
GPU-ABiSort: Optimal Parallel Sorting on Stream Architectures

Alexander Greß1 and Gabriel Zachmann2

1Institute of Computer Science II 2Department of Computer Science
Rhein. Friedr.-Wilh.-Universität Bonn Clausthal University

Bonn, Germany Clausthal-Zellerfeld, Germany
gress@cs.uni-bonn.de zach@in.tu-clausthal.de

Abstract

In this paper, we present a novel approach for par-
allel sorting on stream processing architectures. It is
based on adaptive bitonic sorting. For sorting n val-
ues utilizing p stream processor units, this approach
achieves the optimal time complexity O((n log n)/p).

While this makes our approach competitive with
common sequential sorting algorithms not only from a
theoretical viewpoint, it is also very fast from a practi-
cal viewpoint. This is achieved by using efficient linear
stream memory accesses (and by combining the opti-
mal time approach with algorithms optimized for small
input sequences).

We present an implementation on modern pro-
grammable graphics hardware (GPUs). On recent
GPUs, our optimal parallel sorting approach has shown
to be remarkably faster than sequential sorting on the
CPU, and it is also faster than previous non-optimal
sorting approaches on the GPU for sufficiently large
input sequences. Because of the excellent scalability
of our algorithm with the number of stream processor
units p (up to n/ log2 n or even n/ log n units, depend-
ing on the stream architecture), our approach profits
heavily from the trend of increasing number of frag-
ment processor units on GPUs, so that we can expect
further speed improvement with upcoming GPU gener-
ations.

1. Introduction

Sorting is one of the most well-studied problems in
computer science since it is a fundamental problem in
many applications, in particular as a preprocessing step
to accelerate searching.

Due to the current trend of parallel architectures
finding their way into common consumer hardware,

parallel algorithms such as parallel sorting are becom-
ing more and more important for the practice of pro-
gramming.

While the classical programming model used in lan-
guages like C/C++ had been very successful for the
development of non-parallel applications as it provides
an efficient mapping to the classical von Neumann ar-
chitecture, this model does not map very well to next
generation parallel architectures which demand further
input from the programmer to exploit the parallelism
of an algorithm more effectively. For developing ef-
ficient applications on such architectures with maxi-
mum programmer productivity, alternative program-
ming paradigms seem to be required [3]. The stream
programming model has shown to be a promising ap-
proach going in this direction.

Furthermore, the stream programming model pro-
vided the foundations for the architecture of mod-
ern programmable high-performance graphics hard-
ware (GPUs) that can be found in today’s consumer
hardware.

However, sorting on stream architectures is not
much explored until now. Recent work on sorting on
stream architectures includes several approaches based
on sorting networks with O(n log2 n/p) average and
worst-case time, but to our knowledge no sorting al-
gorithms for stream processors with optimal time com-
plexity O(n log n/p) have been proposed so far.

Our approach, which is based on Adaptive Bitonic
Sorting [5], achieves this optimal time complexity on
stream architectures with up to p = n/ log n proces-
sor units. The approach can even be implemented on
stream architectures with the restriction that a stream
must consist of a single contiguous memory block, in
which case the optimal time complexity is achieved up
to p = n/ log2 n units. Altogether this means that our
approach will scale well to practically any future stream
architecture.

2

Although we specify our approach completely in a
general stream programming model, it has been de-
signed with special attention to the practicability on
modern GPUs, hence the name GPU-ABiSort.

The GPU implementation and timings we provide
in this paper show that our approach is not only opti-
mal from a theoretical viewpoint, but also efficient in
practice. Because of the scalability of our approach,
we conjecture that the performance benefit of our par-
allel algorithm compared to sequential sorting will be
even higher on future GPUs, provided that their rapid
performance increase continues.

The rest of this paper is organized as follows: In Sec-
tion 2 we will describe the related work on GPU-based
sorting and on parallel sorting in general. In Section
3 we will summarize the stream programming model
that lays the foundations for the specification of our ap-
proach. In Section 4 we will recap and slightly improve
the classic adaptive bitonic sorting in the sequential
case. We will present our novel optimal parallel sort-
ing approach on stream architectures in Section 5 and
supplement the description with some GPU-specific de-
tails in Section 6. Finally, we will provide the timings
of our GPU implementation in Section 7.

Additional details about this approach, especially
how we optimized our implementation to increase the
performance in practice, can be found in the extended
version of this paper [11].

2. Related work

2.1. Optimal parallel sorting

Many innovative parallel sorting algorithms have
been proposed for several different parallel architec-
tures. For a comprehensive review, we refer the reader
to [2].

Especially parallel sorting using sorting networks as
well as algorithms for sorting on a CREW-PRAM or
EREW-PRAM model have been extensively studied.

Ajtai, Komlos, and Szemeredi [1] showed how op-
timal asymptotic complexity can be achieved with a
sorting network.

Cole [7] presented a parallel merge sort approach for
the CREW-PRAM as well as for the EREW-PRAM,
which achieves optimal asymptotic complexity on that
architecture.

However, although asymptotically optimal, it has
been show, that neither the AKS sorting network nor
Cole’s parallel merge sort are fast in practice for rea-
sonable numbers of values to sort [8, 15].

