AstroGen - Procedural Generation of Highly Detailed Asteroid Models

X. Z. Li, R. Weller, G. Zachmann
University of Bremen, Germany

cgvr.informatik.uni-bremen.de

ICARCV’15th, Nov 19-21 2018, Singapore
Motivation

- Low-quality data from earth observation
 - Radar
 - Telescope
- Virtual testbed simulations
 - Time and cost efficient
 - Autonomous operation
 - Long distance scheduling latency
Challenges

- How to generate diverse but similar asteroid surfaces (i.e. virtual testbed) for simulation?
- How to reuse the data from previous space missions?
Previous Work

- Procedural hydrology terrain [Génevaux 2013]
 - Underlying hydrographic network
 - User defined terrain features (mountain, ...)
- Procedural terrain with real-world data [Parberry 2014]
 - Design terrain with real elevation data
 - Terrain details with value noise
- Sparse representation of terrain [Guérin 2016]
 - Procedural landform features (primitives)
 - Sparse construction tree
Our Contribution

- Automatic asteroid model generation
 - Given a predefined similarity distance to generate a variety of asteroid models from the given model
 - Add terrain features on the surface easily
- High performance
 - Parallel GPU implementation
- Arbitrary Resolution
 - Implicit representation of a given model
Approach – Overview

- Parameter training
- Surface detail transfer

Prototype Mesh

Implicit Representation
\[S = \{(x, y, z)|F(x, y, z) = T\} \]

Training Pipeline

Surface detail parameters
Approach – Training Pipeline

Step 1: **Rough Shape**
- Prototype Mesh
- Metaball Modelling
- Optimization
- Fitness function
- Implicit Representation \(\{(x, y, z) | F(x, y, z) = T \} \)

Step 2: **Surface Details**
- Optimization
- Fractal Noise
- Fitness function
- Implicit Representation
- No
Approach

- Implicit surface
 - Define a series equation F and compute for each grid point P
 - Implicit surface $S = \{(x, y, z) | F(x, y, z) = T\}$
 - T is the iso-value of the implicit surface

- Optimization
 - Change the parameters in F to generate an infinite number of shapes
 - Particle swarm optimization [Samal 2007] with a fitness function leads to target result
Step 1: Metaball Modelling

- Prototype surface
- Metaballs define the isosurface (implicit surface S with isovalue T_0) to approximate the prototype surface
 - Skeleton of spheres (Sphere Packing [Weller 2010])
 - Potential field
 - Blending
Step 1: Optimization

- Protosphere
 - \(n \) is the number of spheres in the prototype shape
- Potential function \(f(r_p) \)
 - \(a \) is the tension factor
 - \(b \) is the softness factor
- Blend function for each metaball
 \[
 f(r_p) = \left(\frac{f^m(r_{pA}) + f^m(r_{pB})}{2} \right)^{\frac{1}{m}}
 \]
 - \(m \) is the overlapping factor

Ground truth shape

Rough shape
Step 2: Fractal Noise – Perlin & Simplex

- Fractal terrain
 - 3D Perlin noise
 - Fractal (summation of noises on different octaves)
 - Self-similarity
 - 3D Simplex noise
 - Less directional artifacts
Step 2: Fractal Noise – Worley

- **Primitive - Craters**
 - **3D Worley noise**
 - Points for a distance field
 - Randomly distribute feature points X in space
 - Noise value is the distance to the-closest point $x \in X$
Step 2: Optimization – Surface Details

- Optimization parameters

<table>
<thead>
<tr>
<th>Number of Parameters</th>
<th>Perlin</th>
<th>Simplex</th>
<th>Worley</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Frequency</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Octave</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amplitude</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Coords_w</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Coords_b</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\sum = 31 \]

\[
T = T_0 + weight \cdot \sum_{i=0}^{octave} amplitude \cdot perlin((2^ix, 2^iy, 2^iz) \cdot f \cdot \vec{w} + \vec{b})
\]

\[
+ \sum_{i=0}^{octave} simplex(...) + \sum_{i=0}^{octave} worley(...)
\]

- Fitness function
 - Compute histograms [Li 2017] for all models
 - Minimize the histogram’s Euclidean distance
Results – Itokawa

Model from photogrammetry (Source 1,780k vertices)

“Flat” surface (1,986k vertices)

“Medium” surface (2,173k vertices)

“Steep” surface (2,335k vertices)
Results – Transformed Low-Poly Asteroids

Asteroid Lutetia
(710k vertices)

Asteroid Ceres
(1,063k vertices)

Asteroid Stein
(778k vertices)
Conclusions

- Optimization-based generation of 3D asteroid look-alikes

Major contributions:
- Create infinite numbers of asteroid shapes similar to prototype shape
- Users control the similarity/dissimilarity distance to generate different shapes
- Create arbitrarily high resolution from low-poly models
- Can be easily implemented on the GPU

Limitations:
- The randomness of noise make it hard to control and generate particular patterns
Future Work

- More naturalness
 - AstroGen integrated with physically-based noise such as flow noise and curl noise
 - Incorporate with reinforcement learning or other optimization algorithm to improve the result
 - Different similarity measurements can be compared

- More applications
 - AstroGen in virtual testbed to verify vehicle design
 - Mascon based gravity computing

- Better mesh quality
 - Enhance the visual fidelity by using dual marching cubes
Thank you!

Q&A