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Abstract
We present a novel hardware architecture for a
single-chip collision detection accelerator and al-
gorithms for efficient hierarchical collision. We
use a hierarchy of k-DOPs for maximum perfor-
mance. A new hierarchy traversal algorithm and
an optimized triangle-triangle intersection test re-
duce bandwidth and computational costs. The
resulting hardware architecture can process two
object hierarchies and identify intersecting trian-
gles autonomously at high speed. Real-time colli-
sion detection of complex objects at rates required
by force-feedback and physically-based simula-
tions can be achieved even in worst-case config-
urations.

Keywords: graphics hardware, computer an-
imation, virtual reality, hierarchical algorithms,
triangle intersection.

1 Introduction
Collision detection is an elementary task in ar-
eas like animation systems, virtual reality, games,
physically-based simulation, automatic path find-
ing, virtual assembly simulation, and medical train-
ing and planning systems.

In many of these systems, collision avoidance
or collision handling is the ultimate goal. Since
algorithms for computing the exact time of colli-
sion are still too slow or too restrictive, most ap-
proaches are “reactive” in that they first place ob-
jects at a new position, and then handle collisions
based on physical laws or constraints. This poses
very high demands on collision detection perfor-
mance, because usually the exact contact point(s)
must be found by an iteration involving many col-
lision checks per frame. Another very demanding
application is rendering force-feedback, where col-

lisions of an (invisible) surface contact object must
be checked at about 1000Hz in order to achieve
stable force computations.

It has been reported by many researchers that
collision detection is still the major time-consuming
step in many simulation or visualization appli-
cations [14]. Since collision detection is such a
fundamental task, it would be highly desirable to
have hardware acceleration available just like 3D
graphics accelerators. Using specialized hardware,
general-purpose processors can be freed from com-
puting collisions. This will enable even low-end
single-processor PCs and game consoles to do real-
time collision detection in very complex scenarios
at an affordable price.

In this paper, we propose an architecture which
implements hierarchical collision detection for rigid
objects in hardware. We have concentrated on hi-
erarchical algorithms, because they have offered
the best performance for so-called “polygon soups”.
Such a collision detection hardware will comprise
the last stage of a collision detection pipeline [20].
This is where the bulk of the work is done in typi-
cal scenarios involving a modest number of objects
with large polygon counts. We assume the hier-
archies have already been computed. This is not
a time-critical task, and can be done in software
when the application loads objects at startup time.

In addition, we present a new traversal scheme
that significantly reduces the computational costs
and the memory bandwidth.

The next section describes related work, while
Section 3 describes novel algorithms that are suit-
able for hardware implementation. Section 4 de-
scribes the hardware design in detail. Finally, Sec-
tion 5 presents some benchmarks and simulation
about the performance of the envisioned architec-
ture.
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2 Related Work
Considerable work has been done on hierarchi-
cal collision detection in software [6, 17, 5, 4, 19].
Some of the bounding volumes (BVs) utilized are
spheres, axis-aligned bounding boxes (AABB), ori-
ented bounding boxes (OBB), and discretely ori-
ented polytopes (DOP). However, all traversal sche-
mes proposed so far are inefficient in that they
possibly visit the same nodes many times.

There is virtually no literature about the de-
sign of hardware architectures dedicated to colli-
sion detection. All research so far has tried to
utilize existing graphics hardware. The approach
taken by [16, 13, 2, 10] is to render the pair of ob-
jects with an orthogonal projection and count cer-
tain cases of overlapping intervals in the stencil
buffer. This approach lends itself well to convex
objects. Most of these algorithms cannot handle
non-convex objects, and the most general class of
“polygon soups” (which comprises non-closed ob-
jects, in particular) cannot be handled by this ap-
proach at all.

Another approach of utilizing the graphics hard-
ware is to define a viewing volume (frustum or
box) around one of the objects (the query object)
and render the scene against that volume [11].
This is facilitated by OpenGL which can feed back
the faces actually being rendered. This approach
can be efficient for specific applications. However,
it is not an accurate collision detection, unless the
query object has the same shape as one of the two
possible viewing volumes.