Adaptive bitonic sorting [5] is another optimal par-
allel sorting approach for a shared-memory EREW-

PRAM architecture (also called PRAC for parallel ran-
dom access computer). It requires a smaller number of
comparisons than Cole’s approach (less than 2n log n
in total for a sequence of length n) and has a smaller
constant factor in the running time. Even with a small
number of processors it is efficient: In its original imple-
mentation, the sequential version of the algorithm was
at most 2.5 times slower than quicksort (for sequence
lengths up to 219) [5].

Besides, the main motivations for choosing this al-
gorithm as basis for our parallel sorting approach on
stream architectures were the following observations:

First, adaptive bitonic sorting can run in O(log2 n)
parallel time on a PRAC with O(n/ log n) processors.
This allows us to develop an algorithm for stream ar-
chitectures with only O(log2 n) stream operations, as
we will show in this paper. Note that a low number of
stream operations is a key requirement for an efficient
stream architecture implementation (see Section 3.1).

Second, although originally designed for a random-
access architecture, adaptive bitonic sorting can be
adapted to a stream processor, which does not have
the ability of random-access writes, as we will show in
this paper.

Adaptive bitonic sorting is based on Batcher’s
bitonic sorting network [4], which is a conceptually
simpler approach that achieves only the non-optimal
parallel running time O(log2 n) for a sorting network
of n nodes.

2.2. GPU-based sorting

Several sorting approaches on stream architectures
have been published so far. Apparently all of them
are based on the bitonic or similar sorting networks
and thus achieve only the non-optimal time complexity
O((n log2 n)/p) on a stream architecture with p pro-
cessor units (in worst and average case since sorting
networks are data-independent).

Purcell et al. [18] presented a bitonic sorting net-
work implementation for the GPU which is based on
an equivalent implementation for the Imagine stream
processor by Kapasi et al. [12].

Kipfer et al. [13, 14] implemented a bitonic as well
as an odd-even merge sort network on the GPU.

Govindaraju et al. presented an implementation
based on the periodic balanced sorting network [10]
and, more recently, also an implementation based on
the bitonic sorting network [9]. The latter has been
highly optimized for cache efficiency and is the fastest
of the approaches above. On an NVIDIA GeForce 7800
GTX GPU it performs about twice as fast as the best
quick sort implementation on a single-core Intel Pen-

3

tium IV CPU (up to the maximum data size that can
be handled on such a GPU).

However, because of the non-optimal time complex-
ity of the bitonic sorting network it is not clear to what
extent their approach will be competitive to optimal
sorting on the CPU in the future, especially with the
advent of multi-core CPUs, on which optimal parallel
sorting can be implemented.

As in other bitonic sorting network based ap-
proaches, their implementation is restricted to se-
quence lengths that are a power of two.

3. The stream programming model

3.1. The basics

In the stream programming model [12, 17, 6, 16],
the basic program structure is described by streams of
data passing through computation kernels.

A stream is an ordered set of data of an arbitrary
(simple or complex) datatype.

Kernels perform computation on entire streams or
substreams, usually by applying a function to each el-
ement of the stream or substream (in parallel or in
sequence). Kernels operate on one or more streams as
inputs and produce one or more streams as outputs.

Programs expressed in the stream programming
model are specified at two levels: the stream level and
the kernel level (possibly using different programming
languages at both levels). Computations on stream el-
ements, usually consisting of multiple arithmetic oper-
ations, are specified at the kernel level. At the stream
level, the program is constructed by chaining these
computations together.

Furthermore, at the stream level it is possible to
derive a substream from a given stream. A substream
can be defined as a contiguous range of elements from a
given stream. This way we can declare any contiguous
block of stream memory as a stream or substream on
which stream operations can be performed. On some
stream hardware (including the GPU), a substream can
also be defined by multiple non-overlapping ranges of
elements from a stream.

The execution of a certain kernel for all elements of
a stream or substream is invoked by a single operation
on the stream level (stream operation).

Since in theory all kernel instances for a single
stream operation may be executed in parallel, the num-
ber of stream operations of a given stream program also
provides a theoretical bound for the parallel running
time of an algorithm.

Therefore, if an identical operation is to be per-
formed on a number of data elements, it is more effi-

cient if these data elements reside in a common stream,
on which a single stream operation can be applied, than
if they are contained in multiple small streams, which
would require the execution of multiple stream opera-
tions.

In addition to improving the scalability of an ap-
proach, the reduction of the number of stream opera-
tions is also very relevant for the practical performance
of an algorithm on a given stream hardware. This is be-
cause of the (constant) overhead associated with each
stream operation. Current stream hardware, especially
GPUs, have the best throughput for large streams (con-
sisting of hundreds or more elements) [16].

Furthermore, it can be assumed that an operation on
a substream defined by a single large contiguous range
of elements is more efficient than the same operation
on a substream defined by numerous small ranges of
elements.

3.2. The target architecture for our ap-
proach in more detail

On the GPU, Streams can be organized as 1D, 2D,
or 3D arrays. Unfortunately, streams currently have re-
strictions on their size in each dimension (usually 2048
or 4096 elements on recent GPUs). This restriction is
especially unpleasant for 1D streams which can thus
be used only for a very small amount of stream mem-
ory. However, larger 1D streams can be represented by
packing the data into a 2D stream. Each time an ele-
ment of such a stream is accessed from a kernel via an
index, the 1D index must be converted to a 2D index
[6].

In 2D, we define a substream as a rectangular
block or a set of multiple (non-overlapping) rectangular
blocks of successive elements from a 2D stream.

On the GPU, gathering from a stream, i.e. random
reads from a computed address, is possible, although
in general less efficient than streaming reads.

