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Abstract
Virtual environmentsarecreatedby specifyingtheircontent,
which comprisesgeometry, interaction,properties,andbe-
havior of theobjects.Interactionandbehavior canbecum-
bersometo specify and create,if they have to be imple-
mentedthroughanAPI.

In this paper, we take the script basedapproachto de-
scribingvirtual environments.We try to identify a generic
and complete,yet simpleset of functionality, so that non-
programmerscanreadilybuild theirown virtual worlds.

We extendthecommonobjectbehavior paradigmby the
notionof anAction-Event-Objecttriad.

Keywords: behavior, interaction,scriptlanguages,virtual
reality.

INTRODUCTION
Today, virtual reality is on thevergeof leaving thepure“re-
searchdomain”. Among others,the automotive industryis
evaluatingits potentialin thedesign,development,andman-
ufacturingprocesses[6, 5]. Still, there is a great lack of
tools to make VR an enablingtechnologywhich would be
easyto usein industryandentertainment.Creatingvirtual
worlds is still a cumbersomeandtediousprocess.Further-
more,any VR systemmeantto beusedwithin an industrial
processmust facethe fact that it is just one link in a long
chainof softwarepackages(CAD, CAE, FEM, etc.),which
might imposea lot of constraintsandrequirements.

This papertries to proposea framework which increases
productivity whencreatingvirtual environments(VEs). VE
“authors”shouldbeallowedto experimentandplay interac-
tively with their “worlds”. Sincethis requiresvery low turn-
aroundtimes, any compilation or re-linking stepsshould
be avoided. Also, authorsshouldnot needto learna full-

poweredprogramminglanguage.A verysimple,yet power-
ful script “language”will beproposed,which meetsalmost
all needsof VE creators.As a matterof course,our virtual
worldsshouldbeinput-deviceindependent.

In orderto achieve thesegoals,we try to identify a setof
basicandgenericuser-objectandobject-objectinteractions
which,experiencehastaughtus,areneededin mostapplica-
tions.

For specificationof avirtual world, thereare,at least,two
contraryapproaches:

Eventbased.
Oneapproachis to write a story-board, i.e., thecreator
specifieswhich action/interactionhappensat a certain
time,becauseof userinput,or any otherevent.

A story-driven world usuallyhasseveral “phases”,so
wewantacertaininteractionoptionbeavailableonly at
thatstageof theapplication,andothersatanotherstage.

Behaviorbased.
Anotherapproachis to specifyasetof autonomousob-
jectsor agents, which areequippedwith receptorsand
reactto certaininputsto thosereceptors(seefor exam-
ple [4]).

So,overstatinga little, we take a bunchof “creatures”,
throw theminto ourworld, andseewhathappens.

In the long term,you probablywant to be ableto useboth
methodsto createyourvirtual world.

In this paper, we will focuson theeventbasedapproach.
The languagefor specifyingthoseworldswill bevery sim-
ple for several reasons:VE authors“just want to make this
andthat happen”,they don’t want to learnPythonor C++.
Moreover, it is mucheasierto write a true(!) graphicaluser
interfacefor a simplelanguagethanfor a full-poweredpro-
gramminglanguage.

All conceptsbeingdevelopedherehavebeeninspiredand
driven by concretedemandsduring recentprojects. Most
of them have beenimplementedin an interaction-module,
which is partof ourwholeVR system.



Overview. In the next section,we briefly discussthe ap-
proachothersystemshavetaken.Then,wedevelopourgen-
eral paradigmfor virtual world descriptions. This will be
furtherdetailedby thenext two sections.Finally, wepresent
somereal-world applications,give anoutlookon our future
work, andgivesomeexamplesin theAppendix.

RELATED WORK
Therearequiteafew existingVR systems,somecommercial
someacademic.Someof themwewill considerbriefly in the
following.