All of the approaches using graphics hardware
have the disadvantage that they either compete
with the rendering module for the graphics pipe,
or an additional graphics board must be spent for
collision detection. The former slows down the
overall frame rate considerably, while the latter
would be a tremendous overkill, since most of the
resources of the hardware would not be made use
of. Furthermore, these approaches work in image
space, which reduces precision significantly.

A number of algorithms for ray-triangle and
triangle-triangle intersection have been presented
in the literature [1, 12, 7, 15, 3, 18]. Most of them
compute either the barycentric coordinates or a
number of 4× 4 determinants. We propose a very
efficient algorithm for checking intersection of tri-
angles that does not need any division. Our new
algorithm not only uses less multiplications and
additions than [12] and [1], but is also very well

suited for a hardware implementation due to a
very uniform control and data flow.

3 The Algorithm
On this section we will describe our new traversal
algorithm and then briefly recall the calclations for
the overlap test of DOPs and the intersection test
of triangles.

3.1 Hierarchy Traversal

The general, traditional scheme for hierarchical
collision detection is a simultaneous, recursive traver-
sal of two BV hierarchies (see Algorithm 1). How-
ever, this procedure incurs several penalties:

1. Nodes in both trees are usually visited several
times; this is a general problem of all hierarchi-
cal collision detection algorithms (see Figure 1).

2. If the nodes have to be transformed (or other
computations per node have to be performed),
then this will be done several times for the
same node.

The second penalty is a consequence of the first
one; it could be alleviated by storing the result of
the node transformation back into the node. Un-
fortunately, this has other disadvantages: first, the
BV hierarchy occupies more memory (in the case
of DOP trees, this would increase the memory
usage by a factor 2); second, more importantly,
the algorithm would no longer be thread-safe, so
that multiple pairs of objects could no longer be
checked in parallel. One could also precompute the
transformation of a node’s children during traver-
sal and store the results on the stack. However,
this reduces the number of node transformations
only by a factor 2.

In contrast, our novel traversal scheme reduces
the number of nodes visited, transfer volume from
memory, and number of node transformations dra-
matically. Our traversal scheme only needs an ad-
ditional small stack.

The idea is to avoid simultaneous traversal of
two BV hierarchies. Instead, we traverse only one
hierarchy and compare each node of that one with
a list of nodes from the other hierarchy (see Fig-
ure 2). Let us call nodes that need to be trans-
formed tumbled nodes, the other ones aligned
nodes (see Figure 1). Assume that we are visiting
a tumbled node A, and that a list L contains all
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Figure 1: The simultaneous traversal of two BV hierarchies is, conceptually, equivalent to the traversal
of a BV pairs hierarchy. Here, the right DOP tree is “tumbled” with respect to the DOP orientations
of the left tree’s reference frame.

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives encl. by A and B
else

for all children A[i] and B[j] do
traverse(A[i],B[j])

end for
end if

Algorithm 1: The traditional traversal scheme.
A[i] and B[j] are the child nodes of A and B, resp.
For sake of clarity, the “mixed” cases (one node
is a leaf, the other is not) are omitted.

aligned nodes with which A needs to be checked
for overlap. So we check all pairs (A,Li); when-
ever such a pair overlaps, we append the two chil-
dren Li

j, j ∈ {1, 2}, to a new list L′. After L has

been completely processed, L′ contains all aligned
nodes that need to be checked with A1 and A2,
the two children of A. It is obvious that with this
traversal we visit each tumbled node only once,
and thus we transform the DOP stored with it ex-
actly once.

This scheme works for all kinds of hierarchical
collision detection, not just DOP trees. Depending
on how much work per node-node overlap test can
be factored out into one of the two nodes, the ben-
efit of our new method can be dramatic.