Scattering to a stream, i.e. random writes to a com-
puted address, is not possible directly. It can at best
be emulated on recent GPUs (see [6]), but such an em-
ulation has a large overhead and, depending on the
used technique, either increases the asymptotic time
per processor or at least endangers the scalability of
the algorithm by performing random writes succes-
sively that could theoretically be executed in parallel.
Therefore, such an emulation is not suitable for our
approach.

Summarizing, our targeted processor model is a
stream processor with the ability to gather but without
the ability to scatter.

To apply the technique of adaptive bitonic sorting,

4

originally proposed for an EREW-PRAM architecture,
to such a target model, random access writes have to
be replaced by stream writes, preferably to contiguous
stream blocks as large as possible.

4. The sequential case

In the following, we will give a quick recap of the
classic adaptive bitonic sorting approach for the se-
quential case (Section 4.1). Afterwards, we will propose
a small modification of the merge algorithm, which
will lead to a slightly more efficient implementation on
stream architectures (Section 4.2).

Note that for simplicity, we assume in this descrip-
tion that the length of the input sequence n is a power
of two. This can be achieved by padding the input se-
quence. (Alternatively, Bilardi and Nicolau show an
extended variant of their algorithm that works for ar-
bitrary n [5].)

Further, it is assumed that all elements of the input
sequence are distinct. Distinctness can be enforced by
using the original position of the elements in the input
sequence as secondary sort key.

4.1. The classic adaptive bitonic sorting ap-
proach

As already mentioned, the adaptive bitonic sorting
approach [5] is based on the bitonic sorting scheme orig-
inally proposed by Batcher [4]. This is a merge-sort
based scheme, where the merge step is performed by
reordering a bitonic sequence.

A sequence is called bitonic if there is a value of j
such that after rotation by j elements, the sequence
consists of a monotonic increasing part followed by a
monotonic decreasing part.

In this context, rotation by j elements,
j ∈ {0, . . . , n − 1}, denotes the following op-
eration on the sequence: (a0, . . . , an−1) 7→
(aj , . . . , an−1, a0, . . . , aj−1). For an arbitrary j,
the rotation is defined as the rotation by j mod n.

For bitonic sorting, an algorithm is needed to trans-
form a bitonic sequence into its corresponding mono-
tonic increasing (or monotonic decreasing) sequence.
With such an algorithm, the merging of two sorted se-
quences can be performed as follows: Assuming that
the two sequences are sorted in opposite sorting di-
rections (otherwise one of them would have to be re-
versed), the concatenation of the two sequences yields a
bitonic sequence. Thus the result of the transformation
into a monotonic increasing (or decreasing) sequence
corresponds to the result of merging the two input se-
quences according to the respective sorting direction.

A key idea of bitonic sorting is to perform this trans-
formation, which is called bitonic merge, recursively.
For simplicity, we assume that the length of the bitonic
input sequence is a power of two. Furthermore, we as-
sume in the following that a monotonic increasing se-
quence is to be constructed. (A monotonic decreasing
sequence could be constructed analogically.) Then, the
recursive scheme of the bitonic merge is as follows:

Bitonic merge:

• Let p = (p0, . . . , p n
2 −1) be the first half and q =

(q0, . . . , q n
2 −1) the second half of input sequence a =

(a0, . . . , an−1), i.e. pi = ai and qi = ai+ n
2
.

• Let p′ and q′ be the component-wise minimum and max-
imum, respectively, of p and q, i.e. p′i = min(pi, qi) and
q′i = max(pi, qi).

• Then, the following proposition holds (as we will show):
(*) p′ and q′ are bitonic sequences, and the largest element
of p′ is not greater than the smallest element of q′.

• Apply the bitonic merge recursively to the sequences p′

and q′. Afterwards, the concatenation of the two results
yields the monotonic increasing sequence.

We will shortly explain proposition (*) here (a more
detailed proof can be found in [5]):

It is easy to see that for each bitonic sequence a
consisting of n elements, there is a j∗ ∈ {−n

2 , . . . , n
2−1}

such that after rotation of a by j∗ elements, all elements
of the first half, which we call p∗, are not greater than
any element of the second part, which we call q∗. (Note
that it is sufficient to prove this for sequences consisting
of a monotonic increasing part followed by a monotonic
decreasing part.) Moreover it is obvious that p∗ and q∗

are bitonic sequences since they are parts of a bitonic
sequence. If we rotate p∗ and q∗ by −j∗ elements,
these sequences are equal to p′ and q′, respectively,
which follows from the definition of p′, q′ and the fact
that, per definition of p∗, q∗, each p∗i cannot be greater
than q∗i . Therefore, proposition (*) follows from the
definition of the sequences p∗, q∗ and the mentioned
property that they are bitonic.

From these observations, we can derive an alterna-
tive method for determining the sequences p′ and q′.
It is easy to see that if we have determined a value of
j∗ ∈ {−n

2 , . . . , n
2 − 1} satisfying the above definition,

p′ and q′ can be constructed from p, q by exchanging
the first j∗ elements of p with the first j∗ elements of
q (in the case of j∗ ≥ 0) or by exchanging the last −j∗

elements of p with the last −j∗ elements of q (in the
case of j∗ < 0).

