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ABSTRACT
We present a novel statistical shape descriptor for arbitrary three-
dimensional shapes as a six-dimensional feature for generic clas-
sification purposes. Our feature parameterizes the complete geo-
metrical relation of the global shape and additionally considers
local dissimilarities while being invariant to the shape appearance.
Our approach allows the classification of large-scale shapes with
only small local dissimilarities. Our feature can be easily quantized
and mapped into a histogram, which can be used for efficient and
effective classification. We take advantage of GPU processing in
order to efficiently compute our invariant local shape descriptor
feature even for large-scale shapes. Our synthetic benchmarks show
that our approach outperforms state-of-the-art methods for local
shape dissimilarity classification. In general, it yields robust and
promising recognition rates even for noisy data.

CCS CONCEPTS
• Information systems→ Similarity measures; • Computing
methodologies→ Concurrent programming languages;
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1 INTRODUCTION
Robust scene interpretation in the form of detection and classi-
fication of previously known 3D objects in arbitrary scenes is a
key factor in various computer vision approaches. Efficient and
smart shape descriptors are fundamental to object detection and
classification. According to Wahl et al. [25] and Rusu et al. [21]
such shape representation have to be

(1) compact,
(2) robust,
(3) they should be invariant, e.g. not depending on a global

coordinate frame, and they
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(4) should have the descriptive capacity to distinguish arbi-
trary shapes.

Often, e.g. in robotics, the object detection and classification is
done on point cloud streams. Due to a consecutively improving 3D
sensing technology (stereo systems, laser scanner, or consumer elec-
tronics such as the Kinect) these point clouds do not only become
larger but additionally contain more details. Consequently, it is
necessary that object detection and classification approaches adapt
to the increased (local) 3D object detail. Hence, we identified the
following additional challenges for such kinds of shape descriptors:

(5) they should consider small local dissimilarities,
(6) their computation should be manageable to handle also

large-scale shapes.
Wahl et al.’s work effectively solve the first four items by creat-

ing a surflet-pair histogram to represent the shape of 3D objects
and matching histograms with KL divergence [10]. However, their
approach fails to deal with the small locally dissimilar and large-
scale computing problems. The main reason for the performance
issues are the sequential computation of the histograms and the
usage of the statistical KL method for the classification. On the
other hand, Zhang et al. [26] already showed that the GPU can
be applied to accelerate the 3D object retrieval process. Moreover,
machine learning algorithms have become a very popular and pow-
erful tool for 2D or 3D object classification and regression problems,
especially for large, high-dimension histograms. In this paper we
present a substantial extension to the approach by Wahl. In detail,
our contributions are:

• a novel local feature that considers small local characteris-
tics of the object,

• a parallelization of the histogram computation,
• a machine-learning-based classification algorithm that can

handle large-scale shapes.
Basically, we augment the the four-dimensional feature of Wahl

et al. into a six-dimensional feature that considers additionally
the local Gaussian curvature and the local angle of the object. Our
approach is invariant to translation, rotation and scale of the shapes
and moreover, it is robust to noise. We have implemented our
algorithm using CUDA that allows it to completely run on the GPU.
As a use case scenario we chose the classification of 3D asteroids
from point cloud data. This scenario is typical for large-scale objects
with local dissimilarities and is currently discovered in spacecraft
operation studies for autonomous landing [19]. Additionally, we
evaluated regular objects from the NTU database. We compared our
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approach to several state-of-the-art shape descriptors. Our results
show that our approach is capable of classifying both large-scale
shapes with local dissimilarities based on their local appearance
and standard shapes based on their global and local dissimilarities
efficiently.

Figure 1: The dissimilarity of different resolution 3Dmodels
of Itokawa.

2 RELATEDWORK
The goal of shape-based object classification is to formulate shape
properties which accurately represent the object. This shape de-
scriptors are used to efficiently classify them while focusing on
(1) the compactness of shape descriptors and (2) the robustness
of shape descriptors. A detailed overview of shape descriptors for
shape-based object classification can be found in [15, 24]. Here, we
give an overview of relevant approaches which are directly related
to our work.

