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Abstract. We present UnrealHaptics, a novel set of plugins that en-
able both 3-DOF and 6-DOF haptic rendering in the Unreal Engine 4.
The core is the combination of the integration of a state-of-the-art col-
lision detection library with support for very fast and stable force and
torque computations and a general haptics library for the communica-
tion with different haptic hardware devices. Our modular and lightweight
architecture makes it easy for other researchers to adapt our plugins to
their own requirements. As a use case we have tested our plugin in a new
asymmetric collaborative multiplayer game for blind and sighted people.
The results show that our plugin easily meets the requirements for haptic
rendering even in complex scenes.

1 Introduction

With the rise of affordable consumer devices such as the Oculus Rift or the HTC
Vive there has been a large increase in interest and development in the area of
virtual reality (VR). The new display and tracking technologies of these devices
enable high fidelity graphics rendering and natural interaction with the virtual
environments. Modern game engines like Unreal or Unity have simplified the
development of VR applications dramatically. They almost hide the technological
background from the content creation process so that today, everyone can click
their way to their own VR application in a few minutes. However, consumer VR
devices are primarily focused on outputting information to the two main human
senses: seeing and hearing. Also game engines are mainly limited to visual and
audio output. The sense of touch is widely neglected. This lack of haptic feedback
can disturb the immersion in virtual environments significantly. Moreover, the
concentration on visual feedback excludes a large number of people from the
content created with the game engines: those who cannot see this content, i.e.
blind and visually impaired people.

The main reasons why the sense of touch is widely neglected in the context
of games are that haptic devices are still comparatively bulky and expensive.
Moreover, haptic rendering is computationally and algorithmically very chal-
lenging. Although many game engines have a built-in physics engine, they are
most usually limited to simple convex shapes and they are relatively slow: for
the visual rendering loop it is sufficient to provide 60-120 frames per second



2 M. O. Rüdel et al.

(FPS) to guarantee a smooth visual feedback. Our sense of touch is much more
sensitive with respect to the temporal resolution. Here, a frequency of preferably
1000 Hz is required to provide an acceptable force feedback. This requirement for
haptic rendering requires a decoupling of the physically-based simulation from
the visual rendering path.

In this paper, we present UnrealHaptics to enable high-fidelity haptic ren-
dering in a modern game engine. Following the idea of decoupling the simulation
part from the core game engine, UnrealHaptics consists of three individual
plugins:

– A plugin that we call Haptico: it realizes the communication with the haptic
hardware.

– The computational bottleneck during the physically-based simulation is the
collision detection. Our plugin called Collette builds a bridge to an exter-
nal collision detection library that is fast enough for haptic rendering.

– Finally, ForceComp computes the appropriate forces and torques from the
collision information.

This modular structure of UnrealHaptics allows other researchers to eas-
ily replace individual parts, e.g. the force computation or the collision detection,
to fit their individual needs. We have integrated UnrealHaptics into the Un-
real Engine 4 (UE4). We use a fast, lightweight and highly maintainable and
adjustable event system to handle the communication in UnrealHaptics.

As a use case we present a novel asymmetric collaborative multiplayer game
for sighted and blind players. In our implementation, Haptico integrates the
CHAI3D library that offers support for a wide variety of available haptic devices.
For the collision detection we use the state-of-the-art collision detection library
CollDet [27] that supports complexity independent volumetric collision detection
at haptic rates. Our force calculation relies on a penalty-based approach with
both 3- and 6-degree-of-freedom (DOF) force and torque computations. Our
results show that UnrealHaptics is able to compute stable forces and torques
for different 3- and 6-DOF devices in Unreal at haptic rates.

2 Related Work

Game engines enable the rapid development with high end graphics and the
easy extension to VR to a broad pool of developers. Hence, they are usually the
first choice when designing demanding 3D virtual environments. Obviously, this
is also true for haptic applications. Consequently, there exist many (research)
projects that already integrated haptics into such game engines, e.g. [2], [15], [13]
to name but a few. However, they usually have spent a lot of time in developing
single use approaches which are hardly generalizable and thus, not applicable to
other programs.