Consequently, j∗ is an index such that in case of

j∗ ≥ 0 : p0 ≥ q0, . . . , pj∗−1 ≥ qj∗−1,

pj∗ ≤ qj∗ , . . . , pn
2 −1 ≤ qn

2 −1

j∗ < 0 : p0 ≤ q0, . . . , pn
2 +j∗−1 ≤ qn

2 +j∗−1,

pn
2 +j∗ ≥ qn

2 +j∗ , . . . , pn
2 −1 ≥ qn

2 −1

5

If we assume that all elements of the input sequence
a are distinct (what we will do in the following), we can
determine which of the two cases (j∗ ≥ 0 or j∗ < 0)
applies by a single comparison, for example according
to the equivalence j∗ ≥ 0 ⇔ pn

2 −1 < qn
2 −1. Thereafter,

the exact value of j∗ (which is uniquely determined
by the above definition in the case of distinct input
elements) can be determined by a binary search. (In
the case of j∗ ≥ 0 this means that, starting with i =
n
4 − 1, i is decremented by a certain value if pi < qi,
and incremented if pi > qi.)

Thus we have a method to determine j∗ in loga-
rithmic time (using log n comparisons for a sequence
consisting of n elements). The key idea of the adaptive
bitonic sorting approach [5] is to use this technique to
reduce the time complexity of the bitonic merge. For
this purpose, also the number of exchanges (or data
transfer operations in general) that is required to cal-
culate p′ and q′ from a given j∗ has to be logarithmic.

To achieve this, the elements of a given bitonic se-
quence are stored as nodes of a binary search tree,
which is called bitonic tree. The assumption that the
sequence length n is a power of two allows us to use
only fully balanced binary trees. Each node of the tree
contains an element of the subsequence (a0, . . . , an−2)
in such a way that the in-order traversal of the tree
yields this subsequence in correct order. an−1, the last
element of the sequence, is stored separately (called
spare node).

The benefit of using a binary tree is that a whole
subtree (containing 2k − 1 sequence elements for a
k ∈ {0, . . . , log n − 1}) can be replaced with another
subtree by a single pointer exchange. This way, we
can efficiently construct p′ and q′ during the binary
search for determining the value of j∗. This leads to
the following algorithm for the construction of p′ and
q′, which operates on the bitonic tree that corresponds
to the given bitonic sequence:

Adaptive min/max determination:

Phase 0: Determine, which of the two cases applies:
(a) root value < spare value or
(b) root value > spare value
Only in case (b):

Exchange the values of root and spare.
Let p be the left and q the right son of root.

For i = 1, . . . , log n − 1:

Phase i: Test if: value of p > value of q (**)
If condition (**) is true:

Exchange the values of p and q as well as
in case (a) the left sons of p and q,
in case (b) the right sons of p and q.

Assign the left sons of p, q to p, q iff
case (a) applies and condition (**) is false or
case (b) applies and condition (**) is true;

otherwise assign the right sons of p, q to p, q.

Note that root contains the sequence element pn
2 −1

and spare the sequence element qn
2 −1 (where p, q are

the two halves of the given bitonic sequence). There-
fore, case (a) corresponds to j∗ ≥ 0 and case (b) to
j∗ < 0 according to denotations above.

The described method requires log n comparisons
and less than 2 log n exchanges for the determina-
tion of p′ and q′. If this method is used within the
bitonic merge scheme described before, we get a recur-
sive merge algorithm in O(n) which is called adaptive
bitonic merge. This is because on each recursion level
k ∈ {0, . . . , log n − 1} (called stage in the following)
there are 2k sequences, each of them having the length
2log n−k. So, on a stage k, we need 2k(log n−k) compar-
isons, which makes a total of 2n− log n− 2 and thus a
linear time complexity for the whole merge algorithm.

Note that the bitonic tree does not need to be re-
build on each stage. Instead, we can formulate the
adaptive bitonic merge algorithm completely on the ba-
sis of the bitonic tree:

Adaptive bitonic merge:

• Assume that a bitonic tree (for a sequence consisting of n
elements) is given by the nodes root and spare.

• Execute phases 0, . . . , log n−1 of the adaptive min/max
determination algorithm as described above.

• Apply the adaptive bitonic merge recursively

1. with root’s left son as new root and root as new
spare node,

2. with root’s right son as new root and spare as
new spare node.

(Finally, the in-order traversal of the whole bitonic tree
results in the monotonic ascending sequence that was to
be determined.)

Using the adaptive bitonic merge as merge algorithm
in a classic recursive merge sort scheme the way it was
described at the beginning of this section finally gives
us the sequential version of adaptive bitonic sorting.
It has a total running time of O(n log n) for input se-
quences of length n. Before extending this approach to
a parallel algorithm for stream architectures, we will at
first propose a slight modification of the classic adap-
tive bitonic merge algorithm presented in this section,
which eliminates the distinction of cases and thus will
make an implementation on stream architectures easier
and also more efficient.

4.2. Adaptive bitonic merge simplified

As described in the previous section, at the heart of
the adaptive bitonic merge is an adaptive min/max de-
termination algorithm that determines the component-
wise minimum as well as the component-wise maxi-
mum of the bitonic sequences p and q in O(log n) time.

6

As minimum and maximum are commutative, the re-
sult does not change if p and q are exchanged before
applying this algorithm. Therefore, it is easy to as-
sure that for any input sequences p, q the inequality
pn

2 −1 < qn
2 −1 holds by simply exchanging p and q if

applicable. This way, case (b) in the algorithm will be
reduced to case (a). If this potential exchange of p and
q is incorporated in phase 0 of the algorithm, this re-
sults in the following simplified implementation of the
algorithm:

Adaptive min/max determination:

Phase 0: If root value > spare value:
Exchange the values of root and spare
as well as the two sons of root with each other.