In early research, Bay [2] established the SURF detector, and [17]
proposed SIFT using local invariant descriptors. More recent ap-
proaches, e.g. from [3, 5, 8, 16, 25] focused on new shape descriptors.
Namely, [25] introduced a four- dimensional global shape descriptor.
They defined a 3D coordinate frame for each pair of oriented points
(so-called surflet-pairs), and defined a four-dimensional, pose invari-
ant shape descriptor, which describes these surflets. [3] proposed
the view-based global shape descriptors Light Field descriptor(LFD)
which aims at describing 3D models by a set of two-dimensional
representations. In contrast, [8] introduced two-dimensional spher-
ical harmonics based shape descriptors. This approach does not
contain a sophisticated classification scheme because the similarity
between two shapes is calculated by the Euclidean between two
spherical harmonic descriptors. Lo and Siebert [16] proposed Trift
which extended the idea of SIFT from 2D image to 2.5D domain.
Their idea is to fusion the histogram of range surface topology
types with the histogram of the range gradient orientations to form
a new feature descriptor.

Another spectral-based shape analysis method called shapeDNA
[20] was proposed by Reuter. Their method extracts fingerprints
of an arbitrary surface by taking the eigenvalues of its respective
Laplace-Beltrami operator. This is the basis for a series of shape

descriptors based on such Laplace-Beltrami opearators, such as the
wave kernel signature (WKS)[1] or the scale-invariant heat kernel
signature (SIHKS)[12].

The approaches mentioned above trace the development on 3D
shape analysis from early general shape description to recent spec-
tral shape analysis. However, none of them considers local shape
dissimilarities of large-scale objects and and moreover, they are
susceptible to noise that often appears in point clouds.

3 OUR DESCRIPTORS
Wahl et al.’s four-dimensional geometric feature is the basis of our
novel six-dimensional geometric feature. Basically, they proposed
surflet-pair histograms to describe the shape of 3D objects. We start
with a short recap of this approach.

3.1 Recap: Surflet-Pair-Relation Histograms
An important advantage of Wahl et al.’s approach is its transforma-
tional invariance. In order to realize this, he introduced a canonical
coordinate system by extracting featuresU ,V ,W (see Figure 2(a)) as
a transformation independent reference. They defined a canonical
coordinate system as follows:
1 Extract the whole pairwise points and its normals from the sur-

face mesh of object (Pi ,ni ). Randomly select surflet-pairs (Pi ,ni )
and (Pj ,nj ). If satisfy Pi satisfies Equation 1 we simply set Pi as
the origin of the canonical coordinate system otherwise Pj .��nj × (pj − pi )

�� ⩽ ��nj × (pj − pi )
�� (1)

2 Then he constructs the canonical coordinate system by comput-
ing U ,V ,W as the base vectors: Assuming Pi as the origin so ni
is U , we normalize the vector Pi − Pj by ρ =

Pi−Pj
|Pi−Pj | in order

ensure that the feature is invariant to scaling. The canonical
coordinate system is then given by V = U × ρ,W = U ×V .
From this canonical coordinate system, we derive Wahl et al.’s

global features as follows: Given an object represented by a point
set P , for each pair of points we define four features for the complete
four-dimensional vector G for each point Pi :

G ( ®Pi , ®Pj ) = (α , β ,γ ,δ ) (2)

by

• α = arctan( ®W × ®n2, ®U × ®n2), α ∈ − π
2 ,

π
2 ,

• β = ®V × ®n2, β ∈ (−π ,π )
• γ = ®U × ®ρ,γ ∈ (−π ,π )
• δ = |P1−P2 |

Max ( | ®Pi− ®Pj |)
,δ ∈ (0, 1).

3.2 Our Adaptive Hybrid Shape Descriptor
Our novel invariant local geometric features extend the basic four-
dimensionalG( ®Pi ) by two additional dimensions. They are inspired
by the human cognition. Early psychophysical experiments showed
that human visual system decomposes complex shapes into parts
based on curvature and processes salient features before higher level
recognition [23]. This research motivates us to focus on curvature
to represent the local shape of the 3D model. This local geometric
feature L(Pi ) for each point can be represented by the following
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Figure 2: (a) Pairwise points P1,P2 and their normal vectors
n1, n2. U, V, W are the intrinsic reference frame built by the
pairwise points. And n′2fi is the projection of n2 to UW plane,
α , β , γ represents the angles between (n1, n2fi) , (V, n2), and
(n1, P2 − P1). δ is the distance between the pairwise points.(b)
O denotes the geometric center of the object. Vector OA and
AB represents the position vector and normal vector of ver-
tex A, θ is the inclined angle.