Actually, there exist only a very few approaches that provide comfortable
interfaces for the integration of haptics into modern game engines. We only
found [11] and [22] that provide plugins for UE4 that serve as interfaces to the 3D
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Systems Touch (formerly SensAble PHANToM Omni) [16] via the OpenHaptics
library [1]. OpenHaptics is a proprietary library that is specific to 3D Systems’
devices, which means that other devices cannot be used with these plugins.
Furthermore, the plugins are not actively maintained and seem to not be working
with the current version of UE4 (version 4.18 at the time of writing). Another
example is a plugin for the PHANToM device presented in [20], also based on
the OpenHaptics library. Like the other plugins, it is no longer maintained and
was even removed from Unity’s asset store [21]. During our research, we could
not find any actively maintained plugin for a commonly used game engine that
supports 3- or 6-DOF force feedback.

Outside the context of game engines, there are a number of libraries that
provide force calculations for haptic devices. A general overview is given in [10].
One example is the CHAI3D library [4]. It is an open-source library written in
C++ that supports a variety of devices by different vendors. It offers a com-
mon interface for all devices that can be extended to implement custom device
support. For its haptic rendering, CHAI3D accelerates the collision detection
with mesh objects by using an axis-aligned bounding box (AABB) hierarchy.
The force rendering is based on a finger-proxy algorithm. The device position
is proxied by a second, virtual position that tries to track the device position.
When the device position enters a mesh the proxy will stay on the meshes sur-
face. The proxy tries to minimize the distance to the device position locally by
sliding along the surface. Finally, the forces are computed by exerting a spring
force between the two points [3]. Due to this method’s simplicity, it only returns
3-DOF force feedback, even though the library generally allows for also passing
torques and grip forces to devices. Nevertheless we are using CHAI3D in our use
case, but only for the communication with haptic devices.

A comparable, slightly older library is the H3DAPI library [7]. Same as
CHAI3D, it is extensible in both the device and algorithm domain. However
by default H3DAPI supports less devices and likewise does not provide 6-DOF
force feedback.

A general haptic toolkit with a focus on web development was presented by
Ruffaldi et al. [18]. It is based on the eXtreme Virtual Reality (XVR) engine,
utilising the CHAI3D library, in order to allow rapid application development
independent from the specific haptic interface. Unfortunately, the toolkit has not
been further developed and there is no documentation to be found, since their
homepage went down.

All approaches mentioned above are limited to 3-DOF haptic rendering.
Sagardia et al. [19] present an extension to the Bullet physics engine for faster col-
lision detection and force computation. Their algorithm is based on the Voxmap-
Pointshell algorithm [12]. Objects are encoded both in a voxmap that stores
distances to the closest points of the object as well as point-shells on the object
surface that are clustured to generate optimally wrapped sphere trees. The pen-
etration depth from the voxmap is then used to calculate the forces and torques.
In contrast to Bullet’s build-in algorithms this approach offers full 6-DOF hap-



4 M. O. Rüdel et al.

Fig. 1. A typical haptic integration without UnrealHaptics. Left: different haptic
devices available with their libraries. Right: Scheme of UE4, which we want to integrate
the devices with.

tic rendering for complex scenes. However, the Voxmap-Pointshell algorithm is
known to be very memory intensive and susceptible to noise [23].

3 UnrealHaptics

The goal of our work was to develop an easy-to-use and simultaneously adjustable
and generalizable system for haptic rendering in modern game engines. This can
be used in games, research or business related contexts, either as whole or in
parts. We decided to use the Unreal Engine for development because of several
reasons:

– it is one of the most popular game engines with a large community, regular
updates and a good documentation,

– it is free to use in most cases, especially in a research context where it is
already heavily used [17], [14],

– it is fully open-source, thus can be examined and adapted,
– it offers programmers access on the source code level while game design-

ers can use a comfortable graphical editor in combination with a graphical
scripting system called Blueprints. Thus, it combines the advantages of open
class libraries and extensible IDEs

– it is extendable via plugins,
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– and finally, it is build on C++, which makes it easy to integrate external
C++-libraries. This is convenient because C++ is still the first choice for
high-performance haptic rendering libraries.