Let p be the left and q the right son of root.

For i = 1, . . . , log n − 1:

Phase i: If value of p > value of q:
Exchange the values of p and q
as well as the left sons of p and q.
Assign the right sons of p, q to p, q.

Otherwise:
Assign the left sons of p, q to p, q.

In comparison to the implementation described in
Section 4.1 only a single pointer exchange was added.
Instead, it was possible to remove the distinction of
cases.

5. Adaptive bitonic sorting on stream ar-
chitectures

Based on the sequential sorting approach described
in the previous section, we will now develop our optimal
parallel sorting approach for stream architectures.

For simplicity, we will initially ignore the fact that
random-access writes are not possible on our targeted
architecture, and start the description with an overview
of the general outline of our approach.

5.1. GPU-ABiSort basic outline

As explained in Section 4.1, on each recursion level
j = 1, . . . , log n of the adaptive bitonic sort, 2log n−j+1

bitonic trees, each consisting of 2j−1 nodes, have to
be merged into 2log n−j bitonic trees of 2j nodes. The
merge is performed in j stages. In each stage k =
0, . . . , j−1, the adaptive min/max determination algo-
rithm is executed on 2k subtrees for each pair of bitonic
trees that is to be merged. Therefore 2log n−j · 2k in-
stances of the adaptive min/max determination algo-
rithm can be executed in parallel in that stage. On
a stream architecture this potential parallelism can be
exposed by allocating a stream consisting of 2log n−j+k

elements and executing a kernel on each element.

The adaptive min/max determination algorithm
consists of j − k phases, where each phase reads and
modifies a pair of nodes from a bitonic tree. Let us
assume that a kernel implementation is given that per-
forms the operation of a single phase of the adaptive
min/max determination algorithm. (How such a ker-
nel implementation is realized without random-access
writes will be described in Section 5.2.) The tempo-
rary data that has to be preserved from one phase of
the algorithm to the other are just two node pointers
(p and q) per kernel instance in case of the simplified
version of the algorithm, which was described in Sec-
tion 4.2. Thus each of the 2log n−j+k elements of the
allocated stream should consist of exactly two node
pointers. When the kernel is invoked on that stream,
each kernel instance reads a pair of node pointers p,
q from the stream, performs a phase of the adaptive
min/max determination algorithm using p, q (as de-
scribed in Section 4.2), and finally writes the updated
pair of node pointers p, q back to the stream.

5.2. Eliminating random-access writes

Since the targeted stream architecture does not sup-
port random-access writes, we have to find a way to im-
plement a kernel that modifies node pairs of the bitonic
tree without random-access writes. This means that we
can output modified node pairs from the kernel only via
linear stream write. But this way we cannot write back
a modified node pair to its original location where it
was read. (Otherwise we would have to process the
nodes in the same order as they are stored in mem-
ory, but the adaptive bitonic merge processes them in
a random, data dependent order.) Of course we have to
assure that subsequent stages of the adaptive bitonic
merge use the modified nodes instead of the original
ones, if we output the modified nodes to different loca-
tions in memory.

Fortunately the bitonic tree is a linked data struc-
ture where all nodes are directly or indirectly linked to
the root (except for the spare node). This allows us
to change the location of nodes in memory during the
merge algorithm as long as we update the child point-
ers of their respective parent nodes (and keep the root
and spare node of the bitonic tree at well-defined mem-
ory locations). This means that for each node that is
modified during the algorithm, also its parent node has
to be modified to update its child pointers.

Recall that the adaptive bitonic merge traverses the
bitonic trees downwards along certain paths. If any
node on that path is to be modified, also all previ-
ously visited nodes on that path have to be modified
to update their child pointers. Therefore we use the

7

following strategy to assure the correct update of child
pointers: We simply output every node visited during
this traversal to a stream. At the same time we update
the child pointers of these nodes to point to those lo-
cations where the modified child nodes will be stored
in the next step of the traversal. Because of the lin-
ear stream output, the location where a node will be
stored in subsequent steps of the traversal can easily
be computed in advance. More details about the ker-
nel implementation are given in [11].

While for the stream holding the temporary
node pointers p and q (see Section 5.1) the same
2log n−j+k ≤ n

2 stream elements can be overwritten in
each phase of the adaptive min/max determination al-
gorithm (and thus a stream of size n

2 is sufficient for
the whole sort algorithm), we cannot simply write the
modified node pairs to the same memory locations in
each phase or each stage of the merge. (This is because
a single stage of the adaptive bitonic merge does not
visit / modify all nodes of the bitonic tree – except
for the last two stages –, thus the output of a previ-
ous merge stage may still contain valid nodes that must
not be overwritten.) Instead, we could append the out-
put of every stage and every phase to a large stream
without overwriting nodes written in previous stages.

Since the additional memory overhead required by
such a technique might be an issue when sorting
large sequences on a stream architecture with limited
amount of stream memory, we show in the following
section that by using a different stream memory layout,
i.e. by specifying to which part of the stream the output
of a each phase of the algorithm should be directed such
that only those locations are overwritten that do not
contain valid nodes anymore, a stream providing space
for n nodes (i.e. for n

2 modified node pairs) is actually
sufficient. (In our implementation each node consists
of two child pointers, a floating point sort key, and
a unique id as secondary sort key to enforce distinct-
ness of the input elements, as required for the adaptive
bitonic merge to work on arbitrary input.)

