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Abstract: In this paper, we propose a novel edge gradient based template matching method for object
detection. In contrast to other methods, ours does not perform any binarization or discretization
during the online matching. This is facilitated by a new continuous edge gradient similarity
measure. Its main components are a novel edge gradient operator, which is applied to query and
template images, and the formulation as a convolution, which can be computed very efficiently in
Fourier space.
We compared our method to a state-of-the-art chamfer based matching method. The results
demonstrate that our method is much more robust against weak edge response and yields much
better confidence maps with fewer maxima that are also more significant. In addition, our method
lends itself well to efficient implementation on GPUs: at a query image resolution of 320 × 256
and a template resolution of 80× 80 we can generate about 330 confidence maps per second.

1 INTRODUCTION

Detection and tracking of articulated objects is
used in many computer vision applications. Our
long-term goal is precise tracking of the human
hand in order to be able to use it as a dextrous
input device for virtual environments and many
other applications.

An important initial step in object tracking is
to localize the object in the 2D image delivered by
the camera. This is a challenging task especially
with articulated objects, due to the huge state
space and, possibly, time constraints. Most ap-
proaches formulate tracking of articulated objects
as detecting multiple objects: given a database of
many objects, find the object from the database
that best matches the object shown in the input
image. This also involves finding the location in
the input image where that best match occurs.
Typically, the database consists of images, called
templates. This can result in a database size of
thousands of templates. A powerful method to
match templates is to compare the edge images
of template and input image.

In this paper, we propose a novel method for
template matching based on edge features, which
is robust against varying edge response. To this
end, we propose a novel similarity measure be-
tween a template and the query image that uti-
lizes the continuous edge gradient (orientation
and intensity). The input to our algorithm is a
query image and a set of templates. The output
is a confidence map. It stores for each position in

the query image the index and similarity of the
best matching template. In subsequent steps, this
confidence map can be used directly to extract
the best match, or it can be combined with other
confidence maps using different features. This is,
however, not our focus here.

Our method does not perform any binariza-
tion or discretization during the online matching
process. By contrast, all current methods based
on edge distance/similarity need binary edge im-
ages. This incurs thresholds that are difficult to
adjust automatically, which reduces the robust-
ness of these approaches.

We utilize the orientation and intensity of
edges of both the templates and the query images
directly in our similarity measure. By contrast,
most current methods discretize edge orientations
into a few intervals, which renders the similarity
measure discontinuous with respect to rotation of
the object.

Our method is well suited for a complete im-
plementation in the stream processing model (e.g.,
on modern GPUs), which allows for extremely
fast template matching.

2 RELATED WORK

The most often used edge based approaches
to template matching in the field of articulated
object detection use the chamfer (Barrow et al.,
1977) and Hausdorff (Huttenlocher et al., 1993)
distance. Chamfer matching for tracking of artic-
ulated objects is, for example, used by (Athitsos
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Figure 1: Overview of our approach. The numbers in parentheses denote the section describing the respective
stage.

and Sclaroff, 2001) and (Gavrila and Philomin,
1999), the Hausdorff distance by (Olson and Hut-
tenlocher, 1997). The generalized Hausdorff dis-
tance is more robust to outliers. The chamfer dis-
tance can be implemented as convolution, when
used to generate a confidence map. Thus, it
can be computed much faster. Both, chamfer
and Hausdorff distance can be modified to take
edge orientation into account with limited accu-
racy. One way to do this is to split the template
and query images into b separate images. Each
contains only edge pixels within a predefined ori-
entation interval. (Thayananthan et al., 2006),
(Stenger et al., 2006). To achieve some robust-
ness against outliers, (Stenger et al., 2006) addi-
tionally limited the nearest neighbor distance by a
predefined upper bound. A disadvantage of these
approaches is, the discretization of the edge ori-
entations, which can cause wrong edge distance
estimations.

(Olson and Huttenlocher, 1997) integrated
edge orientation into the Hausdorff distance.
They modeled each pixel as a 3D-vector, contain-
ing pixel coordinates and edge orientation. The
maximum norm is used to calculate the pixel-to-
pixel distance. (Sudderth et al., 2004) presented
a similar approach to incorporate edge position
and orientation into chamfer distances. Because
it cannot be formulated as convolution, it results
in high computation times. Edge orientation in-
formation is also used by (Shaknarovich et al.,
2003) as a distance measure between templates.
They discretized the orientation into four inter-
vals and generate an orientation histogram. They
do not take the edge intensity into account. Con-
sequently the weight of edge orientations resulting
from noise is equal to that of object edges. This
results in a very noise sensitive algorithm.

