Interaction Metaphors for Collaborative 3D Environments

G. Zachmann
University of Bremen, Germany
zach@informatik.uni-bremen.de

Learntec, Karlsruhe, Germany, 2014
Virtual/3D Environments (VEs) at Home

- In the old days:
 - 15,000 – 60,000
 - ~500,000
 - ~20,000

- Today:
 - ~500
 - ~5,000
 - ~200

Introduction
Tele-Immersion
Hand-Tracking
Collab. Selection
Haptics
Haptic Commun.
Collaborative Virtual Environments

- Definitions:
 - CVE = *shared* virtual environment that contains virtual representations of real objects/abstract data *and* users (avatars)
 - CVE = VE + CSCW

- Classification by kind of participants: same vs. different domain of expertise

- Massively multiplayer online game
- Simultaneous engineering teams (SET)

- Moonbase Alpha, NASA
- Walk-through, ITER
Classification by Place and/or Time

- **Face-to-face**
 - Co-located (same place)
 - SETs
 - Shared wall displays (powerwall, workbench, ...)
 - One set of input devices for the "driver"
 - Remote collaboration (different places)
 - Video conference
 - Simultaneous interaction with shared virtual objects
 - Second life et al., MMOGs

- **Continuous task**
 - Asynchronous (different times)
 - No collaborative VEs yet
 - Conventional "war rooms", post-it communication
 - Large public displays(?)
 - Touchless input(?)
 - Communication + Coord.
 - Wiki's (Wikipedia)
 - Email
 - Version control (software, ...)
 - (Second life et al.)
Tele-Immersion for Remote Collaboration

- Lots of commercial products for "telepresence":
 - But are they immersive?
 - Do they create the feeling of presence?

- Goal: a truly shared space

- Metaphor: Extended Window
 - Display: large video wall
 - Head-tracked users → center of projection for remote environment
 - Creates illusion of looking through a "window" into the collaborator's physical space
Benefits:

- Natural scale
- The virtual space "between" the two collaborators can be populated with virtual objects or information visualizations
- Natural & intuitive navigation
- Motion parallax → increased presence
- Gaze awareness: each user sees where other user is looking at; users can establish eye contact
Problem: need a camera image of *remote* environment/user from viewpoint of *local* user

Solution: micro-lens camera array embedded in video wall

[Willert, Ohl, Lehmann, Staadt, 2010]
- Problem: insufficient resolution, if local user approaches local display
- Solution: super-resolution images by weighted camera fusion & cameras with different field-of-views
- Problem: camera array outputs essentially a light field → huge amount of data

- Solutions:
 a) Transmit local user's viewpoint to the remote site → extract parts of remote camera images needed to assemble image for local user
 b) Compress light field (neighboring camera images differ only slightly)
Other Interaction Modes for 3D Tele-Immersion

- **First Person Mode**: Physically correct Extended Window metaphor; each user sees the other and the virtual objects at the physically correct position; virtual viewpoint is always coincident with real viewpoint.
- **Third Person Mode**: Each user looks over their virtual avatar’s shoulder; virtual viewpoint is usually fixed, or can be controlled using some input device; can be useful if display is mono-scopic.
- **Mirror Mode**: Camera image from self is superimposed in a mirrored fashion on remote video stream; could be useful for physical instruction; problems: correct handling of mutual occlusion.
A Problem with Co-Located CVEs

- Assume this situation: one stereo display wall, several users in front of it.
- Problem with a single-tracked projection (stereo or mono): only the viewpoint of the tracked user is correct, only she will see a correct image.
- Example: communication via pointing fails.
With perspectively correct projections for all co-located users, the shared 3D space will become coherent for all users.

Consequence: direct communication (including pointing!) in co-located CVEs is possible.

Kitamura et al. 2001

[Kulik et al., ACM Trans. Graph. 30, 6, 2011]
Camera-Based Articulated Object Tracking

- **Goal**: "Kinect for the human hand"
 - Markerless tracking of human hand with cameras
 - Challenges: high-dimensional configuration space (20+6 DOFs), Real-time, large working volume, lots of self-occlusions
A Segmentation-Free Approach

Standard segmentation-based approach:
- Input image
- Hypothesis about color
- Segmentation
- Match shape
- Confidence Map

Our novel segmentation-free approach:
- Confidence Map
- Compare color distribution
- Estimate color distributions
- Hypothesis about shape
- Input image

[Mohr et al., ISVC, 2011]
Fast Area-Based Template Matching

- Novel representation for templates: rectangle coverings
- Advantages:
 - Matching time no longer depends on image or template resolution
 - Speedup = 10-25 x
 - Easy to turn into hierarchical matching algorithm → complexity = $O(\log n)$ for n templates!