5.3. Reducing the memory overhead

As outlined in Section 5.1, on every stage k of a
recursion level j of the adaptive bitonic sort exactly
2log n−j · 2k kernel instances are executed simultane-
ously; and since each kernel instance modifies and
writes a single node pair to the stream, the output of
every phase of stage k consists of exactly that amount
of node pairs. Therefore, for each phase we have to
specify a contiguous block of stream memory (which
we call substream) providing space for 2log n−j ·2k node
pairs.

phase start of substream end of substream

0 0 2k · 2log n−j

1 2k · 2log n−j 2k+1 · 2log n−j

i > 1 (2k+i−1 + 2k) 2log n−j (2k+i−1 + 2k+1) 2log n−j

Table 1. Specification of the memory blocks (sub-
streams) to which modified node pairs are written
(for each phase of stage k).

We do this as follows: For the whole recursion level
j, we allocate a single stream with a total size of n

2 node
pairs and use certain parts of that stream as output in
every phase of the algorithm as specified in Table 1.

This scheme is based on the following observations:
In phase 0 of a stage k, all tree nodes of the lev-
els 0, . . . , k are modified and written. Thus any tree
node of a level 0, . . . , k that has been written previ-
ous to that phase will not be further required in sub-
sequent phases and can be overwritten safely. (Note
that according to the substream specification above,
tree nodes of the levels 0, . . . , k are always contained
in the first 2k · 2log n−j node pairs of the stream.) Fur-
thermore, in phase 1 of stage k, all tree nodes of level
k + 1 are modified and written. Thus in this phase, all
previously written nodes of level k+1 can be overwrit-
ten.

Using this scheme, the output of the last step of the
merge (which was directed to the full stream of n

2 node
pairs) contains all 2log n−j completely modified bitonic
trees of recursion level j (each of which represents a
fully sorted sequence of length 2j) in a non-interleaved
manner. This stream is then used as input for the sub-
sequent recursion level j + 1 of the adaptive bitonic
sort. Since at the end of each recursion level all input
tree nodes have been replaced by modified nodes in the
output stream, it is sufficient to allocate two streams
of n

2 node pairs for the whole sort algorithm and alter-
nately use one them as output stream in each recursion
level.

Fig. 1 demonstrates our output stream layout on the
example of a single adaptive bitonic merge of n = 24

values. The numbers in the table specify the tree level
of each node in the output stream (where 0 corresponds
to the root). s is the spare node of the bitonic tree.
While the node pairs shown in black are those writ-
ten in the respective phase (indicated on the left), the
node pairs shown in gray are the ones still accessible
from previous phases. Note that the order of the nodes
written in phase 0 of each stage k (shown in bold font)
corresponds to an in-order-traversal of the k upper lev-
els of the bitonic tree.

8

output stream layout: tree levels
of node pair at stream memory location

stage phase 0 1 2 3 4 5 6 7

0 0 0s
0 1 0s 11
0 2 0s 11 22
0 3 0s 11 22 33
1 0 10 1s 22 33
1 1 10 1s 22 22 33
1 2 10 1s 22 22 33 33 33
2 0 21 20 21 2s 33 33 33
2 1 21 20 21 2s 33 33 33 33
3 0 32 31 32 30 32 31 32 3s

Figure 1. Output stream layout for adaptive bitonic
merging of 24 values assuming a sequential exe-
cution of all stages.

5.4. GPU-ABiSort in O(log2 n) stream oper-
ations

Since each stage k of a recursion level j of the adap-
tive bitonic sort consists of j − k phases, O(log n)
stream operations are required for each stage. To-
gether, all j stages of recursion level j consist of
1
2j2 + 1

2j phases in total. Therefore, the sequential exe-
cution of these phases requires O(log2 n) stream opera-
tions per recursion level and, in total, O(log3 n) stream
operations for the whole sort algorithm.

While this already allows to achieve the optimal
time complexity O((n log n)/p) for up to p = n/ log2 n
stream processor units, we will present in the following
an improved GPU-ABiSort implementation for stream
architectures that allow the specification of substreams
consisting of multiple separate memory blocks, which
requires only O(log2 n) stream operations for the whole
sorting (and is thus theoretically capable of achiev-
ing the optimal time complexity for up to n/ log n
stream processor units). The reduction of the num-
ber of stream operations by the factor O(log n) is ac-
complished by adapting a technique from the parallel
PRAC implementation of the adaptive bitonic sorting
[5]: Instead of a completely sequential execution of all
stages, we execute them partially overlapped.

By observing which tree levels are visited in each
of the phases and in which phases they have been vis-
ited the last time before (cf. Fig. 1), we notice that
phase i of a stage k can be executed immediately af-
ter phase i + 1 of stage k − 1. Therefore, we can start
the execution of a new stage every other step of the
algorithm (cf. [5]), which leads to an adaptive bitonic
merge implementation in a total of 2 log n−1 steps and
thus in O(log n) stream operations for each of the log n
recursion levels of the adaptive bitonic sort.

output stream layout: tree levels
of node pair at stream memory location

step stages 0 1 2 3 4 5 6 7

0 0 0s
1 0 0s 11
2 0,1 10 1s 22
3 0,1 10 1s 22 22 33
4 1,2 21 20 21 2s 33 33 33
5 2 21 20 21 2s 33 33 33 33
6 3 32 31 32 30 32 31 32 3s

Figure 2. Output stream layout for adaptive bitonic
merging of 24 values with overlapping of stages.