Sense8’s WorldToolkit follows thetoolboxapproach.Ba-
sically, it providesa library with a high-level API to handle
input devices,rendering,simpleobjectlocomotion,portals,
etc.

DIVE is a multi-user, distributedVR platform. The sys-
temcanbedistributedon a heterogeneousnetwork (making
useof theIsis library[3]). New participantsof avirtual world
canjoin at any time. They will receive a copy of thecurrent
database.All behavior is specifiedasa(usuallyverysimple)
finite statemachine(FSM). Any FSM is part of someob-
ject’s attributes. Databaseconsistency is achievedby using
distributedlocks.

Division’sdVSfeaturesa2D and3D graphicaluserinter-
faceto build andedit virtual worldsat run-time. Attributes
of objectsare geometry, light source,soundsamples,col-
lision detectionparameters,etc. Objectscan be instanced
from classeswithin the descriptionfile of a virtual world.
Inheritance(andpolymorphism?)aresupported.Severalac-
tions canbe bundled(like a function in C) andinvoked by
user-definedevents.However, thesyntaxseemsto berather
complicatedandnot reallyaptfor non-programmers.

TheMinimal Realitytoolkit (MR) [15, 11] is anetworked
system,whichusesascriptfile todescribebehavior andshar-
ing of objects.Scriptedobjectbehavior is compiledinto so-
calledOML codewhich is interpretedat run-time.For each
OML instancetheremustbeanassociatedC++class.

Unlike MR, we won’t develop objects(“classes”)with
ratherhigh-level built-in behaviors, suchasTanks,Bombs,
or Hills. Instead,we will identify actionson objectson a
muchlower, andthereforemoregeneric,level.

We believe, thatkeepingall informationaboutthevirtual
world (i.e., geometry, behavior, constraints)in onefile can
bea tediousandvery inflexible. We strictly separategeome-
try, behavior, physicalproperties,acousticproperties,etc.,in
separatefiles, unlike [11, 1, 10]. We feel that this will save
a lot of time whendevelopingvirtual environmentsbecause
veryoftenthegeometrywill becreatedby third partiesor so-
phisticatedanimationsoftware.Duringseveraldevelopment
iterations,weusuallygetseveralversionsof thegeometry.

GENERAL CONCEPTS
A completeVR systemis a hugepieceof software, con-
sistingof anobjectmanager, renderer, device drivers,com-
municationmodule,navigationandinteractionmodule,and,
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Figure 1: The object manager is the central module of proba-
bly any VR system. All other modules which build on it “sim-
ulate” or render a certain aspect of the virtual environment.
Some of those are controlled by the interaction module (e.g.,
sound renderer and device drivers); others are “peer” (e.g.,
physically-based simulation).

probably, physically-basedsimulation,soundrendering,vi-
sualization,application-specificmodules,etc.(seeFigure1).

In this paper, we will focus on the interactionmodule,
which dealswith navigation, basic interaction,and basic
“life” in ourvirtual worlds.Wewill notdealwith theoverall
systemarchitecture.

Furthermore,we will restrictourselvesto the identifica-
tion of genericfunctionality. Most of the time, we will not
dealwith syntaxhere.

The visual part of a virtual world is representedby a hi-
erarchicalscenegraph. Everythingis a nodein this graph:
polyhedra,assembliesof polyhedra,LODs, light sources,
viewpoint(s),the user, etc. Most functionality andinterac-
tion presentedbelow will operateon the scene,i.e., it will,
eventually, changesomeattribute(s)of someobject(s).

Theaction-eventparadigm A virtualworld is specified
by a setof staticconfigurations(geometry, moduleparame-
ters, etc.) and a set of dynamicconfigurations. Dynamic
configurationsareobjectproperties,user-objectinteraction,
actiondependencies,or autonomousbehavior.

The basic idea of dynamic configurationsis that cer-
tain eventstrigger certainactions, properties, or behavior;
e.g.,whenthe usertouchesa virtual button,a light will be
switchedon,or, whenacertaintimeis reachedanobjectwill
startto move.Consequently, thebasicbuilding blocksof our
virtual worldsareactions, events, andgraphicalobjects—
theAEO triad1 (seeFigure2).