For example, considering Figure 1, a possible se-
quence of pairs of nodes could be: A1 B2 D4 E4 D5
E5 C2 F4 G4 F5 G5 B3 C3. This means, that with
the classical traversal the sequence of node trans-
formations is: 1 2 4 4 5 5 2 4 4 5 5. In contrast,
with our new traversal scheme, this sequence of

traverse(A,B,L)
transform A
transform B
for all N ∈ L do

if X and N do overlap then
if X and N are leaves then

check primitives enclosed by X and N
else
L′X+ = N1 , N2

end if
end if

end for
if A is an inner node then

traverse(A1 , A2,L′A)
else

traverse(A,L′A)
end if
if B is an inner node then

traverse(B1 , B2,L′B)
else

traverse(B,L′B)
end if

Algorithm 2: The new algorithm scheme for hier-
archical collision detection that transforms each
tumbled DOP only once, and that reduces the
number of multiple visits of nodes by a factor
2. Operations involving node “X” are performed
for both nodes A and B. They can be executed
in parallel.

visited node pairs is: A1 B2 C2 D4 E4 F4 G4 D5
E5 F5 G5 B3 C3, and the sequence of node trans-
formations is: 1 2 4 5 3.

A hardware implementation allows us to im-
prove the algorithm further by performing DOP
overlap tests in parallel. We can exploit the fact
that if two nodes A, B overlap, then we always
need to check all children pairs (Ai , Bj). Conse-
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quently, instead of storing pointers to all children
in the list L′, we store only one pointer for each
pair of siblings. By the nature of the binary tree,
performing two overlap tests in parallel yields the
greatest cost/performance benefit. To this end, we
load a sibling pair of tumbled DOPs (A, B), trans-
form them sequentially, and compare the two in
parallel with each DOP from L. This results in
two new lists, one for child pair (A1, A2) and one
for (B1, B2). In the sequential version described
in the previous paragraph, we produced these two
lists at very different times during the traversal,
and we processed each of them twice; now, we pro-
duce those two lists simultaneously, and then we
process each of them only once. 1 The benefit of
this is that the time needed for overlap tests and
the number of times an axis-aligned DOP needs
to be transferred from memory is cut by a factor
of two.

The pseudo-code in Algorithm 2 summarizes
this new algorithm scheme. The traversal starts
with list L initialized to the 4 pairs of first the
level beneath the roots. Note that, for clarity, we
have omitted the “mixed” cases. Note also that the
last call of traverse is actually a call of an over-
loaded version, which has only slight differences
from the algorithm shown here.

3.2 DOP overlap test

The basic operation of any hierarchical collision
detection algorithm is the overlap check of two
nodes from different objects. In this section, we
briefly recall the calculations necessary for colli-
sion detection using DOP trees. The derivation of
the following formulas can be found in [19].

DOPs are bounding volumes that are a general-
ization of axis-aligned bounding boxes. They have
been introduced into computer graphics by [8].
DOP trees are a hierarchical representation of ob-
jects [19, 9]. Each node stores a DOP and point-
ers to its children which it encloses; leaves store
pointers to polygons instead of children. A DOP
is described by k numbers (hence k-DOP ), usu-
ally represented by a vector of k floats. Extensive
benchmarks have shown k = 24 to be optimal.

Given two objects OA and OB, and two DOPs
d, e ∈ Rk from OA and OB’s DOP trees, resp.,
the overlap test, as presented in [19], proceeds in
two steps: first, DOP d from OA’s hierarchy is

1 This scheme can be generalized straight-forward to process 2m

tumbled nodes simultaneously.

transformed into d′ in the coordinate frame of OB
by

d′ = C× d + c , (1)

where

C =




. . . c0,0 . . . c0,1 . . . c0,2 . . .
...

. . . ck−1,0 . . . ck−1,1 . . . ck−1,2 . . .




where in matrix C exactly three entries per row
are non-zero. Second, d′ is compared component-
wise with DOP e according to

∃i ≤ k
2 : d′i > e k

2 +i ∨ ei > d′k
2 +i

⇔
d and e do not overlap

(2)

where d′i < d′k
2 +i

define a slab (analogously for all

DOPs).
Matrix C and vector c depend only on the posi-

tion of the two objects relative to each other. They
are computed during the set-up by the software
API of the collision detection hardware.