Our goals directly imply a modular design for our system. The main challenges
when including haptics into programs are fast collision detection, stable force
computation and communication with hardware devices. Figure 1 presents the
previous state before our plugins: on the one side, there are different haptic
devices available with their libraries. On the other side, there is UE4 in which
we want to integrate the devices. Consequently, our system consists of three
individual plugins that realizes one of these tasks. In detail these are:

– A plugin called Haptico, which realizes the communication with haptic
hardware, i.e. it initializes haptic devices and during runtime receives posi-
tions and orientations and sends forces and torques back to the hardware.

– A plugin called Collette that communicates with an (external) collision
detection library. Initially, it passes geometric objects from Unreal to the
collision library (to enable it to potentially compute acceleration data struc-
tures etc.). During runtime, it updates the transformation matrices of the
objects and collects collision information.

– ForceComp, a force rendering plugin which receives collision information
and computes forces and torques that are finally send to Haptico. The
force calculation is closely related to the collision detection method because
it depends on the provided collision information. However, we decided to
separate the force and torque computation from the actual collision detection
into separate plugins because this allows an easy replacement, e.g. if the
simulation is switched from penalty-based to impulse-based.

The list of plugins already suggest that communication plays an important role
in the design of our plugin system. Hence, we will start with a short description
on this topic before we detail the implementations of the individual plugins.

3.1 Unreal Engine Recap

UE4 is a game engine that comprises the engine itself as well as a 3D editor to
create applications using the engine. We will start with a short recap of UE4’s
basic concepts.

UE4 follows the component-based entity system design. Every object in the
scene (3D objects, lights, cameras, etc.) is at its core a data-, logic-less entity
(in the case of UE4 called actors). The different behavior between the objects
stems from components that can be attached to these actors. For example, a
StaticMeshActor (which represents a 3D object) has a mesh component at-
tached, while a light source will have different components attached. These com-
ponents contain the data used by UE4’s internal systems to implement the be-
havior of the composed objects (e.g. the rendering system will use the mesh
components, the physics system will use the physics components etc.).
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UE4 allows its users to attach new components to actors in the scene graph
which allows extending objects with new behavior. Furthermore, if a new class is
created using UE4’s C++-dialect, variables of that class can be exposed to the
editor. By doing so, users have the ability to easily change values of an instance
of the class from within the editor itself, which minimizes programming effort.

UE4 not only provides a C++ interface, but also a visual programming lan-
guage called Blueprints. Blueprints abstract functions and classes from the C++
interface and present them as “building blocks” that can be connected by ex-
ecution lines. It serves as straightforward way to minimize programming effort
and even allows people without programming experience to create game logic
for their project.

When extending the UE4 with custom classes, the general idea is noted in [6]:
programmers extend the existing systems by exposing the changes via blueprints.
These can be used by other users to create game behavior. Our plugin system
follows this ideas.

Furthermore, UE4 allows developers to bundle their code as plugins in order
to make the code more reusable and easier to distribute [5]. Plugins can be man-
aged easily within the editor. All classes and blueprints are directly accessible
for usage in the editor. We implemented our system as a set of three plugins
to make the distribution effortless and allow the users to choose which features
they need for their projects.

Finally, UE4 programs can be linked against external libraries at compile
time, or dynamically loaded at runtime, similar to regular C++ applications.
We are using this technique to base our plugins on already existing libraries.
This ensures a time-tested and actively maintained base for our plugins.

3.2 Design of the Plugin Communication

As described above, our system consists of three individual plugins that ex-
change data. Hence, communication between the plugins plays an important
role. Following our goal of flexibility, this communication has to meet two major
requirements.

