Bremen

Interaction Metaphors for Collaborative 3D Environments

G. Zachmann

University of Bremen, Germany zach@informatik.uni-bremen.de

Learntec, Karlsruhe, Germany, 2014

Ŵ

Virtual/3D Environments (VEs) at Home

In the old days:

15,000 - 60,000

~500,000

• Today:

Introduction	
maduation	

Hand-Tracking

Haptics

Collaborative Virtual Environments U

Definitions:

Bremen

- CVE = shared virtual environment that contains virtual representations of real objects/abstract data and users (avatars)
- CVF = VF + CSCW
- Classification by kind of participants: same vs. different domain of expertise

Massively multiplayer online game

Moonbase Alpha, NASA

Walk-through, ITER

Simultaneous engineering teams (SET)

Introduction

Tele-Immersion

Hand-Tracking

Collab. Selection

Haptics

Ű

	Synchronous (same time)	Asynchronous (different times)
Co-located (same place)	 Face-to-face SETs Shared wall displays (powerwall, workbench,) One set of input devices for the "driver" 	 Continuous task No collaborative VEs yet Conventional "war rooms", post-it communication Large public displays(?) Touchless input(?)
Remote (different places)	 Remote collaboration Video conference Simultaneous interaction with shared virtual objects Second life et al., MMOGs 	 Communication + Coord. Wiki's (Wikipedia) Email Version control (software,) (Second life et al.)

Introduction

Tele-Immersion for Remote Collaboration

- Lots of commercial products for "telepresence":
 - But are they immersive?
 - Do they create the feeling of *presence*?
- Goal: a truly shared space
- Metaphor: Extended Window
 - Display: large video wall
 - Head-tracked users → center of projection for remote environment
 - Creates illusion of looking through a "window" into the collaborator's physical space

000000

Haptics

U

- Benefits:
 - Natural scale
 - The virtual space "between" the two collaborators can be populated with virtual objects or information visualizations
 - Natural & intuitive navigation
 - Motion parallax \rightarrow increased presence
 - Gaze awareness: each user sees where other user is looking at; users can establish eye contact

[[]Kurillo et al., CVPRW, 2010]

Hand-Tracking

- Problem: need a camera image of *remote* environment/user from viewpoint of *local* user
- Solution: micro-lens camera array embedded in video wall

[Willert, Ohl, Lehmann, Staadt, 2010]

Bremen

W

Hand-Tracking

Collab. Selection

- Problem: insufficient resolution, if local user approaches local display
- Solution: super-resolution images by weighted camera fusion & cameras with different field-of-views

- Problem: camera array outputs essentially a light field → huge amount of data
- Solutions:
 - a) Transmit local user's viewpoint to the remote site →
 extract parts of remote camera images needed to assemble image for local user

(b)

b) Compress light field

(neighboring camera images differ only slightly)

Introduction

Tele-Immersion

Hand-Tracking

Collab. Selection

e

W

Other Interaction Modes for 3D Tele-Immersion

Local User **Remote User**

First Person Mode

Third Person Mode

Physically correct Extended Window metaphor; each user sees the other and the virtual objects at the physically correct position; virtual viewpoint is always coincident with real viewpoint

Each user looks over their virtual avatar's shoulder; virtual viewpoint is usually fixed, or can be controlled using some input device; can be useful if display is mono-scopic

Mirror Mode

[Kurillo et al., 2013]

Camera image from self is superimposed in a mirrored fashion on remote video stream; could be useful for physical instruction; problems: correct handling of mutual occlusion

Hand-Tracking

Collab. Selection

- Assume this situation: one stereo display wall, several users in front of it
- Problem with a singletracked projection (stereo or mono): only the viewpoint of the *tracked* user is correct, only she will see a correct image!
- Example: communication via pointing fails

Image's perspective is correct for the user

Image's perspective is correct for the (real) camera

Bremen

W

Hand-Tracking

Collab. Selection

Haptics

- With perspectively correct projections for all co-located users, the shared 3D space will become coherent for all users
- Consequence: direct communication (including *pointing!*) in co-located CVEs is possible

Kitamura et al. 2001

[Kulik et al., ACM Trans. Graph. 30, 6, 2011]

Introduction

Bremen

W

Tele-Immersion

Hand-Tracking

Collab. Selection

Haptics

Introduction

Tele-Immersion

Hand-Tracking

Collab. Selection

Haptics

Haptic Commun.