1In theobject-orientedprogrammingparadigm,actions,events,aswell
asgraphicalobjectsareobjects. However, in thefollowing we will usethe
termobjectonly for graphicalobjects.
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Figure 2: The AEO triad. Anything that can “happen” in a
virtual environment is represented by an action. Any action
can be triggered by one or more events, which will get in-
put from physical devices, the scene graph, or other actions.
Note that actions are not “tied-in” with graphical objects, and
that events are objects in their own (object-oriented) right.

Notethatour actionsarenot partof anobject’s attributes
(in fact,oneactioncanoperateon many objectsat thesame
time).

In order to be most flexible, the action-event paradigm
mustsatisfythefollowing requirements:

1. Any actioncanbetriggeredby any event.

2. Severaleventscantriggerthesameaction.An eventcan
trigger several actionssimultaneously(many-to-many
mapping).

3. Eventscanbecombinedby booleanexpressions.

4. Eventscan be configuredsuchthat they start or stop
an actionwhena certainconditionholds for its input
(positive/negativeedge,etc.)

5. Thestatusof anactioncanbetheinputof anotherevent.

Wedonotneedany specialconstructs(asin [12]) in order
to realizetemporal operators. Parallel executionof several
actionscanbeachievedtrivially, sinceoneeventcantrigger
many actions.Shouldthoseactionsbetriggeredby different
events,we can couplethemvia anotherevent. Sequential
executioncanbeachievedby connectingthetwo actionsby
an event which startsthe secondactionwhen the first one
finishes. Similarly, actionscanbe coupled(start-to-startor
start-to-stop)with a delay.

Becauseof our considerationsabove, we needto beable
to refer to actionsandevents. Thereforethey canbe given
a name.Basically, therearetwo waysto declareanaction-
eventpair in thescript:

action-name: action. . .
event-name: event. . .
action-nameevent-name
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Figure 3: A simulation of virtual environments must maintain
several time “variables”. Any action can have its own action
time variable, which is derived from a global simulationtime,
which in turn is derived from wall clock time. There is a small
set of actions, which allow the simulation to set/change each
time transformation individually.

or

action. . .event. . .

whereaction and event in the latter form cannotbe refer-
encedelsewherein thescript.

Most actionsoperateon objects,and many eventshave
one or two objectsas parameters.In order to achieve an
orthogonal language, thoseobjectscanhave any type (ge-
ometry, assembly, light source,etc.)wheneversensible.

Time. Many actions(besidesnavigation, simulation,and
visualizations)dependon time in someway. For example,
ananimationor soundsampleis to beplayedbackfrom sim-
ulationtime through , nomatterhow muchcomputation
hasto bedoneor how fastrenderingis.

We maintaina global simulationtime, which is derived
from wall-clock time. The transformationfrom wall-clock
time to simulationtimecanbemodifiedvia actions(to go to
slow-motion,for example,or to doa time“jump”).

Furthermore,we keepan (almost)unlimited numberof
time variables. The valueof eachtime variableis derived
from theglobalsimulationtimeby anindividual transforma-
tion whichcanbemodifiedby actionsaswell (seeFigure3).

Thosetimescanbe usedas inputs to events,or to drive
simulationsor animations. Thus, time can even be used
to createcompletely“time-coded”partsof a virtual reality
show.

Grammar. The grammarin our systemis fault-tolerant
and robust againstvariations and abbreviations, such as
playback , play-back , anim , etc. Orderingof “com-
mands”should(almost)never matter! (We achieve this by
usinga multi-passparser.)

For easycreationand maintenanceof almost identical
scripts,full C-like preprocessing.Thepreprocessor’smacro
featureprovidesaneasyway to build librarieswith higher-
level behavior.