– The plugins need to communicate with each other without knowledge about
the others’ implementation because users of our plugins should be able to
use them individually or combined. They could even be replaced by the
users’ own implementations. Thus, the communication has to run on an
independent layer.

– Users of the plugins should be able to access the data produced by the plugins
for their individual needs. This means that it must be possible to pass data
outside of the plugins.

To fulfill both these requirements, we implemented a messaging approach
based on delegates. A delegator is an object that represents an event in the
system. The delegator can define a certain function signature by specifying pa-
rameter types. Delegates are functions of said signature that are bound to the
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Fig. 2. Unreal’s editor view of the game. On the left side, you see the Phantom
player in the virtual environment. In front of him are the virtual tool (pen) and a
ColletteStaticMeshActor to be recognized (crown). On the right, the scene graph is
displayed with our custom classes.

delegator. The delegator can issue a broadcast which will call all bound dele-
gates. Effectively, the delegates are functions reacting to the event represented
by the delegator. A delegator can pass data to its delegates when broadcasting,
completing the messaging system.

The setup of the delegates between the plugins can be handled for example
in a custom controller class within the users’ projects. We describe the imple-
mentation details for such a controller in Section 3.6.

Our Light Delegate System UE4 provides the possibility to declare different
kinds of delegates out of the box. However, these delegates have a few drawbacks.
Only Unreal Objects (declared with the UOBJECT macro etc.) can be passed with
such delegates, limiting their use for more general C++ applications. They also
introduce several layers of calls in the call stack since they are implemented
around UE4’s reflection system. This may influence performance when many
delegates are used. Finally, we experienced problems at runtime: UE4-delegators
temporarily forgot their bound functions which led to crashes when trying to
access the addresses of these functions.
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To overcome these problems we implemented our own lightweight Delegator
class. It is a pure C++ class that can take a variable number of template argu-
ments which represent the parameter types of its delegates. A so called callable
can be bound with the addDelegate(...) function. Our solution supports all
common C++-callables (free functions, member functions, lambdas etc.). The
delegates can be executed with the broadcast() function which will execute del-
egates one after another with just a single additional step in the call stack. The
data is always passed around as references internally, preventing any additional
copies.

3.3 Haptico Plugin — Haptic Device Interface

Haptico enables game developers to use haptic devices directly from UE4 with-
out implementing a connection to the device manually. It automatically detects
a connected haptic device and allows full control via either Blueprints or C++
Code. This includes the retrieval of positions and orientations from the device
and the sending of forces and torques to the device, thanks to the underlying
CHAI3D library.

Haptico consists of mainly three parts: The haptic manager, the haptic
thread and the haptic device interface. The haptic manager is the only user
interface and represented as an UE4 actor in the scene. It provides functions to
apply forces and torques to the device and to get informations such as position
and rotation of the end effector. To be used for haptic rendering the execution
loop of the plugin must be separated from UE4’s game thread which runs at
a low frequency. The plugin uses its own haptic thread internally. The haptic
thread reads the positional and rotational data from the device, provides it for
the haptic manager and applies the new force and torques retrieved from the
haptic manager to the device in every tick. When new haptic data is available
a delegator-event OnTransform is broadcasted, which passes the device data
to the haptic manager in every tick. Users of the plugin can easily hook their
own functions to this event, allowing to react to the moved device. A second
delegator-event ForceOnHapticTick is broadcasted, which allows users to hook
force calculation functions into the haptic thread. Our own ForceComp plugin
uses this mechanism, which is further described in Section 3.6.

3.4 Collette — Collision Detection Plugin

The physics module included in UE4 has two drawbacks that makes it unsuitable
for haptic rendering:

1. It runs on the main game thread, which means it is capped at 120 FPS.
2. Objects are approximated by simple bounding volumes, which is very ef-

ficient for game scenarios but too imprecise to compute the collision data
needed for haptic rendering.