3 The Continuous Edge Image
Similarity Measure

Before describing our approach, we introduce the
following notation:
T = {Tk | k = 0 · · · l − 1} is a set of templates,
Wk ×Hk is the size of Tk,
ETk

is the binarized edge image of Tk,
IQ a query image of size WQ ×HQ,
IO,k
Q ⊂ IQ a sub-image of size Wk × Hk and

centered at O ∈ [0,WQ]× [0,HQ],
EQ the edge intensity image of IQ, and
SIQ

(k,O) a similarity measure between IO,k
Q and

Tk with the co-domain [0, 1], in the sense that the
value 1 indicates a perfect match.

The goal of a template matching algorithm is
to find the template index k̄ that is most similar
to the target object in the image and its correct
image coordinates Ō. This can be achieved in
two steps: First, calculate the image similarities
for some or all O and k. Second, based on the
similarities, obtained in step 1, choose an appro-
priate k̄ and Ō to represent the object state and
position. The latter is not the focus of this paper.

Due to loss of information salient features are
needed to get results of high quality. Edges are
such a feature. They are fairly robust against illu-
mination changes and varying object color. How-
ever, edges are not completely independent from
illumination, color, texture, and camera param-
eters. Therefore, a robust algorithm for efficient
template matching is needed.

3.1 Overview of our Approach

Our approach consists of two stages. First, the
template set T and the query image IQ are pre-
processed to allow efficient edge-based template
matching; second, the matching itself is per-



Figure 2: In order to achieve a consistent gradient
distance, we map gradients as shown here, before ac-
tually comparing them. That way, our edge similarity
measure returns low “distances” for the edge gradi-
ents in both situations shown here. The vi denote the
original gradients, ui are intermediate ones, and wi

are the final ones that are further used.

formed, which computes a similarity value for all
templates Tk and all sub-images IO,k

Q for all query
image pixels O.

The templates are preprocessed in two steps.
First, we generate images of the object in different
states and viewpoints. An edge extractor is used
to obtain a binary edge image. Then, we extract
the edge gradient at the edge pixels. This gradi-
ent is then mapped in a way so that they can be
compared easily and correctly. Second, we trans-
form the template image such that the similarity
between template and query image can be calcu-
lated efficiently by a convolution (Section 3.2).

Before computing similarities, we extract the
edge intensities and gradients from the query im-
age and map them, just like the preprocessing for
the templates. In order to overcome the prob-
lem of multiple edges, caused by noise, shadows,
and other effects, we further transform the image
appropriately.

3.2 Computing the Similarity of
Edge Images

In this section, we describe the core of our ap-
proach, the matching of a template Tk and a
query image IQ. We assume we are given the
following information:
LTk

= {O | ETk
(O) = 1}, the edge pixel list;

ĜT and ĜQ, the mapped edge gradients of the
template and query image, resp., additionally
each vector normalized to length one;

N (x) = {x+y |y ∈ [−n, n]2}, n ∈ N, a neighbor-
hood of x;
K, a unimodal function (kernel function) with the
maximum at K(0) = 1, and
Kn, a kernel function with bounded support:

Kn(∆, h) =

{
K(∆

h ) ‖∆‖∞ ≤ n

0 otherwise
(1)

First we map the image edge gradients such
that they can be compared by a simple multipli-
cation without any loss of accuracy. The mapping
function v̂ = f(v) is defined as follows:

θ = arctan
vy

vx
(2)

θ′ =

{
θ θ ≥ 0
θ + π θ < 0

(3)

v̂ = (v̂x, v̂y) = ‖v‖2 · (cos(2θ′), sin(2θ′)) (4)

Figure 2 illustrates the problem and our mapping.
As explained previously, we do not have a dis-

crete set of edge pixels in the query image, and,
thus, cannot calculate directly a distance from
each edge pixel e ∈ LTk

to the closest edge pixel
in IQ. Instead, we use probabilities to estimate
the distance: the higher the probability and the
nearer a pixel in the query image is to a template
edge pixel, the lower the distance should be.The
mean probability of a neighborhood of e is used
as inverse distance measure, so that a small dis-
tance results in a high mean value and vice versa.
The weight of the neighboring pixels is controlled
by the choice of the kernel function K and its pa-
rameter h. Because only close pixels are relevant
for the similarity measure, we only take into ac-
count a neighborhood of each template edge pixel
of size n ∈ N.