For such an improved implementation, the previ-
ously used specification to which memory locations
modified nodes are written in each phase of the al-
gorithm (see Table 1) is still applicable. However, in-
stead of defining a single contiguous memory block as
substream in each step of the algorithm, now multiple
memory blocks together form a substream that is to be
used as output stream for the corresponding stream op-
eration. In this context, the memory blocks that form
a common substream correspond to those phases that
can be executed in the same step of the algorithm (and
thus potentially in parallel) according to the above ob-
servation. Fig. 2 shows the respective stream layout.
As it can be seen there, the memory blocks belonging
to a single step of the algorithm do not overlap.

Finally, we can summarize the complete sorting al-
gorithm at the stream level as follows:

GPU-ABiSort:

for each recursion level j of the adaptive bitonic sort, i.e. for

j = 1, . . . , log n:

k0 := 0 (first active stage of a step of the merge)

k1 := 0 (last active stage of a step of the merge)

for each step i of the merge, i.e. for i = 0, . . . , 2j − 2:

if i is even (and i > 0): increment k0 by 1

if i >= log n: decrement k1 by 1

the substream to be used as output in this step is defined

by the memory blocks according to Table 1 belonging to

the following phases:

stage k0 phase i − 2k0, stage k0 + 1 phase i − 2(k0 + 1),

..., stage k1 phase i − 2k1

invoke a kernel on all elements of that substream

(which performs a step of the adaptive min/max

determination and updates child pointers, cf. Section 5.2)

9

6. GPU-specific details

6.1. Distinctness of input and output
streams

In the preceding section, we assumed that it is pos-
sible to use the same stream as input and output of
a stream operation. However, on current GPUs input
and output streams must always be distinct (and it is
currently not sufficient to use just distinct substreams
from the same stream for input and output).

For the stream holding the temporary node point-
ers p and q (see Section 5.1) we apply the pingpong
technique commonly used in GPU programming: We
allocate two such streams and alternately use one them
as input and the other one as output stream.

For the stream holding the modified node pairs (see
Section 5.2) this technique cannot be applied since not
all stream elements are modified in each step of the al-
gorithm. Therefore, in our current implementation, we
allocate two such streams and permanently use one of
them as input and the other one as output stream. Af-
ter each step of the algorithm, all nodes that have just
been written to the output stream are simply copied
back to the input stream.

6.2. GPU-ABiSort using a 2D stream lay-
out

For most applications, we can expect that the input
sequence will be longer than the maximum allowed size
of a 1D stream on current GPUs (cf. Section 3.2).
Therefore, in our GPU implementation we have to pack
our stream contents (i.e. the node pointers and node
pair data) into 2D streams.

We use the following simple mapping: if x is an
index corresponding to the location of a node in the
1D stream, this node will be mapped to the location
(x mod w, bx/wc) in the 2D stream (where w specifies
the width of the 2D stream). We thereby assume that
the width w is a power of two.

To be able to use the stream program described in
Section 5.4 with such a 2D stream without further mod-
ifications, it is necessary that the contiguous memory
blocks, which define a substream, correspond to rect-
angular blocks of the 2D stream after the mapping.

Our specification of those memory blocks according
to Table 1 meets these demands: The length l of each
block is a power of two. Furthermore, the start location
x0 of each block is a multiple of l. Hence, if l ≤ w, then
w is obviously a multiple of l, just like the start location
x0 and the end location x0 + l of the block, and thus
the block is located completely within a single line of

n CPU sort GPUSort[9] GPU-ABiSort
32768 12 – 16 ms 13 ms 11 ms
65536 27 – 35 ms 29 ms 21 ms

131072 62 – 77 ms 63 ms 45 ms
262144 126 – 160 ms 139 ms 95 ms
524288 270 – 342 ms 302 ms 208 ms

1048576 530 – 716 ms 658 ms 479 ms

Table 2. Timings on a GeForce 6800 system.

the 2D stream after the mapping. And if l ≥ w, then
l as well as x0 are multiples of w, and thus the block
spans the complete lines x0

w , . . . , x0
w + l

w − 1 of the 2D
stream after the mapping.

7. Results

The usual application scenario of a sorting algo-
rithm is the sorting of arbitrary data (e.g. records of
a database) based on a sort key, in our case a 32-
bit floating point value. On the CPU this is imple-
mented most efficiently by sorting an array consisting
of value/pointer pairs, where the value is used as sort
key and the pointer points to the corresponding data.
(At least on our test machines, the alternative – namely
to sort a simple pointer array whose entries point to
records containing the sort key – was in general much
slower.) We also implemented GPU-ABiSort in such
a way that the input and the final output of the sort-
ing is given as such an array of value/pointer pairs.
Since we can assume (without loss of generality) that
all pointers in the given array are unique, we can use
these pointers at the same time as secondary sort keys
for the adaptive bitonic merge (cf. Section 5.2).

At first we tested our implementation on a PC sys-
tem with an AMD Athlon-XP 3000+ CPU and an
NVIDIA GeForce 6800 Ultra GPU with 256 MB mem-
ory (on arrays containing random values). We com-
pared the performance of GPU-ABiSort with sorting
on the CPU using the C++ STL sort function (an op-
timized quick sort implementation) as well as with the
(non-adaptive) bitonic sorting network implementation
on the GPU by Govindaraju et al., called GPUSort [9].
Table 2 shows the timings.