EVENTS
Eventsareprobablythe most importantpart for our world
description— they can be consideredthe “sensoryequip-
ment”of theactionsandobjects.They have theform

event-name: trigger-behavior inputparameters

whereevent-nameis for further referencein thescript,and
all but input areoptional.Whenanevent“triggers” it sends
acertainmessageto theassociatedaction(s),usually“switch
on” or “off ”.

It is importantto serve a broadvarietyof inputs(seebe-
low), but also to provide all possibletrigger behaviors. A
triggerbehavior specifieswhenandhow achangeat the“in-
put” sideactuallycausesan action to be executed. Let us
considerfirst thesimpleexampleof ananimationandakey-
boardbutton:

animationon aslongasbuttonis down,
animationswitchon whenever buttonis presseddown,
animationswitchon whenever buttonis released,
animationchangestatuswhenever buttonis presseddown,

Theseare just a few possibilitiesof input action trigger-
behavior. Thecompletesyntaxof triggerbehaviors is

action
on off switch on switch off toggle
while active while inactive

when activated when deactivated
input

It would bepossibleto have theworld builder “program”
thetrigger-behavior by usinga(quitesimple)finite statema-
chine(asin dVS, for instance).However, we feel that this
would betoo cumbersome,sincethosetriggerbehaviorsare
neededvery frequently.

In orderto be ableto trigger any actionat start-uptime,
there’sa special“input” namedinitialize .

All actionsmustbeableto understandthe messageson ,
off , andtoggle . All eventsmuststoretheir currentstate,
whichwill bechangedby input transitions.

In additionto thebasicevents,eventscanbecombinedby
logical expressions,which yields a directed“event graph”.
Thisgraphis notnecessarilyacyclic.

Our experienceshows that it is necessaryto be able to
activateanddeactivateactions. This is doneso a usercan
bepreventedfrom doingonethingbeforehedoessomething
elsefirst. An actionis deactivatedwhenit doesn’t respond
to messagesbeingsentby events.This is donevia a certain
action,which (de-)activatesotheractions.Alternatively, it is
quite convenientto beableto bracket the actionsyou want
to (de-)activate:

active event
actions ...
endactive

A Collection of Event Inputs
Physical input includes all kinds of buttons (keyboard,
mouse,spacemouse,boom),flex andtracker values(areac-
tive whenabove/below threshold),gestures,postures(ges-

tureplusorientationof thehand),voiceinput(keywordspot-
ting, enhancedby a simpleregulargrammar, which cantol-
erateacertain(user-specified)amountof “noise”).

Virtual buttonsare just like 2D buttonsof a GUI. Actu-
ally, they just checkthecollision betweenthebuttonobject
andsomepointing“device”, usuallythegraphicalrepresen-
tation for the finger tip. Any objectof thescenegraphcan
bea virtual button. Likewise,we have implementedvirtual
menus. Eachmenuitem can be the input to one or more
events.

Geometriceventsaretriggeredby somegeometriccondi-
tion. Amongthemareportalsandcollisions.

A portal is an arbitrary object of the scenegraph. The
event is triggeredby the inside/outside-statusof an object
with respectto that portal. By default, we checkthe cen-
ter of the object’s boundingbox (or any otherpoint in lo-
cal space).The objectcanbe the viewpoint. This event is
very usefulfor switchingon/off partsof thescenewhenthe
userenters/leaves“rooms” (multiple virtual worlds), or for
(daisy-)chainingactionsandanimations(for instance,play-
ing a soundwhensomeobjectpassesby).

A collisioneventis triggeredby theexactcollisionof two
objects(see[19, 18]).

Any action’sstatus(onor off) cantriggeranevent.Some
actions(like callback , counter , etc.) have an action-
specificstatus,which canbeusedalso. For example,coun-
tershave a currentvaluewhich canbecomparedto another
counteror a constant. The resultof the comparisonis the
input to theevent.