Since the k × k-matrix C in Equation 1 has ex-
actly 3 coefficients per row that are not 0, we can
compute d′ more efficiently by

d′i = Ci




dji,0
dji,1
dji,2


+ ci (3)

where correspondence j stores the place of those
coefficients which are not zero. So, by introducing
a k× 3 correspondence matrix j, we can reduce the
size of the transformation matrix C to k× 3. Con-
sequently, the number of multiplications is 3k.

3.3 Polygon intersection test

When the traversal reaches pairs of leaves (which
containing triangles), a triangle-triangle intersec-
tion test has to be performed. In the following, we
will briefly recall the calculations involved, which
have already been described elsewhere [21].

The approach of our algorithm is to precompute
a matrix MB that transforms B into the unit tri-
angle, and then check (conceptually) each edge of
A′ = A · M · MB against that unit triangle (and
vice versa), where M is the transformation from
OA into OB.
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Figure 2: The improved traversal scheme can be implemented by
a stack of lists. (In a hardware implementation, the stack on the
right is merged into the left one.)

Figure 3: Using a special
transformation, the intersec-
tion test can be done very ef-
ficiently.

This basically amounts to the following calcula-
tions and tests per edge PQ of A′:

PxQz ≥ QxPz ∧
PyQz ≥ QyPz ∧
PxQz −QxPz + PyQz −QyPz ≤ Qz − Pz

(4)

The algorithm gains its special efficiency be-
cause we can precompute the matrices MA and
MB (they can be obtained from a simple linear
equation system), and because we do not need to
compute the exact intersection point.

In our case of collision detection using DOP
trees, we can store these matrices in the leaves in-
stead of the DOPs. We do not need to check pairs
of leaf DOPs, because the immediate check of tri-
angles is faster. Storing the triangle matrix MB
and 3 vertices needs 3 × 4 + 3 × 3 = 21 floats,
which fit well into the nodes of a 24-DOP tree.

4 Hardware Architecture
The target design is a PCI-board with one ASIC
(or FPGA), a large on-board memory for the hier-
archies, and two SRAM devices as dedicated stack
memory. Crucial for the performance is the band-
width towards the local memory, and so a four-
bank SDRAM configuration with a 256-bit bus
was chosen. The proposed circuitry is a high-
performance, massively parallel implementation
of the algorithms described above. Figure 4 shows
as major functional units Memory Controller, Stack
Engine, DOP Unit, Triangle Unit and PCI Inter-
face. The Stack Engine performs the novel traver-
sal algorithm as described in Section 3 by creating
and processing lists of node pointers. It maintains

DOP Unit

Triangle Unit

Memory
Controller

Stack
Engine

Pointer
FIFOPCI Interface

Fast
SRAM

Four−Bank
DDR−SDRAM

Pointers

Pointers

256

PCI−bus

Memory for DOP Hierarchies
and Triangle Data

Stack of
Pointer Lists

Over−
lap

Flags

256

Cache
Hit /
Miss

Intersection
Flags

Pointers

Figure 4: Block diagram of the CollisionChip
and external Memory Systems.

these lists in two external fast SRAMs. Point-
ers are passed to the Memory Controller, which
fetches the corresponding DOP-coefficients or tri-
angle data from the SDRAM. The DOP-Unit per-
forms the overlap test, while the Triangle Unit
tests for triangle intersections. The identifiers of
intersecting triangles are delivered to the software
via a Pointer FIFO and the PCI Interface. We will
explain all components in greater detail in the fol-
lowing sections.

4.1 DOP Unit

The DOP Unit performs the DOP transformation
for “tumbled” nodes as described in Section 3, and
the overlap test with all the “aligned” nodes in the
current list. A schematic drawing is shown in Fig-
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Figure 5: The DOP Unit checks pairs of DOPs for overlap. It has a throughput of two pairs every 4
cycles.

ure 5. As explained above, the algorithm always
processes pairs (siblings) of tumbled nodes. Thus,
there is one processing pipeline for the right (gray
units) and one for the left sibling.