To compute the similarity SIQ
(k,O), we cal-

culate for each edge pixel e in the template image
the probability PO,k(e) that an edge in the query
image is close to it:

PO,k(e) =
1
2

+
1

CK

∑
p∈N (e)

[
Kn(p− e, h) ·

EQ(O + p)ĜT (e) · ĜQ(O + p)
]

(5)

with the normalization factor

CK = 2 ·
∑

p∈N (e)

Kn(p− e, h) (6)

Note that ĜT (e) · ĜQ(O+p) is a 2D scalar prod-
uct; because this is in [−1, 1], we have to use an



Figure 3: We estimate the similarity between a tem-
plate edge (dashed line) and a query image edge,
which is represented by intensities (gray solid curves),
by multiplying a kernel that is centered around each
template edge pixel (circles) with the edge intensities.
The intensity value of the template edge pixel (trian-
gles) visualize the “closeness” of query image edges.

offset. Figure 3 illustrates the idea behind this
measure.

Then, we define the overall similarity as the
mean probability

SIQ
(k,O) =

1
|LTk

|
∑

e∈LTk

PO,k(e) (7)

Since the kernel function K and parameters h and
n are fixed, the normalization factor CK is con-
stant. We insert Eq. 5 into Eq. 7 and rewrite to

SIQ
(k,O) =

1
2

+
1

|LTk
|

∑
e∈LTk

∑
p∈N (e)

ηT (p, e)ηQ(O+p)

(8)

with

ηT (p, e) = C−1
K Kn (p− e, h) ĜT (e) (9)

ηQ(x) = EQ(x) ĜQ(x) (10)

Because Kn is zero everywhere outside its sup-
port, we can rewrite the inner sum as a sum over
all pixels in Tk. Similarly, the outer sum can be
rewritten, yielding We rewrite again:

1
2

+
∑

x∈Dk

(
ηQ(O,x)

1
|LTk

|
∑

y∈Dk

ETk
(y)ηT (x,y)︸ ︷︷ ︸

ẼTk
(x)

)

(11)
where Dk = [0,Wk] × [0,Hk]. Notice that ẼTk

can be calculated offline. Finally, we arrive at

SIQ
(k,O) =

1
2

+
∑

x∈Dk

ηQ(O + x) · ẼTk
(x). (12)

SIQ
(k) is called the confidence map of IQ and

Tk and is basically generated by correlating ẼTk

with EQĜQ. The image ẼTk
is flipped. Then it

can be calculated efficiently in Fourier space by

p

v

image space

value

Figure 4: 1D example of our quality measure: the
true location p of the target object is determined man-
ually, vp is the value in the combined confidence map.
Our quality measure is basically the sum of the signed
gray areas over the whole confidence map.

a convolution. Since ηT , ηQ ∈ R2, we compute
Eq. 12 independently for each component, x and
y, so that they are scalar-valued correlations.

So far, we have described a robust and fast
method to compute the edge similarity between
a query image and a set of templates. One re-
maining problem is that a query image often con-
tains multiple edges close to each other, which
are, therefore, also close to the appropriate tem-
plate edge. For instance, a cable, which produces
a shadow, causes four instead of two strong edges.
Depending on the edge orientation, this causes
severe over- or underestimation of PO,k(e). To
overcome this problem, we preprocess the query
image. We use the maximum of edge intensity
weighed kernels as new intensity. The orienta-
tions are calculated as the intensity weighted av-
erage of the neighborhood. Due to space limi-
tations we have to refer to our technical report
(Mohr and Zachmann, 2009) for a detailed de-
scription.

The final template matching process is im-
plemented very efficiently as convolution using
the CUDA programming environment (Nvidia,
2008). For more details please take a look at
(Mohr and Zachmann, 2009).

4 Results

In our datasets, we use the human hand as the
object to be detected. In this research field,
the chamfer based matching is the most often
used. Therefore, we compare our method with
the chamfer matching algorithm.

For comparison, we need an appropriate mea-
sure for the ability of the methods to localize an
object at the correct position in the query image.
Given a query image IQ, both the chamfer and
our method generate a confidence map SIQ

(k) for
each template Tk. Now let (x̂, ŷ) be the true loca-
tion of the object in the query image. The match-
ing value at (x̂, ŷ) of the template, delivering the



1.a 1.b 1.c 3.a 3.b

2.a 2.b 2.c 3.c 4

Figure 5: One frame of each of our three datasets: pointing hand (1.), open hand (2.), open-close gesture
(3.). The original images are denoted with the letter a, the combined confidence map generated by chamfer
matching with b, and those generated by our approach with c. Notice that with our approach, the maxima
in our confidence maps are much more significant. Full videos comparing our approach to chamfer matching
based confidence maps can be found at http://cg.in.tu-clausthal.de/research/handtracking/index.shtml
Image 4 shows a rendered template used for matching.

best match according to the approach used, is de-
noted with ĉ. Obviously, the fewer values in all
confidence maps are better than ĉ, the better the
matching algorithm is.1 This is the idea of our
quality measure of the matching algorithms. We
first define the combined confidence map SIQ

of l
templates: it stores for each pixel the confidence
map value of the template that matches best at
this location, i.e.