All timevariables(seeabove)canbecomparedtoacertain
time interval (which couldcrossthewrap-aroundborderof
cyclic time variables!),or by oneof theusualcomparisons.
Theresult(0/1) is theinput to anevent.

Sometimes,wewantto “monitor” certainobjectattributes
(integer, float, vector, or string valued)and issuean action
when they change,while we don’t care which action (or
othermodule!) setthem. Thegeneralform of anobjectat-
tributeeventinput is

attribute attribute-nameobject object-namecomparison

Attributesarenot only graphicalattributes(transformation,
material,wireframe,etc.), but also“interaction” attributes,
suchas“grabbed”,“f alling”, etc.This impliesthattheinter-
actionmodulemaintainsanadditional,augmentedrepresen-
tationof all objectsof thescenegraph.

Objectattributesmight be setby our interactionmodule
itself (by possiblymany differentactions),or by othermod-
ules,soobjectattributeeventscanprovide a kind of simple
accesscontrolmechanismin somecases.

Any action’sstatecanbefedbackinto aneventin orderto
trigger otheractions. Certainactions(like counter ) pro-
videspecificstates,whichwecaninterrogate,also.



ACTIONS
Actionsarethebuildingblocksfor the“life” in avirtualenvi-
ronment.Anythingthathappens,aswell asany objectprop-
ertiesarespecifiedthroughactions.

Actionsareusuallyof theform

action-name: functionobjectsparametersoptions

All actionsshould be madeas generalas possible,so it
shouldalwaysbepossibleto specifya list of objects(instead
of only one).Also,objectscanhaveany type,wheneversen-
sible (e.g., assembly, geometry, light, or viewpoint node).
Theaction-nameis for laterreferencein thescript.

Consistency. This is certainlyan issuein any VR system
beingusedfor real-worldapplications.Here,wewill notdis-
cussthe problemsarisingin multi-userVEs, or in systems
with concurrentmodules. The problemof consistency ex-
istsevenwithin our interactionmodule.Someof theactions
describedbelow set transformationsof objects. Obviously,
thosewill interferewhen they act at the sametime on the
sameobject.For example,in applicationsfor automotivein-
dustries,we cangrabanobjectwith our left handwhile we
stretchandshrinkit with theotherhand.Theproblemarises
also,whenanactiontakesover(e.g.,wescaleanobjectafter
wehavegrabbedandmovedit).

Flushingtransformationsor squeezingtheminto onema-
trix is notaverygoodidea,sinceweloosetheoriginalobject
and we have no control over the order of transformations.
We do not want to loosethe transformationsof earlierac-
tions,becausethis is valuableinformationwe mightneedin
a furtherstep“outside” theVR system.

Onewayto dealwith thatis to imposeastrictsequenceof
transformationsto beusedperobject,at leastfor objectsun-
derthecontrolof thismodule.Wehavechosenthesequence:
scaling rotation translation.

Anotherissueariseswhenweuselevels-of-detail(LODs)
in the scenegraph. Sinceany object can be a LOD node
or a level of an LOD, any action shouldtransparentlyap-
ply changesto all levels, so that the authorof the virtual
world doesn’t have to botheror know whetheror not anob-
jectnamedenotesanLOD node(or oneof its children).

Navigation.
The most basic“interaction” with a virtual world is navi-
gatingthroughit. Wewon’t go into a thoroughdiscussionof
differenttechniqueshere.Thatcanbefoundin [2, 8, 16, 14].
Instead,we will just statethat a VR systemmustbe easily
configurable,andableto switchto abroadvarietyof devices
suchasmouse,spacemouse,boom,gloveandHMD, micro-
phone,etc.

For thesedifferentdevices,the VR systemmustprovide
differentnavigationparadigms,suchaseyeball-in-hand,rel-
ativemode,point-and-fly, or voicenavigation(seeFigure4).