two parameters η and κ:

L ( ®Pi ) = (η,κ) (3)

with
• η is the Gaussian curvature
• κ represents the local normal perturbation of the object’s

normal.
In order to obtain a smooth curvature at each point Pi , we apply
the discrete curvature analysis according to [6]. Additionally, we
consider the normal perturbation with the parameter κ. The main
challenge is to represent the point’s normal in a transformational
invariant way. Let c be the geometric center of the model and ni
the normal of point Pi . Then we define κ= (Pi -c)ni , i.e. κ represents
the angle between the vector that is spanned by the object’s center
and the point’s position and the normal of the point (see Figure
2(b)).

The global shape descriptor according to Wahl et al. and our
local shape descriptor can be easily combined to our new adaptive
hybrid shape descriptor (AHD):

AHD ( ®Pi , ®Pj ) = (G ( ®Pi , ®Pj ),L ( ®Pi )) = (α , β ,γ ,δ ,η,κ) (4)

Since G( ®Pi , ®Pj ) as well as L( ®Pi ) are transformation invariant, also
G( ®Pi , ®Pj ) is transformation invariant. For a point cloud consisting
of n points, G( ®Pi , ®Pj ) can be computed in O(n) and L( ®Pi ) in constant
time for each individual point Pi .

4 TRAINING AND CLASSIFICATION
Our geometric feature described above is the basis for object recog-
nition tasks. To do that, we create a database of histograms for a set
of point clouds. The histograms are generated for each point cloud
individually by computing our AHD-feature for all pairs of points
and then discretizing them into bins. Similar toWahl et al., we chose
five bins per dimension. This results in a total number of 56 = 15625

bins for each object. In the end, we get a 15625-dimensional vector
that represents the object.

4.1 Parallelization
A nice property of our geometric feature is that the histogram gener-
ation can be easily parallelized. Obviously, the parameters for each
pair of points can be computed independently (see Algorithm 2). In
order to bin the resulting six-dimensional vectors, we additionally
have to sort these vectors. In detail, we use a parallel bitonic sort
and a parallel reduction algorithm to count the number of entries
per bin (see Algorithm 1). Please note, that our local features η and
κ have to be computed only once per point, whereas the global
features α , β ,γ ,δ are computed per pair of points. Consequently,
the total parallel running time of our algorithm is in O(n) assuming
a perfect PRAM.

Algorithm 1: computeHistogram( Pointcloud A )
In Parallel forall points pi ∈ A do

featureSet[i]=computeFeature( pi , A )
In Parallel sort(featureSet)
histogram = In Parallel reduction(featureSet)

Algorithm 2: computeFeature( Point p, Poincloud A )
compute curvature η(p)
compute angle κ(p)
In Parallel forall points pi ∈ A do

compute α , β,γ and δ ( p,pi )

4.2 Histogram cluster analysis
Choosing the best classification algorithm is a non-trivial task. For
instance, it highly depends on the dataset and the number but also
the identifiability of the clusters. For our use case of asteroid classi-
fication (see Section 5), we first tried to use the linear discriminant
analysis in combination with a PCA. The results show that that the
distribution can be hardly linearly divided into meaningful clusters
(see Figure 3(a)). On the other hand, random forest have shown to
achieve high accuracy for the classification of non-linear datasets
and they can easily handle multi-class classification challenges [14].
Consequently, we decided to use random forests.

5 USE CASE: ASTEROID CLASSIFICATION
As one challenging example for the application of our algorithm
we outline celestial bodies, especially asteroids. Asteroids differ in
many ways from other (human created) objects because of their
complex shapes, internal structures and material properties. For
instance, Itokawa has significant porosities which are a key evi-
dence for its belongingness of its corresponding taxonomic class
[11]. Therefore, this kind of local dissimilarity pose a competitive
challenge to our shape descriptors.