Prior to the processing of two hierarchies, the
matrix C and a set of multiplexer control bits
(MC) must be loaded into the on-chip Matrix- and
MUX-Control Memory (MMM).

Once a pair of DOPs has been loaded into the
two vertical register sets, transformation starts,
under control of an Address Generator. This unit
cycles through the MMM, which causes the proper
sets of matrix elements and DOP coefficients to
appear at the inputs of two so-called DOTADD-
units. These pipelined units basically compute one
dot product. They produce one DOP coefficient d′
per clock, which are then written pairwise into a

dual-port memory, which stores 8 pairs in one en-
try.

Once a tumbled DOP pair has been transformed,
overlap check against all the aligned DOPs in the
current list will be started. Since the on-chip data
bus is 256 bits wide, the aligned node coefficients
e will appear in bundles of eight. Each bundle
is compared to the corresponding set of coeffi-
cients d′ (note the dual-port memory layout), us-
ing a bank of 16 floating-point compare units. The
overlap flags are then passed to the Stack Engine.
Given the maximum overall data transfer rate, an
overlap test of one aligned DOP against two tum-
bled DOPs takes a minimum of 4 clock cycles.

Once a tumbled DOP pair has been loaded from
memory, however, the memory would be idle dur-
ing the transformation. We exploit this by prefetch-
ing the two child DOPs of the left parent DOP, and
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Figure 6: The first stage of the Triangle Unit transforms pairs of triangles. Only on the left side a
small cache of about 11 kB is needed.

by transforming these coefficients speculatively
during processing of the following list. Thus, the
number of input registers holding d must be dou-
bled as well as the memory capacity to store d′. In
Figure 5, the two sets of storage elements are dis-
tinguished by thick or thin borders. It should also
be clear why a dual-port memory is needed for
the coefficients d′: while a set of 16 coefficients is
read for overlap test, two transformed coefficients
of the children are written.

The concept of hiding the DOP transformation
behind the overlap tests is used whenever possible.
This means that the children of the left parent in
the tumbled hierarchy are loaded and transformed
as soon as the required resources are available. If
the lists are long enough, processing of tumbled
DOPs is hidden except for the memory read. Only
in case there are no overlaps in a given list (and
so no new lists are generated), an initial latency
will occur. This initial latency is estimated to be
64 clock cycles, starting from the point when the
node pointer is fetched from the SRAM and end-
ing with two transformed DOPs being present in
the dual-port memory.

Unfortunately, an efficient cache architecture
for the DOP unit has yet to be found. All our
simulations revealed a very low spatial and tempo-
ral coherence in the DOP access pattern. Hit rates
above 80% can only be achieved with large cache
sizes (>256KBytes), independent of index func-

tion or cache associativity. Likewise, using Page
Interleaving and Page Mode Accesses do not im-
prove the perfomance significantly.

4.2 Stack Engine

The Stack Engine processes a list by sequentially
reading the DOP pointers in the list from the
SRAM, and passing each pointer to the Memory
Controller. This unit returns, along with the DOP
pair, two child pointers to the Stack Engine. In case
the parents are tumbled DOPs, these two point-
ers form the heads of two new lists and are writ-
ten into the two SRAM chips. In case the parents
are aligned DOPs, the Stack Engine evaluates the
overlap flags and appends each pointer to the cor-
responding list, or discards it accordingly. When
the list is done, the Stack Engine recurses on the
next lower level. By default, the “left” branch is
taken. If the left list is empty, the right list is used.
If this list is empty too, the Stack Engine steps up
one level in the hierarchy.

Internally, the Stack Engine maintains a stack
of list pointers, one for each hierarchy level and
branch, and a register containing the actual hier-
archy level λ. Reads refer to level λ, writes to
λ + 1. Since the lists are of varying length, but
written contiguously into the SRAMs, there are
additional marker registers defining the start of
each list. Each SRAM chip is dedicated to either
the left or the right list.
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Figure 7: Second stage of the Triangle Unit performing the edge-triangle tests. The throughput
together with the first stage is one pair every 3 cycles.