None of navigation modesmust rely on the assumption
that the cart is an immediatechild of the root. We might

camera
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Figure 4: All navigation modes can be mapped on the flying
carpetparadigm.

wish to make thecarta child of anotherobject,whichcould
beanimated,for example.

Therearemany parameterswhich affect userrepresenta-
tion: navigationspeed,sizeandoffsetof thehand,scalingof
headmotion,eyeseparation,etc.

Navigationcanbeswitchedon/off by any event.With the
point-and-flyparadigm,this is usuallya gestureor a spoken
command.

By usingtheabstractionof logical inputdevices, all navi-
gationmodesarecompletelydevice-independent[8, 9].

A Collection of Actions.
During our pastprojects,thesetof actionslistedbriefly be-
low hasprovento bequitegeneric.

Thescenegraphcanbechangedby theactionsload,save,
delete,copy, create(box,ellipsoid,etc.),andattach(changes
scenehierarchyby rearrangingsubtrees).

Some actions to changeobject attributes are switch,
wireframe,rotate, translate,scale(set a transformationor
add/multiplyto it). Otherschangematerialattributes,such
ascolor, transparent,or texture.

The “grab” action first makes an object “grabbable”.
Then,assoonasthe handtouchesit, it will be attachedto
thehand.Of course,thisactionallowsgrabbinga list of sub-
treesof thescenegraph(e.g.,moveatablewhenyougrabits
leg).

By addingjustafew morepropertiesandfunctionality, we
canfurtherincreasebelievability of ourworlds.Thoseaddi-
tional propertiesare friction, which makesobjects“ride on
top” of others,andpushing, which preventsinterpenetration
(see[13]).

Whenthe“stretch”actionis invokedonanobject(or sub-
tree),handleswill be displayedat the cornersandfacesof
its boundingbox. Thesecanthenbegrabbedandwill scale
theobject(s)asthey aremoved.Thisactionis quiteusefulto
selecta certainspacein theworld or to createplaceholders
from genericobjectslikespheres,cylinders,etc.

The “sweep”actiontracesout thevolumewhenthe user
movesanobjectby replicating(simplified)copiesof it. This
wasusedtocheckserviceabilityof, for example,carengines.



A greatdealof “life” in a virtual world canbecreatedby
all kindsof animationsof attributes.Our animationactions
includeplaybackof transformations,visibility, transparency
(for fading),andcolor from a file. The file format is flex-
ible so that several objectsand/orseveral attributescanbe
animatedsimultaneously. Animationscan be time-tagged,
or just be playedbackwith a certain,possiblynon-integer,
speed.

Animationscan be absoluteor relative which just adds
to thecurrentattribute(s).This allows, for example,simple
autonomousobjectlocomotionwhich is independentof the
currentposition.

Oneof themostbasicphysicalconceptsis gravity, which
increases“believability” of our worldstremendously. It has
beenimplementedin anaction“f all”, which makesobjects
fall in a certain direction and bounceoff “floor objects”,
whichcanbespecifiedseparatelyfor eachfalling object.

As describedabove,thereareactionsto setor changethe
time transformationfor thetimevariables.

Constrained movement. Occasionallywe want to con-
strainthemovementof anobject.It is importantto beableto
switchconstraintsonandoff atany time,whichcanbedone
by a classof constraint actions.

Severalconstraintson transformationsof objects,includ-
ing theviewpoint,haveprovenuseful:

1. Constrainthetranslationin severalways:

(a) fix oneor morecoordinatesto a pre-definedor to
their currentvalue,

(b) keepthedistanceto otherobjects(e.g.,ground)to
apre-definedor to thecurrentvalue.Thedistance
is evaluatedin adirection,whichcanbespecified.

This canbeusedto fix theuserto eye level, for terrain
following, or to make the userride anotherobject(an
elevator, for example).

2. Constraintheorientationto a certainaxisandpossibly
the rotationangleto a certainrange.This canbeused
to createdoorsandcarhoods.