There is an increasing interest in the field of spacecraft flight
to perform autonomous surface analysis and safe landing opera-
tions [19]. For these autonomous systems it is crucial to efficiently
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Figure 3: (a) Using PCA transform to efficiently reduce raw
feature histogram from 15625 dimensions to 3 dimensions.
The asteroid classes are color-coded. (b) Computation times
of CPU VS GPU

and accurately classify and recognize the shape and local surface
details for the landing operations. Thus, the need for the ability of
recognizing asteroids in arbitrary scenes based on 3D point clouds
without large databases has occupied an important position.

A major drawback in the classification of asteroids is the lack
of data. High-quality models of asteroids are usually recorded dur-
ing rare and costly spacecraft fly-by or rendezvous missions [22].
Consequently, it is hard to obtain a large database for training and
classification purposes. In order to overcome this limitation, we
decided to use Poisson disk sampling on an asteroid database to
increase the number of available data. Poisson disk sampling is one
of the most classical methods for the fast resampling of surface
points [7] and it is proven to be very robust Corsini [4].

Actually, the Poisson-sampled data draws a special challenge
to our algorithm because the generated data is usually a lower-
resolution model of the original high-resolution asteroid. Hence,
it may lack some details on the surface. Figure 4 illustrates the
Poisson sampled asteroid models.

6 EVALUATION
We have implemented our adaptive hybrid shape descriptor (AHD)
in Python 3.5. We performed our experiments on a machine with In-
tel Core i7 quad core processor with Hyperthreading enabled, 8 GB
of memory, and a Nvidia Geforce GT 640M, operated by Windows
10. We applied three experiments to measure the performance as
well as the quality of our shape descriptor approach.

First, we performed a comparison of the sequential CPU algo-
rithm and our massively parallel GPU implementation for the his-
togram generation and the hybrid-feature computation. Second,
we evaluated the quality of our approach and its competitors for
our previously outlined use case study of asteroid classification for
autonomous spaceflight operations. Third, we evaluated the quality
of our approach and its competitors based on the standard shape
NTU database set.

We compared the quality to three state-of-the-artmethods, namely
the 3DHarmonics [9], LightField descriptor [3] and shapeDNA [20].
Here, we used freely available open source implementations. Ad-
ditionally, we compared our approach to Wahl et al.’s original im-
plementation (Global shape descriptor). In order to find the best

parameters for our random forest for this competitive evaluation,
we used grid search and selected appropriate parameters for esti-
mators, depth, lea size and split criterion.

For our quality evaluation we use the well-known precision
and recall diagram. Each of our evaluation plots precision versus
recall averaged over all classified models in the database. The plot
axes can be interpreted as follows [8]: For each target model in
class C and any number K of top matches, "recall" represents the
ratio of models in classC returned within the top K matches, while
"precision" indicates the ratio of the topK matches that aremembers
of classC . A perfect retrieval result would produce a horizontal line
along the top of the plot, indicating that all the models within the
target object’s class are returned as the top hits. Otherwise, plots
that appear shifted up and to the right generally indicate superior
retrieval results.

6.1 GPU-based Histogram Generation
We compared the performance of a traditional sequential CPU im-
plementation and massively parallel GPU implementation for our
histogram generation (see Figure 3(b)). Here, we used Python 3.5.
and pycuda for the implementation respectively. Our first evalu-
ation shows that the massively parallel GPU implementation eas-
ily outperforms the traditional sequential one with an increasing
number of vertices. Our GPU-based implementation gradually out-
performs the sequential CPU implementation by up to a factor of
1000. The GPU timings do not include transferring data between
the host CPU memory to the GPU’s global memory.

6.2 Asteroid Classification Study
In the second evaluation study, we evaluated our approach and its
competitors for our previously outlined use case study of asteroid
classification for autonomous spaceflight operations.

We randomly selected 20 asteroids from the Planetary Data
System [18] and utilized our Poisson sampling approach in order
to obtain a large set of asteroids 1000 for training, testing, and
evaluation purposes (see Figure 4). We add some random noise to
all asteroid meshes during evaluation process to simulate realistic
situation in space exploration.

Our evaluation shows that our shape descriptor approach with
random forest based classification outperforms the competingmeth-
ods (see Figure 5). This means that our approach is the most discrim-
inative and effective method among all evaluated approaches. Com-
pared with the 3D harmonic descriptor, lightfield, and shapeDNA,
our method owns an average of more than 70% precision rate when
average the recall axis.