This leads to the realization that for haptic rendering, UE4’s physics module
has to be bypassed.
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Fig. 3. The basic structure of our plugin system with three threads. Right: The UE4
game thread that is responsible for the visual feedback and runs with up to 120Hz.
Left: The haptic rendering thread and the collision detection thread. The haptic ren-
dering that included the Haptico and the ForceComp plugin runs at 1000Hz for a
stable haptic feedback. We decided to put the collision detection in its own thread in
order to not disturb the haptic rendering e.g. in case of deep collisions that require
more computation time than 1 msec. The collidable objects in the Unreal scenegraph
are represented as ColletteStaticMeshActors that are derived from Unreal’s built in
StaticMeshActors.

Our Collette plugin does exactly that. We do not implement a collision
detection in this plugin, but provide a flexible wrapper to bind external libraries.
In our use case we show an example how to integrate the CollDet library (see
Section 4.2). Like Haptico, Collette can run in its own thread. Thus, the
frequency needed for haptic rendering can be achieved.

The plugin uses a ColletteStaticMeshActor to represent collidable objects.
This is an extension to UE4’s StaticMeshActor. It supports loading additional
pre-computed acceleration data structures to the actor’s mesh component when
the 3D asset is loaded. For instance, in our use case we load a pre-generated
sphere tree asset from the hard drive which is used for internal representation
of the underlying algorithm.

The collision pipeline is represented by a ColletteVolume, which extends
the UE4 VolumeActor. We decided to use a volume actor because it allows
to restrict collision detection checks to defined areas in the level. This is es-
pecially useful for asymmetric multiplayer scenarios as described in Section 4.
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Fig. 4. A simplified sequence diagram of the communication of ForceComp, Col-
lette and Haptico in case of a collision: Haptico receives the current position
and orientation from the device and informs ForceComp via a OnTransform event.
ColletteVolume in Collette evokes an OnCollision event and passes the collision
data to ForceComp. ForceComp computes appropriate forces and torques and passes
them back to Haptico that finally, applies them to the device. Please note, due to space
constrains, we did not include transformations that are send from Haptico to the re-
spective ColletteStaticMeshActors. Moreover, we omitted the EventHandler in this
example.

To register collidable objects with the pipeline, they can be registered with
an AddCollisionWatcher(...) blueprint function to the collision detection
pipeline. The function takes references to the ColletteVolume as well as two
ColletteStaticMeshActors.

During runtime, the collision thread checks registered pairs with their current
positions and orientations. If a collision is determined, the class ColletteCallback
broadcasts an OnCollision delegator-event. Users of the plugin can easily hook
their own functions to this event, allowing reactions to the collision. Blueprint
events cannot be used here as they are also executed on the game thread and
thus run at a low frequency. The event also transmits references to the pair
of ColletteStaticMeshActors involved in the collision, as well as the collision
data generated by the underlying algorithm. This data can then be used for
example to compute collision response forces.

3.5 ForceComp Plugin

The force calculation is implemented as a free standing function which ac-
cepts the data from two ForceComponents that can be attached especially to
ColletteStaticMeshActors and depends on the current transform of the
ColletteStaticMeshActor. The ForceComponent provides UE4 editor proper-
ties needed for the physical simulation of the forces: For instance the mass of the
objects, a scaling factor or a damper (see Section 4.2). We have separated the
force data from the collision detection. This allows users to use the Collette
plugin without the force computation.

3.6 Controlling Data Flow via Events

We already mentioned that we use a delegate-based event system to organize
the data flow between the three plugins. In order to mange the events we use an
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EventHandler actor. This guarantees a maximum of flexibility and avoids that
the plugins depend on the specific implementation. Basically, the EventHandler

has references to all involved components and game objects like actors and
events. Our EventHandler supports drag-and-drop in the Unreal editor window,
hence, there is no coding required to establish these references. For instance, if
we want to attach an mesh to the haptic device to use it as a virtual tool. In
this case, we simply have to drag a ColletteStaticMeshActor instance on the
EventHandler instance in the editor window.

