at the University of Bremen organized by G. Zachmann .

Feb 4, 2014: G. Zachmann gives invited talk on Interaction Metaphors for Collaborative 3D Environments at Learntec.

Jan 2014: G. Zachmann got invited to be a Member of the Review Panel in the Human Brain Project for the Competitive Call for additional project partners

Nov 2013: Invited Talk at the "Cheffrühstück 2013"

Oct 2013: Dissertation of Rene Weller published in the Springer Series on Touch and Haptic Systems.

Jun 2013: G. Zachmann participated in the Dagstuhl Seminar Virtual Realities (13241)

Jun 2013: Haptic and hand tracking demos at the Open Campus 2013.

Jun 2013: Invited talk at Symposium für Virtualität und Interaktion 2013 in Heidelberg by Rene Weller.

Apr 2013: Rene Weller was honored with the EuroHaptics Ph.D Award at the IEEE World Haptics Conference 2013.

Jan 2013: Talk at the graduation ceremony of the University of Bremen by Rene Weller.

Oct 2012: Invited Talk by G. Zachmann at the DLR VROOS Workshop Servicing im Weltraum -- Interaktive VR-Technologien zum On-Orbit Servicing in Oberpfaffenhofen, Munich, Germany.

Oct 2012: Daniel Mohr earned his doctorate in the field of vision-based pose estimation.

Sept 2012: G. Zachmann: Keynote Talk at ICEC 2012, 11th International Conference on Entertainment Computing.

Sep 2012: "Best Paper Award" at GI VR/AR Workshop in Düsseldorf.

Sep 2012: Rene Weller earned his doctorate in the field of collision detection.

Aug 2012: GI-VRAR-Calendar 2013 is available!

Publications

Additional Material

Here are some additional plots showing various aspects of a comparison of the performance of the old traversal scheme (red) and the new one (green):

Average Maximum
Object Obj name Time Num overlap tests Num DOP transforms Num nodes visited Num pgon intersection tests Time Num overlap tests Num DOP transforms Num nodes visited Num pgon intersection tests
Cover (Abdeckung), 30477 polygons each
Happy Buddha (buddha), 125,000 polygons each
Front Light (scheinwerfer), 30075 polygons each
Door Lock (schloss), 26136 polygons each
Car Body (sharan), 28167 polygons each
The time plots show the collision detection time depending on the "distance" between the two objects, for one polygon count (as given in the column "obj name"). The "num" plots show statistics of various characteristic numbers (see below for an explanation), depending on the polygon count.

Benchmarking procedure: two identical objects are positioned at a certain distance d = dstart from each other. The distance is computed between the centers of the bounding boxes of the two objects; objects are scaled uniformly so they fit in a cube of size [-1,+1]3. Then, one of them performs a full tumbling turn about the z- and the x-axis by a fixed, large number of small steps (5000). With each step, a collision query is done, and the average collision detection time for a complete revolution at that distance is computed. Then, d is decreased, and a new average collision detection time is computed. The collision detection algorithm always stopped whenever the first pair of intersecting polygons was found.

Explanation of the columns:

The maxium columns are exactly the same as the average, except that here, the maximum over all rotations (with one distance) is listed.