In case overlapping DOPs are leaves, the Stack
Engine passes the pointers to the triangle data to
the Triangle Unit. If the corresponding triangle
data is not already available in this unit, list pro-
cessing is interrupted in order to retreive triangle
data from SDRAM. After this, the Triangle Unit
is triggered, while list processing resumes.

4.3 Triangle Unit

A block diagram of the Triangle Unit is shown in
Figure 6. This unit performs the optimized inter-
section test from Section 3 in a parallel, pipelined
way. If all input data are available, this unit can
complete an intersection test of two triangles ev-
ery 3 clocks.

For high performance, there are storage ele-
ments for triangle data (i.e., vertices and triangle
matrices) in the input stage of this unit. Since the
algorithm always processes the complete list for
a given tumbled node pair, we only need a two-
entry SRAM for the associated triangle data. This
SRAM is loaded upon the first overlap of leaves
within a given list.

On the aligned side, we have found a cache for
triangle data to be very useful. We assume a di-
rect mapped cache with 128 lines, each holding 21
floats (three vertices plus a 3× 4 matrix) and a tag
for a total size of 11264 bytes. For most practical

cases, hit ratio is above 75%. Both memory sys-
tems deliver 1 vertex per clock.

The next stage consists of 6 DOTADD-units,
which transform each triangle into the coordinate
frame of the object containing the other triangle.
The transformation matrices M and N := M−1

are constant over the whole collision test, and are
pre-loaded by software into registers. This stage
computes two transformed vertices per clock.

After this first transformation, each triangle must
then be transformed using the matrix stored in
the leaf of the other triangle. These matrices have
travelled through FIFOs to arrive in time at the
second row of DOTADD-units. Each FIFO needs
16 × 12 × 4 = 768 bytes. The second row of
DOTADD-units also computes one vertex per tri-
angle per clock.

The final edge/triangle intersection tests are car-
ried out in a separate functional unit called Inter-
section Test Unit (ITU). This unit must be able
to accept one vertex per clock, from which with
two clocks latency one edge per clock is gener-
ated. To this end it has a set of input registers, of
which three are double buffered to keep up with
the stream of incoming vertices. A block diagram
of this unit is shown in Figure 7. Since triangles
must be tested mutually, there are two ITUs on
the CollisionChip.

9



Figure 8: Some of the objects of our test suite (car body, cover, front light, door lock; courtesy VW
and BMW).

The first stage of arithmetic units compute the
products and the right side of the third term of
??. The multiplexers are used to funnel the proper
operands for the current edge to the units. The
subtractors on the second stage compute the first
two terms of ??. The final adder computes the left
side of the first term, which is compared to the
right side in the last stage. All operands or flags
computed in earlier stages travel through FIFO-
memories to appear at the right time.

As a result, the Triangle Unit can complete an
intersection test between two triangles every 3
clock cycles.

Intersections are reported to the software via the
PCI Interface, along with the associated pointers
from the Pointer FIFO.

4.4 Memory Controller

The Memory Controller facilitates access of the
software to the SDRAM via the PCI Interface.
Most importantly, though, the Memory Controller
receives a stream of node pointers from the Stack
Engine and retrieves the associated DOPs or tri-
angle data from memory. It has an input register
large enough to store the data of a complete node
pair.

4.5 Multi-Bank SDRAM

The memory is built from four standard 64-bit
modules placed in parallel for a 256-bit data bus.
Our performance model assumes 133MHz DDR-
SDRAM chips with a 2-2-2 access characteristic
(2 cycles each for the precharge time, RAS-CAS-
delay, and CAS-latency). Node data (DOPs as well
as triangle vertices and matrices) are aligned on
128-byte boundaries. Node pairs are always stored
contiguously in 256 bytes, which can be loaded in
a double-data-rate burst transfer of length eight.
Accordingly, the CollisionChip is assumed to be

clocked at 266MHz. We assume further 8 mem-
ory chips per module with a page size of 1KBits,
for a total page size across all modules of 4KBytes.
Thus, sixteen node pairs can be packed in one page.
Also, each SDRAM chip is assumed to have four
internal banks. Accordingly, we use Page Inter-
leaving and Page Mode accesses. Finally, we as-
sume a page miss access to a node pair to consume
20 clock cycles, a page hit to consume only 8 cy-
cles.