In addition, the EventHandler implements various functions that it binds
to the events of the plugins during initialization. For example, it provides func-
tions for the two most important events: the OnTransform event sent by the
haptic thread and for the OnCollision event of the ColletteVolume actor.
The OnTransform event broadcasts the position and orientation data to the vir-
tual tool automatically. This has the same effect as if the virtual tool would be
updated directly in the haptic thread. Moreover, the OnTransform event also
evokes a second delegate function from ForceComp that computes the colli-
sion forces based on this data. When finished, it passes the forces back to the
HapticManager, which applies them to the associated haptic device (see Fig. 4
for a simplified example).

The OnCollision delegator event of the ColletteVolume actor sends the
collision data to the attached function of the EventHandler and finally stores it
in shared variables. By doing this, the haptic thread will execute the delegate
after it has updated the virtual tool’s transform. The delegate itself reads the
data from the shared variables and

With this solution however, we keep the concrete implementations of the
plugins separate from each other. Figure 5 shows and example for the event
handling between ForceComp and Haptico.

Overall, a typical setup with our plugin system consists of three threads:
one for the main game loop including the visual rendering in Unreal, one for
the haptic rendering, that covers Haptico and ForceComp and one for the
collision detection. We decided to run collision detection independently in it’s
own thread in order to guarantee stable haptic rendering rates even in the case
of deep interpenetrations where the collision detection could exceed the 1ms
time frame. Figure 3 shows this three-thread scenario. However, it is easy to use
Collette also in the haptic rendering thread (or to even spend a fourth thread
for ForceComp) by simply adjusting the configuration in the EventHandler.

This modular and customizable approach guarantees a very flexible data flow
between the different plugins that can be easily defined by the user within the
editor.

4 Use Case

We applied the UnrealHaptics to a real-world application with support for
haptic rendering. This example shows how actual collision detection libraries,
force rendering and communication libraries can be integrated into our plu-
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Fig. 5. A simplified sequence diagram of the communication of ForceComp, Haptico
and our textttEventHandler that also shows the flexibility of our system. Initially,
Haptico reads the configuration from the haptic library and evokes an OnTransform

event. This is passed to the EventHandler that calls the callable HandleTransform

function that has initially registered for this event. It is easy to register more than one
functions for the same event, e.g. to toggle friction or virtual coupling. The results are
finally transferred back to Haptico via the EventHandler.

gin system. Our use case is an asymmetric virtual reality multiplayer game [9]
where a visually impaired and a seeing player can interact collaboratively in the
same virtual environment. While the seeing person uses a head mounted display
(HMD) and tracked controllers like the HTC Vive hand controllers, the blind
person operates a haptic force feedback device, like the PHANToM Omni.

4.1 Game Idea

An extensive research involving interviews with visually impaired people was
done to understand their perspective for a good game before going into develop-
ment phase. It turned out that most people we interviewed attach great impor-
tance to a captivating storyline and ambiance. Therefore we included believable
recordings and realistic sound effects to achieve an exciting experience.

The game takes place in a museum owned by a dubious relics collector. A
team of two professional thieves, Phantom and Vive, attempt to break into
the museum in order to steal various valuable artifacts. The blind player takes
control over Phantom, a technician, particularly skilled in compromising security
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(a) Half-section of the crown (b) Half-section of the bunny

Fig. 6. Objects from our game application and their inner sphere representations: A
crown and a model of the Stanford bunny that has to be detected by the Phantom
player.

systems and an expert for forgeries. Vive is played by the sighted player using
an HMD. He is a professional pickpocket and a master of deceiving people.

For every exhibit in the museum, there are several fake artifacts that look
exactly the same as the real ones. Since Vive is incapable of differentiating be-
tween real and fake artifacts, it is the job of Phantom to apply his skills here.
Also, several guards patrol in the premises for possible intruders (see Figure 7).
Vive has to be careful not to get spotted or make too much noise as these guards
are highly sensitive to sounds. Vive’s job is to break the displays, collect the ar-
tifacts while distracting the guards and bring them to Phantom. Phantom’s job
on the other hand is to recognize the right artifact using his shape recognition
expertise. The goal of the game is to steal and identify all the specified artifacts
before the time runs out.

