Minimal Hierarchical Collision Detection

Gabriel Zachmann
Dept Computer Graphics and Virtual Reality
University Bonn

Motivation

- Fundamental operation:
 - Virtual prototyping
 - Rigid bodies
 - Interaction in VR
 - Haptic rendering

General requirements

- No assumptions about input
- No assumption about motion
- Complexity: >10,000 polygons / object
- Witness(es)
- Construction of aux data structures not too slow
- Small memory footprint

Related Work

- R*-trees [Beckmann, Kriegel, et al., 1990]
- Sphere trees [Hubbard, 1996]
- OBB trees [Gottschalk, et al., 1996]
- DOP trees [Zachmann, 1998; Klosowski, et al., 1998]
- BOXTREE [Barequet, at al., 1996]

Setting

Hierarchical traversal scheme:

```plaintext
traverse(X, Y)
if X,Y do not overlap then return
if X,Y are leaves then check polygons
else for all children pairs do
  traverse(Xi, Yj)
```

Restricted Boxtrees

- Observation: child boxes fit fairly tightly into parent box on most sides

```plaintext
empty space
child
parent
```
Introduction

Restricted Boxtrees

Optimization

Construction

Results

Conclusion

Definition

- Combination of k-d tree and AABB:
 - Storage: 1 float, 1 axis ID, 1 pointer

Overlap Tests

1. Re-alignment:
 - 12 FLOPs
2. SAT:
 - 82 FLOPs
3. SAT lite:
 - 24 FLOPs
4. Sphere test:
 - 29 FLOPs

General Optimization

- Factorization of overlap test costs:
 - \(c_1 = \text{node-specific} \)
 - \(c_2 = \text{pair-specific} \)

 - Brute-force:
 \[
 C(X, Y) = 2c_1 + c_2 + 4(2c_1 + c_2) = 10c_1 + 5c_2
 \]

 - Eager computation:
 \[
 C(X, Y) = 0c_1 + c_2 + 2c_1 + 4c_2 = 2c_1 + 5c_2
 \]

- E.g.: 1.5 mult + 2 add + 5 comp vs. 12 FLOPs

Constructing Restricted Boxtrees

- Approach: top-down
 1. Compute BV covering input
 2. Split input into two subsets

 - Splitting criterion:
 - Expected traversal cost:
 \[
 \sum_{i,j} P(X_i, Y_j) C(X_i, Y_j)
 \]

- Estimation of \(P(X_i, Y_j) \):
 \[
 X_i \cap Y_j = \emptyset \iff p \in X_i \oplus Y_j
 \]

 \[
 P(X_i, Y_j) = \frac{\text{vol}(X_i \oplus Y_j)}{\text{vol}(X \oplus Y)}
 = \frac{\text{vol}(X_i \oplus Y_j)}{\text{vol}(X) + \text{vol}(Y)}
 \]

Algorithm

- Try three cases:
 1. Lower and upper child boxes
 2. Both lower/upper
 3. Perpendicular

- Find "good" splitting plane
- Find good "seeds"
- Split set of polygons
- Complexity:
 \[
 T(n) = cn + T(an) + T((1-a)n) \in O(n)
 \]
Results

- **Suite:**
- **Platform:**
 - Pentium III, 1GHz
- **Construction:**

Summary

- New hierarchical BV structure (*Restricted Boxtree*) with extremely small memory footprint (9 bytes/node)
- Very efficient overlap tests for restricted boxes (down to 8.5 FLOPs per BV pair)
- General optimization technique
- Theoretical argument for construction criterion
- Comparison with DOP trees

Future Work

- Other applications (ray tracing, occlusion culling, ...)
- "Look-ahead" during construction