We also tested our implementation on a PC system
with an AMD Athlon-64 4200+ CPU and an NVIDIA
GeForce 7800 GTX GPU with 256 MB memory. Table
3 shows the results.

8. Conclusions and future work

We presented a novel approach for parallel sorting
on stream architectures. As opposed to any previous

10

n CPU sort GPUSort[9] GPU-ABiSort
32768 9 – 11 ms 4 ms 6 ms
65536 19 – 24 ms 8 ms 9 ms

131072 46 – 52 ms 18 ms 18 ms
262144 98 – 109 ms 38 ms 37 ms
524288 203 – 226 ms 80 ms 76 ms

1048576 418 – 477 ms 173 ms 165 ms

Table 3. Timings on a GeForce 7800 system.

sorting approach on stream processors, it achieves the
optimal time complexity O((n log n)/p).

Furthermore, our approach performs also very well
in practice, which is caused by a well-chosen stream
memory layout and by several optimizations we incor-
porated into our approach.

We implemented our approach on modern pro-
grammable graphics hardware (GPUs). The timings
we obtained with this implementation are very promis-
ing, especially with regard to the performance improve-
ments that can be expected with upcoming GPU gener-
ations. The implementation of our approach has shown
that optimal parallel sorting on stream processors is in-
deed very efficient in practice.

As it was said, in our implementation we assumed
that the length of the input sequence is a power of two
(as it was also done in GPU sorting network implemen-
tations). However, it should certainly be possible to in-
corporate the extension of the adaptive bitonic sorting
approach to non-power-of-two sequence lengths by the
use of pruned bitonic trees [5] into our approach. The
efficient implementation of such an extension remains
a task of future work.

Finally, it would be interesting to explore to what
extent the tree traversal and node modification tech-
niques developed in this approach can be helpful for the
adaption of other adaptive or hierarchical algorithms to
the stream programming domain.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n)
sorting network. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing
(STOC ’83), pages 1–9, 1983.

[2] S. G. Akl. Parallel Sorting Algorithms. Academic
Press, Inc., Orlando, FL, USA, 1990.

[3] S. Amarasinghe. Multicores from the compiler’s per-
spective: A blessing or a curse? In Proceedings of
the international symposium on Code generation and
optimization (CGO ’05), pages 137–137, 2005.

[4] K. E. Batcher. Sorting networks and their applica-
tions. In Proceedings of the 1968 Spring Joint Com-
puter Conference (SJCC), volume 32, pages 307–314,
1968.

[5] G. Bilardi and A. Nicolau. Adaptive bitonic sorting:
An optimal parallel algorithm for shared-memory ma-
chines. SIAM J. Comput., 18(2):216–228, Apr. 1989.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-
halian, M. Houston, and P. Hanrahan. Brook for
GPUs: stream computing on graphics hardware. ACM
Transactions on Graphics, 23(3):777–786, Aug. 2004.

[7] R. Cole. Parallel merge sort. SIAM J. Comput.,
17(4):770–785, Aug. 1988. see Correction in SIAM
J. Comput. 22, 1349.

[8] A. Gibbons and W. Rytter. Efficient parallel algo-
rithms. Cambridge University Press, Cambridge, Eng-
land, 1988.

[9] N. K. Govindaraju, N. Raghuvanshi, M. Henson, and
D. Manocha. A cache-efficient sorting algorithm for
database and data mining computations using graph-
ics processors. Technical report, University of North
Carolina, Chapel Hill, 2005.

[10] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha.
Fast and approximate stream mining of quantiles and
frequencies using graphics processors. In Proceedings
of the 2005 ACM SIGMOD international conference
on Management of data (SIGMOD ’05), pages 611–
622, 2005.

[11] A. Greß and G. Zachmann. GPU-ABiSort: Optimal
parallel sorting on stream architectures (extended ver-
sion). Technical report, Clausthal University of Tech-
nology, Feb. 2006.

[12] U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson,
J. D. Owens, and B. Khailany. Efficient conditional op-
erations for data-parallel architectures. In Proceedings
of the 33rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Micro-33), pages 159–170,
2000.

[13] P. Kipfer, M. Segal, and R. Westermann. Uberflow:
a gpu-based particle engine. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics conference on
Graphics hardware (EGGH ’04), pages 115–122, 2004.

[14] P. Kipfer and R. Westermann. Improved GPU sort-
ing. In M. Pharr, editor, GPU Gems 2: Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation, pages 733–746.
Addison-Wesley, 2005.

[15] L. Natvig. Logarithmic time cost optimal parallel sort-
ing is not yet fast in practice! In Proceedings Super-
computing ’90, pages 486–494, 1990.

[16] J. Owens. Streaming architectures and technology
trends. In M. Pharr, editor, GPU Gems 2: Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation, pages 457–470.
Addison-Wesley, 2005.

[17] J. D. Owens. Computer Graphics on a Stream Archi-
tecture. PhD thesis, Stanford University, Nov. 2002.

[18] T. J. Purcell, C. Donner, M. Cammarano, H. W.
Jensen, and P. Hanrahan. Photon mapping on pro-
grammable graphics hardware. In Proceedings of the
2003 Annual ACM SIGGRAPH/Eurographics Confer-
ence on Graphics Hardware (EGGH ’03), pages 41–50,
2003.