In order to identify objects and the differences between fake and real objects
in the game, the Phantom player uses a haptic force feedback device to sweep
over the virtual collected objects. As soon as the virtual representation of the
haptic device collides with an object, UnrealHaptics detects these collisions
and renders the resulting forces back to the haptic device. It is therefore possible
for visually impaired people to perceive the object similarly to how they would
in real life. Adding realistic sounds to this sampling could further improve this
experience.

Even if the gameplay is in the foreground in our current use case, it is obvious
that almost the same setup can be easily extended to perform complex object
recognition tasks or to combine HMD and haptic interaction for the sighted
player.
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Fig. 7. In-game screenshot of our implemented game. The Phantom player sits at the
table recognizing objects. A guard (right) is patrolling the room.

4.2 Implementation Details

The concept behind UnrealHaptics is explained in Section 3. The following
sections will give an insight into our concrete implementations for the individual
plugins.

Device Communication via CHAI3D The basis for Haptico is the CHAI3D
library. As already mentioned in Section 2, this library supports a wide variety
of haptic devices, including the PHANToM and the Haption Virtuose [8] which
we used for testing. CHAI3D is linked by Haptico as a third-party library at
compile time. We primarily use CHAI3D’s Devices module as an interface to
the hardware devices, especially to set and retrieve positions and rotations. We
did not use CHAI3D’s force rendering algorithms as they do not support 6-DOF
force calculation.

Collision Detection With CollDet CollDet is a collision detection library
written in C++ that implements a complete collision detection pipeline with
several layers of filtering [27]. This includes broad-phase collision detection algo-
rithms like a uniform grid or convex hull pre-filtering as well as several narrow
phase algorithms like a memory optimized version of an AABB-tree, called Box-
tree [25], and DOP-trees [26]. For haptic rendering, the Inner Sphere Trees data
structure fits best. Unlike other methods, ISTs define hierarchical bounding vol-
umes of spheres inside the object based on a polydisperse sphere packing (see
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Figure 6). This approach is independent of the object’s triangle count and it has
shown to be applicable to haptic rendering. The main advantage, beyond the per-
formance, is the collision information provided by the ISTs: they do not simply
deliver a list of overlapping triangles but give an approximation of the objects’
overlap volume. This guarantees stable and continuous forces and torques [23].
The source code is available under an academic-free license.

Collette’s ColletteVolume is, at its core, a wrapper around CollDet’s
pipeline class. Instead of adding CollDet objects to the pipeline, the plugin
abstract this process by registering the ColletteStaticMeshActors with the
volume. Internally, a ColletteStaticMeshActor is assigned a ColID from the
CollDet pipeline through its ColletteStaticMeshComponent, so that each actor
represents a unique object in the pipeline. When the volume moves the objects
and checks for collisions in the pipeline, it passes the IDs of the respective ac-
tors to the CollDet functions which implement the collision checking. Like with
CHAI3D, Collette links to the CollDet library at compile time.

Force Calculation Force and torque computations for haptics usually rely on
penalty-based approaches because of their performance. The actual force com-
putation method is closely related to the collision information that is delivered
from Collette. In case of the ISTs this is a list of overlapping inner spheres for
a pair of objects. In our implementation we apply a slightly modified volumetric
collision response scheme as reported by [24]:

For an object A colliding with an object B we compute the restitution force
FA by

FA =
∑

j∩i 6=∅
FAi

=
∑

j∩i 6=∅
ni,j · max

(
voli,j ·

(
εc −

veli,j · εd
Voltotal

)
, 0

) (1)

where (i, j) is a pair of colliding spheres, ni,j is the collision normal, voli,j is
the overlap volume of the sphere pair, V oltotal is the total overlap volume of all
colliding spheres, veli,j is the magnitude of the relative velocity at the collision
center in direction of ni,j . Additionally, we added an empirically determined
scaling factor εc for the forces and applied some damping with εd to prevent
unwanted increases of forces in the system.