All constraintscanbe expressedeither in world or in local
coordinates.Also, all constraintscanbe imposedasan in-
terval (adoorcanrotateaboutits hingeonly within acertain
interval). Interactionwith thoseobjectscanbe mademore
convenient,if thedeltasof theconstrainedvariable(s)arere-
strictedto only increasingor decreasingvalues(e.g.,thecar
hoodcanonly beopenedbut notclosed).

Anotherconstraintis the notion of walls, which is a list
of objectsthatcannotbepenetratedby certainotherobjects.
This is very usefulto constraintheviewpoint (all first-time
usersof VEswonderwhy they canfly throughwalls). It can
beusedfor any othermoving objectaswell.

Of course,the constraintslisted above arejust very sim-
pleones;for morecomplicated“mechanisms”,ageneralap-
proachwill beneeded,like [17] or [20, 7].

Object selection. Theremustbetwo possibilitiesfor spec-
ifying listsof objects:hard-wiredanduser-selected.

In entertainmentapplications,youprobablywantto spec-
ify by nametheobjectsonwhichanactionoperates.Thead-
vantagehereis thattheprocessof interactingwith theworld
is “single-pass”.Thedownsideis inflexibility , andthewrit-
ing of theinteractionscriptmightbemorecumbersome.

Alternatively, wecanspecifythatanactionoperatesonthe
currentlyselectedlist of objects. This is moreflexible, but
theactualinteractionwith theworld consistsof two passes:
first theuserhasto selectsomeobjects,thenspecifytheop-
eration.

Finite state machines. The systemcanmaintainan arbi-
trary numberof counters. Thosecounterscanbeset,incre-
mented,or decrementedvia certainactions. They can be
usedasinput to events(which in turn triggerotheractions).

Countersare very useful to switch from one “stage” of
a “story-based”VE to the next oneby the samegestureor
voicecommand,or they canbeusedto build morecompli-
catedautomata(a traffic light, for example).

User modules. From our experience,most applications
will needsomespecialfeatureswhich will be unnecessary
in otherapplications.In orderto incorporatethesesmoothly,
our VR systemoffers “callback” actions. They can called
right after the systemis initialized, or onceper frame(the
“loop” function),or triggeredbyanevent.Thereturncodeof
thesecallbackscanbefedinto otherevents,souser-provided
actionscantriggerotheractions.

Theseuser-provided modulesare linked dynamicallyat
run-time,whichsignificantlyreducesturn-aroundtime.

It is understoodthatall functionalityof thescriptaswell
asall datastructuresmustalsobeaccessibletosuchamodule
via asimple,yet completeAPI.

APPLICATIONS
An earlyapplicationof our integratedVR systemwasshown
at the “Industry Exhibition Hannover” in Spring1995. By
then,most key conceptshadbeendesigned.At the show,
wetriedto pointoutsomepossibleapplicationsof VR in the
automotiveindustry.

A demonstratorfor virtual prototyping was built using
our VR systemin May 1995 [5]. Oneof the key features
wasreal-timecollisiondetection[19] for clashandclearance
checks(seeColor PlateI). Othersare volume tracing and
constraints(to modelthe hoodof the car). Flexible objects
(like a hose)were implementedby an application-specific
module.



For theIAA autoshow in Frankfurt,Germany, in August
1995,we built the insideof a dieselengineasa virtual en-
vironment.A usercouldfly insidethecombustionchamber
andwatchseveralcombustioncycleswhile interactingwith
the air flow field. This wasalsoshown at the Detroit Auto
Show in 1996. One of the key featurestherewas the vi-
sualizationof time-variantflow-fields in the swirl port and
in the combustionchamber(seeColor PlateIV). All data,
geometry, animations,and flow fields have beenimported
from simulationpackages.This is wherethenecessityof a
conceptof time becomesevident: all animations(like pis-
ton head,valves,andtemperaturecolor) mustcoincidewith
thevisualization,eventhoughmostof themarenotspecified
on thecompletecycle. Furthermore,globalsimulationtime
mustbesetsometimesto a certainvalue,or the “speed”of
simulationtimemustbesloweddown or stoppedaltogether.