[Mohr et al., BMVC, 2010]
One Possible Application: Touch-less Control of Robots

With DLR, Oberpfaffenhofen: touch-less hand-based control of the surgery robot MiroSurge
Collaborative 3D Search and Selection

- Studied in a particularly complex VE: molecule analysis & design
- Molecular docking is done in 3 stages:
 1. Finding a target (structure or residue)
 2. Grabbing the target (using a virtual handle)
- Very frequent task in all 3 stages:
 - Finding a target (structure or residue)
 - Grabbing the target (using a virtual handle)

Introduction

Tele-Immersion

Hand-Tracking

Collab. Selection

Haptics

Haptic Commun.

[Simard et al., IJHCS, 2011]
Conditions of the Experiment

A. Two co-located, synchronously collaborating subjects:
 - Left hand of one subject controls orientation of molecule
 - Right hands of both users can point and tug at molecule parts
 - Requires good mutual understanding of partner's workspace & actions

B. One subject:
 - Left hand controls orientation of molecule ("scene in hand" metaphor)
 - Right hand moves occluding parts of molecule away
Results

- Tasks with low complexity do not require collaboration
 - Collaboration does not speed up task completion time
- Collaboration (2 subjects) can speed up task completion time by up to a factor 2
 - Reason? (Social facilitation [Triplett, 1898] and/or synergy)?
- Average affinity (e.g., student-supervisor) is better than high affinity
- The best strategy here: both should work on neighboring regions
 - "Best" in the sense of 3 criteria: completion time, effectiveness of coordination, amount of verbal communication
Collision Detection as Enabling Technology

Introduction

Tele-Immersion Hand-Tracking

Collab. Selection

Haptics

Haptic Commun.
Sphere Packings

- Have a long history ...

- Collision detection based on sphere packings:

 - Johannes Kepler (1571 – 1630)

 - [Weller et al., Siggraph Asia, 2010]
Application: Collaborative Haptic Workspace

12 moving objects; 3.5M triangles; 1 kHz simulation rate; intersection volume $\approx 1-3$ msec
User Study: 3 DOFs vs 6 DOFs

- Conventional wisdom in VR: restrict number of DOFs for precise manipulation
 - E.g. [Veit, Capobianco, Bechmann, VRST 2010]

- Research questions:
 - Is that true when force-feedback is given?
 - If not, is the benefit worth the extra dollars?
Results: User Performance

Training time

Distance travelled with virtual hand

[Weller et al., ICCE, 2011]
The Piano Movers' Problem

- Path planning problem: find a path (including rotations) for moving an object (piano) from A to B (without moving/hitting anything else)
- Application: assembly simulation (and many others)
- Question: does collaboration in a virtual environment help?
Haptic Communication in Collaborations

- The task: a collaborative assembly task
- Experiment setup:
 - Two users, one expert, one novice
 - Each with one 3-DOF haptic device (Phantom)
 - Only oral (direct) and haptic (indirect, feed-through) communication

[Image: Experts and followers with haptic devices]
Assembly task:
- 3 distinct legs of assembly path
- Expert knows exact movements
- Novice is guided by haptic feed-through communication metaphors from expert

Haptic feed-through metaphors:

- **Spring metaphor**
 - Force on follower \(\sim \) distance \(\text{[expert – follower]} \).
 - Force pulls novice in the right direction

- **Viscosity metaphor**
 - Force on expert \(\sim \) negative relative velocity.
 - Force drags expert back, if follower lags behind

- **Vibration metaphor**
 - No force, followers gets vibration signal whenever leader changes direction
Results

- **Bad news**: task completion time does not change significantly
- **Good news**: collaboration improves manual precision

![Graph showing Avg. position error (cm) and Number of collisions with and without haptic communication metaphors.](image)

Without haptic comm. metaphor vs. **With haptic comm. metaphor**

- **Average time (sec)**
 - Without haptic comm. metaphor: 15.2 seconds
 - With haptic comm. metaphor: 16.1 seconds

- **Avg. position error (cm)**
 - Without haptic comm. metaphor: 4.56 cm
 - With haptic comm. metaphor: 1.67 cm

- **Number of collisions**
 - Without haptic comm. metaphor: 54
 - With haptic comm. metaphor: 29
Thank You!

G. Zachmann, zach@cs.uni-bremen.de, http://cgvr.cs.uni-bremen.de/