5 Performance
We have conducted performance comparisons be-
tween the traditional and our new algorithms in
software, and between software and hardware (both
using the new algorithms). The hardware perfor-
mance estimation was obtained from a functional
simulation written in C++, using the timing pa-
rameters given in Section 4. In all cases, we have
used a suite of test objects, mostly from the auto-
motive industry. Four objects of it can be seen in
Figure 8. Since the number of nodes to be visited
varies greatly with the position of the two objects
relative to each other, we give average collision de-
tection times for two identical objects in many dif-
ferent relative positions. Equally important, how-
ever, are worst-case timings since interactivity is
limited most severely in these cases. All software
timings have been obtained on a Pentium 4 with
1.8GHz under Linux using g++ 3.0.4.

5.1 New vs. old traversal

In this section, we will present some measure-
ments comparing the new scheme with the old
scheme for the DOP hierarchy using the DOP
overlap test and construction algorithm presented
earlier in [19]. Only the traversal is different be-
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Figure 9: The performance gain of the new traversal scheme. The x axis shows the distance between
the two objects, and the y axis shows the average collision detection time in milliseconds.
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Figure 10: In contrast to Figure 9, here the algorithm returned all pairs of intersecting polygons (if
any). The meaning of the axes is the same. Note that here, the plots show only the “interesting”
range of distance from close proximity to lightly penetrating.

tween the two versions, all other parts of the soft-
ware remain the same.

As mentioned in Section 3, our new traversal
scheme can be applied to virtually all BV hierar-
chies.

Figures 9 and 10 show the comparison of the
two traversal schemes for some of the objects of
our test suite. The polygon counts per object are
28167, 10306, 30075, and 26136 polygons for the
car body, filter, head light, and door lock, resp.
Times are averaged over many different orienta-
tions. In Figure 9, the algorithm returned only
the first witness, while in Figure 10, the algo-
rithm returned all witnesses (i.e., pairs of inter-
secting polygons). Apparently, in that case, the
gains are not as dramatic as in the first case, which
we attribute to the fact that most of the time the
CPU is waiting for the memory. If one compares
the maximal collision time, quite similar plots are
obtained. Overall, our new traversal scheme is
almost always significantly faster than the tradi-
tional scheme.

From a hardware point of view, other character-
istic numbers of the algorithm are more interest-
ing. (The overall performance of the hardware will
be presented below).

Figure 11 shows the average number of nodes
visited during the traversal; visits on both trees are
accounted for, and multiple visits are counted mul-
tiple times, i.e., this number is equivalent to the
number of memory transfers that must be done
(assuming there would be no cache). This visit
count was averaged over a large number of dif-
ferent orientations for a certain distance between

the two objects. The distance was chosen where
the first peak occurred in Figure 9.

Even more dramatic is the difference in the num-
ber of DOP transformations that are performed
during one traversal (see Figure 12). This is, of
course, due to the fact that in the traditional scheme
tumbled nodes are visited multiple times. The
number of polygon intersection tests and the num-
ber overlap tests is more or less the same for both
the old and the new traversal scheme.