PRESENTAND FUTURE
We believe that the action-event-objectparadigmis very
powerful, yetat thesametimeremainingsimpleandmaking
it easyto learntocreatenon-trivial contentin virtualenviron-
ments.Thesetof actionsandeventsproposedin this paper
shouldbe capableof handlingmostbasicbehavior andin-
teraction.Theconceptof eventsgivesgreaterflexibility and
relievestheVE authorfrom theburdenof maintainingstate
variables.A varietyof navigationmodes,aswell asobject
constraintshave beendescribed.Actions have beenidenti-
fied to selectandmanipulateobjects,andto animateobject
attributes. Application-specificmodulescan be integrated
smoothly. In thecontext of VR, conceptsfor handlingtime
andconsistency havebeenpresented.

In thefuture,we will implementaneasy-to-usegraphical
userinterface,so virtual environmentscanbe built on-line.
It shouldbepossibleto add,delete,andchangeactionsand
eventsat run-time. A VE creatormight even want to “re-
wire” actionsandeventsat run-time. To this end, the sys-
temmustkeepa completehistoryof thestateof all actions,
events,andthescenegraph!

Sofar, wecan“can” setsof actions/eventsby definingpre-
processormacros,which arekept in librariesandcanbein-
cluded. With a graphicalworld editor, it would be nice to
haveaccessto those,too.

EXAMPLES
In this section,we will give a few excerptsfrom thescripts
which werewritten to implementthe virtual environments
describedabove.

Thefollowing exampleshows how thepoint-and-flynav-
igationmodecanbespecified.

cart pointfly dir fastrak 1 \
speed joint thumbouter \
trigger gesture pointfly

cartrev gesture pointflyback
cart speed range 0 0.8
glove fastrak 1

Thehoodof a carcanbemodeledby thefollowing lines.
This hoodcanbe openedby just pushingit with the index
finger.

constraint rot Hood neg \
track IndexFinger3 \
axis ab to c d \
low -45 high 0 \
on when active collision Finger13

Hood

The following examplewill make object fall down and
bounceoff the floor-objectswhen releasedby the hand.
Additionally, a soundwill be playedeachtime the object
bounces.

grab object toggle when activated
gesture fist
gravity 0.2
fall object floors floor-objectsparameters\

switch on when deactivated
grabbed object
sound sound-file switch on when
activated collision objectfloor-object

Menusetupconsistsof two parts:theinteractionwith the
menuitself,

menu popup MyMenu options speech "menu"
menu acknowledge MyMenu joint
thumbouter

andthespecificationof actionstriggeredby menuselections

action menu button MyMenu1

In order to provide acousticfeedbackwhen action A is
switchedon,wecanwrite

sound sound-file switch on when
activated action A

Finally, wewill presentanexampleof alibrary “function”
to make clocks. (This assumesthat the handsof the clock
turn in thelocalxz-plane.)

define CLOCK( LHAND, BHAND)
timer LHAND cycle 60
timer speed LHAND 1
/* rotate little hand every minute by
6 degrees in local space */
objattr LHAND rot add local 6 (0 1 0)
time LHAND 60
/* rotate big hand every minute by
0.5 degrees in local space */
objattr BHANDrot add local 0.5 (0 1
0) time LHAND 60 /* define start/stop
actions */
Stop##LHAND : timer speed LHAND 0
Start##LHAND : timer speed LHAND 1

The## is aconcatenationfeatureof acpp . By applyingthe
definitionCLOCKto a suitableobject,we make it behave as
aclock. Also, wecanstartor stopthatclockby theactions



CLOCK( LittleHand, BigHand )
action "StartLittleHand" when
activated speech "clock on"
action "StopLittleHand" when
activated speech "clock off"
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