- Goal: "Kinect for the human hand"
 - Markerless tracking of human hand with cameras
 - Challenges: high-dimensional configuration space (20+6 DOFs), Real-time, large working volume, lots of self-occlusions

Bremen

W

A Segmentation-Free Approach

 Novel representation for templates: rectangle coverings

Fast Area-Based Template Matching

- Advantages:
 - Matching time no longer depends on image or template resolution
 - Speedup = 10-25 x
 - Easy to turn into hierarchical matching algorithm → complexity = O(log n) for n templates!

W

One Possible Application: Touch-less Control of Robots

With DLR, Oberpfaffenhofen: touch-less hand-based control of the surgery robot MiroSurge

Introduction

Hand-Tracking

Collab. Selection

Haptics

Collaborative 3D Search and Selection

Molecular docking is done in 3 stages:

- Very frequent task in all 3 stages:
 - *Finding* a target (structure or residue)
 - Grabbing the target (using a virtual handle)

Introduction

W

Conditions of the Experiment

- A. Two co-located, synchronously collaborating subjects:
 - Left hand of one subject controls orientation of molecule
 - Right hands of both users can point and tug at molecule parts
 - Requires good mutual understanding of partner's workspace & actions
- B. One subject:
 - Left hand controls orientation of molecule ("scene in hand" metaphor)
 - Right hand moves occluding parts of molecule away

Hand-Tracking

- Tasks with low complexity do not require collaboration
 - Collaboration does not speed up task completion time
- Collaboration (2 subjects) can speed up task completion time by up to a factor 2
 - Reason? (Social facilitation [Triplett, 1898] and/or synergy)?
- Average affinity (e.g., student-supervisor) is better than high affinity
- The best strategy here: both should work on neighboring regions
 - "Best" in the sense of 3 criteria: completion time, effectiveness of coordination, amount of verbal communication

Introduction

Hand-Tracking

Collab. Selection

Haptics

• Have a long history ...

Johannes Kepler (1571 – 1630)

 Collision detection based on sphere packings:

Bremen

Application: Collaborative Haptic Workspace

12 moving objects ; 3.5M triangles ; 1 kHz simulation rate ; intersection volume ≈ 1-3 msec

Introduction

Hand-Tracking

Collab. Selection

Haptics

Research questions:

Bremen

W

- Is that true when force-feedback is given?
- If not, is the benefit worth the extra dollars?

Introduction

Haptics

Conventional wisdom in VR: restrict number of DOFs for precise manipulation • E.g. [Veit, Capobianco, Bechmann, VRST

Bremen

W

The Piano Movers' Problem

- Application: assembly simulation (and many others)
- Question: does collaboration in a virtual environment help?

Introduction

Bremen

Tele-Immersion

Hand-Tracking

Collab. Selection

Haptics

[Simard et al., Virtual Reality, Springer, 2011

Hand-Tracking

Tele-Immersion

Haptic Commun.

Haptics

- The task: a collaborative assembly task
- Experiment setup:

Introduction

- Two users, one expert, one novice
- Each with one 3-DOF haptic device (Phantom)
- Only oral (direct) and haptic (indirect, feed-through) communication

W

- Assembly task:
 3 distinct legs of assembly path
 - Expert knows exact movements
 - Novice is guided by haptic feed-through communication metaphors from expert
- Haptic feed-through metaphors:

Bremen

Bad news: task completion time does not change significantly

4,56

Without

metaphor

1,67

With

Hand-Tracking

Good news: collaboration improves manual precision

5

4 3,5 3 2,5

2 1,5 1 0,5

0

Tele-Immersion

4,5

Avg. position error (cm)

Introduction

Thank You!

Introduction

Hand-Tracking

Collab. Selection

Haptics