5.2 Hardware performance

Processing of a given list involves reading and
transforming two tumbled nodes, and reading and
comparing the appropriate number of aligned node
pairs. We assume that throughput is limited by
transformation performance and memory band-
width; the stack engine is assumed to be always
fast enough. Further assumptions are as follows:
nodes are defined by 24 single-precision floating-
point numbers plus auxiliary data placed in mem-
ory on 128-byte boundaries. The memory is built
from DDR-SDRAM chips with a 2-2-2 access char-
acteristic (2 cycles each for the precharge time,
RAS-CAS-delay, and CAS-latency). The Colli-
sionChip is assumed to run at the data burst fre-
quency, e.g. 266MHz for PC133 memory chips.
A cycle of the CollisionChip equals one half of a
memory cycle. The SDRAM Interface can buffer
an entire node pair (256 bytes) and thus allows a
burst length of eight to be used. In the following,
cycles refer to chip cycles. Then, a random access
to a node pair takes 16 cycles to complete.
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Figure 11: The total number of nodes visited on average during traversal (y-axis), i.e., the amount of
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Figure 12: The total number of DOP transformation on average during a traversal (y-axis). X-axis =
number of polygons for one object in 1000.

The first d-parameter of a tumbled node can be
written in the DOP Register File 10 cycles after
the (random) read was initiated. On average, con-
tinuous evaluation of Equation 3 can start after
additional 12 cycles, when the first half of all d’s
are available. The DOTADD-unit is assumed to
have 6 pipeline stages. The first result will be
clocked into the Results Register Bank after a total
of 28 cycles, the last one after 52 cycles.

Last access to the DOP Register File for the pro-
cessing of the first tumbled node sibling occurs in
cycle 46. The other sibling can then be transferred
sequentially from the SDRAM Interface Unit into
the DOP Register File and processed in the same
way. The transformed sibling will be ready in the
Results Register Bank after 88 cycles.

By that time, the first pair of aligned nodes in
the list has been fetched from memory, with one
of the nodes being present in ”e”-register bank.
The other node will be processed 4 cycles later.
The load of the second node pair has been initiated
such that processing can continue uninterrupted
throughout cycle 100.

For all further memory reads, since we assume
page faults for practically all memory reads, a de-
lay will occur between read cycles. On memory
chips with four internal banks, this delay will be 2
cycles on average, due to bank interleaving, giving
a total read time of 10 cycles per node pair.

Thus, the performance can be estimated as

TL = 100 + (α− 2) ∗ 10,

where TL is the number of cycles needed to pro-
cess a list, and α is the number of aligned node
pairs in the list. If for a given collision test for

two objects there are τ lists to process, each with
α node pairs on average, the total performance can
be characterized as

TT = (100 + (α− 2) ∗ 10) ∗ τ (5)

The number of lists τ is given by the number of
visited tumbled node pairs.

Based one these cycle times, we have imple-
mented a functional simulation of the hardware
in C++, which was assumed to run at 266 MHz.
Then, exactly the same benchmark procedure as
for the software has been run with this simula-
tion. The software implementation was running
on a Pentium-4 CPU at 1.8 GHz. The speedup for
worst-case object configurations is shown in Fig-
ure 13.

6 Conclusions and Future Work
In this paper, we have presented novel algorithms
and a hardware architecture for performing hi-
erarchical collision detection. It is arguably the
first special-purpose hardware architecture dedi-
cated to this task. We lay special emphasis on
the fact that this architecture is suitable for “poly-
gon soups” in general, as opposed to previously
reported methods utilizing graphics hardware.

The speedup of a 266 MHz collision detection
chip over a 1.8 GHz software solution is around
30 on average. It is generally higher in worst-case
scenarios, which is an important result, because
interactivity and stability is limited most severely
by these cases. Thus a chip design is very well jus-
tified.
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Figure 13: Speedup of our hardware architecture
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A good part of the speedup can be attributed to
our novel hierarchy traversal scheme, which can
be applied to most kinds of bounding volume hi-
erarchies.

Our near-term goal will be to implement a VHDL
model of the CollisionChip, identify potential bot-
tlenecks, and further optimize the architecture to-
wards even higher processing speeds. Our long-
term goal will be to integrate this project into an
industrial virtual prototyping application.

We will also look into the open issue whether
or not hierarchical algorithms are best suited for
a hardware implementation, because of their bad
memory coherence. Therefore, we will investi-
gate non-hierarchical data structures, which also
might offer the benefit of making deformable col-
lision detection possible.
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