Evenmore, our methods works well for almost all classes of aster-
oids, except for some difficult shapes as illustrated in the confusion
matrix (see Figure 6).

In summary, these good results demonstrate that, although we
merely sampled 10∼20% vertices from the raw meshes, our shape
descriptor is able to robustly represent the noise asteroid shape
while achieving high classification rate.
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(c) (d)

Figure 4: Example 3D asteroids and sampled asteroids. a, c
are the raw asteroid namedChuryumov (128,002 points) and
Eros (99,846 points). b, d represent the poisson-disk sample
asteroids each with 25994 and 18172 points.
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Figure 5: Plots the precision-curve for the experiment of as-
teroid classification.

6.3 Standard Dataset Testing
In the last evaluation study, we evaluated our approach and its
competitors based on the standard shape NTU database set1 [3].
The NTU database currently contains 10,911 3D models from 352
categories, from which we selected 1,218 representative models
from the database as our testing database. These 1,218 3D models
are composed into 10 classes which have the most models in each
class in the database (see Table 1). Several examples of 3D models
contained in these 10 most well-annotated classes are shown in
Figure 7.

We split the above determined 10-class dataset randomly into
training, validation and test set and used this data as the evaluation
baseline. Our approach outperforms its competitors also in this

1http://3d.csie.ntu.edu.tw/ dynamic/database/

Figure 6: Plots the confusion matrix for the experiment of
asteroid classification.

Table 1: Subset of NTU database

Category Number of models Training set
Tree 120 84
Gun 120 84

Enterprise 80 56
Wheel 78 55
Table 115 81

Potted-plant 84 60
Human 192 133

Helicopter 98 68
Fighter-plane 234 164

Four-legged-chair 97 68

Figure 7: The example of all selected class of 3D models in
NTU database.

evaluation study (see Figure 8). Our shape descriptor achieves the
best performance with classification accuracy of 62.5% and 57.1%
under invariant descriptor and global descriptor respectively, after
averaging over all the recall axis. While 3D harmonic, lightfield and
shapeDNA descriptors achieved 52.8%, 53.5% and 53.1% accuracy
under the same conditions. Surprisingly, shapeDNA performed
worst. The reason for this could be low quality and incompleteness
of some meshes in the NTU database. As a result, shapeDNA is not
robust enough to distinguish them. In this evaluation study, our
approach does not outperform its competitors to the same extent as
in the previous evaluation. We believe that the shapes of the NTU
database have less local shape information than the asteroid shapes
of our use-case study.
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Figure 8: Precision-recall curve performance evaluation of
our approach (under three schemes), compared with 3D har-
monic and light field descriptors.

7 CONCLUSIONS AND FUTUREWORK
We have presented a novel statistically invariant shape descriptor
for large-scale shapes with local dissimilarities. The main idea is
to combine features that describe the global shape with two novel
features that represent the local curvature and the normal perturba-
tion, respectively. This enables our hybrid-feature to classify both
large-scale shapes with local dissimilarities based on their local
appearance and standard shapes based on their global and local
dissimilarities. Our novel features are robust to noise and invariant
to translation, rotation and scale of the shapes. Furthermore, we pre-
sented a parallelization of the histogram computation using GPU
processing in order to deal with massive data from high-resolution
3D shapes. The results show that our GPU implementation is more
than three orders of magnitude faster than the equivalent CPU
implementation.

Due to its generality, our approach is applicable to a wide variety
of classification domains for three-dimensional shapes. The results
from our benchmarks show that our approach is able to efficiently
classify large-scale shapes with local dissimilarities in a special
asteroid use case but also for common objects.

In the future, wewould like to further evaluate our approachwith
more shape databases, especially in a terrestrial context. However,
we are mainly interested in improving our current approach for
the outlined asteroid classification use case study. Here, we would
like to incorporate reinforcement learning with our hybrid shape
descriptor.

Hinton and Krizhevsky [13] proposed unsupervised deep learn-
ing method for image retrieval, this method can be a good example
for our classification algorithms. Another interesting idea would be
to extend our approach with additional shape descriptors to further
improve it’s accuracy.
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