Only positive forces are considered to prevent an increase in the overlapping
volume of the objects. The total restitution force is then computed simply by
summing up the restitution forces of all colliding sphere pairs.

Torques for full 6-DOF force feedback can be computed by

τA =
∑

j∩i 6=∅
(Ci,j −Am) × FAi (2)

where Ci,j is the center of collision for sphere pair (i, j) and Am is the center of
mass of the object A. Again, the total torques of one object are computed by
summing the torques of all colliding sphere pairs [24].
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Fig. 8. In order to evaluate the performance of our plugins, we used a complex test
scene where the user controls a gemstone with the Phantom device to touch the 3D
Stanford bunny.

4.3 Performance

We have evaluated the performance of our implementation in the game on an
Intel Core i7-6700K (4 Cores) with 64 GB of main memory and and a NVIDIA
GeForce GTX 1080 Ti running Microsoft Windows 10 Enterprise.

We used a typical test scene from our game: the user explores the surface of
an object (in our example, the Stanford bunny) with a Phantom device. In our
example, we represented the end effector by a gemstone (see Figure 8).

We achieved almost always a frequency of 500-1K Hz for the force rendering
and haptic communication thread. It only dropped slightly in case of situations
with a lot of intersecting pairs of spheres. The same appears for the collision de-
tection that slightly dropped to 500 Hz in situations of heavy interpenetrations.
This is similar to the results reported in [23] where a simple OpenGL test scene
was used and it shows that our architecture does not add significant processing
overhead (see Figure 9).

5 Conclusions and Future Work

We have presented a new plugin system for integrating haptics into modern
plugin-orientated game engines. Our system consists of three individual plugins
that cover the complete requirements for haptic rendering: communication with
different hardware devices, collision detection and force rendering. Intentionally
we used an abstract design of our plugins. This abstract and modular setup
makes it easy for other developers to exchange parts of our system to adjust it
to their individual needs. In our use case, a collaborative multiplayer VR game
for blind and sighted people, we have demonstrated the simplicity of integrating
external C++-libraries with our plugins, namely CHAI3D for the communication
with the hardware and the collision detection library CollDet. Our results show
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Fig. 9. Performance of our plugins in a typical exploration scene of about 35 seconds
total duration in our game. We achieved haptic frame rates even in situations with
large penetrations.

that our plugin system works stably and the performance is well suited for haptic
rendering even for complex non-convex objects.

With our plugin system, future projects have an easy way to provide hap-
tic force feedback in haptic enabled games, serious games, and business related
applications. Even though other developers may decide to use different libraries
for their work, we are confident that our experiences reported here in combina-
tion with our high-level UE4 plugin system will simplify their integration effort
enormously. Moreover, our system is not limited to haptic rendering but it can
be also used to integrate general physically-based simulations.

However, our system, and the current CHAI3D and CollDet-based implemen-
tation also have some limitations that we want to solve in future developments:
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currently, our system is restricted to rigid body interaction. Further work may
entail the inclusion of deformable objects. In this case, a rework of the interfaces
is necessary because the amount of data to be exchanged between the plugins will
increase significantly; instead of transferring simple matrices that represent the
translation and orientation of an object we have to augment complete meshes.
Direct access to UE4s mesh memory could be helpful to solve this challenge.

Also, our use case offers interesting avenues for future works. Currently, we
plan a user study with blind video game players to test their acceptance of
haptic devices in 3D multiplayer environments. Moreover, we want to investigate
different haptic object recognition tasks, for instance with respect to the influence
of the degrees of freedom of the haptic device or with bi-manual vs single-handed
interaction. Finally, other haptic interaction metaphors could also be interesting,
e.g. the use of the haptic devices as a virtual cane to enable orientation in 3D
environments for blind people.
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