SIQ
(x, y) = max

k∈[0,l−1]

{
SIQ

(k, x, y)
}

. (13)

In detail, we use the following quality measure:

QIQ
=

1
N

∑
0≤x<WQ

0≤y<WH

(
SIQ

(x̂, ŷ)− SIQ
(x, y)

)
(14)

with the normalization factor N = WQHQ(max−
min). Min and max are the smallest and largest
value in SIQ

, resp. We manually determined the
true object positions (x̂, ŷ). Thus, the higher the
value QIQ

, the better the method works for the
query image and template set. Figure 4 illus-
trates the measure by means of a 1D combined
confidence map. The correct template index is
not taken into account in the quality measure.
But, we observed that at the true position, the
best matching template reported by our algo-
rithm looks very similar to the object in the input
image in most frames (see URL at Figure 5).

As test data we used RGB images of resolu-
tion 320×256. All image preprocessing is done on

1 The chamfer matching returns distances, not similar-
ities, but the chamfer matching output can be con-
verted easily into similarities by inverting them.

the graphics hardware in CUDA. We used three
datasets for evaluation (Figure 5). Dataset 1,
consisting of 200 frames, is a pointing hand mov-
ing in the image. The templates are 300 render-
ings of an artificial 3D hand model representing
a pointing gesture. Each template is generated
from a different camera viewpoint. In dataset 2,
an open hand is tested. The length of the dataset
is 200 frames, too, and the number of templates is
300 as well. Dataset 3 shows an open-closing se-
quence of a human hand, consisting of 135 frames.
Again, the templates are created using the 3D
hand model, with its fingers opening and clos-
ing, rendered from three different camera angles.
The average template size is about 80 × 80. As
kernel function we have chosen the Gaussian func-
tion K(x) = e−

1
2 x2

. The bandwidth parameter h,
needed in Eq 1, has been manually optimized; it
depends only on the templates, not on the query
images. We set n = d3he (three sigma rule for
Gaussians) and h = 3.3 for dataset 1 and h = 4.0
for datasets 2 and 3. For the chamfer matching
algorithm we used the parameters proposed by
(Stenger et al., 2006) (6 edge orientation chan-
nels and a distance threshold of 20).

Figure 5 shows an example frame and its com-
bined confidence map for each dataset. Figure 6
shows the quotient QGM/QCF of the quality mea-
sure of the two approaches for all frames. QGM

denotes the quality measure for our approach and
QCF for the chamfer based approach. Clearly,
in most parts of datasets 1 and 3 our approach
works better than chamfer based method. Only
in the last third of dataset 2, chamfer matching
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Figure 6: Each plot shows the quotient of the quality between our approach and the chamfer based approach.
A value greater than 1 indicates that our approach is better

works better. In these frames, none of the tem-
plates matches well the orientation of all fingers.
Closer inspection suggests that a lot of orienta-
tions in these frames happen to be discretized to
the right bin in the chamfer based method. This
makes it produce a better match with the right
template.

We measured a frame-rate of about 1.1 fps
with our datasets. This comprises the prepro-
cessing of the query images and the convolution
with 300 templates. The limiting factor of the
computation time of the matching process is the
FFT. It consumes over 90% of the total time.

5 CONCLUSIONS

In this paper, we developed an edge similarity
measure for template matching that does not use
any thresholds nor discretize edge orientations.
Consequently, it works more robustly under var-
ious conditions. This is achieved by a continu-
ous edge image similarity measure, which includes
a continuous edge orientation distance measure.
Our method is implemented as convolution on the
GPU and thus is very fast. We generate a con-
fidence map in only 3 ms. The confidence maps
can easily combined with other features to further
increase the quality of object detection.

In about 90% of all images of our test datasets,
our method generates confidence maps with fewer
maxima that are also more significant. This
is better than a state-of-the-art chamfer based
method, which uses orientation information as
well.

In the future, we plan to test anisotropic and
asymmetric kernels for the preprocessing of the
templates in order to exploit the knowledge of in-
ner and outer object regions. This should improve
matching quality. Furthermore, we will research
methods to automatically select the kernel band-
width parameter.
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